HCTCO.,LTD
HCT CO., LTD.

## CERTIFICATE OF COMPLIANCE

FCC Certification
Applicant Name:
Pantech Co., Ltd.
Address:
Pantech Bldg, I-2, DMC, Sangam-dong, Mapo-gu, Seoul,
121-792, Korea

Date of Issue:
October 02, 2013
Location:
HCT CO., LTD., 105-1, Jangam-ri, Majang-Myeon,
Icheon-si, Kyunggi-Do, Korea
Test Report No.: HCTR1310FR02
HCT FRN: 0005866421

| FCC ID | $:$ JYCP6070 |
| :--- | :--- |
| APPLICANT | $:$ Pantech Co., Ltd. |


| FCC Model(s): | P6070 |
| :--- | :--- |
| EUT Type: | GSM/WCDMA Phone with Bluetooth |
| Max. RF Output Power: | $3.78 \mathrm{dBm}(2.39 \mathrm{~mW})$ |
| Frequency Range: | $2402 \mathrm{MHz}-2480 \mathrm{MHz}$ (Bluetooth) |
| Modulation type | GFSK(Normal), $\pi / 4 D Q P S K$ and 8DPSK(EDR) |
| FCC Classification: | FCC Part 15 Spread Spectrum Transmitter |
| FCC Rule Parts): | Part 15 subpart C 15.247 |

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)


Report prepared by
: Jong Seok Lee
Test engineer of RF Team


Approved by
: Chang Seok Choi
Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

| FCC PT.15.247 | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  | WWW.hct.CO.kr |  |
| Test Report No. | Date of Issue: | EUT Type: | FCC ID: |
| HCTR1310FR02 | October 02, 2013 | GSMWCDMA Phone with Bluetooth | JYCP6070 |

## Version

| TEST REPORT NO. | DATE | DESCRIPTION |
| :--- | :--- | :--- |
| HCTR1310FR02 | October 02, 2013 | - First Approval Report |
|  |  |  |
|  |  |  |
|  |  |  |

## Table of Contents

1. GENERAL INFORMATION ..... 4
2. EUT DESCRIPTION ..... 4
3. TEST METHODOLOGY ..... 5
3.1 EUT CONFIGURATION ..... 5
3.2 EUT EXERCISE ..... 5
3.3 GENERAL TEST PROCEDURES ..... 5
3.4 DESCRIPTION OF TEST MODES ..... 6
4. INSTRUMENT CALIBRATION ..... 6
5. FACILITIES AND ACCREDITATIONS ..... 6
5.1 FACILITIES ..... 6
5.2 EQUIPMENT ..... 6
6. ANTENNA REQUIREMENTS ..... 6
7. SUMMARY OF TEST RESULTS ..... 7
8. FCC PART 15.247 REQUIREMENTS ..... 8
8.1 PEAK POWER ..... 8
8.2 BAND EDGES ..... 15
8.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99\% BW) ..... 23
8.4 NUMBER OF HOPPING FREQUENCY ..... 32
8.5 TIME OF OCCUPANCY (DWELL TIME) ..... 36
8.6 SPURIOUS EMISSIONS ..... 43
8.6.1 CONDUCTED SPURIOUS EMISSIONS ..... 43
8.6.2 RADIATED SPURIOUS EMISSIONS ..... 52
8.6.3 RADIATED RESTRICTED BAND EDGES ..... 75
8.7 POWERLINE CONDUCTED EMISSIONS ..... 83
9. LIST OF TEST EQUIPMENT. ..... 88

## 1. GENERAL INFORMATION

Applicant:

## Address:

FCC ID:
EUT Type:
Model name(s):
Date(s) of Tests:
Place of Tests:

Pantech Co., Ltd.
Pantech Bldg, I-2, DMC, Sangam-dong, Mapo-gu, Seoul, 121-792, Korea
JYCP6070
GSM/WCDMA Phone with Bluetooth
P6070
September 27, 2013 ~ September 29, 2013
HCT Co., Ltd.
105-1, Jangam-ri , Majang-Myeon, Icheon-si, Kyunggi-Do, 467-811, KOREA. (IC Recognition No. : 5944A-3)
2. EUT DESCRIPTION

| EUT Type | GSM/WCDMA Phone with Bluetooth |
| :--- | :--- |
| FCC Model Name | P6070 |
| Power Supply | DC 3.7 V |
| Battery type | Li-ion Battery(Standard) |
| Frequency Range | $2402 \mathrm{MHz}-2480 \mathrm{MHz}$ (Bluetooth) |
| Transmit Power | $3.78 \mathrm{dBm}(2.39 \mathrm{~mW})$ |
| BT Operating Mode | Normal, EDR, AFH |
| Modulation Type | GFSK(Normal), m/4DQPSK and 8DPSK(EDR) |
| Modulation Technique | FHSS |
| Number of Channels | $79 C h a n n e l s$, Minimum 20 Channels(AFH) |
| Antenna Specification | Manufacturer: PANTECH <br> Antenna type: PIFA Antenna <br> Peak Gain : 0.13 dBi |

### 15.247 Requirements for Bluetooth transmitter

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

1) This system is hopping pseudo-randomly.
2) Each frequency is used equally on the average by each transmitter.
3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
4) The receiver shifts frequencies in synchronization with the transmitted signals.

- $15.247(\mathrm{~g})$ : The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |


| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth |
| ---: | ---: | ---: |
| Page 4 of 88 |  |  |

## 3. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.4-2003) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the Pantech Co., Ltd.
GSM/WCDMA Phone with Bluetooth FCC ID: JYCP6070

### 3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

### 3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

### 3.3 GENERAL TEST PROCEDURES

## Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

## Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz . For average measurements above 1 GHz , the analyzer was set to peak detector with a reduced VBW setting(RBW $=1 \mathrm{MHz}$, VBW $=1 / \mathrm{T} \mathrm{Hz}$, where $\mathrm{T}=$ Pulse width).

## Conducted Antenna Terminal

See Section from 8.1 to 8.6.1.(DA 00-705)

### 3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.
Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

## 4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

## 5. FACILITIES AND ACCREDITATIONS

### 5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 105-1, Jangam-ri, Majang-Myeon, Icheon-si, Kyunggi-Do, 467-811, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated June 21, 2011 (Registration Number: 90661)

### 5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.
All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

## 6. ANTENNA REQUIREMENTS

## According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.
*The E.U.T Complies with the requirement of $\S 15.203$


## 7. SUMMARY OF TEST RESULTS

| Test Description | FCC Part Section(s) | Test Limit | Test Condition | Test <br> Result |
| :---: | :---: | :---: | :---: | :---: |
| 20 dB Bandwidth | §15.247(a)(1)(ii) or (iii) | NA |  | PASS |
| Occupied Bandwidth | NA | NA |  | NA |
| Conducted Maximum Peak <br> Output Power | §15.247(b)(1) | < 1 Watts |  | PASS |
| Carrier Frequency Separation | §15.247(a)(1) | $>25 \mathrm{kHz}$ or <br> $>2 / 3$ of the 20 dB BW |  | PASS |
| Number of Hopping <br> Frequencies | §15.247(a)(1)(iii) | >15 | CONDUCTED | PASS |
| Time of Occupancy | §15.247(a)(1)(iii) | $<400$ ms |  | PASS |
| Conducted Spurious <br> Emissions | §15.247(d) | $<20 \mathrm{~dB} \text { for }$ <br> all out-of band emissions |  | PASS |
| Band Edge(Out of Band Emissions) | §15.247(d) | $<20 \mathrm{~dB} \text { for }$ <br> all out-of band emissions |  | PASS |
| AC Power line Conducted <br> Emissions | §15.207(a) | cf. Section 8.7 |  | PASS |
| Radiated Spurious Emissions | $\begin{gathered} \S 15.247(\mathrm{~d}), 15.205, \\ 15.209 \end{gathered}$ | cf. Section 8.6.2 |  | PASS |
| Radiated Restricted Band Edge | $\begin{gathered} \S 15.247(\mathrm{~d}), 15.205, \\ 15.209 \end{gathered}$ | cf. Section 8.6.3 |  | PASS |


| FCC PT.15.247 | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  |  |  |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

HCTR1310FR02 $\quad$ October 02, $2013 \quad$ GSM/WCDMA Phone with Bluetooth
JYCP6070

## 8. FCC PART 15.247 REQUIREMENTS

### 8.1 PEAK POWER

## LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

1. For frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the $5725-5850 \mathrm{MHz}$ band: 1 watt.
2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi .

## Test Configuration



## TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

## The Spectrum Analyzer is set to ( DA 00-705 )

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel
RBW > the 20 dB bandwidth of the emission being measured
VBW $\geq$ RBW
Sweep = Auto
Detector = Peak
Trace $=$ Max hold

## SAMPLE CALCULATION

$$
\begin{aligned}
\text { Output Power } & =\text { Spectrum Reading Power }+ \text { Power Splitter loss }+ \text { Cable loss(2 ea) } \\
& =10 \mathrm{dBm}+6 \mathrm{~dB}+1.5 \mathrm{~dB}=17.5 \mathrm{dBm}
\end{aligned}
$$

Note :

1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the splitter and cable combination.
2. Spectrum offset $=$ Power Splitter loss + Cable loss
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB . Actual value of

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

loss for the splitter and cable combination is 7.18 dB at 2402 MHz and is 7.23 dB at 2480 MHz .
So, 7.2 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result

## TEST RESULTS

No non-compliance noted

## Test Data

| Channel | Frequency <br> (MHz) | Output Power (GFSK) |  | Output Power (8DPSK) |  | Output Power <br> ( $\pi / 4 \mathrm{DQPSK}$ ) |  | Limit <br> (W) | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (dBm) | (mW) | (dBm) | (mW) | (dBm) | (mW) |  |  |
| Low | 2402 | 0.76 | 1.19 | 3.24 | 2.11 | 3.16 | 2.07 | 1 | PASS |
| Mid | 2441 | 1.22 | 1.32 | 3.78 | 2.39 | 3.64 | 2.31 |  | PASS |
| High | 2480 | 1.04 | 1.27 | 3.59 | 2.29 | 3.48 | 2.23 |  | PASS |


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth |

Test Plots (GFSK)
Peak Power (Low-CH)


Test Plots (GFSK)
Peak Power (Mid-CH)


Test Plots (GFSK)
Peak Power (High-CH)


Test Plots (8DPSK)
Peak Power (Low-CH)


Test Plots (8DPSK)
Peak Power (Mid-CH)


Test Plots (8DPSK)
Peak Power (High-CH)


## HCT <br> HETCDITP

Test Plots (m/4DQPSK)
Peak Power (Low-CH)


Test Plots (m/4DQPSK)
Peak Power (Mid-CH)


Test Plots (m/4DQPSK)
Peak Power (High-CH)


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

HCTR1310FR02

### 8.2 BAND EDGES

## LIMIT

According to $\S 15.247$ (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

## Test Configuration



## TEST PROCEDURE

## This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (DA 00-705 )
Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation

$$
\text { RBW } \geq 1 \% \text { of the span }
$$

VBW $\geq$ RBW
Sweep = Auto
Detector = Peak
Trace $=$ Max hold

## TEST RESULTS

See attached.

## Note :

1. The results in plot is already including the actual values of loss for the splitter and cable combination.
2. Spectrum offset $=$ Power Splitter loss + Cable loss
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB . Actual value of loss for the splitter and cable combination is 7.18 dB at 2402 MHz and is 7.23 dB at 2480 MHz . So, 7.2 dB is offset. And the offset gap in the 2.4 GHz range do not affect the band edge measurement final result.

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

## Test Data

- Without hopping

| Outside Frequency Band | GFSK | 8DPSK | T/4DQPSK | Limit <br> (dBc) | Margin |  |  | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (dB) | (dB) | (dB) |  | GFSK (dBc) | $\begin{array}{r} \text { 8DPSK } \\ \text { (dBc) } \end{array}$ | m/4DQPSK <br> (dBc) |  |
| Lower | 50.450 | 50.800 | 51.740 | 20 | 30.450 | 30.800 | 31.740 | PASS |
| Upper | 63.180 | 63.910 | 64.760 |  | 43.180 | 43.910 | 44.760 | PASS |

- With hopping

| Outside Frequency Band | GFSK | 8DPSK | T/4DQPSK | Limit <br> (dBc) | Margin |  |  | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (dB) | (dB) | (dB) |  | $\begin{aligned} & \text { GFSK } \\ & \text { (dBc) } \end{aligned}$ | $\begin{array}{r} \hline \text { 8DPSK } \\ \text { (dBc) } \end{array}$ | m/4DQPSK <br> (dBc) |  |
| Lower | 57.801 | 51.325 | 54.293 | 20 | 37.801 | 31.325 | 34.293 | PASS |
| Upper | 58.502 | 56.123 | 58.122 |  | 38.502 | 36.123 | 38.122 | PASS |


| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: <br> JYCP6070 |

## HCT <br> HCTMCEITM

Test Plots without hopping (GFSK)
Band Edges (Low-CH)


Test Plots without hopping (GFSK)
Band Edges (High-CH)


| Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth |
| :---: | :---: |

## HCT <br> HCTMCEITM

Test Plots without hopping (8DPSK)
Band Edges (Low-CH)


Test Plots without hopping (8DPSK)
Band Edges (High-CH)


| Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth |
| :---: | :---: |

## HCT <br> HCTMCEITM

Test Plots without hopping (m/4DQPSK)
Band Edges (Low-CH)


Test Plots without hopping ( $\pi / 4$ DQPSK)
Band Edges (High-CH)


| Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth |
| :---: | :---: |

## HCT <br> HCTMCEITM

Test Plots with hopping (GFSK)
Band Edges (Low-CH)


Test Plots with hopping (GFSK)
Band Edges (High-CH)


## HCT <br> HCTMCEITD

Test Plots with hopping (8DPSK)
Band Edges (Low-CH)


Test Plots with hopping (8DPSK)
Band Edges (High-CH)


| FCC PT.15.247 | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

## HCT <br> HCTMCEITM

Test Plots with hopping (m/4DQPSK)
Band Edges (Low-CH)


Test Plots with hopping (m/4DQPSK)
Band Edges (High-CH)


### 8.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99\% BW)

## LIMIT

According to $\S 15.247(\mathrm{a})(1)$, Frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

## Test Configuration



## TEST PROCEDURE

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.
The Spectrum Analyzer is set to ( DA 00-705 )
Span = wide enough to capture the peaks of two adjacent channels
RBW $\geq 1 \%$ of the span
VBW $\geq$ RBW
Sweep = Auto
Detector = Peak
Trace $=$ Max hold
The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

## TEST RESULTS

No non-compliance noted

| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

## Test Data

| Channel Separation (kHz) |  |  | 20dB Bandwidth (kHz) |  |  |  | $\begin{aligned} & \text { Limit } \\ & \text { (kHz) } \end{aligned}$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GFSK | 8DPSK | \#/4DQPSK | Channel | GFSK | 8DPSK | m/4DQPSK |  |  |
| 1005 | 999 | 960 | Low CH | 951.7 | 1298.0 | 1316.0 | $\begin{gathered} >25 \text { or } \\ >2 / 3 \text { of the } \\ 20 \mathrm{~dB} \text { BW } \end{gathered}$ | Pass |
|  |  |  | Middle CH | 955.3 | 1280.0 | 1295.0 |  |  |
|  |  |  | High CH | 951.1 | 1298.0 | 1318.0 |  |  |

## Occupied Bandwidth (99\% BW)

| $99 \%$ BW (kHz) |  |  |  |
| :---: | :---: | :---: | :---: |
| Channel | GFSK | 8DPSK | $\boldsymbol{\pi} / \mathbf{4 D Q P S K}$ |
| Low CH | 907.6 | 1182.3 | 1179.1 |
| Middle CH | 915.2 | 1171.4 | 1180.1 |
| High CH | 917.2 | 1182.1 | 1179.5 |

Note : We can not know what use channel in AFH mode. So, we can not test in AFH mode. Also, if the test performs some channel in AFH mode, the test result is not different with normal mode.

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

## HCT

Test Plots (GFSK)
Channel Separation


Test Plots (8DPSK)
Channel Separation


| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

Test Plots (m/4DQPSK)
Channel Separation


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: <br> October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: <br> JYCP6070 |

HCTR1310FR02

## HCT <br> HETCEITM

Test Plots (GFSK)
20 dB Bandwidth \& Occupied Bandwidth (Low-CH)


Test Plots (GFSK)
20 dB Bandwidth \& Occupied Bandwidth (Mid-CH)


Test Plots (GFSK)
20 dB Bandwidth \& Occupied Bandwidth (High-CH)


Test Plots (8DPSK)
20 dB Bandwidth \& Occupied Bandwidth (Low-CH)


## HCT <br> HETCEITM

Test Plots (8DPSK)
20 dB Bandwidth \& Occupied Bandwidth (Mid-CH)


Test Plots (8DPSK)
20 dB Bandwidth \& Occupied Bandwidth (High-CH)


| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

## HCT <br> HETCEITM

Test Plots (m/4DQPSK)
20 dB Bandwidth \& Occupied Bandwidth (Low-CH)


Test Plots ( $\pi / 4$ DQPSK)
20 dB Bandwidth \& Occupied Bandwidth (Mid-CH)


Test Plots (m/4DQPSK)
20 dB Bandwidth \& Occupied Bandwidth (High-CH)


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

HCTR1310FR02

### 8.4 NUMBER OF HOPPING FREQUENCY

## LIMIT

According to $\S 15.247$ (a)(1)(iii), Frequency hopping systems operating in the $2400 \mathrm{MHz} \sim 2483.5$ MHz bands shall use at least 15 hopping frequencies.

## Test Configuration



## TEST PROCEDURE

The Bluetooth frequency hopping function of the EUT was enabled.
The Spectrum Analyzer is set to ( DA 00-705 )
Span = the frequency band of operation
RBW $\geq 1 \%$ of the span
VBW $\geq$ RBW
Sweep = Auto
Detector $=$ Peak
Trace = Max hold
The trace was allowed to stabilize.

## TEST RESULTS

No non-compliance noted

Test Data

| Result (No. of CH) |  |  | Limit | Result |
| :---: | :---: | :---: | :---: | :---: |
| GFSK | 8DPSK | ד/4DQPSK |  |  |
| 79 | 79 | 79 | $>15$ | Pass |

Note : In case of AFH mode, minimum number of hopping channels is $\mathbf{2 0}$.

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

Test Plots (GFSK)
Number of Channels (2.4 GHz - 2.441 GHz)


Test Plots (GFSK)
Number of Channels (2.441 GHz-2.4835 GHz)


Test Plots (8DPSK)
Number of Channels (2.4 GHz - 2.441 GHz)


## Test Plots (8DPSK)

Number of Channels (2.441 GHz-2.4835 GHz)


| Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth |
| :---: | :---: |

## HCT <br> HETCDITID

Test Plots (m/4DQPSK)
Number of Channels ( $2.4 \mathrm{GHz}-2.441 \mathrm{GHz}$ )


Test Plots ( $\pi / 4$ DQPSK)
Number of Channels (2.441 GHz - 2.4835 GHz)


| Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth |
| :---: | :---: |

### 8.5 TIME OF OCCUPANCY (DWELL TIME)

## LIMIT

According to $\S 15.247$ (a)(1)(iii), Frequency hopping systems operating in the $2400 \mathrm{MHz} \sim 2483.5$ MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

## Test Configuration



## TEST PROCEDURE

This test is performed with hopping off.
EUT was set to transmit the longest packet type (DH5)
The Spectrum Analyzer is set to ( DA 00-705 )
Span = Zero span, Centered on a hopping channel
RBW = 1 MHz
VBW $\geq$ RBW
Sweep = as necessary to capture the entire dwell time per hopping channel
Detector = Peak
Trace $=$ Max hold
The marker-delta function was used to determine the dwell time.

## Normal Mode / EDR Mode

DH 5(The longest packet type for GFSK)
CH Mid: $\quad 2.892$ * (1600/6)/79 * $31.6=308.48$ (ms)
2-DH 5(The longest packet type for m/4DQPSK)
CH Mid : $\quad 2.900$ * (1600/6)/79 * 31.6 = 309.33 (ms)
3-DH 5(The longest packet type for 8DPSK)
CH Mid : $\quad 2.900$ * $(1600 / 6) / 79$ * $31.6=309.33(\mathrm{~ms})$

## AFH Mode

DH 5(The longest packet type for GFSK)
CH Mid: $\quad 2.892$ * (800/6)/20 * $8.0=154.24$ (ms)
2-DH 5(The longest packet type for $\pi / 4 D Q P S K$ )

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

CH Mid: $\quad 2.900$ * (800/6)/20 * $8.0=154.67$ (ms)
3-DH 5(The longest packet type for 8DPSK)
CH Mid: $\quad 2.900$ * $(800 / 6) / 20 * 8.0=154.67(\mathrm{~ms})$
Note :
A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance of DH5 is 2.883 ms .

Dwell time = Tx-time * 106.7

## TEST RESULTS

See the table.

|  | Channel | GFSK | 8DPSK | п/4DQPSK |
| :---: | :---: | :---: | :---: | :---: |
| Pulse <br> Time <br> $(\mathrm{ms})$ | Low | 2.892 | 2.900 | 2.890 |
|  | Hid | 2.892 | 2.900 | 2.900 |


|  | Channel | GFSK | 8DPSK | ד/4DQPSK | Period Time <br> (s) | Limit <br> (ms) | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total of <br> Dwell <br> (ms) | Low | 308.48 | 309.33 | 308.27 | 31.6 |  | PASS |
|  | Mid | 308.48 | 309.33 | 309.33 | 31.6 | 400 | PASS |


| FCC PT.15.247 | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02

Test Plots (GFSK)
Dwell Time (Low-CH)


Test Plots (GFSK)
Dwell Time (Mid-CH)


## HCT <br> HCTMCEITM

Test Plots (GFSK)
Dwell Time (High-CH)


Test Plots (8DPSK)
Dwell Time (Low-CH)

Date of Issue:

Test Plots (8DPSK)
Dwell Time (Mid-CH)


Test Plots (8DPSK)
Dwell Time (High-CH)


## HCT <br> HETCDITID

Test Plots (m/4DQPSK)
Dwell Time (Low-CH)


Test Plots ( $\pi / 4 D Q P S K$ )
Dwell Time (Mid-CH)


Test Plots (m/4DQPSK)
Dwell Time (High-CH)


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

HCTR1310FR02

### 8.6 SPURIOUS EMISSIONS

### 8.6.1 CONDUCTED SPURIOUS EMISSIONS

## Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in $\S 15.209(a)$ is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit : $\mathbf{2 0}$ dBc
Test Configuration


## TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.
The Spectrum Analyzer is set to (DA 00-705)

1. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g.,harmonics) from the lowest frequency generated in the EUT up through the $10^{\text {th }}$ harmonic.
2. $\mathrm{RBW}=100 \mathrm{kHz}$
3. VBW $\geq 300 \mathrm{kHz}$
4. Sweep $=$ auto
5. Sweep point $\geq 2 *$ span/RBW
6. Detector function = peak
7. Trace $=$ max hold

Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.
This test is performed with hopping off.
Note:

1. In order to simplify the report, attached plots were only the worst case channel and data rate.

## TEST RESULTS

No non-compliance noted.

FACTORS FOR FREQUENCY

| Freq(MHz) | Factor(dB) |
| :---: | :---: |
| 30 | 10.01 |
| 100 | 10.02 |
| 200 | 10.10 |
| 300 | 10.09 |
| 400 | 10.13 |
| 500 | 10.21 |
| 600 | 10.13 |
| 700 | 10.31 |
| 800 | 10.18 |
| 900 | 10.30 |
| 1000 | 10.17 |
| 2000 | 8.53 |
| 2400* | 7.18 |
| 2500* | 7.21 |
| 3000 | 8.59 |
| 4000 | 10.02 |
| 5000 | 9.88 |
| 6000 | 5.70 |
| 7000 | 10.21 |
| 8000 | 6.13 |
| 9000 | 8.79 |
| 10000 | 12.46 |
| 11000 | 8.11 |
| 12000 | 9.52 |
| 13000 | 8.98 |
| 14000 | 8.13 |
| 15000 | 11.82 |
| 16000 | 6.92 |
| 17000 | 13.23 |
| 18000 | 10.25 |
| 19000 | 10.28 |
| 20000 | 9.10 |
| 21000 | 10.94 |
| 22000 | 11.54 |
| 23000 | 8.81 |
| 24000 | 11.71 |
| 25000 | 9.37 |
| 26000 | 9.34 |

Note : 1. '*' is fundamental frequency range.
2. Factor $=$ Cable loss + Splitter loss

| FCC PT.15.247 | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  |  |  |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSMCWCOMCDMA Phone with Bluetooth |  |

## HCT

Test Plots (m/4DQPSK) - $30 \mathrm{MHz}-1 \mathrm{GHz}$ (RBW:100 kHz, VBW: 300 kHz )
Spurious Emission (Mid-CH)


Test Plots (m/4DQPSK) - 1 GHz - 3 GHz (RBW:100 kHz, VBW: 300 kHz )
Spurious Emission (Mid-CH)


## HCT <br> HCTMCEITM

Test Plots (m/4DQPSK) - 3 GHz - 5 GHz (RBW:100 kHz, VBW: 300 kHz )
Spurious Emission (Mid-CH)


Test Plots (m/4DQPSK) - $5 \mathrm{GHz}-7 \mathrm{GHz}$ (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


## HCT <br> HCTMCEITM

Test Plots (m/4DQPSK) - 7 GHz - 9 GHz (RBW:100 kHz, VBW: 300 kHz )
Spurious Emission (Mid-CH)


Test Plots (m/4DQPSK) - $9 \mathrm{GHz}-11 \mathrm{GHz}$ (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


## HCT <br> HETCEITM

Test Plots (m/4DQPSK) - 11 GHz - 13 GHz (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


Test Plots (m/4DQPSK) - $13 \mathrm{GHz}-15 \mathrm{GHz}$ (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


## HCT <br> HETCEITM

Test Plots (m/4DQPSK) - $15 \mathrm{GHz}-17 \mathrm{GHz}$ (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


Test Plots (m/4DQPSK) - $17 \mathrm{GHz}-19 \mathrm{GHz}$ (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


## HCT <br> HETCEITM

Test Plots (m/4DQPSK) - 19 GHz-21 GHz (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


Test Plots (m/4DQPSK) - 21 GHz-23 GHz (RBW:100 kHz, VBW: 300 kHz ) Spurious Emission (Mid-CH)


Test Plots (m/4DQPSK) - 23 GHz-25 GHz (RBW:100 kHz, VBW: 300 kHz )
Spurious Emission (Mid-CH)


| FCC PT.15.247 | FCC CERTIFICATION REPORT |  | WWW.hCt.CO.kr |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  |  |  |
| Test Report No. | Date of Issue: | EUT Type: | FCC ID: |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | JYCP6070 |

HCTR1310FR02

### 8.6.2 RADIATED SPURIOUS EMISSIONS

LIMIT : §15.247(d), §15.205, §15.209
1.20 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequency (MHz) | Field Strength (uV/m) | Measurement Distance (m) |
| :---: | :---: | :---: |
| $0.009-0.490$ | $2400 / \mathrm{F}(\mathrm{kHz})$ | 300 |
| $0.490-1.705$ | $24000 / \mathrm{F}(\mathrm{kHz})$ | 30 |
| $1.705-30$ | 30 | 30 |
| $30-88$ | 100 | 3 |
| $88-216$ | 150 | 3 |
| $216-960$ | 200 | 3 |
| Above 960 | 500 |  |


| FCC PT. 15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

Test Configuration

Below 30 MHz

$30 \mathrm{MHz}-1$ GHz


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

HCTR1310FR02

## Above 1 GHz



## TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.

## 7. Spectrum Setting

a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}$, VBW $=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{T} \mathrm{Hz}$, where $\mathrm{T}=$ pulse width in seconds.

| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

## TEST RESULTS

## 9 kHz - 30MHz

Operation Mode: Normal Mode

| Frequency | Reading | Ant. factor | Cable loss | Ant. POL | Total | Limit | Margin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M H z$ | $\mathrm{~dB} \mu V$ | $\mathrm{~dB} / m$ | dB | $(\mathrm{H} / V)$ | $\mathrm{dB} \mu / m$ | $\mathrm{~dB} \mu / / \mathrm{m}$ | dB |
| No Critical peaks found |  |  |  |  |  |  |  |

## Notes:

1. Measuring frequencies from 9 kHz to the 30 MHz .
2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
3. Distance extrapolation factor $=40 \log$ (specific distance / test distance) (dB)
4. Limit line $=$ specific Limits (dBuV) + Distance extrapolation factor
5. This test is performed with hopping off.
6. We have done $x, y, z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

## TEST RESULTS

## Below 1 GHz

Operation Mode: Normal Mode

| Frequency | Reading | Ant. factor | Cable loss | Ant. POL | Total | Limit | Margin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MHt | $\mathrm{dB} \mu V$ | $\mathrm{~dB} / m$ | dB | $(\mathrm{H} / V)$ | $\mathrm{dB} \mu / / m$ | $\mathrm{~dB} \mu / / m$ | dB |
| No Critical peaks found |  |  |  |  |  |  |  |

## Notes:

1. Measuring frequencies from 30 MHz to the 1 GHz .
2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
3. This test is performed with hopping off.
4. We have done $x, y, z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

## Above 1 GHz

Slide Up
Operation Mode: CH Low(GFSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4804 | 60.81 | -4.32 | V | 0 | 56.49 | 73.98 | 17.49 | PK |
| 4804 | 57.15 | -4.32 | V | -24.73 | 28.09 | 53.98 | 25.89 | AV |
| 7206 | 52.07 | 5.18 | V | 0 | 57.25 | 73.98 | 16.73 | PK |
| 7206 | 39.01 | 5.18 | V | -24.73 | 19.46 | 53.98 | 34.52 | AV |
| 4804 | 59.96 | -4.32 | H | 0 | 55.64 | 73.98 | 18.34 | PK |
| 4804 | 48.79 | -4.32 | H | -24.73 | 19.73 | 53.98 | 34.25 | AV |
| 7206 | 52.01 | 5.18 | H | 0 | 57.19 | 73.98 | 16.79 | PK |
| 7206 | 38.95 | 5.18 | H | -24.73 | 19.40 | 53.98 | 34.58 | AV |

Operation Mode: CH Low(8DPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4804 | 63.44 | -4.32 | V | 0 | 59.12 | 73.98 | 14.86 | PK |
| 4804 | 54.89 | -4.32 | V | -24.73 | 25.83 | 53.98 | 28.15 | AV |
| 7206 | 52.71 | 5.18 | V | 0 | 57.89 | 73.98 | 16.09 | PK |
| 7206 | 39.14 | 5.18 | V | -24.73 | 19.59 | 53.98 | 34.39 | AV |
| 4804 | 62.38 | -4.32 | H | 0 | 58.06 | 73.98 | 15.92 | PK |
| 4804 | 52.99 | -4.32 | H | -24.73 | 23.93 | 53.98 | 30.05 | AV |
| 7206 | 52.67 | 5.18 | H | 0 | 57.85 | 73.98 | 16.13 | PK |
| 7206 | 39.11 | 5.18 | H | -24.73 | 19.56 | 53.98 | 34.42 | AV |


| FCC PT. 15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02 October 02, 2013

Operation Mode: CH Low(m/4DQPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4804 | 63.22 | -4.32 | V | 0 | 58.90 | 73.98 | 15.08 | PK |
| 4804 | 55.27 | -4.32 | V | -24.73 | 26.21 | 53.98 | 27.77 | AV |
| 7206 | 52.11 | 5.18 | V | 0 | 57.29 | 73.98 | 16.69 | PK |
| 7206 | 39.02 | 5.18 | V | -24.73 | 19.47 | 53.98 | 34.51 | AV |
| 4804 | 62.09 | -4.32 | H | 0 | 57.77 | 73.98 | 16.21 | PK |
| 4804 | 53.89 | -4.32 | H | -24.73 | 24.83 | 53.98 | 29.15 | AV |
| 7206 | 52.09 | 5.18 | H | 0 | 57.27 | 73.98 | 16.71 | PK |
| 7206 | 38.97 | 5.18 | H | -24.73 | 19.42 | 53.98 | 34.56 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction Factor
5. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}$, VBW $=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{T} \mathrm{Hz}$, where $\mathrm{\tau}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
6. FYI : Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\mathrm{T}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\tau[\mathrm{ms}] \times H^{\prime}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB $=-30.752 \mathrm{~dB}$
7. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{T}[\mathrm{ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{t}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=2$
c. Worst Case Dwell Time $=\tau[\mathrm{ms}] \times H^{\prime}=5.800 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log$ (Worst Case Dwell Time/ 100ms) dB $=-24.7314 \mathrm{~dB}$
e. We applied DCCF in the test result which hopping channel number is 20.

| FCC PT.15.247 | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  |  |  |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

8. We have done Normal Mode and EDR Mode test.
9. This test is performed with hopping off.
10. We have done $x, y$, $z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

Operation Mode: CH Mid(GFSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4882 | 55.78 | -3.95 | V | 0 | 51.83 | 73.98 | 22.15 | PK |
| 4882 | 48.02 | -3.95 | V | -24.73 | 19.34 | 53.98 | 34.64 | AV |
| 7323 | 52.14 | 5.46 | V | 0 | 57.60 | 73.98 | 16.39 | PK |
| 7323 | 38.88 | 5.46 | V | -24.73 | 19.60 | 53.98 | 34.38 | AV |
| 4882 | 54.89 | -3.95 | H | 0 | 50.94 | 73.98 | 23.04 | PK |
| 4882 | 46.26 | -3.95 | H | -24.73 | 17.58 | 53.98 | 36.40 | AV |
| 7323 | 52.08 | 5.46 | H | 0 | 57.54 | 73.98 | 16.45 | PK |
| 7323 | 38.76 | 5.46 | H | -24.73 | 19.48 | 53.98 | 34.50 | AV |

Operation Mode: CH Mid(8DPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4882 | 56.50 | -3.95 | V | 0 | 52.55 | 73.98 | 21.43 | PK |
| 4882 | 46.06 | -3.95 | V | -24.73 | 17.38 | 53.98 | 36.60 | AV |
| 7323 | 52.35 | 5.46 | V | 0 | 57.81 | 73.98 | 16.18 | PK |
| 7323 | 39.08 | 5.46 | V | -24.73 | 19.80 | 53.98 | 34.18 | AV |
| 4882 | 55.72 | -3.95 | H | 0 | 51.77 | 73.98 | 22.21 | PK |
| 4882 | 44.58 | -3.95 | H | -24.73 | 15.90 | 53.98 | 38.08 | AV |
| 7323 | 52.31 | 5.46 | H | 0 | 57.77 | 73.98 | 16.22 | PK |
| 7323 | 38.97 | 5.46 | H | -24.73 | 19.69 | 53.98 | 34.29 | AV |


| FCC PT. 15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02 October 02, 2013

Operation Mode: CH Mid( $\pi / 4 D Q P S K)$

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4882 | 56.65 | -3.95 | V | 0 | 52.70 | 73.98 | 21.28 | PK |
| 4882 | 46.51 | -3.95 | V | -24.73 | 17.83 | 53.98 | 36.15 | AV |
| 7323 | 52.84 | 5.46 | V | 0 | 58.30 | 73.98 | 15.69 | PK |
| 7323 | 38.93 | 5.46 | V | -24.73 | 19.65 | 53.98 | 34.33 | AV |
| 4882 | 55.83 | -3.95 | H | 0 | 51.88 | 73.98 | 22.10 | PK |
| 4882 | 45.59 | -3.95 | H | -24.73 | 16.91 | 53.98 | 37.07 | AV |
| 7323 | 52.69 | 5.46 | H | 0 | 58.15 | 73.98 | 15.84 | PK |
| 7323 | 38.78 | 5.46 | H | -24.73 | 19.50 | 53.98 | 34.48 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Measuring frequencies from 1 GHz to the 10 th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction Factor
5. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{THz}$, where $\mathrm{T}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
6. FYI: Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\mathrm{\tau}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\mathrm{T}[\mathrm{ms}] \times H^{\prime}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB =-30.752dB
7. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{t}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=2$
c. Worst Case Dwell Time $=\tau[\mathrm{ms}] \times H^{\prime}=5.800 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log ($ Worst Case Dwell Time/ 100ms) dB $=-24.7314 \mathrm{~dB}$

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

Page 61 of 88
e. We applied DCCF in the test result which hopping channel number is 20.
8. We have done Normal Mode and EDR Mode test.
9. This test is performed with hopping off.
10. We have done $x, y$, $z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

Operation Mode: CH High(GFSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4960 | 56.31 | -3.49 | V | 0 | 52.82 | 73.98 | 21.16 | PK |
| 4960 | 48.99 | -3.49 | V | -24.73 | 20.77 | 53.98 | 33.21 | AV |
| 7440 | 52.74 | 5.10 | V | 0 | 57.84 | 73.98 | 16.14 | PK |
| 7440 | 38.84 | 5.10 | V | -24.73 | 19.21 | 53.98 | 34.77 | AV |
| 4960 | 55.44 | -3.49 | H | 0 | 51.95 | 73.98 | 22.03 | PK |
| 4960 | 47.17 | -3.49 | H | -24.73 | 18.95 | 53.98 | 35.03 | AV |
| 7440 | 52.65 | 5.10 | H | 0 | 57.75 | 73.98 | 16.23 | PK |
| 7440 | 38.69 | 5.10 | H | -24.73 | 19.06 | 53.98 | 34.92 | AV |

Operation Mode: CH High(8DPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> DBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4960 | 57.12 | -3.49 | V | 0 | 53.63 | 73.98 | 20.35 | PK |
| 4960 | 47.10 | -3.49 | V | -24.73 | 18.88 | 53.98 | 35.10 | AV |
| 7440 | 52.01 | 5.10 | V | 0 | 57.11 | 73.98 | 16.87 | PK |
| 7440 | 38.71 | 5.10 | V | -24.73 | 19.08 | 53.98 | 34.90 | AV |
| 4960 | 56.59 | -3.49 | H | 0 | 53.10 | 73.98 | 20.88 | PK |
| 4960 | 46.13 | -3.49 | H | -24.73 | 17.91 | 53.98 | 36.07 | AV |
| 7440 | 52.00 | 5.10 | H | 0 | 57.10 | 73.98 | 16.88 | PK |
| 7440 | 38.68 | 5.10 | H | -24.73 | 19.05 | 53.98 | 34.93 | AV |


| $\begin{aligned} & \text { FCC PT. } 15.247 \\ & \text { TEST REPORT } \end{aligned}$ | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02 October 02, 2013

Operation Mode: CH High (m/4DQPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4960 | 56.73 | -3.49 | V | 0 | 53.24 | 73.98 | 20.74 | PK |
| 4960 | 47.42 | -3.49 | V | -24.73 | 19.20 | 53.98 | 34.78 | AV |
| 7440 | 52.46 | 5.10 | V | 0 | 57.56 | 73.98 | 16.42 | PK |
| 7440 | 38.69 | 5.10 | V | -24.73 | 19.06 | 53.98 | 34.92 | AV |
| 4960 | 55.69 | -3.49 | H | 0 | 52.20 | 73.98 | 21.78 | PK |
| 4960 | 46.59 | -3.49 | H | -24.73 | 18.37 | 53.98 | 35.61 | AV |
| 7440 | 52.46 | 5.10 | H | 0 | 57.56 | 73.98 | 16.42 | PK |
| 7440 | 38.61 | 5.10 | H | -24.73 | 18.98 | 53.98 | 35.00 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Measuring frequencies from 1 GHz to the 10 th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction Factor
5. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{THz}$, where $\mathrm{T}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
6. FYI : Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\mathrm{\tau}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\mathrm{T}[\mathrm{ms}] \times H^{\prime}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction $=20 \log$ (Worst Case Dwell Time/ 100ms) dB $=-30.752 \mathrm{~dB}$
7. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{T}[\mathrm{ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{t}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=2$
c. Worst Case Dwell Time $=\mathrm{T}[\mathrm{ms}] \times H^{\prime}=5.800 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log ($ Worst Case Dwell Time/ 100ms) dB $=-24.7314 \mathrm{~dB}$

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

Page 64 of 88
e. We applied DCCF in the test result which hopping channel number is 20.
8. We have done Normal Mode and EDR Mode test.
9. This test is performed with hopping off.
10. We have done $x, y$, $z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

## Slide Down

Operation Mode: CH Low(GFSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4804 | 60.54 | -4.32 | V | 0 | 56.22 | 73.98 | 17.76 | PK |
| 4804 | 56.31 | -4.32 | V | -24.73 | 27.25 | 53.98 | 26.73 | AV |
| 7206 | 52.38 | 5.18 | V | 0 | 57.56 | 73.98 | 16.42 | PK |
| 7206 | 39.21 | 5.18 | V | -24.73 | 19.66 | 53.98 | 34.32 | AV |
| 4804 | 59.67 | -4.32 | H | 0 | 55.35 | 73.98 | 18.63 | PK |
| 4804 | 55.03 | -4.32 | H | -24.73 | 25.97 | 53.98 | 28.01 | AV |
| 7206 | 52.34 | 5.18 | H | 0 | 57.52 | 73.98 | 16.46 | PK |
| 7206 | 39.18 | 5.18 | H | -24.73 | 19.63 | 53.98 | 34.35 | AV |

Operation Mode: CH Low(8DPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4804 | 62.51 | -4.32 | V | 0 | 58.19 | 73.98 | 15.79 | PK |
| 4804 | 53.91 | -4.32 | V | -24.73 | 24.85 | 53.98 | 29.13 | AV |
| 7206 | 52.89 | 5.18 | V | 0 | 58.07 | 73.98 | 15.91 | PK |
| 7206 | 39.02 | 5.18 | V | -24.73 | 19.47 | 53.98 | 34.51 | AV |
| 4804 | 61.98 | -4.32 | H | 0 | 57.66 | 73.98 | 16.32 | PK |
| 4804 | 52.87 | -4.32 | H | -24.73 | 23.81 | 53.98 | 30.17 | AV |
| 7206 | 52.85 | 5.18 | H | 0 | 58.03 | 73.98 | 15.95 | PK |
| 7206 | 38.89 | 5.18 | H | -24.73 | 19.34 | 53.98 | 34.64 | AV |


| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02 October 02, 2013

Operation Mode: CH Low(m/4DQPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4804 | 62.37 | -4.32 | V | 0 | 58.05 | 73.98 | 15.93 | PK |
| 4804 | 54.34 | -4.32 | V | -24.73 | 25.28 | 53.98 | 28.70 | AV |
| 7206 | 52.57 | 5.18 | V | 0 | 57.75 | 73.98 | 16.23 | PK |
| 7206 | 39.21 | 5.18 | V | -24.73 | 19.66 | 53.98 | 34.32 | AV |
| 4804 | 61.82 | -4.32 | H | 0 | 57.50 | 73.98 | 16.48 | PK |
| 4804 | 53.02 | -4.32 | H | -24.73 | 23.96 | 53.98 | 30.02 | AV |
| 7206 | 52.51 | 5.18 | H | 0 | 57.69 | 73.98 | 16.29 | PK |
| 7206 | 39.18 | 5.18 | H | -24.73 | 19.63 | 53.98 | 34.35 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction Factor
5. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}$, VBW $=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{T} \mathrm{Hz}$, where $\mathrm{\tau}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
6. FYI : Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\mathrm{T}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\tau[\mathrm{ms}] \times H^{\prime}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB $=-30.752 \mathrm{~dB}$
7. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{T}[\mathrm{ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{t}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=2$
c. Worst Case Dwell Time $=\tau[\mathrm{ms}] \times H^{\prime}=5.800 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log$ (Worst Case Dwell Time/ 100ms) dB $=-24.7314 \mathrm{~dB}$
e. We applied DCCF in the test result which hopping channel number is 20.

| FCC PT.15.247 | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  |  |  |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

8. We have done Normal Mode and EDR Mode test.
9. This test is performed with hopping off.
10. We have done $x, y$, $z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

Operation Mode: CH Mid(GFSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4882 | 56.83 | -3.95 | V | 0 | 52.88 | 73.98 | 21.10 | PK |
| 4882 | 49.55 | -3.95 | V | -24.73 | 20.87 | 53.98 | 33.11 | AV |
| 7323 | 52.37 | 5.46 | V | 0 | 57.83 | 73.98 | 16.16 | PK |
| 7323 | 39.06 | 5.46 | V | -24.73 | 19.78 | 53.98 | 34.20 | AV |
| 4882 | 55.94 | -3.95 | H | 0 | 51.99 | 73.98 | 21.99 | PK |
| 4882 | 48.16 | -3.95 | H | -24.73 | 19.48 | 53.98 | 34.50 | AV |
| 7323 | 52.19 | 5.46 | H | 0 | 57.65 | 73.98 | 16.34 | PK |
| 7323 | 38.96 | 5.46 | H | -24.73 | 19.68 | 53.98 | 34.30 | AV |

Operation Mode: CH Mid(8DPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4882 | 57.42 | -3.95 | V | 0 | 53.47 | 73.98 | 20.51 | PK |
| 4882 | 47.40 | -3.95 | V | -24.73 | 18.72 | 53.98 | 35.26 | AV |
| 7323 | 52.43 | 5.46 | V | 0 | 57.89 | 73.98 | 16.10 | PK |
| 7323 | 39.08 | 5.46 | V | -24.73 | 19.80 | 53.98 | 34.18 | AV |
| 4882 | 56.81 | -3.95 | H | 0 | 52.86 | 73.98 | 21.12 | PK |
| 4882 | 46.73 | -3.95 | H | -24.73 | 18.05 | 53.98 | 35.93 | AV |
| 7323 | 52.38 | 5.46 | H | 0 | 57.84 | 73.98 | 16.15 | PK |
| 7323 | 39.04 | 5.46 | H | -24.73 | 19.76 | 53.98 | 34.22 | AV |


| FCC PT. 15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02 October 02, 2013

Operation Mode: CH Mid( $\pi / 4 D Q P S K)$

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4882 | 58.21 | -3.95 | V | 0 | 54.26 | 73.98 | 19.72 | PK |
| 4882 | 47.88 | -3.95 | V | -24.73 | 19.20 | 53.98 | 34.78 | AV |
| 7323 | 52.66 | 5.46 | V | 0 | 58.12 | 73.98 | 15.87 | PK |
| 7323 | 39.14 | 5.46 | V | -24.73 | 19.86 | 53.98 | 34.12 | AV |
| 4882 | 57.86 | -3.95 | H | 0 | 53.91 | 73.98 | 20.07 | PK |
| 4882 | 47.16 | -3.95 | H | -24.73 | 18.48 | 53.98 | 35.50 | AV |
| 7323 | 52.59 | 5.46 | H | 0 | 58.05 | 73.98 | 15.94 | PK |
| 7323 | 39.08 | 5.46 | H | -24.73 | 19.80 | 53.98 | 34.18 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Measuring frequencies from 1 GHz to the 10 th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction Factor
5. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{THz}$, where $\mathrm{T}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
6. FYI: Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\mathrm{\tau}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\mathrm{T}[\mathrm{ms}] \times H^{\prime}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB =-30.752dB
7. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{t}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=2$
c. Worst Case Dwell Time $=\tau[\mathrm{ms}] \times H^{\prime}=5.800 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log ($ Worst Case Dwell Time/ 100ms) dB $=-24.7314 \mathrm{~dB}$

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

e. We applied DCCF in the test result which hopping channel number is 20.
8. We have done Normal Mode and EDR Mode test.
9. This test is performed with hopping off.
10. We have done $x, y$, $z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

Operation Mode: CH High(GFSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4960 | 53.89 | -3.49 | V | 0 | 50.40 | 73.98 | 23.58 | PK |
| 4960 | 44.77 | -3.49 | V | -24.73 | 16.55 | 53.98 | 37.43 | AV |
| 7440 | 52.38 | 5.10 | V | 0 | 57.48 | 73.98 | 16.50 | PK |
| 7440 | 38.83 | 5.10 | V | -24.73 | 19.20 | 53.98 | 34.78 | AV |
| 4960 | 53.02 | -3.49 | H | 0 | 49.53 | 73.98 | 24.45 | PK |
| 4960 | 43.32 | -3.49 | H | -24.73 | 15.10 | 53.98 | 38.88 | AV |
| 7440 | 52.35 | 5.10 | H | 0 | 57.45 | 73.98 | 16.53 | PK |
| 7440 | 38.81 | 5.10 | H | -24.73 | 19.18 | 53.98 | 34.80 | AV |

Operation Mode: CH High(8DPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> DBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4960 | 54.71 | -3.49 | V | 0 | 51.22 | 73.98 | 22.76 | PK |
| 4960 | 43.23 | -3.49 | V | -24.73 | 15.01 | 53.98 | 38.97 | AV |
| 7440 | 51.94 | 5.10 | V | 0 | 57.04 | 73.98 | 16.94 | PK |
| 7440 | 38.94 | 5.10 | V | -24.73 | 19.31 | 53.98 | 34.67 | AV |
| 4960 | 54.56 | -3.49 | H | 0 | 51.07 | 73.98 | 22.91 | PK |
| 4960 | 42.59 | -3.49 | H | -24.73 | 14.37 | 53.98 | 39.61 | AV |
| 7440 | 51.87 | 5.10 | H | 0 | 56.97 | 73.98 | 17.01 | PK |
| 7440 | 38.83 | 5.10 | H | -24.73 | 19.20 | 53.98 | 34.78 | AV |


| $\begin{aligned} & \text { FCC PT. } 15.247 \\ & \text { TEST REPORT } \end{aligned}$ | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02 October 02, 2013

Operation Mode: CH High (m/4DQPSK)

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL-AMP GAIN <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4960 | 54.77 | -3.49 | V | 0 | 51.28 | 73.98 | 22.70 | PK |
| 4960 | 43.69 | -3.49 | V | -24.73 | 15.47 | 53.98 | 38.51 | AV |
| 7440 | 52.72 | 5.10 | V | 0 | 57.82 | 73.98 | 16.16 | PK |
| 7440 | 38.93 | 5.10 | V | -24.73 | 19.30 | 53.98 | 34.68 | AV |
| 4960 | 53.94 | -3.49 | H | 0 | 50.45 | 73.98 | 23.53 | PK |
| 4960 | 43.26 | -3.49 | H | -24.73 | 15.04 | 53.98 | 38.94 | AV |
| 7440 | 52.69 | 5.10 | H | 0 | 57.79 | 73.98 | 16.19 | PK |
| 7440 | 38.89 | 5.10 | H | -24.73 | 19.26 | 53.98 | 34.72 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Measuring frequencies from 1 GHz to the 10 th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Total $=$ Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction Factor
5. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{THz}$, where $\mathrm{T}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
6. FYI: Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{\tau}[\mathrm{~ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\mathrm{\tau}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\mathrm{T}[\mathrm{ms}] \times H^{\prime}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB =-30.752dB
7. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{T}[\mathrm{ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{t}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=2$
c. Worst Case Dwell Time $=\mathrm{T}[\mathrm{ms}] \times H^{\prime}=5.800 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log ($ Worst Case Dwell Time/ 100ms) dB $=-24.7314 \mathrm{~dB}$

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

e. We applied DCCF in the test result which hopping channel number is 20.
8. We have done Normal Mode and EDR Mode test.
9. This test is performed with hopping off.
10. We have done $x, y$, $z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

### 8.6.3 RADIATED RESTRICTED BAND EDGES

## Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c).

## Slide Up

Operation Mode
Operating Frequency
Normal(GFSK)

Channel No
2402 MHz
CH 0

| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2390.0 | 24.58 | 33.90 | H | 58.48 | 73.98 | 15.50 | PK |
| 2390.0 | 11.71 | 33.90 | H | 45.61 | 53.98 | 8.37 | AV |
| 2390.0 | 24.55 | 33.90 | V | 58.45 | 73.98 | 15.53 | PK |
| 2390.0 | 11.69 | 33.90 | V | 45.59 | 53.98 | 8.39 | AV |

Operation Mode
Operating Frequency

| EDR(8DPSK) |
| :--- |
| 2402 MHz |
| CH 0 |


| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F+CL <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2390.0 | 24.71 | 33.90 | H | 58.61 | 73.98 | 15.37 | PK |
| 2390.0 | 11.67 | 33.90 | H | 45.57 | 53.98 | 8.41 | AV |
| 2390.0 | 24.69 | 33.90 | V | 58.59 | 73.98 | 15.39 | PK |
| 2390.0 | 11.64 | 33.90 | V | 45.54 | 53.98 | 8.44 | AV |


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |


| Operation Mod |  | EDR(m/ | SK) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Freq |  | 2402 M |  |  |  |  |  |
| Channel No |  | CH 0 |  |  |  |  |  |
| Frequency $[\mathrm{MHz}]$ | Reading dBuV | $\begin{gathered} \text { ※A.F+CL } \\ {[\mathrm{dB}]} \\ \hline \end{gathered}$ | ANT. POL [H/V] | Total [dBuV/m] | Limit [dBuV/m] | Margin [dB] | Detect |
| 2390.0 | 24.76 | 33.90 | H | 58.66 | 73.98 | 15.32 | PK |
| 2390.0 | 11.74 | 33.90 | H | 45.64 | 53.98 | 8.34 | AV |
| 2390.0 | 24.73 | 33.90 | V | 58.63 | 73.98 | 15.35 | PK |
| 2390.0 | 11.71 | 33.90 | V | 45.61 | 53.98 | 8.37 | AV |

※ A•F: ANTENNA FACTOR
C•L: CABLE LOSS

## Notes:

1.. Frequency range of measurement $=2310 \mathrm{MHz} \sim 2390 \mathrm{MHz}$
2. Total = Fundamental Reading Value + Antenna Factor + Cable Loss
3. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}$, VBW $=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{T} \mathrm{Hz}$, where $\mathrm{T}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
4. We have done Normal Mode and EDR Mode.
5. This test is performed with hopping off.
6. We have done $x, y, z$ planes in EUT and horizontal and vertical polarization in detecting antenna

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |


| Operation Mode |  |
| :--- | :--- |
| Operating Frequency <br> Channel No | Normal(GFSK) |


| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F. CL <br> $[\mathrm{dB}]$ | Ant. Pol. <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2483.5 | 28.22 | 33.99 | H | 0 | 62.21 | 73.98 | 11.77 | PK |
| 2483.5 | 23.19 | 33.99 | H | -24.73 | 32.45 | 53.98 | 21.53 | AV |
| 2483.5 | 27.64 | 33.99 | V | 0 | 61.63 | 73.98 | 12.35 | PK |
| 2483.5 | 22.35 | 33.99 | V | -24.73 | 31.61 | 53.98 | 22.37 | AV |


| Operation Mode | EDR(8DPSK) |
| :--- | :--- |
| Operating Frequency | 2480 MHz |
| Channel No | $\underline{\mathrm{CH} 78}$ |


| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※. A.F. +CL <br> $[\mathrm{dB}]$ | Ant. Pol. <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2483.5 | 29.52 | 33.99 | H | 0 | 63.51 | 73.98 | 10.47 | PK |
| 2483.5 | 23.08 | 33.99 | H | -24.73 | 32.34 | 53.98 | 21.64 | AV |
| 2483.5 | 28.94 | 33.99 | V | 0 | 62.93 | 73.98 | 11.05 | PK |
| 2483.5 | 22.32 | 33.99 | V | -24.73 | 31.58 | 53.98 | 22.40 | AV |


| FCC PT. 15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |


| Operation Mode | EDR $(\pi / 4 D Q P S K)$ |
| :--- | :--- |
| Operating Frequency |  |
| Channel No | $\underline{2480 \mathrm{MHz}}$ |


| Frequency <br> $[\mathrm{MHz}]$ | *Fund. Reading <br> dBuV | ※ A.F. +CL <br> $[\mathrm{dB}]$ | Ant. Pol. <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2483.5 | 29.63 | 33.99 | H | 0 | 63.62 | 73.98 | 10.36 | PK |
| 2483.5 | 23.28 | 33.99 | H | -24.73 | 32.54 | 53.98 | 21.44 | AV |
| 2483.5 | 29.07 | 33.99 | V | 0 | 63.06 | 73.98 | 10.92 | PK |
| 2483.5 | 22.41 | 33.99 | V | -24.73 | 31.67 | 53.98 | 22.31 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Frequency range of measurement $=2483.5 \mathrm{MHz} \sim 2500 \mathrm{MHz}$
2. Total = Fundamental Reading Value + Antenna Factor + Cable Loss - Delta Value + Duty Cycle Correction Factor
3. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{kHz} \geq 1 / \mathrm{\tau} \mathrm{~Hz}$, where $\mathrm{\tau}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
4. FYI : Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta t=\tau[\mathrm{ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\tau=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\mathrm{t}[\mathrm{ms}] \times H^{\prime}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction $=20 \log ($ Worst Case Dwell Time/ 100ms) dB $=-30.752 \mathrm{~dB}$
5. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{T}[\mathrm{ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{T}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=2$
c. Worst Case Dwell Time $=\mathrm{t}[\mathrm{ms}] \times \mathrm{H}^{\prime}=5.8 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log ($ Worst Case Dwell Time/ 100ms) $\mathrm{dB}=-24.7314 \mathrm{~dB}$
e. We applied DCCF in the test result which hopping channel number is 20.
6. We have done Normal Mode, EDR Mode.
7. This test is performed with hopping off.
8. We have done $x, y, z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

| FCC PT.15.247 | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  |  |  |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

## Slide Down

Operation Mode
Operating Frequency

| Normal(GFSK) |
| :--- |
| 2402 MHz |
| CH 0 |


| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F CL <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{N}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2390.0 | 24.99 | 33.90 | H | 58.89 | 73.98 | 15.09 | PK |
| 2390.0 | 11.78 | 33.90 | H | 45.68 | 53.98 | 8.30 | AV |
| 2390.0 | 24.86 | 33.90 | V | 58.76 | 73.98 | 15.22 | PK |
| 2390.0 | 11.75 | 33.90 | V | 45.65 | 53.98 | 8.33 | AV |

Operation Mode
Operating Frequency
Channel No

| EDR(8DPSK) |
| :--- |
| 2402 MHz |
| CH 0 |


| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F CL <br> $[\mathrm{dB}]$ | ANT. POL <br> $[\mathrm{H} / \mathrm{V}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2390.0 | 25.81 | 33.90 | H | 59.71 | 73.98 | 14.27 | PK |
| 2390.0 | 11.83 | 33.90 | H | 45.73 | 53.98 | 8.25 | AV |
| 2390.0 | 25.75 | 33.90 | V | 59.65 | 73.98 | 14.33 | PK |
| 2390.0 | 11.76 | 33.90 | V | 45.66 | 53.98 | 8.32 | AV |


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

HCTR1310FR02

| Operation Mod |  | EDR(m/ | SK) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Freq |  | 2402 M |  |  |  |  |  |
| Channel No |  | CH 0 |  |  |  |  |  |
| Frequency $[\mathrm{MHz}]$ | Reading dBuV | $\begin{gathered} \text { ※A.F+CL } \\ {[\mathrm{dB}]} \\ \hline \end{gathered}$ | ANT. POL [H/V] | Total [dBuV/m] | Limit [dBuV/m] | Margin [dB] | Detect |
| 2390.0 | 25.41 | 33.90 | H | 59.31 | 73.98 | 14.67 | PK |
| 2390.0 | 11.74 | 33.90 | H | 45.64 | 53.98 | 8.34 | AV |
| 2390.0 | 25.36 | 33.90 | V | 59.26 | 73.98 | 14.72 | PK |
| 2390.0 | 11.72 | 33.90 | V | 45.62 | 53.98 | 8.36 | AV |

※ A•F: ANTENNA FACTOR
C•L: CABLE LOSS

## Notes:

1.. Frequency range of measurement $=2310 \mathrm{MHz} \sim 2390 \mathrm{MHz}$
2. Total = Fundamental Reading Value + Antenna Factor + Cable Loss
3. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}$, VBW $=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}$, RBW $=1 \mathrm{MHz}$, VBW $=1 \mathrm{kHz} \geq 1 / \mathrm{T} \mathrm{Hz}$, where $\mathrm{T}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
4. We have done Normal Mode and EDR Mode.
5. This test is performed with hopping off.
6. We have done $x, y, z$ planes in EUT and horizontal and vertical polarization in detecting antenna

| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |


| Operation Mode |  |
| :--- | :--- |
| Operating Frequency <br> Channel No | Normal(GFSK) |


| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※A.F. CL <br> $[\mathrm{dB}]$ | Ant. Pol. <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2483.5 | 28.99 | 33.99 | H | 0 | 62.98 | 73.98 | 11.00 | PK |
| 2483.5 | 24.20 | 33.99 | H | -24.73 | 33.46 | 53.98 | 20.52 | AV |
| 2483.5 | 28.51 | 33.99 | V | 0 | 62.50 | 73.98 | 11.48 | PK |
| 2483.5 | 23.14 | 33.99 | V | -24.73 | 32.40 | 53.98 | 21.58 | AV |


| Operation Mode | EDR(8DPSK) |
| :--- | :--- |
| Operating Frequency | 2480 MHz |
| Channel No | $\underline{\mathrm{CH} 78}$ |


| Frequency <br> $[\mathrm{MHz}]$ | Reading <br> dBuV | ※. A.F. +CL <br> $[\mathrm{dB}]$ | Ant. Pol. <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2483.5 | 28.64 | 33.99 | H | 0 | 62.63 | 73.98 | 11.35 | PK |
| 2483.5 | 22.71 | 33.99 | H | -24.73 | 31.97 | 53.98 | 22.01 | AV |
| 2483.5 | 28.13 | 33.99 | V | 0 | 62.12 | 73.98 | 11.86 | PK |
| 2483.5 | 21.79 | 33.99 | V | -24.73 | 31.05 | 53.98 | 22.93 | AV |


| FCC PT. 15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |


| Operation Mode | EDR $(\pi / 4 D Q P S K)$ |
| :--- | :--- |
| Operating Frequency |  |
| Channel No | $\underline{2480 \mathrm{MHz}}$ |


| Frequency <br> $[\mathrm{MHz}]$ | *Fund. Reading <br> dBuV | ※ A.F. +CL <br> $[\mathrm{dB}]$ | Ant. Pol. <br> $[\mathrm{H} / \mathrm{V}]$ | Duty Cycle Correction <br> $[\mathrm{dB}]$ | Total <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Limit <br> $[\mathrm{dBuV} / \mathrm{m}]$ | Margin <br> $[\mathrm{dB}]$ | Detect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2483.5 | 29.08 | 33.99 | H | 0 | 63.07 | 73.98 | 10.91 | PK |
| 2483.5 | 22.96 | 33.99 | H | -24.73 | 32.22 | 53.98 | 21.76 | AV |
| 2483.5 | 28.49 | 33.99 | V | 0 | 62.48 | 73.98 | 11.50 | PK |
| 2483.5 | 21.87 | 33.99 | V | -24.73 | 31.13 | 53.98 | 22.85 | AV |

## ※ A•F: ANTENNA FACTOR

C•L: CABLE LOSS
AMP GAIN: AMPLIFIER GAIN

## Notes:

1. Frequency range of measurement $=2483.5 \mathrm{MHz} \sim 2500 \mathrm{MHz}$
2. Total = Fundamental Reading Value + Antenna Factor + Cable Loss - Delta Value + Duty Cycle Correction Factor
3. Spectrum setting:
a. Peak Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
b. AV Setting $1 \mathrm{GHz}-26 \mathrm{GHz}, \mathrm{RBW}=1 \mathrm{MHz}$, VBW $=1 \mathrm{kHz} \geq 1 / \mathrm{T} H z$, where $\mathrm{\tau}=$ pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.
4. FYI : Duty Cycle Correction Factor (79 channel hopping)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{T}[\mathrm{ms}] \times 79$ channels $=229.100 \mathrm{~ms}$, where $\mathrm{T}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\prime}=1$
c. Worst Case Dwell Time $=\tau[\mathrm{ms}] \times \mathrm{H}^{\text {' }}=2.900 \mathrm{~ms}$
d. Duty Cycle Correction $=20 \log$ (Worst Case Dwell Time/ 100ms) dB $=-30.752 \mathrm{~dB}$
5. Duty Cycle Correction Factor(AFH mode - minimum channel number case - 20 channels)
a. Time to cycle through all channels $=\Delta \mathrm{t}=\mathrm{T}[\mathrm{ms}] \times 20$ channels $=58.00 \mathrm{~ms}$, where $\mathrm{T}=$ pulse width
b. $100 \mathrm{~ms} / \Delta \mathrm{t}[\mathrm{ms}]=H \rightarrow$ Round up to next highest integer, $H^{\text {' }}=2$
c. Worst Case Dwell Time $=\mathrm{t}[\mathrm{ms}] \times \mathrm{H}^{\prime}=5.8 \mathrm{~ms}$
d. Duty Cycle Correction(AFH) $=20 \log$ (Worst Case Dwell Time/ 100ms) $\mathrm{dB}=-24.7314 \mathrm{~dB}$
e. We applied DCCF in the test result which hopping channel number is 20 .
6. We have done Normal Mode, EDR Mode.
7. This test is performed with hopping off.
8. We have done $x, y, z$ planes in EUT and horizontal and vertical polarization in detecting antenna.

| FCC PT.15.247 | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| TEST REPORT |  |  |  |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

### 8.7 POWERLINE CONDUCTED EMISSIONS

## LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz ). The limits at specific frequency range is listed as follows:

| Frequency Range (MHz) | Limits (dB $\mu \mathrm{V})$ |  |
| :---: | :---: | :---: |
|  | Quasi-peak | Average |
| 0.15 to 0.50 | 66 to 56 | 56 to 46 |
| 0.50 to 5 | 56 | 46 |
| 5 to 30 | 60 | 50 |

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

## Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

## TEST PROCEDURE

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
2. The EUT is connected via LISN to a test power supply.
3. The measurement results are obtained as described below:
4. Detectors - Quasi Peak and Average Detector.
5. This test is performed with hopping off and 2 Mbps (2-DH5) data rate of No. 39 channel.

| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

HCTR1310FR02 October 02, 2013

RESULT PLOTS
Conducted Emissions (Line 1)

HCT
EMC

| EUT: | P6070 |
| :--- | :--- |
| Manufacturer: | PANTECH |
| Operating Condition: | BT MODE |
| Test Site: | SHIELD ROOM |
| Operator: | JC SHIN |
| Test Specification: | ECC PART15 B |
| Comment: | H |




MEASUREMENT RESULT: "PHONE_fin QP"

| 2013-09-29 | 오설 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency MHz | Level dB 经 | Transd dB | Limit dB 2 | Margin <br> dB | Line | PE |
| 0.170001 | 48.60 | 9.8 | 65 | 16.3 | --- | -- |
| 0.262001 | 43.30 | 9.8 | 61 | 18.1 | --* | --- |
| 0.434001 | 46.70 | 9.8 | 57 | 10.4 | --- | --- |
| 0.580000 | 37.50 | 9.8 | 56 | 18.5 | --- | --- |
| 0.852000 | 37.70 | 9.8 | 56 | 18.3 | --* | --- |
| 1.092000 | 34.60 | 9.9 | 56 | 21.4 | --- | --- |
| 5.000000 | 28.90 | 10.2 | 56 | 27.1 | --- | --- |
| 5.232000 | 27.00 | 10.2 | 60 | 33.0 | -** |  |
| 6.988000 | 26.00 | 10.3 | 60 | 34.0 | --- |  |


| FCC PT. 15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | Www.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |



| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

## Conducted Emissions (Line 2)

HCT
EMC

| EUT: | P6070 |
| :--- | :--- |
| Manufacturer: | PANTECH |
| Operating Condition: | BT MODE |
| Test Site: | SHIELD ROOM |
| Operator: | JC SHIN |
| Test Specification: | FCC PART15 B |
| Comment: | N |


| SCAN TABLE: "FCC <br> Short Description: |  | CLASS B ${ }^{\prime \prime}$ ( ${ }^{\prime \prime}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start | Stop | Step | Detector | Moas. | IF | Transducer |
| Frequency | Frequency | Width |  | Time | Bandw. |  |
| 150.0 kHz | 500.0 kHz | 4.0 kHz | MaxPeak | 10.0 ms | 9 kHz | None |
| 500.0 kHz | 5.0 MHz | 4.0 kHz | Average MaxPeak | 10.0 ms | 9 kHz | None |
|  |  |  | Average |  |  |  |
| 5.0 MHz | 30.0 MHz | 4.0 kHz | MaxPeak | 10.0 ms | 9 kHz | None |
|  |  |  | Average |  |  |  |



MEASUREMENT RESULT: "PHONE_fin QP"

| 9:49오전 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency MHz | Level dB 켁 | Transd dB | $\begin{aligned} & \text { L.Imit } \\ & \text { dBZal } \end{aligned}$ | $\begin{array}{r} \text { Margin } \\ \text { dB } \end{array}$ | Inine | PE |
| 0.170001 | 46.80 | 10.0 | 65 | 18.1 | *-* | -** |
| 0.254001 | 40.50 | 10.0 | 62 | 21.1 | $\cdots$ | -- |
| 0.434001 | 46.60 | 10.0 | 57 | 10.5 | --- | - |
| 0.964000 | 35.40 | 10.0 | 56 | 20.6 | -- | - |
| 1.044000 | 35.00 | 10.1 | 56 | 21.0 | - | - |
| 1. 120000 | 37.20 | 10.1 | 56 | 18.8 | --* | - |
| 5.000000 | 26.00 | 10.4 | 56 | 30.0 | --- | --- |
| 5.020000 | 26.70 | 10.4 | 60 | 33.3 | --- | --- |
| 5.692000 | 25.50 | 10.4 | 60 | 34.5 | --- | **- |


| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: <br> JYCP6070 |

MEASUREMENT RESULT: "PHONE_fin AV"


| FCC PT.15.247 <br> TEST REPORT | FCC CERTIFICATION REPORT |  |  |
| :--- | :--- | :--- | :--- |
| Test Report No. | Date of Issue: | EUT Type: |  |
| HCTR1310FR02 | October 02, 2013 | GSM/WCDMA Phone with Bluetooth | FCC ID: |

## 9. LIST OF TEST EQUIPMENT

| Manufacturer | Model / Equipment | Calibration | Calibration | Interval |
| :--- | :--- | :--- | :--- | :--- |


| FCC PT.15.247 TEST REPORT | FCC CERTIFICATION REPORT |  | WWw.hct.co.kr |
| :---: | :---: | :---: | :---: |
| Test Report No. HCTR1310FR02 | Date of Issue: October 02, 2013 | EUT Type: GSM/WCDMA Phone with Bluetooth | FCC ID: JYCP6070 |

