

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.200 ns		(one direction)		
Transmission factor:	0.993	(voltage transmission, one direction)		

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re\{Z\} = 51.2 \Omega$
	Im $\{Z\} = 4.9\Omega$
Return Loss at 1900 MHz	-26.1 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating tissue of the following electrical parameters at 1900 MHz:

Relative Dielectricity	52.5	$\pm 5\%$
Conductivity	1.58 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm^3 (1 g) of tissue:	42.0 mW/g \pm 16.8 % (k=2) ²
averaged over 10 cm3 (10 g) of tissue:	22.0 mW/g \pm 16.2 % (k=2) ²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$\operatorname{Re}\{Z\}=46.6\ \Omega$		
	Im $\{Z\} = 5.1 \Omega$		
Return Loss at 1900 MHz	-24.0 dB		

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

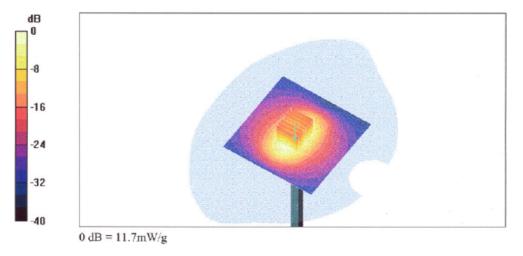
Page 1 of 1 Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

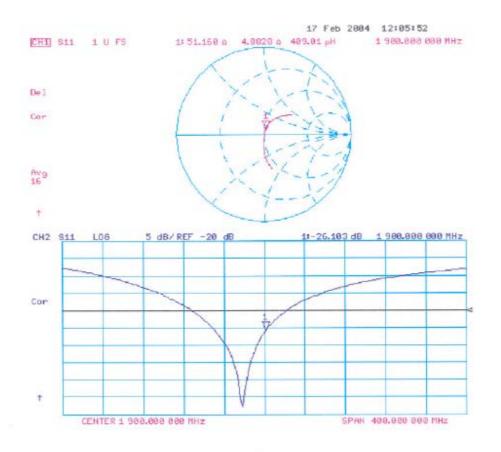
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

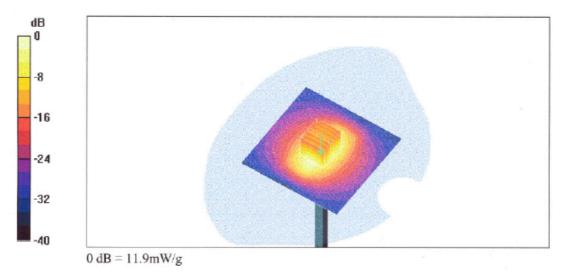
Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.7 mW/g

Page 1 of 1 Date/Time: 02/09/04 15:58:45

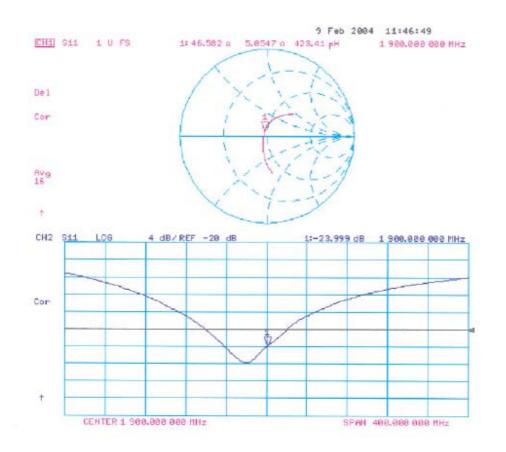
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 11.9 mW/gPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Auden > Sporton Int. Inc.

)bject(s)	ET3DV6 - SN:	1788	
Calibration procedure(s)	QA CAL-01 v2 Calibration pro	ecedure for dosimetric E-field prob	8
Calibration date:	August 29, 200	03	
Condition of the calibrated item	In Tolerance (according to the specific calibration	n document)
7025 international standard.		used in the calibration procedures and conformity of	
I calibrations have been conducte		ry facility: environment temperature 22 +/- 2 degrees	s Celsius and humidity < 75%.
Aodei Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
ower sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
ower sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	Sep-03
ower meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
etwork Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03
luke Process Calibrator Type 702	SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03
	Name	Function	Signature
Calibrated by:	Nico Vetteri	Technician	Dilette
pproved by:	Katja Pokovic	Laboratory Director	flow that
			Date issued: August 28, 2003

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

Manufactured: Last calibration: May 28, 2003 August 29, 2003

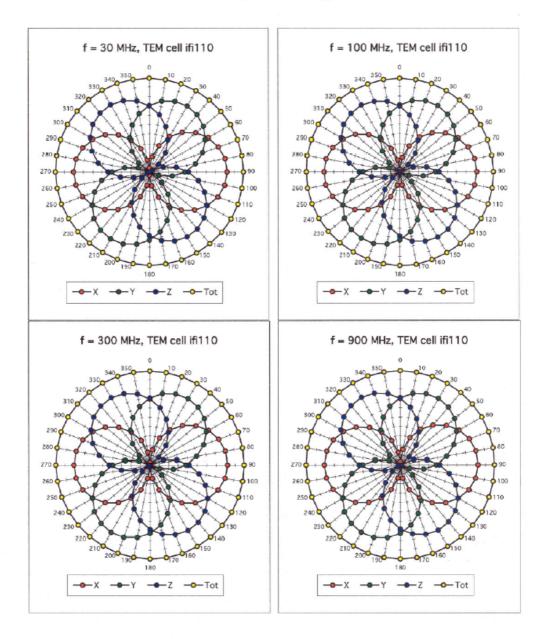
Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Page 1 of 10

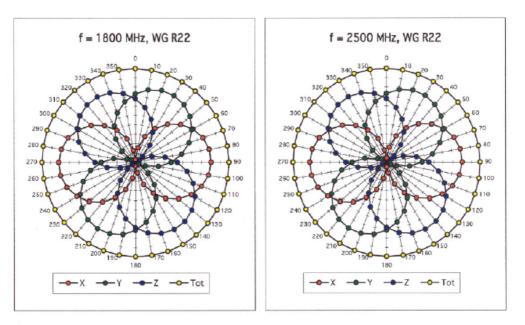
August 29, 2003

DASY - Parameters of Probe: ET3DV6 SN:1788

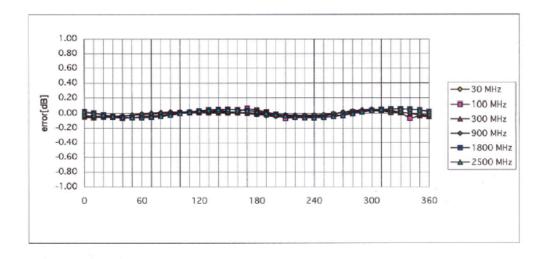

Sensitivity in Free Space				Diode Co	ompression	n	
	NormX	1.68	3 μV/(V/m) ²		DCP X	95	mV
	NormY	1.62	2 μV/(V/m) ²		DCP Y	95	mV
	NormZ	1.71	μV/(V/m) ²		DCP Z	95	mV
	y in Tissue		· ·				
Head	7.0.0 	MHz	$\varepsilon_r = 41.5 \pm 5\%$		0.97 ± 5%		
Valid for f=80			e Simulating Liquid accordin	ng to EN 5036			
	ConvF X		5 ± 9.5% (k=2)		Boundary eff		
	ConvF Y		± 9.5% (k=2)		Alpha	0.34 2.48	
	ConvF Z	0.0	± 9.5% (k=2)		Depth	2.40	
Head	1800	MHz	$\epsilon_r = 40.0 \pm 5\%$	σ=	1.40 ± 5%	mho/m	
Valid for f=17	710-1910 MHz	with Head Tiss	ue Simulating Liquid accord	ding to EN 503	61, P1528-200	x	
	ConvF X	5.3	± 9.5% (k=2)		Boundary eff	ect:	
	ConvF Y	5.3	± 9.5% (k=2)		Alpha	0.43	
	ConvF Z	5.3	3 ±9.5% (k=2)		Depth	2.80	
Boundar	y Effect						
Head	900) MHz	Typical SAR gradient:	5 % per mm			
	Probe Tip to B	oundary			1 mm	2 mm	
	SAR _{be} [%]	Without Corr	rection Algorithm		8.7	5.0	
	SAR _{be} [%]	With Correct	tion Algorithm		0.3	0.5	
Head	1800) MHz	Typical SAR gradient:	10 % per mm			
	Probe Tip to B	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Corr	rection Algorithm		12.8	8.9	
	SAR _{be} [%]	With Correct	tion Algorithm		0.3	0.1	
Sensor (Offset						
	Probe Tip to S	ensor Center		2.7		mm	
	Optical Surfac			1.6 ± 0.2		mm	
	Springer Garille						
			Dana 7 of 10				

Page 2 of 10

ET3DV6 SN:1788

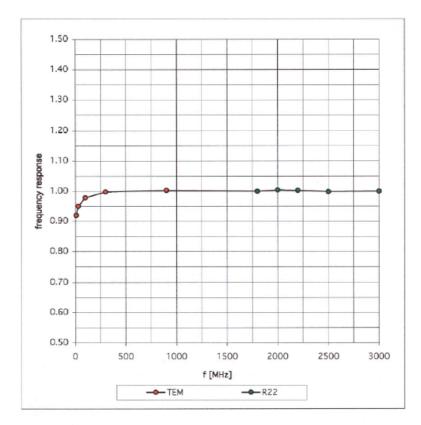

August 29, 2003

Receiving Pattern (ϕ), $\theta = 0^{\circ}$


Page 3 of 10

August 29, 2003

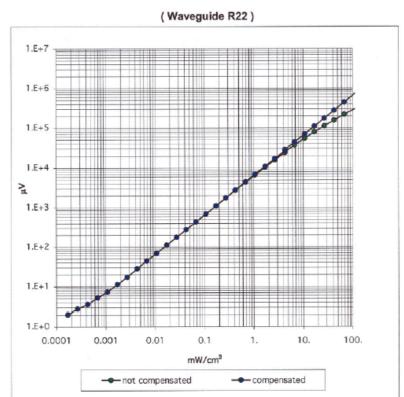
Isotropy Error (ϕ), $\theta = 0^{\circ}$



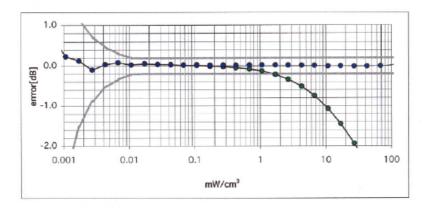
Page 4 of 10

August 29, 2003

Frequency Response of E-Field

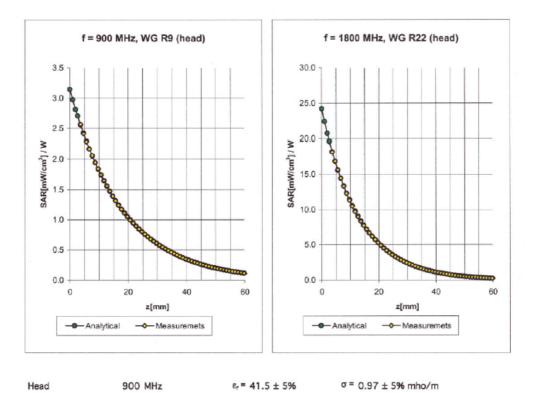

(TEM-Cell:ifi110, Waveguide R22)

Page 5 of 10



ET3DV6 SN:1788

August 29, 2003


Dynamic Range f(SAR_{brain})

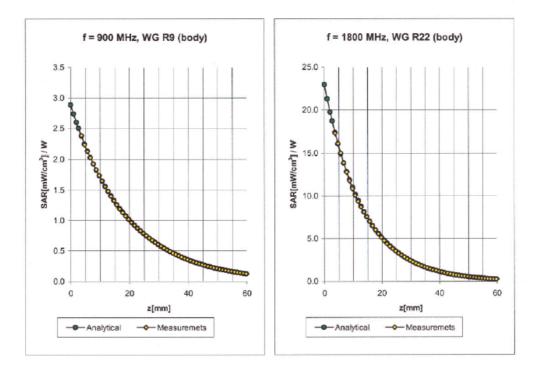
Page 6 of 10

August 29, 2003

Conversion Factor Assessment

Valid for f=8	00-1000 MHz with Head	Tissue	e Simulating Liquid according to EN 5036	51, P1528-200X	
	ConvF X	6.6	± 9.5% (k=2)	Boundary effect:	
ConvFY 6.6		± 9.5% (k=2)	Alpha	0.34	
ConvFZ 6.6		± 9.5% (k=2)	Depth	2.48	
Head	1800 MHz		ε _r = 40.0 ± 5% σ =	1.40 ± 5% mho/n	n
		d Tissi	ϵ_r = 40.0 ± 5% σ = ue Simulating Liquid according to EN 503		n
					n
	710-1910 MHz with Hea	5.3	ue Simulating Liquid according to EN 503	361, P1528-200X	0.43
	710-1910 MHz with Hea ConvF X	5.3 5.3	ue Simulating Liquid according to EN 503 ± 9.5% (k=2)	661, P1528-200X Boundary effect:	7

Page 7 of 10


©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C 6.5 ± 9.5% (k=2) ConvF X Boundary effect: 6.5 ± 9.5% (k=2) 0.31 ConvF Y Alpha 6.5 ± 9.5% (k=2) 2.92 ConvF Z Depth 1800 MHz $e_r = 53.3 \pm 5\%$ σ = 1.52 ± 5% mho/m Body Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C $50 \pm 0.5\%$ (k=2) 0----F.V Devendenceffect

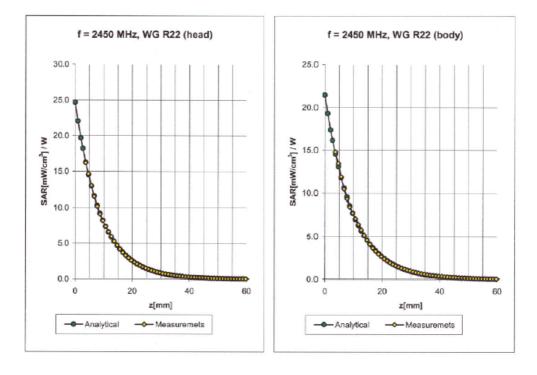
 $e_r = 55.0 \pm 5\%$

 σ = 1.05 ± 5% mho/m

ConvF X	5.0	± 9.5% (k=2)	Boundary effect:	
ConvF Y	5.0	± 9.5% (k=2)	Alpha	0.51
ConvF Z	5.0	±9.5% (k=2)	Depth	2.78

Page 8 of 10

©2004 SPORTON International Inc..SAR Testing Lab


Body

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

900 MHz

August 29, 2003

Conversion Factor Assessment

Valid for f=2	400-2500 MHz with Hea	d Tissu	e Simulating Liquid according to EN 503	361, P1528-200X	
ConvFX 4.7			± 8.9% (k=2)	Boundary effect:	
ConvFY 4.7		± 8.9% (k=2)	Alpha	0.99	
	ConvFZ 4.7 ±		± 8.9% (k=2)	Depth	1.81
Body	2450 MHz		ε _r = 52.7 ± 5% σ =	1.95 ± 5% mho/n	n
Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to 0ET 65 Suppl. C					
Valid for f=2	400-2500 MHz with Bod	y Tissu	ue Simulating Liquid according to OET 6	5 Suppl. C	
Valid for f=2	400-2500 MHz with Bod ConvF X		the Simulating Liquid according to OET 6: $\pm 8.9\%$ (k=2)	5 Suppl. C Boundary effect:	
Valid for f=2		4.5			1.01
Valid for f=2	ConvF X	4.5 4.5	± 8.9% (k=2)	Boundary effect:	1.01 1.74

 $e_r = 39.2 \pm 5\%$

 $\sigma = 1.80 \pm 5\%$ mho/m

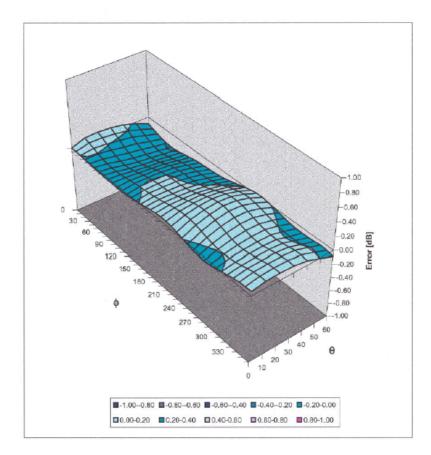
Page 9 of 10

©2004 SPORTON International Inc..SAR Testing Lab

Head

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

2450 MHz



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Page 10 of 10

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C	12	~	-	٠	
	Ш	e	n	ι	

Sporton (Auden)

Object(s)	DAE3 – SD 000 D03 AA – SN:577 QA CAL-06.v4 Calibration procedure for the data acquisition unit (DAE)					
Calibration procedure(s)						
Calibration date:	21.11.2003					
Condition of the calibrated item	In Tolerance (according to the specific calibration document)					
17025 international standard.			conformity of the procedures with the ISO/IEi			
Calibration Equipment used (M&Ti	E critical for calibration)					
Model Type	ID #	Cal Date	Scheduled Calibration			
Fluke Process Calibrator Type 702		8-Sep-03	Sep-05			
	Name	Function	Signature			
Calibrated by:	Philipp Storchenegger	Technician	Pilaly			
Approved by:	Fin Bomholt	R&D Director	F. Brushalt			
			Date issued: 21.11.2003			

DAE3 SN: 577 1. Cal Lab. Incoming Inspection & Pre Test

DATE: 21.11.2003

Modification Status	Note Status here $\rightarrow \rightarrow \rightarrow \rightarrow$	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV.	full range =	400 mV
Low Range:	1LSB =	61nV,	full range =	4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3	SN: 577	
------	---------	--

3. Common mode sensitivity

DATE: 21.11.2003

DASY measurement parameters:

Auto Zero Time: 3 sec, Measuring time: 3 sec

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec. High Range

Measuring time: 3 sec

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

Page 3 of 4

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec, Number of measurements:

Measuring time: 3 sec 100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in µV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level	
Supply (+ Vcc)	7.58	
Supply (- Vcc)	-7.65	

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97

Page 4 of 4