

Specific Absorption Rate (SAR) Test Report

for

Dialogue Technology Corp.

on the

FLYBOOK

Report No. : FA6O2516-04-1-2-01

Trade Name : DIALOGUE Model Name : V5W1BB

FCC ID : JYV-V5W1BB
Date of Testing : Aug. 17, 2007
Date of Report : Aug. 21, 2007
Date of Review : Aug. 21, 2007

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 01

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

		ent of Compliance	
2. A		istration Data	
	2.1	Testing Laboratory	
	2.2	Detail of Applicant	
	2.3	Detail of Manufacturer	
	2.4	Application Detail	
3. S			3
	3.1	Description of Device Under Test (DUT)	:
	3.2	Product Photo	
	3.3	Applied Standards:	
	3.4	Device Category and SAR Limits	(
	3.5	Test Conditions	
		3.5.1 Ambient Condition:	
		3.5.2 Test Configuration:	
4. S	pecifi	c Absorption Rate (SAR)	'
	4.1	Introduction	
	4.2	SAR Definition	
5. S	AR M	easurement Setupeasurement Setup	8
	5.1	DASY4 E-Field Probe System	9
		5.1.1 EX3DV3 E-Field Probe Specification	. 10
		5.1.2 ET3DV6 & EX3DV3 E-Field Probe Calibration	. 10
	5.2	DATA Acquisition Electronics (DAE)	1
	5.3	Robot	. 12
	5.4	Measurement Server	. 12
	5.5	SAM Twin Phantom	. 12
	5.6	Data Storage and Evaluation	. 1
		5.6.1 Data Storage	
		5.6.2 Data Evaluation	
	5.7	Test Equipment List	
6. T	issue	Simulating Liquids	
		ainty Assessment	
		easurement Evaluation	
	8.1	Purpose of System Performance check	
	8.2	System Setup	
	8.3	Validation Results	
9. D		ption for DUT Testing Position	
		surement Procedures	
	10.1	Spatial Peak SAR Evaluation	
		Scan Procedures	
		SAR Averaged Methods	
11		Test Results	
•••	11.1	Notebook Bottom Touch with Main Antenna	
		Notebook Bottom Touch with Aux. Antenna	
12		rence	

Appendix A – System Performance Check Data

Appendix B – SAR Measurement Data
Appendix C – Calibration Data
Appendix D - Product Photo

Appendix E - Setup Photo

Fax: 886-2-2696-2255

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum result found during testing for the Dialogue Technology Corp. FLYBOOK V5W1BB on the 5GHz band body SAR are as follows (with expanded uncertainty 25.9% for 5GHz band):

5250 ~ 5350 MHz <Band II> Body SAR (W/kg) 0.241

The co-location of WLAN and Bluetooth were also checked. It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Jones Tsai Manager

Test Report No : FA6O2516-04-1-2-01

2. Administration Data

2.1 <u>Testing Laboratory</u>

Company Name : Sporton International Inc. **Department :** Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang, TaoYuan

Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-327-0973

2.2 Detail of Applicant

Company Name : Dialogue Technology Corp.

Address: 10F, No. 196, Sec. 2, Jungshing Rd., Shindian City, Taipei 231, Taiwan, R.O.C.

Telephone Number: 886-2-8911-5121 **Fax Number:** 886-2-8911-6151

2.3 Detail of Manufacturer

Company Name : Dialogue Technology Corp.

Address: 10F, No. 196, Sec. 2, Jungshing Rd., Shindian City, Taipei 231, Taiwan, R.O.C.

2.4 Application Detail

Date of reception of application: Aug. 08, 2007 **Start of test:** Aug. 17, 2007 **End of test:** Aug. 17, 2007

3. Scope

3.1 <u>Description of Device Under Test (DUT)</u>

DUT Type:	FLYBOOK
Model Name :	V5W1BB
FCC ID :	JYV-V5W1BB
Type of Modulation :	802.11a : OFDM 802.11b/g : DSSS / OFDM BT : GFSK
Frequency Range :	802.11a : 5150 ~ 5350MHz (Band I,II) / 5725MHz ~ 5850MHz (Band III) 802.11b/g : 2400MHz ~ 2483.5MHz BT : 2400MHz ~ 2483.5MHz
Maximum Output Power to Antenna :	802.11a : 16.93 dBm (Band I) / 15.07 dBm (Band II) / 18.09 dBm (Band III) 802.11b : 18.12 dBm / 802.11g: 19.55dBm BT : 1.99 dBm
Antenna Type :	PIFA Antenna
Antenna Connector :	I-PEX
Application Type :	Certification

Test Report No : FA6O2516-04-1-2-01

3.2 Product Photo

Please refer to Appendix D

Test Report No : FA6O2516-04-1-2-01

3.3 Applied Standards:

The Specific Absorption Rate (SAR) testing specification, method and procedure for this FLYBOOK is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528 -2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device and it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1 Ambient Condition:

Time terri Correctivett.	
Ambient Temperature (°C)	20 ~ 24
Tissue simulating liquid temperature (°C)	21.8
Humidity (%)	< 60%

3.5.2 *Test Configuration:*

The data rates for SAR testing is 6 Mbps for 802.11a. Engineering testing software installed on the EUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The FCC recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

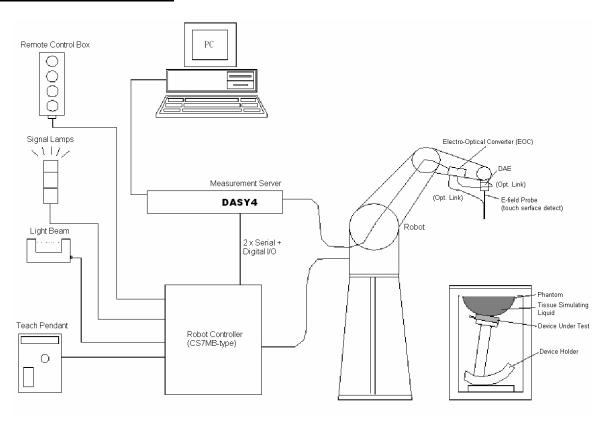


Fig. 5.1 DASY4 system

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- ➤ A computer operating Windows XP
- ➤ DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- ➤ The SAM twin phantom
- ➤ A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe EX3DV3 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

5.1.1 EX3DV3 E-Field Probe Specification

<EX3DV3 Probe>

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents)

Calibration Basic Broad Band Calibration in air:

10-3000 MHz Conversion Factors (CF) for HSL 900 and HSL 1800 Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$

(30 MHz to 3 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis)

± 0.5 dB in tissue material (rotation normal

to probe axis)

Dynamic Range $10 \mu W/g \text{ to} > 100 \text{ mW/g}; \text{ Linearity:} \pm 0.2$

dB (noise: typically $< 1 \mu W/g$)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)
Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric measurements in

any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Fig. 5.2 EX3DV3 E-field Probe

5.1.2 ET3DV6 & EX3DV3 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Sensitivity	X axis : 0.660 μV Y		Y axi	s : 0.690 μV	Z axis : 0.570 μV
Diode compression point	X axis : 95	5 mV	Y ax	xis : 93 mV	Z axis : 96 mV
	Frequency (MHz)	X ax	is	Y axis	Z axis
Conversion factor	5100~5300	4.3	1	4.31	4.31
(Body)	5400~5600	4.09		4.09	4.09
	5700~5900	4.16		4.16	4.16
	Frequency (MHz)	Alp	ha	Depth	
Boundary effect	5100~5300	0.3:	5	1.70	
(Body)	5400~5600	0.3:	5	1.70	
	5700~5900	0.3:	5	1.70	

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 <u>DATA Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- ➤ High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

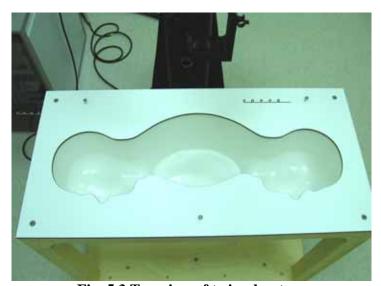


Fig. 5.3 Top view of twin phantom

Fig. 5.4 Bottom view of twin phantom

5.6 Data Storage and Evaluation

5.6.1 <u>Data Storage</u>

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-loss media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.6.2 <u>Data Evaluation</u>

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i
 Frequency f

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel

can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

 $cf = crest\ factor\ of\ exciting\ field\ (DASY\ parameter)$

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$

H-field probes: $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

with

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

 P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5.7 Test Equipment List

M. C. 4	NI CEI	TD (N.T., 1.1	C. C.IN	Calib	ration
Manufacture	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Feb. 21, 2007	Feb. 21, 2008
SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Feb. 10, 2006	Feb. 10, 2008
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 21, 2006	Nov. 21, 2007
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.7 Build 53	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 172	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071C	MY46100746	Feb. 21, 2007	Feb. 21, 2008
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
Agilent	Power Meter	E4416A	GB41292344	Feb. 08, 2007	Feb. 08, 2008
Agilent	Power Sensor	E9327A	US40441548	Feb. 08, 2007	Feb. 08, 2008
Agilent	Signal Generator	E8247C	MY43320596	Mar. 01, 2006	Mar. 01, 2008

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height from the bottom of the phantom body is 15.2 centimeters.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.1 shows the Measurement for Muscle Simulating Liquid.

Bands	Frequency(MHz)	Permittivity (r)	Conductivity ()	Measurement date
5250 ~ 5350 MHz	5260	5.26	48.4	
3230 ~ 3330 MHz <band ii=""></band>	5280	5.28	48.4	Aug. 17, 2007
\Dail\(II\	5300	5.31	48.4	

Table 6.1 Measurement for Muscle Simulating Liquid

The measuring data are consistent with $_r = 49.0 \pm 5\%$ and $= 5.30 \pm 5\%$ for 5GHz band 2.

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distribution Type	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	$_{1/k}$ (b)	1/ 3	1/ 6	1/ 2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Multiplying Factor for Various Distribution Model

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

⁽b) is the coverage factor

Error Description	Uncertainty Value	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement System						
Probe Calibration	±6.8 %	Normal	1	1	±6.8 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effect	±2.0 %	Rectangular	$\sqrt{3}$	1	±1.2 %	8
Linearity	±4.7 %	Rectangular	√3	1	±2.7 %	8
System Detection Limit	±1.0 %	Rectangular	√3	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	√3	1	± 0.5 %	∞
Integration Time	±2.6 %	Rectangular	√3	1	± 1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Probe Positioning	±9.9 %	Rectangular	$\sqrt{3}$	1	±5.7 %	∞
Max. SAR Eval.	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9 %	145
Device Holder	±3.6 %	Normal	1	1	±3.6 %	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9 %	∞
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3 %	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8 %	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6 %	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	√3	0.6	±1.7 %	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5 %	∞
Combined Std. Uncertainty					±12.9 %	330
Coverage Factor for 95%	Kp=2					
Expanded STD Uncertainty					±25.9 %	

Table 7.2 Uncertainty Budget of DASY4 for 5GHz Band

8. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 5200 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

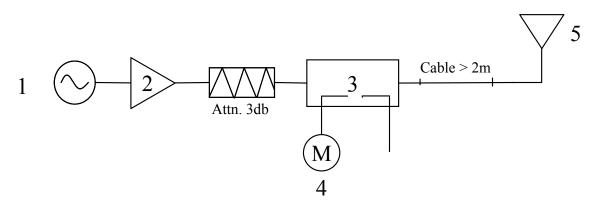


Fig. 8.1 System Setup for System Evaluation

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 5200 MHz Dipole

The output power on dipole port must be calibrated to 100 mW (20 dBm) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should within its specification of 10 %. Table 8.1 shows the Target and Measured SAR After Normalization to 1W input power.

Band SAR Targ		Target (W/kg)	Measurement data (W/kg)	Variation	Measurement date
802.11a Band II	SAR (1g)	73.7	76.5	3.8 %	Aug. 17, 2007
(5200 MHz)	SAR (10g)	20.6	21.5	4.4 %	Aug. 17, 2007

Table 8.1 Target and Measured SAR After Normalization

The table above indicates the system performance check can meet the variation criterion.

9. <u>Description for DUT Testing Position</u>

This DUT was tested in the position "Notebook Bottom Touch". The DUT faces to the phantom with 0 mm separation distance.

Remark: Please refer to Appendix E for the test setup photo.

10.Measurement Procedures

The measurement procedures are as follows:

- Using engineering software to transmit RF power continuously (continuous Tx) in the low channel
- ➤ Placing the DUT in the positions described in the last section
- > Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the low channel
- Repeat the previous steps for the middle and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 2.45GHz Band and 8x8x8 points with step size 4.3, 4.3 and 3 mm for 5GHz Band. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

Test Report No : FA6O2516-04-1-2-01

11. SAR Test Results

11.1 Notebook Bottom Touch with Main Antenna

<u> </u>	110 I TOUCOUN DOUGHT TOUCH WINT THEFEINE							
Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
802.11a	52	5260(Low)	OFDM	15.07	-0.121	0.24	1.6	Pass
<band ii=""></band>	56	5280(Mid)	OFDM	14.62	-0.123	0.174	1.6	Pass
\Dailu II>	60	5300(High)	OFDM	14.17	-0.133	0.144	1.6	Pass
802.11a <band ii=""> with BT On</band>	52	5260(Low)	OFDM	15.07	-0.126	0.241	1.6	Pass

11.2 Notebook Bottom Touch with Aux. Antenna

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
902 110	52	5260(Low)	OFDM	15.07	-	=	-	-
802.11a <band ii=""></band>	56	5280(Mid)	OFDM	14.62	0.147	0.026	1.6	Pass
\Danu II>	60	5300(High)	OFDM	14.17	-	-	-	-

Test Engineer: John Tsai, Eric Huang and Jsaon Wang

12. Reference

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21,2003.
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/8/17

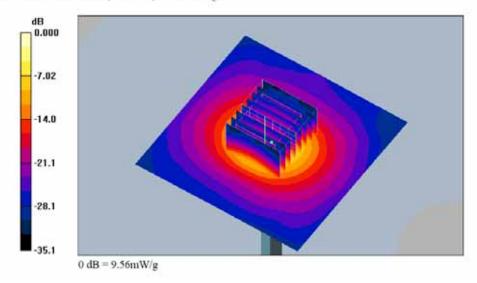
System Check Body 5200MHz

DUT: Dipole 5GHz

Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5200 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 48.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.8 °C


DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2007/2/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
 Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 10.4 mW/g

Pin=100mW/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 45.7 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 31.2 W/kgSAR(1 g) = 7.65 mW/g; SAR(10 g) = 2.15 mW/gMaximum value of SAR (measured) = 9.56 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/8/17

Body 802.11a Ch52 Notebook Bottom Touch Main Ant

DUT: 6O2516-04

Communication System: 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5260 MHz; $\sigma = 5.26$ mho/m; $\epsilon_r = 48.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.8 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2007/2/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch52/Area Scan (141x261x1): Measurement grid: dx=10mm, dy=10mm

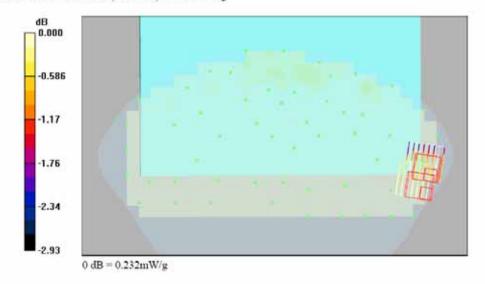
Maximum value of SAR (interpolated) = 0.309 mW/g

Ch52/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 7.24 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 0.267 W/kg

SAR(1 g) = 0.240 mW/g; SAR(10 g) = 0.226 mW/g


Maximum value of SAR (measured) = 0.267 mW/g

Ch52/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 7.24 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.194 mW/gMaximum value of SAR (measured) = 0.232 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/8/17

Body 802.11a Ch56 Notebook Bottom Touch Aux Ant

DUT: 6O2516-04

Communication System: 802.11a; Frequency: 5280 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5280 MHz; G = 5.28 mho/m; $\epsilon_c = 48.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.8 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2007/2/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch56/Area Scan (141x261x1): Measurement grid: dx=10mm, dy=10mm

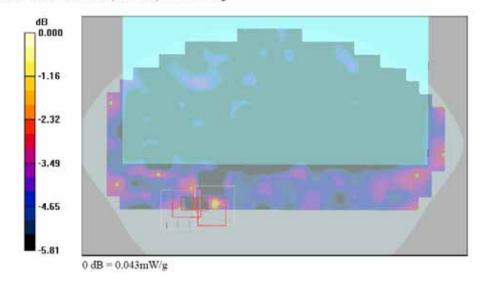
Maximum value of SAR (interpolated) = 0.033 mW/g

Ch56/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 1.26 V/m; Power Drift = 2.97 dB

Peak SAR (extrapolated) = 0.028 W/kg

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.020 mW/g


Maximum value of SAR (measured) = 0.028 mW/g

Ch56/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 1.26 V/m; Power Drift = 0.147 dB

Peak SAR (extrapolated) = 0.043 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.022 mW/gMaximum value of SAR (measured) = 0.043 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/8/17

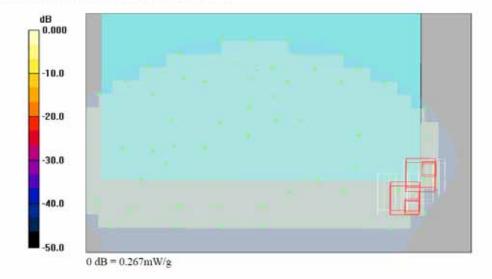
Body 802.11a Ch52 Notebook Bottom Touch Main Ant Bluetooth On

DUT: 6O2516-04

Communication System: 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: MSL_5G Medium parameters used: f = 5260 MHz; $\sigma = 5.26$ mho/m; $\epsilon_{\rm r} = 48.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.1 °C; Liquid Temperature: 21.8 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2007/2/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Ch52/Area Scan (141x261x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.278 mW/g

Ch52/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 7.24 V/m; Power Drift = -0.126 dB Peak SAR (extrapolated) = 0.284 W/kg SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.284 mW/g

Ch52/Zoom Scan (8x8x8)/Cube 2: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 7.24 V/m; Power Drift = -0.126 dB Peak SAR (extrapolated) = 0.267 W/kg SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.227 mW/g Maximum value of SAR (measured) = 0.267 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/8/17

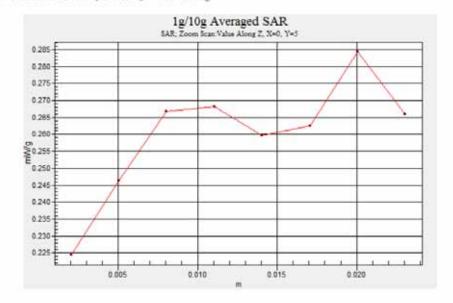
Body 802.11a Ch52 Notebook Bottom Touch Main Ant Bluetooth On 2D

DUT: 6O2516-04

Communication System: 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: MSL_5G Medium parameters used: f = 5260 MHz; $\sigma = 5.26$ mho/m; $\epsilon_{\rm g} = 48.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.1 °C; Liquid Temperature: 21.8 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2007/2/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Ch52/Area Scan (141x261x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.278 mW/g

Ch52/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 7.24 V/m; Power Drift = -0.126 dB Peak SAR (extrapolated) = 0.284 W/kg SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.284 mW/g

Ch52/Zoom Scan (8x8x8)/Cube 2: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 7.24 V/m; Power Drift = -0.126 dB
Peak SAR (extrapolated) = 0.267 W/kg
SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.227 mW/g
Maximum value of SAR (measured) = 0.267 mW/g

Test Report No : FA6O2516-04-1-2-01

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: D5GHzV2-1006_Feb06

Accreditation No.: SCS 108

alibration procedure(s)								
alibration procedure(s)								
	QA CAL-22.v1 Calibration proce	QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz						
alibration date:	February 10, 200	February 10, 2006						
ondition of the calibrated item	In Tolerance							
Il calibrations have been condu		y facility: environment temperature (22 ± 3)°C and	d humidity < 70%.					
rimary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration					
ower meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06					
ower sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06					
eference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06					
eference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06					
eference Probe EX3DV4	SN 3503	19-Mar-05 (SPEAG, No. Ex3-3503_Mar05)	Mar-06					
AE4	SN 601	15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Dec-06					
econdary Standards	ID#	Check Date (in house)	Scheduled Check					
ower sensor HP 8481A	MY41093315	10-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06					
ower meter E4419B	GB43310788	12-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06					
F generator R&S SMT-06	100005	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07 In house check: Nov-06					
etwork Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	III IIJuse check: Nov-00					
	Name	Function	Signature					
alibrated by:	Katja Pokovic	Technical Manager	The Kily					
			1 1-2					

Certificate No: D5GHzV2-1006_Feb06

Page 1 of 7

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1006_Feb06

Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.3 mm, dz = 3 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.1 ± 6 %	5.11 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	1840 mW/g
SAR normalized	normalized to 1W	73.6 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	73.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.16 mW / g
SAR normalized	normalized to 1W	20.6 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	20.6 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	18.8 mW / g
SAR normalized	normalized to 1W	75.2 mW/g
SAR for nominal Body TSL parameters ¹	normalized to 1W	75.0 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.26 mW / g
SAR normalized	normalized to 1W	21.0 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	21.0 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

Ţ.	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.88 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	17.5 mW / g
SAR normalized	normalized to 1W	70.0 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	69.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.94 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	19.7 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1006_Feb06

Page 4 of 7

Appendix

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.3 Ω - 2.2jΩ
Return Loss	-31.1 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	54.1 Ω - 9.4jΩ
Return Loss	-20.1 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.3 Ω + 8.3jΩ
Return Loss	-20.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

Certificate No: D5GHzV2-1006_Feb06

Page 5 of 7

DASY4 Validation Report for Body TSL

Date/Time: 10.02.2006 21:06:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1006

Communication System: CW-5GHz; Frequency: 5800 MHz Frequency: 5500 MHz Frequency: 5200 MHz;

Duty Cycle: 1:1

Medium: MSL 5800 MHz;

Medium parameters used: f = 5800 MHz; $\sigma = 5.88$ mho/m; $\varepsilon_r = 47.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 5.5$ mho/m; $\varepsilon_r = 48.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5200 MHz; $\sigma = 5200$ MHz; $\sigma =$

5.11 mho/m; $\varepsilon_r = 49.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.69, 4.69, 4.69)ConvF(4.78, 4.78, 4.78)ConvF(5.18, 5.18, 5.18); Calibrated: 19.03.2005
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA
- Measurement SW: DASY4, V4.6 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 160

d=10mm, Pin=250mW, f=5200 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 77.8 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 65.4 W/kg

SAR(1 g) = 18.4 mW/g; SAR(10 g) = 5.16 mW/g

Maximum value of SAR (measured) = 37.8 mW/g

d=10mm, Pin=250mW, f=5500 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 73.9 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 72.9 W/kg

SAR(1 g) = 18.8 mW/g; SAR(10 g) = 5.26 mW/g

Maximum value of SAR (measured) = 39.6 mW/g

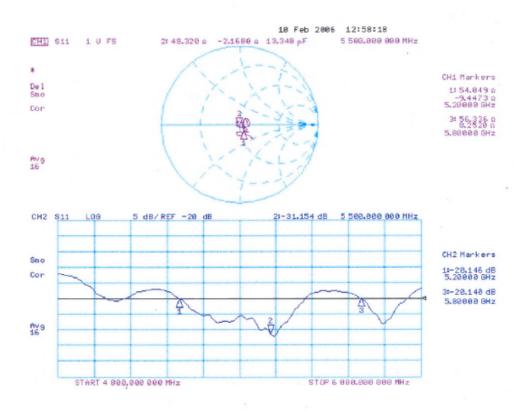
d=10mm, Pin=250mW, f=5800 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 69.5 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 70.0 W/kg

SAR(1 g) = 17.5 mW/g; SAR(10 g) = 4.94 mW/g


Maximum value of SAR (measured) = 36.7 mW/g

Certificate No: D5GHzV2-1006_Feb06

Page 6 of 7

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1006_Feb06

Page 7 of 7

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client Sporton (Auden)

Certificate No: EX3-3514_Feb07

Dbject	EX3DV3 - SN:3	514	and the second
Calibration procedure(s)		and QA CAL-14.v3 edure for dosimetric E-field probes	
Calibration data:	February 21, 20	07	
Condition of the calibrated item	In Tolerance		AND DESCRIPTION
All calibrations have been condu- Calibration Equipment used (M&		ory facility: unvironment temperature (22 s 3)°C and	thurnidity < 70%
Primary Standards	1D #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
	GB41293874	5-Apr-00 (METAS, No. 251-00557)	Apr-87
Power meter E4419B	Amenia and a second of	multiple and district contribution and a second of	Life Sci.
Power sensor E4412A	MY41495277	5-Apr-05 (METAS, No. 751-00557)	Apr 07
Power sensor E4412A	N 100 100 100 100 100 100 100 100 100 10	5-Apr-05 (METAS, No. 251-00557) 6-Apr-05 (METAS, No. 251-00557)	Apr 07 Apr 07
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	MY41495277 MY41496087 SN: S5054 (3c)	5-Apr-05 (METAS, No. 251-00557) 6 Apr-05 (METAS, No. 261-00557) 10-Aug-06 (METAS, No. 217-00592)	Apr 07 Apr 07 Aug-07
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	MY41495277 MY41498087 SN: S5054 (3u) SN: S5086 (20b)	5-Apr-05 (METAS, No. 251-00557) 6-Apr-05 (METAS, No. 251-00567) 10-Aug-06 (METAS, No. 251-00592) 4-Apr-08 (METAS, No. 251-00556)	Apr 07 Apr 07 Aug-07 Apr-07
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	MY41495277 MY41409087 SN: S5054 (30) SN: S5086 (20b) SN: S5129 (30b)	S-Apr-05 (METAS, No. 281-00557) 6 Apr-05 (METAS, No. 281-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-09 (METAS, No. 251-00556) 10-Aug-06 (METAS, No. 217-00593)	Apr 07 Apr 07 Aug-07 Apr-07 Aug-07
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe E530V2	MY41495277 MY41498087 SN: S5054 (3u) SN: S5086 (20b)	5-Apr-05 (METAS, No. 251-00557) 6-Apr-05 (METAS, No. 251-00567) 10-Aug-06 (METAS, No. 251-00592) 4-Apr-08 (METAS, No. 251-00556)	Apr 07 Apr 07 Aug-07 Apr-07
Power trefer E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe E530V2 DAE4 Secondary Standards	MY41495277 MY41498087 SN: \$5054 (30) SN: \$5086 (206) SN: \$5129 (306) SN: 3013	5-Apr-05 (METAS, No. 251-00557) 6-Apr-05 (METAS, No. 251-00567) 10-App-06 (METAS, No. 251-00592) 4-Apr-06 (METAS, No. 251-00566) 10-App-06 (METAS, No. 251-00593) 4-Jan-07 (5PEAG, No. ES3-3013_Jan07)	Apr 07 Apr 07 Aug-07 Apr-07 Aug-07 Jun-08
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe E530V2 DAE4 Secondary Standards	MY41495277 MY41408087 SN: 85064 (30) SN: 85086 (206) SN: 85129 (306) SN: 3013 SN: 654	5-Apr-05 (METAS, No. 251-00557) 6-Apr-05 (METAS, No. 251-00567) 10-Aug-05 (METAS, No. 251-00560) 4-Apr-06 (METAS, No. 251-00560) 10-Aug-05 (METAS, No. 217-00503) 4-Jan-07 (SPEAG, No. DAE4-854, Jun06)	Apr 07 Apr 07 Aug-07 Apr-07 Aug-07 Jun-08 Jun-07
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe E530V2 DAE4 Seconcory Standards RF generator HP 8848C	MY41495277 MY41496087 SN :5954 (3k) SN :5958 (20b) SN :85129 (30b) SN :3013 SN :654	S-Apr-05 (METAS, No. 251-00557) 6 Apr-05 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-09 (METAS, No. 251-00556) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-854_Jun06) Check Date (in house)	Apr 07 Apr 07 Aug-07 Apr-07 Aug-07 Jun-08 Jun-07 Schoduled Chock
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference	MY41495277 MY41496087 SN: \$5054 (3k) SN: \$5058 (20b) SN: \$5129 (30b) SN: 3513 SN: 654 ID # US3642U51700 US37390585 Nome	S-Apr-05 (METAS, No. 251-00557) 6 Apr-05 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00590) 4-Apr-06 (METAS, No. 217-00590) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan-07) 21-Jun-06 (SPEAG, No. DAE4-854_Jun-06) Check Date (in house) 4-Aug-96 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	Apr 07 Apr 07 Aug-07 Aug-07 Aug-07 Jun-08 Jun-07 Schoduled Chock In house check: Nov-07
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe E530V2	MY41495277 MY41498067 SN: S5964 (30) SN: S5968 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	S-Apr-05 (METAS, No. 251-00557) 6 Apr-05 (METAS, No. 251-00567) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DA54-854_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-08)	Apr 07 Apr 07 Aug-07 Aug-07 Aug-07 Jun-08 Jun-07 Schoduled Check In house check: Nov-07 In house check: Cet-07

Certificate No: EX3-3514_Feb07

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG aughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio avizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Methology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z

tissue simulating liquid sensitivity in free space

ConF DCP

sensitivity in TSL / NORMx,y,z diode compression point

Polarization of Polarization 9 p rotation around probe axis

§ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., & = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-ceil; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and Inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No. EX3-3514 Feb07

Fage 2 of 9

February 21, 2007

Probe EX3DV3

SN:3514

Manufactured:

December 15, 2002

Last calibrated:

February 17, 2006

Recalibrated:

February 21, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3514_Feb07

Page 3 of 9

February 21, 2007

DASY - Parameters of Probe: EX3DV3 SN:3514

Sensitivity in Free Space [*]	Diode Compression
--	-------------------

 NormX
 0.660 ± 10.1%
 $μV/(V/m)^2$ DCP X
 95 mV

 NormY
 0.690 ± 10.1%
 $μV/(V/m)^2$ DCP Y
 93 mV

 NormZ
 0.570 ± 10.1%
 $μV/(V/m)^2$ DCP Z
 96 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 5200 MHz Typical SAR gradient: 25 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR. [%]	Without Correction Algorithm	3.7	0.6
SARte [%]	With Correction Algorithm	0.0	0.0

TSL 5800 MHz Typical SAR gradient: 30 % per mm

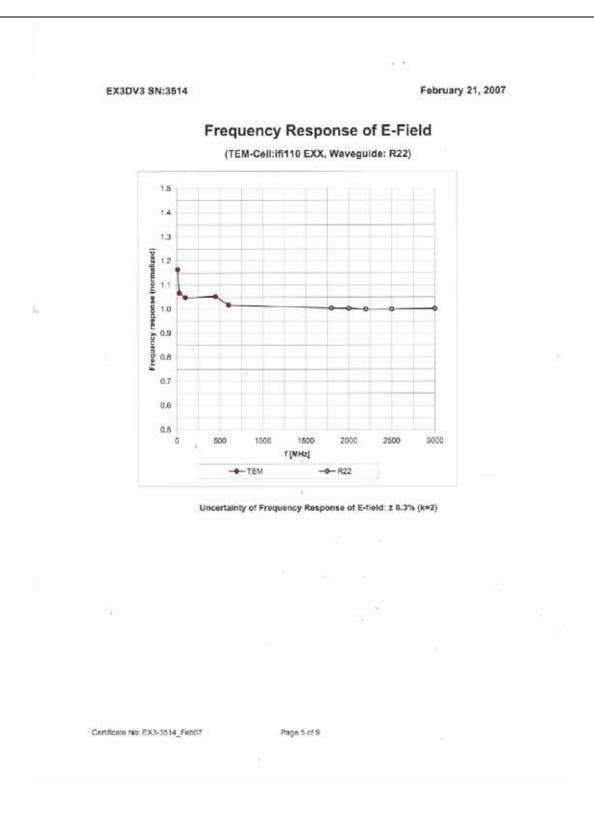
Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	1.7	0.5	
SAR _{bo} [%]	With Correction Algorithm	0.0	0.0	

Sensor Offset

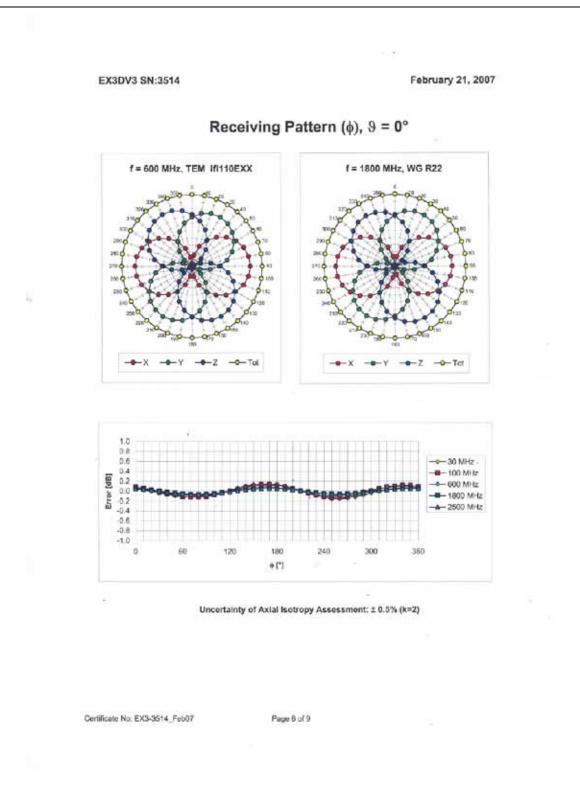
Probe Tip to Sensor Center

1.0 mm

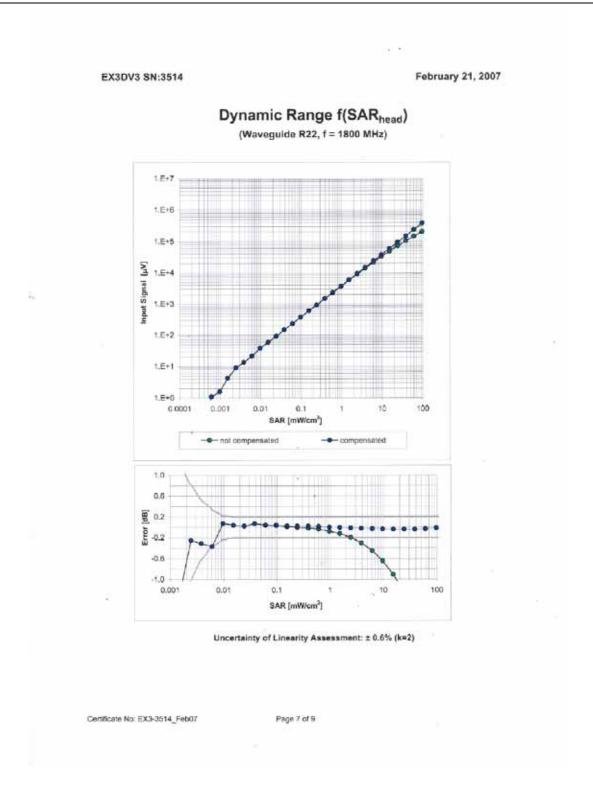
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

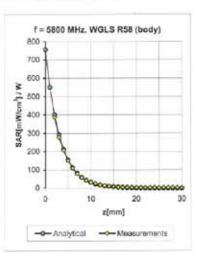

Certificate No: EX3-3514_Feb07

Page 4 of 9


 $^{^{}A}$ The uncertainties of NormX,Y,Z on not affect the E^{2} -field uncertainty inside TSL (see Page B).

^{*} Numerical linearization parameter, uncertainty not required.





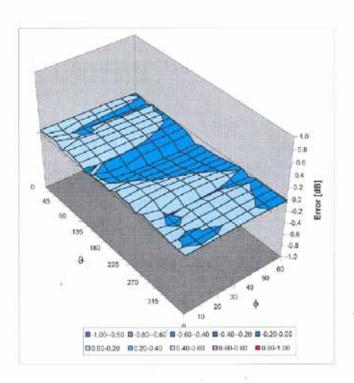
February 21, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
5200	±50/±100	Body	49.0 ± 5%	5.30 ± 5%	0.35	1.70	4,31	1 13.1% (k=2)
5500	±50/±100	Body	$48.6\pm5\%$	$5.65\pm5\%$	0.35	1.70	4.09	± 13.1% (k=2)
5800	+ 50 / + 100	Body	48.2 + 5%	6.00 ± 5%	0.35	1.70	4.16	± 13.1% (k=2)

⁶ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RBS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3514_Feb07


Page 8 of 9

February 21, 2007

Deviation from Isotropy in HSL

Error (¢, ∂), f = 900 MHz

Uncertainty of Spherical isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3514_Feb07

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdinnst
C Service suisse d'étalonnage
Servizio avizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: DAE3-577 Nov06

Accreditation No.: SCS 108

DAE3 - SD 000 D	03 AA + SN: 577	
QA CAL-06.v12 Calibration proces	ture for the data acquisition elec	stronics (DAE)
November 21, 200	06	
In Tolerance		
		201 2020
		아이들이 얼마나 이 아이들이 아이를 하는데 하고 있다.
d in the closed laboratory	facility, environment temperature (22 ± 3)*	C and humidity < 70%,
orficial for collicration)		
ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
	13-Oct-06 (Elcel AG, No: 5492)	Oct-07
SN: 0810278	03-Oct-06 (Elcal AG, No: 5478)	Oct-07
ID #	Check Date (in house)	Scheduled Check
SE UMS 006 AB 1002		In house check Juri-07
	\$	
Name	Eurotton	Signature
Eric Hainfald	Technician	- 42
Fin Bomholt	R&D Director	Knulolf
	QA CAL-06,v12 Calibration proced November 21, 200 In Tolerance Is the traceability to natio andes with confidence pro d in the closed laboratory ortical for calibration) ID # SN: 6295303 SN: 0810278 ID # SE UNS 006 AB 1002	November 21, 2006 In Tolerance Is the traceability to national standards, which realize the physical unlimites with confidence probability are given on the following pages and in the closed laboratory facility: environment temperature (22 ± 3)% ortical for colloration) ID # Call Date (Calibrated by, Certificate No.) SN: 6295303 13-Oct-06 (Elcal AG, No: 5492) SN: 0810278 03-Oct-06 (Elcal AG, No: 5476) ID # Check Date (In house) SE UMS 006 A5 1002 15-Jun-06 (SPEAG, in house check)

Certificate No: DAE3-577_Nov06

Page 1 of 5

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with Inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov06

Page 2 of 5

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB =
Low Range: 1LSB =

High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 81nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	×	Y	Z	
High Range	404.355 ± 0.1% (k=2)	403.806 ± 0.1% (k=2)	404.276 ± 0.1% (k=2)	
Low Range	3.92854 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)	3.93591 ± 0.7% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	268°±1°
---	---------

Certificate No: DAE3-577_Nov08

Page 3 of 5

Appendix

1. DC Volta

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.5	0.00
Channel X + Input	20000	20005.87	0.03
Channel X - Input	20000	-19998.71	-0.01
Channel Y + Input	200000	200000	0.00
Channel Y + Input	20000	20004.22	0.02
Channel Y - Input	20000	-20003.23	0.02
Channel Z + Input	200000	200000.6	0.00
Channel Z + Input	20000	20005.24	0.03
Channel Z - Input	20000	-20001.80	0.01

Low Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	2000	1999.9	0.00
Channel X + Input	200	200.27	0.13
Channel X - Input	200	-200.73	0.36
Channel Y + Input	2000	2000.1	0.00
Channel Y + input	200	199.22	-0.39
Channel Y - Input	200	-200.86	0.43
Channel Z + Input	2000	1999.9	0.00
Channel Z + Input	200	199.28	-0.36
Channel Z - Input	200	-200.94	0.47

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.24	12.49
	- 200	-12.13	-12.92
Channel Y	200	-6.51	-7.06
	- 200	6.05	5.81
Channel Z	200	1.09	0.88
	- 200	-2.86	-2.63

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2,51	0.09
Channel Y	200	0.43	-	3.37
Channel Z	200	-0.55	0.96	

Certificate No: DAE3-577_Nov06

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15970	16306
Channel Y	15851	16305
Channel Z	16208	17068

Input Offset Measurement
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.51	+1.55	0.47	0.50
Channel Y	-2.06	-4.32	-0.65	0.60
Channel Z	-1.63	-2.56	-0.15	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <26fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0,2000	199.8
Channel Y	0.2000	200.7
Channel Z	0.2000	199.8

8. Low Battery Alarm Voltage (verified during pre lest)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	7,6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-577_Nov06

Page 5 of 5

Appendix D - Product Photo

Appendix E - Test Setup Photo

Notebook Bottom Touch