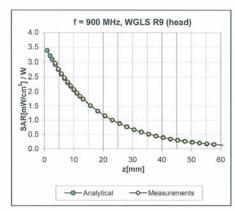


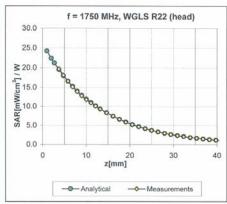
ET3DV6 SN:1798 February 23, 2010

Dynamic Range f(SAR_{head})

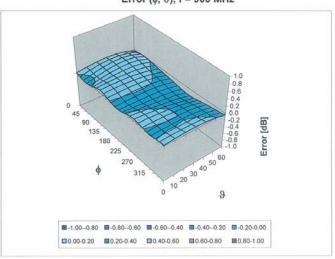
(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1798_Feb10


Page 9 of 11

ET3DV6 SN:1798 February 23, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1798_Feb10

Page 10 of 11

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

ET3DV6 SN:1798 February 23, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1798_Feb10

Page 11 of 11

Date of Issue: May.11, 2010 Report No.: HCTA1005FS02 FCC ID: JYCJ-TOUCH

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com **Additional Conversion Factors** for Dosimetric E-Field Probe ET3DV6 Type: Serial Number: 1798 Zurich Place of Assessment: March 30, 2010 Date of Assessment: February 23, 2010 Probe Calibration Date: Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the recalibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1750 MHz. Assessed by: ET3DV6-SN:1798 Page 1 of 2 March 30, 2010

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 - SN:1798

Conversion factor (± standard deviation)

 $835 \pm 50 \text{ MHz}$

ConvF $6.48 \pm 7\%$

 $\varepsilon_r = 41.5 \pm 5\%$

 $\sigma = 0.90 \pm 5\% \text{ mho/m}$

(head tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

ET3DV6-SN:1798

Page 2 of 2

March 30, 2010

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

74 of 87

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client HTC (Dymstec)

Certificate No: D835V2-441 May09

Accreditation No.: SCS 108

Object	D835V2 - SN: 44	1.56	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	edure for dipole validation kits	
Calibration date:	May 25, 2009		
Condition of the calibrated item	In Tolerance		
		ional standards, which realize the physical ur robability are given on the following pages ar	
All calibrations have been conduc	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&)	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898)	Scheduled Calibration Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID#	. ,	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID# GB37480704 US37292783 SN: 5086 (20g)	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025)	Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-09 Oct-09 Mar-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-09 Oct-09 Mar-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID# MY41092317	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID# MY41092317	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID# MY41092317 100005	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID# MY41092317 100005 US37390585 S4206	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID# MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) Function Laboratory Technician	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09

Certificate No: D835V2-441_May09 Page 1 of 6

HCTA1005FS02 FCC ID: JYCJ-TOUCH **Date of Issue:** May.11, 2010 Report No.:

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the FA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-441 May09 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.6 ± 0.2) °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters.1	normalized to 1W	9.56 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.26 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-441_May09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3 Ω - 7.4 jΩ	
Return Loss	- 22.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns
Electrical Belay (one direction)	1.595 119

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 09, 2001

Certificate No: D835V2-441_May09

Page 4 of 6

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

DASY5 Validation Report for Head TSL

Date/Time: 25.05.2009 09:55:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:441

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

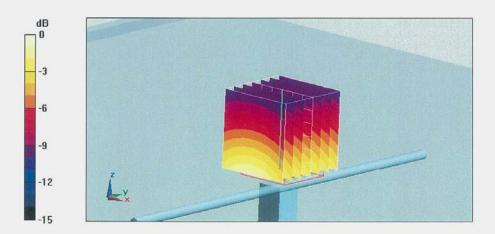
Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

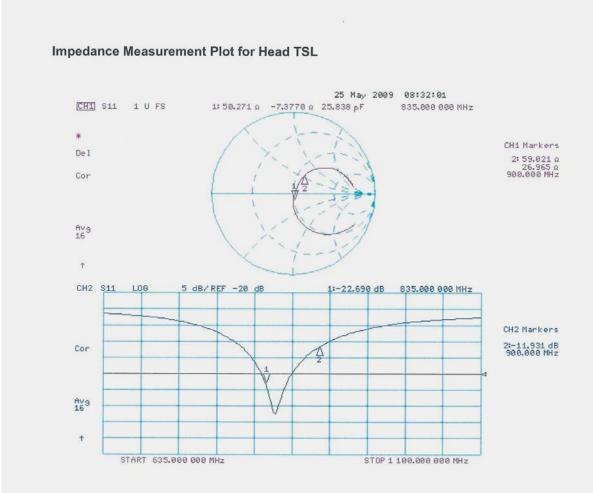

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.1 V/m; Power Drift = 0.0073 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.77 mW/g



0 dB = 2.77 mW/g

Certificate No: D835V2-441_May09

Page 5 of 6

Certificate No: D835V2-441_May09

Page 6 of 6

HCTA1005FS02 FCC ID: JYCJ-TOUCH Date of Issue: May.11, 2010 Report No.:

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

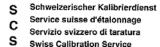
Client HCT (Dymstec)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d032_Jul09 **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d032 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: July 20, 2009 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 08-Oct-08 (No. 217-00898) Oct-09 Power sensor HP 8481A US37292783 08-Oct-08 (No. 217-00898) Oct-09 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV2 SN: 3025 30-Apr-09 (No. ES3-3025 Apr09) Apr-10 DAE4 07-Mar-09 (No. DAE4-601_Mar09) SN: 601 Mar-10 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: July 22, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d032_Jul09

Page 1 of 6



Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d032_Jul09

Page 2 of 6

HCTA1005FS02 FCC ID: JYCJ-TOUCH **Date of Issue:** May.11, 2010 Report No.:

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	40.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.36 mW / g
SAR normalized	normalized to 1W	21.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	21.4 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d032_Jul09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω + 4.4 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Floatiles/ Balan (and dispation)	4.407
Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 17, 2003

Certificate No: D1900V2-5d032_Jul09

Page 4 of 6

HCT CO., LTD.
SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL : +82 31 639 8565 FAX : +82 31 639 8525 www.hct.co.kr

DASY5 Validation Report for Head TSL

Date/Time: 20.07.2009 14:41:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

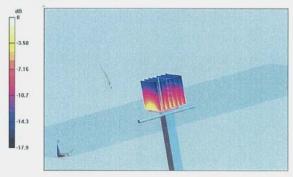
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.88, 4.88, 4.88); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.0 mm/Zoom Scan (dist=3.0 mm, probe 0deg)

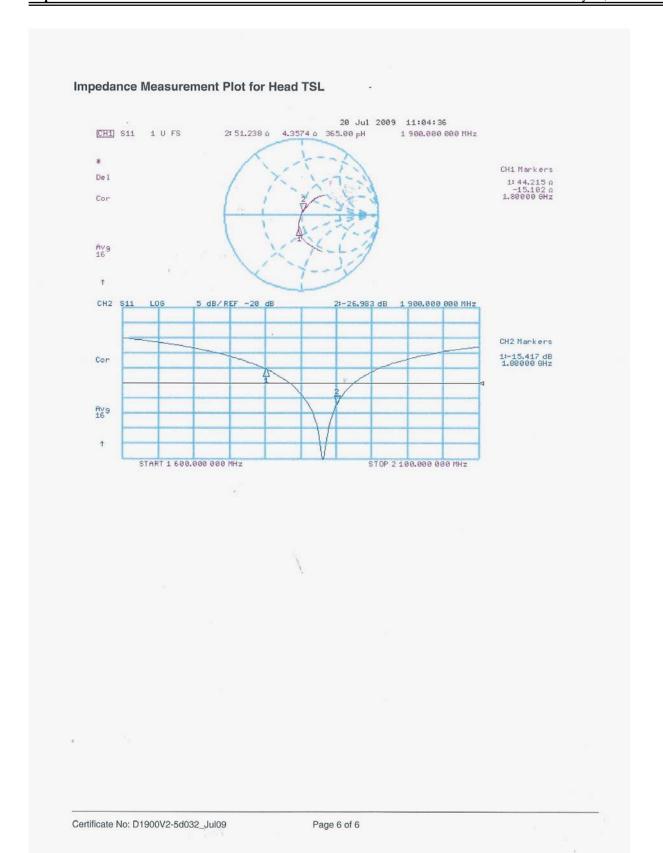

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.5 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.36 mW/g

Maximum value of SAR (measured) = 12.8 mW/g



0 dB = 12.8 mW/g

Certificate No: D1900V2-5d032_Jul09

Page 5 of 6

