

SAR/ RF exposure review :

Question #5: Please provide a clear copy of SAR data plots. It is very difficult to review all the detail information based upon the qualify of image.

Ans.

It has been improved in the new edition (Rev.01) of the report.

Question #6: SAR System performance check with head liquid : Per page 15 of 72 of SAR test report, the 1900MHz liquid parameter for head is used for 1800MHz head System validation tests. Please explain why 1900MHz liquid parameter is used for 1800MHz system validation.

Ans.

We use the same recipe for head liquid in a frequency range from 1700MHz to 2000MHz. (please refer to page14 of SAR test report.) Before SAR test, we measured the parameters of the liquid and make sure of that the parameters of the liquid in the range of 5% of the target for all of Tx. frequency range of DUT and the frequency of system validation. So, in this case, the liquid got valid parameters from 1789MHz – 1910MHz. (please refer to Appendix A of this document.) And we use the parameter at 1800MHz for System validation to validate our system accuracy. (according to OET65 Supplement C, it's valid.)

Question #7: SAR System perform check with body liquid: per page 15 of 72 of SAR test report, the 1800MHz body parameter does not match with page 15 of 72 information. Please explain.

Ans.

That was a typing error. The parameters which in the list should be corrected to the mid-band frequency of the DUT. To avoid confusion, we modified the list and update a new edition (Rev.01) of the report.

Question #8: Appendix B of SAR test data: By comparing channel 25, channel 600 and channel 1175 which measured at the same day but the liquid parameter are different. Please explain.

Ans.

In DASY4 V4.1 Build47, it is possible to import whole liquid dielectric parameters for each frequency. Then the DASY4 software can automatically calculate the conductivity and input it according to the channel selected in communication system. That is why the parameters are different for each Channel. (please refer to the Appendix B of this document.)

For further accuracy, we measured the liquid in frequency range 1700 – 1910MHz per 1MHz and import the measured result. Then the DASY4 software will automatically input the parameter according to the selected channel of the communication system. (please refer to Appendix A of this document.)

©2003 Auden Techno. Corp. RF Testing Lab

Page 1 of 18

Question #9 : Appendix B of SAR test data : there are three sets of liquid parameter were used : 1.40297/39.7664; 1.4343/39.62; and 1.46214/39.4806. Please explain when liquid was calibrated. W hy three sets of liquid parameter were used for differnt channel and the relation of thess liquid parameter in comparing to page 15 of 72 of SAR test report.

Please refer to the answer below Question #8

Question #10: The conversion factor used based upon the probe calibration file is for 1800MHz. Please explain why 1800MHz factor was used for 1900MHz measurement. Based upon OET 65 supplement C, 1900MHz factor shall be used.

Ans.

According to the page 2 of the Calibration certificate of the probe SN1720 and SN1753 which was been attached in SAR test report. The conversion factor is valid for f=1710 - 1910 MHz with Head Tissue Simulating.

Question #11: Multiple peak displayed on Right tilted channel 25, 600 and 1175. Please provide second peak readings per OET 65 supplement C requirements.

Ans.

According to the page 49 of OET65 supplement C

"All peaks within 2.0 dB (58.5%) of the highest peak identified by the interpolated data should be evaluated with a fine resolution volume scan to determine the highest one-gram averaged SAR."

All the second peaks on Right tilted and Left tilted channel 25, 600 and 1175 are not within 2.0dB of the maximum peak.

Please refer to Appendix C of this document.

Question #12: Muliple peak displayed on Left titled channel 25, 600 and 1175. Please provide second peak readings per OET 65 supplement C requirements.

Please refer to the answer of the question #11.

Question #13: Please explain why the liquid parameter for body are different for all body worn measurement.

Please refer to the answer below Question #8

Question #14: Per the test setup photos, when measure the body worn SAR, the cellular phone cover is opened. When the device is used for body worn operation, the cellular phone cover shall be closed. Please redo body worn SAR with cover closed.

Ans.

It has been corrected and re-tested. Please refer to the new edition of SAR test report.

Page 2 of 18

©2003 Auden Techno. Corp. RF Testing Lab

Question #15: The separation distance used during body worn SAR measurement is 1.5cm (page 20 of 72) but the user manual mentioned 1cm separation distance is required. Please explain.

Ans.

The separation distance will be corrected in the new edition of the manual.

Question #16 : Body worn waring statement contains in the user manual does not provide clear instruction for the user to follow. Based upon the statement, only tested body worn accessories can be used with the cellular phone. However, no body worn accessory was provided during the tests.

Ans.

There is no accessory with the cellular phone except a headset. It will be described in an accessory list in new edition of the manual.

Replier: Jim Wu 2003/7/1

©2003 Auden Techno. Corp. RF Testing Lab

Page 3 of 18

Appendix A Measurement Records of Liquid

Head Tissue Simulating Liquid- HSL1800

2003/	6/2 (09:4	5						Li	quid T	Tempe	erture = :	23.1°C	R.	
Freq(MHz	e'(εr)	е"	σ	Freq(MHz	e'(εr)	e''	σ	Freq(MHz	e' (ε r)	e"	σ	Freq(MHz	e'(εr)	e"	σ
1700	40.374	13.13	1.24	1753	40.16	13.25	1.29	1806	39.974	13.43	1.35	1859	39.725	13.64	1.41
1701	40.365	13.12	1.24	1754	40.163	13.26	1.29	1807	39.968	13.44	1.35	1860	39.717	13.65	1.41
1702	40.353	13.12	1.24	1755	40.154	13.26	1.29	1808	39.974	13.45	1.35	1861	39.719	13.65	1.41
1703	40.362	13.13	1.24	1756	40.16	13.26	1.29	1809	39.966	13.44	1.35	1862	39.703	13.66	1.41
1704	40.355	13.13	1.24	1757	40.155	13.27	1.30	1810	39.965	13.45	1.35	1863	39.697	13.66	1.41
1705	40.358	13.13	1.24	1758	40.135	13.27	1.30	1811	39.963	13.46	1.35	1864	39.69	13.67	1.42
1706	40.354	13.13	1.24	1759	40.144	13.27	1.30	1812	39.957	13.46	1.36	1865	39.686	13.67	1.42
1707	40.344	13.13	1.25	1760	40.143	13.28	1.30	1813	39.955	13.46	1.36	1866	39.681	13.67	1.42
1708	40.327	13.14	1.25	1761	40.135	13.28	1.30	1814	39.945	13.47	1.36	1867	39.672	13.67	1.42
1709	40.333	13.13	1.25	1762	40.129	13.28	1.30	1815	39.949	13.48	1.36	1868	39.674	13.67	1.42
1710	40.337	13.14	1.25	1763	40.127	13.29	1.30	1816	39.938	13.48	1.36	1869	39.661	13.68	1.42
1711	40.333	13.15	1.25	1764	40.128	13.28	1.30	1817	39.931	13.48	1.36	1870	39.661	13.68	1.42
1712	40.314	13.15	1.25	1765	40.128	13.29	1.30	1818	39.93	13.49	1.36	1871	39.65	13.69	1.42
1713	40.322	13.16	1.25	1766	40.123	13.29	1.30	1819	39.927	13.48	1.36	1872	39.658	13.68	1.42
1714	40.311	13.15	1.25	1767	40.116	13.29	1.30	1820	39.92	13.5	1.36	1873	39.652	13.69	1.42
1715	40.309	13.16	1.25	1768	40.111	13.29	1.31	1821	39.912	13.49	1.37	1874	39.646	13.69	1.43
1716	40.307	13.16	1.25	1769	40.102	13.3	1.31	1822	39.914	13.5	1.37	1875	39.637	13.69	1.43
1717	40.3	13.16	1.26	1770	40.101	13.3	1.31	1823	39.913	13.51	1.37	1876	39.628	13.7	1.43
1718	40.3	13.16	1.26	1771	40.101	13.31	1.31	1824	39.904	13.51	1.37	1877	39.628	13.69	1.43
1719	40.292	13.16	1.26	1772	40.099	13.3	1.31	1825	39.9	13.51	1.37	1878	39.616	13.71	1.43
1720	40.289	13.17	1.26	1773	40.095	13.32	1.31	1826	39.896	13.51	1.37	1879	39.623	13.71	1.43
1721	40.285	13.16	1.26	1774	40.085	13.32	1.31	1827	39.89	13.52	1.37	1880	39.621	13.71	1.43
1722	40.271	13.18	1.26	1775	40.091	13.32	1.31	1828	39.883	13.52	1.37	1881	39.615	13.7	1.43
1723	40.276	13.18	1.26	1776	40.085	13.32	1.31	1829	39,878	13.53	1.37	1882	39,607	13.71	1.43
1724	40.272	13.17	1.26	1777	40.078	13.33	1.32	1830	39.877	13.53	1.38	1883	39,601	13.71	1.43
1725	40.261	13.18	1.26	1778	40.076	13.33	1.32	1831	39.868	13.53	1.38	1884	39,589	13.71	1.43
1726	40.26	13.19	1.26	1779	40.074	13.34	1.32	1832	39,869	13.54	1.38	1885	39,587	13.72	1.44
1727	40.271	13.18	1.26	1780	40.066	13.34	1.32	1833	39,862	13.54	1.38	1886	39,588	13.72	1.44
1728	40.269	13.18	1.27	1781	40.063	13.34	1.32	1834	39,849	13.56	1.38	1887	39.58	13.73	1.44
1729	40.259	13.18	1.27	1782	40.068	13.35	1.32	1835	39,839	13.55	1.38	1888	39.581	13.73	1.44
1730	40.258	13.19	1.27	1783	40.056	13.35	1.32	1836	39,846	13.57	1.38	1889	39.57	13.74	1.44
1731	40.258	13.18	1.27	1784	40.061	13.35	1.32	1837	39.847	13.56	1.38	1890	39.554	13.74	1.44
1732	40.246	13.19	1.27	1785	40.055	13.37	1.33	1838	39,832	13.57	1.39	1891	39,558	13.75	1.44
1733	40.237	13.19	1.27	1786	40.05	13.37	1.33	1839	39.827	13.57	1.39	1892	39,544	13.74	1.44
1734	40.244	13.2	1.27	1787	40.048	13.38	1.33	1840	39,827	13.58	1.39	1893	39.54	13.74	1.44
1735	40.24	13.2	1.27	1788	40.044	13.37	1.33	1841	39.822	13.58	1.39	1894	39,531	13.74	1.45
1736	40.235	13.21	1.27	1789	40.043	13.38	1.33	1842	39.825	13.58	1.39	1895	39,539	13.75	1.45
1737	40.223	13.2	1.27	1790	40.039	13.38	1.33	1843	39,816	13.59	1.39	1896	39.521	13.75	1.45
1738	40.225	13.21	1.28	1791	40.03	13.37	1.33	1844	39.809	13.59	1.39	1897	39.517	13.75	1.45
1739	40.221	13.21	1.28	1792	40.021	13.39	1.33	1845	39,801	13.6	1.39	1898	39,516	13.75	1.45
1740	40.223	13.22	1.28	1793	40.027	13.4	1.33	1846	39,793	13.6	1.39	1899	39.514	13.75	1.45
1741	40.212	13.21	1.28	1794	40.027	13.4	1.34	1847	39,795	13.6	1.40	1900	39.511	13.76	1.45
1742	40 204	13.22	1.28	1795	40.027	13.4	1.34	1848	39,793	13.6	1.40	1901	39 509	13.76	1.45
1743	40.2	13.21	1.28	1796	40.019	13.4	1.34	1849	39 789	13.62	1.40	1902	39.498	13.76	1.45
1744	40.195	13.23	1.28	1797	40.01	13.4	1.34	1850	39.776	13.62	1.40	1903	39,499	13.77	1.46
1745	40,194	13.22	1.28	1798	40.005	13.4	1.34	1851	39,766	13.62	1.40	1904	39,502	13.76	1.46
1746	40.186	13.23	1.28	1799	40.003	13.41	1.34	1852	39.753	13.61	1.40	1905	39,495	13.76	1.46
1747	40.194	13.24	1.28	1800	30 003	13.42	134	1853	39 759	13.63	1.40	1906	39 493	13 77	1.46
1748	40.184	13.24	1.20	1801	30.080	13.43	1.34	1854	39,752	13.62	1.40	1907	39,488	13.78	1.46
1749	40.172	13.25	1.29	1802	39.986	13.43	1.34	1855	39.743	13.63	1.40	1908	39.481	13.78	1.46
1750	40 168	13.24	1.29	1803	39.99	13.43	135	1856	39 736	13.63	1 41	1909	39 471	13.78	1.46
1751	40,172	13.25	1.29	1804	39,987	13.43	1.35	1857	39,739	13.64	1.41	1910	39,466	13.79	1.46
1752	40.163	13.25	1.29	1805	39.988	13.44	1.35	1858	39.732	13.64	1,41			(*************************************	

The Measurement Record of HSL1800 measured in Jun. 2, 2003

©2003 Auden Techno. Corp. RF Testing Lab

Page 4 of 18

Muscle Tissue Simulating Liquid- MSL1800

2003/	6/30	05:	13						Li	quid T	empe	erture = :	21.7°C	8	
Freq(MHz	e'(εr)	е"	σ	Freq(MHz	e' (εr)	e''	σ	Freq(MHz	e' (εr)	e"	σ	Freq(MHz	e' (εr)	e"	σ
1700	53,815	14.35	1.36	1753	53.636	14.49	1.41	1806	53.506	14.57	1.46	1859	53.35	14.63	1.51
1701	53.822	14.36	1.36	1754	53.63	14.47	1.41	1807	53.505	14.58	1.46	1860	53.351	14.62	1.51
1702	53.826	14.36	1.36	1755	53.626	14.48	1.41	1808	53.504	14.58	1.46	1861	53.337	14.62	1.51
1703	53.817	14.37	1.36	1756	53.618	14.48	1.41	1809	53.497	14.58	1.47	1862	53,343	14.62	1.51
1704	53.813	14.36	1.36	1757	53.626	14.48	1.41	1810	53.496	14.58	1.47	1863	53.336	14.63	1.51
1705	53.805	14.36	1.36	1758	53.615	14.48	1.41	1811	53.496	14.58	1.47	1864	53.318	14.63	1.52
1706	53,813	14.36	1.36	1759	53.611	14.49	1.42	1812	53.5	14.57	1.47	1865	53.332	14.62	1.51
1707	53.81	14.35	1.36	1760	53.603	14.49	1.42	1813	53.49	14.58	1.47	1866	53.309	14.64	1.52
1708	53.799	14.36	1.36	1761	53.607	14.49	1.42	1814	53.494	14.58	1.47	1867	53.315	14.63	1.52
1709	53.806	14.36	1.36	1762	53.6	14.49	1.42	1815	53.494	14.58	1.47	1868	53.312	14.64	1.52
1710	53.807	14.38	1.37	1763	53.588	14.5	1.42	1816	53.488	14.58	1.47	1869	53.306	14.63	1.52
1711	53.802	14.39	1.37	1764	53.587	14.49	1.42	1817	53.482	14.59	1.47	1870	53,304	14.64	1.52
1712	53.813	14.37	1.37	1765	53,589	14.5	1.42	1818	53.483	14.58	1.47	1871	53.309	14.64	1.52
1713	53,809	14.38	1.37	1766	53,583	14.51	1.42	1819	53.476	14.59	1.47	1872	53.295	14.64	1,52
1714	53,806	14.39	1.37	1767	53.57	14.5	1.42	1820	53.473	14.59	1.48	1873	53.296	14.64	1.52
1715	53,803	14.39	1.37	1768	53,568	14.51	1.42	1821	53.479	14.58	1.48	1874	53,294	14.65	1.52
1716	53.789	14.39	1.37	1769	53.572	14.51	1.43	1822	53.478	14.59	1.48	1875	53.291	14.65	1.53
1717	53.781	14.39	1.37	1770	53.577	14.51	1.43	1823	53.474	14.59	1.48	1876	53.285	14.65	1.53
1718	53,796	14.38	1.37	1771	53.565	14.51	1.43	1824	53.468	14.59	1.48	1877	53.279	14.65	1.53
1719	53.793	14.39	1.37	1772	53,566	14.51	1.43	1825	53.465	14.59	1.48	1878	53.277	14.64	1.53
1720	53.788	14.41	1.38	1773	53.554	14.52	1.43	1826	53.466	14.6	1.48	1879	53.267	14.65	1.53
1721	53.779	14.39	1.38	1774	53.563	14.51	1.43	1827	53.459	14.59	1.48	1880	53.265	14.65	1.53
1722	53.774	14.4	1.38	1775	53.554	14.51	1.43	1828	53.456	14.59	1.48	1881	53.262	14.66	1.53
1723	53.786	14.4	1.38	1776	53.558	14.52	1.43	1829	53.447	14.6	1.48	1882	53.26	14.65	1.53
1724	53.762	14.4	1.38	1777	53.55	14.52	1.43	1830	53.454	14.6	1.48	1883	53.269	14.65	1.53
1725	53.77	14.4	1.38	1778	53,553	14.52	1.43	1831	53.45	14.59	1.48	1884	53.257	14.66	1.53
1726	53.774	14.41	1.38	1779	53.547	14.54	1.44	1832	53.441	14.59	1.49	1885	53.264	14.67	1.54
1727	53.76	14.43	1.38	1780	53.539	14.54	1.44	1833	53.436	14.6	1.49	1886	53.267	14.68	1.54
1728	53.761	14.42	1.38	1781	53.544	14.53	1.44	1834	53.435	14.6	1.49	1887	53.249	14.67	1.54
1729	53.753	14.42	1.39	1782	53.545	14.53	1.44	1835	53.444	14.61	1.49	1888	53.242	14.67	1.54
1730	53.756	14.43	1.39	1783	53.546	14.53	1.44	1836	53.43	14.61	1.49	1889	53.242	14.67	1.54
1731	53.737	14.42	1.39	1784	53.544	14.54	1.44	1837	53.423	14.6	1.49	1890	53.242	14.68	1.54
1732	53.75	14.41	1.39	1785	53,537	14.54	1.44	1838	53.428	14.6	1.49	1891	53.249	14.69	1.54
1733	53.737	14.43	1.39	1786	53,535	14.55	1.44	1839	53.422	14.6	1.49	1892	53.232	14.68	1,54
1734	53,737	14.43	1.39	1787	53,53	14.54	1.44	1840	53.419	14.61	1.49	1893	53.229	14.68	1.54
1735	53.732	14.43	1.39	1788	53.536	14.55	1.45	1841	53.42	14.61	1.49	1894	53.235	14.69	1.55
1736	53.716	14.44	1.39	1789	53.534	14.55	1.45	1842	53.425	14.62	1.50	1895	53,229	14.69	1.55
1737	53.729	14.43	1.39	1790	53.521	14.56	1.45	1843	53.406	14.62	1.50	1896	53.227	14.69	1.55
1738	53.708	14.44	1.39	1791	53.524	14.55	1.45	1844	53.411	14.62	1.50	1897	53.23	14.7	1.55
1739	53,712	14.45	1.40	1792	53.527	14.55	1.45	1845	53.401	14.62	1.50	1898	53.226	14.71	1.55
1740	53.7	14.45	1.40	1793	53.524	14.55	1.45	1846	53.407	14.61	1.50	1899	53.222	14.7	1.55
1741	53.692	14.45	1.40	1794	53.526	14.55	1.45	1847	53,392	14.62	1.50	1900	53.233	14.7	1.55
1742	53.688	14.45	1.40	1795	53.521	14.56	1.45	1848	53.386	14.61	1.50	1901	53.222	14.7	1.55
1743	53.696	14.45	1.40	1796	53.516	14.56	1.45	1849	53.379	14.61	1.50	1902	53,222	14.7	1.55
1744	53.684	14.46	1.40	1797	53.507	14.56	1.45	1850	53.377	14.6	1.50	1903	53.229	14.7	1.55
1745	53,672	14.46	1.40	1798	53.512	14.56	1.45	1851	53,375	14.61	1.50	1904	53.221	14.72	1.56
1746	53,668	14.47	1.40	1799	53.508	14.57	1.46	1852	53.38	14.61	1.50	1905	53.223	14.71	1.56
1747	53.672	14.47	1.40	1800	53.502	14.58	1.46	1853	53.373	14.61	1.50	1906	53.217	14.72	1.56
1748	53.661	14.46	1.40	1801	53.506	14.57	1.46	1854	53.37	14.63	1.51	1907	53.221	14.72	1,56
1749	53.656	14.48	1.41	1802	53.507	14.57	1.46	1855	53.36	14.62	1.51	1908	53.22	14.72	1.56
1750	53.657	14.46	1.41	1803	53,504	14.56	1.46	1856	53.369	14.62	1.51	1909	53.216	14.73	1.56
1751	53.645	14.47	1.41	1804	53.5	14.57	1.46	1857	53.359	14.61	1.51	1910	53.232	14.7	1.56
1752	53.641	14.48	1.41	1805	53.503	14.58	1.46	1858	53,352	14.62	1.51				

The Measurement Record of HSL1800 measured in Jun. 30, 2003

©2003 Auden Techno. Corp. RF Testing Lab

Page 5 of 18

e relative permittivity (ϵ_r) of the iency for which these parameters AR for further details. AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula-
e relative permittivity (ϵ_r) of the iency for which these parameters AR for further details. AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula- (or effected by the bar of the star).
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula-
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula-
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula-
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula-
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula- tion of the start of the same start of
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula- tion of the start of the same sector.
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula-
AR measurements with dosimetric probes, the solution conductivity he density of the simulating tissue an influence on the SAR calcula- tion of the state of the state of the state of the state of the state of the s
he density of the simulating tissue an influence on the SAR calcula-
an infuence of the SAR calculation
(see Chapter 19 Data Storage and
lation).
with HP dielectric probe kit mea- ne medium properties (the relative y. ne simulation liquid is transparent
, to account for actual head. ny liquid
ng mpuni
mal capacity has to be spec-

Appe

©2003 Auden Techno. Corp. RF Testing Lab Page 6 of 18 This document shall not be reproduced except in full, without the written approval of Auden. This document may be altered or revised by Auden Techno. Corp. RF Testing Lab. personnel only, and shall be noted in the revision section of the document

Page 6 of 18

Appendix C Area Scan multi peak analysis with 2-D plot

Test Laboratory: AUDEN TECHNO CORP. RF Testing Lab 20:09:12

Date/Time: 06/02/03

Left Tilted BenQ C260 PCS Ch25

DUT: BenQ C260; Type: Single-Mode Cellular Phone (PCS CDMA); Serial: 71380001 Program: SAR-00679

Communication System: PCS 1900; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium: Head 1800MHz (σ = 1.40297 mho/m, ε_r = 39.7664, ρ = 1000 kg/m³) Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1720; ConvF(5.2, 5.2, 5.2); Calibrated: 5/15/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn393; Calibrated: 12/18/2002
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Left Tilted/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 14.2 V/m Power Drift = -0.05 dB Maximum value of SAR = 0.378 mW/g

©2003 Auden Techno. Corp. RF Testing Lab

Page 7 of 18

The 2-D plot of Left Tilted BenQ C260 PCS Ch25

Test Laboratory: AUDEN TECHNO CORP. RF Testing Lab 20:32;41

Date/Time: 06/02/03

Left Tilted BenQ C260 PCS Ch600

DUT: BenQ C260; Type: Single-Mode Cellular Phone (PCS CDMA); Serial: 71380001 Program: SAR-00679

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Head 1800MHz ($\sigma = 1.43434$ mho/m, $\varepsilon_r = 39.6206$, $\rho = 1000$ kg/m³) Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1720; ConvF(5.2, 5.2, 5.2); Calibrated: 5/15/2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn393; Calibrated: 12/18/2002
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Left Tilted/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 14.6 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.425 mW/g

©2003 Auden Techno. Corp. RF Testing Lab

Page 9 of 18

The 2-D plot of Left Tilted BenQ C260 PCS Ch600

©2003 Auden Techno. Corp. RF Testing Lab

Page 10 of 18

Test Laboratory: AUDEN TECHNO CORP. RF Testing Lab Date/Time: 06/02/03 20:53:10 Left Tilted BenQ C260 PCS Ch1175 DUT: BenQ C260; Type: Single-Mode Cellular Phone (PCS CDMA); Serial: 71380001 Program: SAR-00679 Communication System: PCS 1900; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium: Head 1800MHz ($\sigma = 1.46214$ mho/m, $\varepsilon_r = 39.4806$, $\rho = 1000$ kg/m³) Phantom section: Left Section DASY4 Configuration: - Probe: ET3DV6 - SN1720; ConvF(5.2, 5.2, 5.2); Calibrated: 5/15/2003 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn393; Calibrated: 12/18/2002 - Phantom: SAM 12: Type: SAM v4.0; Serial: TP:1009 - Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115 Left Tilted/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 12.6 V/mPower Drift = -0.04 dB Maximum value of SAR = 0.277 mW/g dB 0 -3.88 -7.76 -11.6 -15.5 -19.4 0 dB = 0.277 mW/g

©2003 Auden Techno. Corp. RF Testing Lab

Page 11 of 18

©2003 Auden Techno. Corp. RF Testing Lab

Page 12 of 18

©2003 Auden Techno. Corp. RF Testing Lab

Page 13 of 18

The 2-D plot of Right Tilted BenQ C260 PCS Ch25

©2003 Auden Techno. Corp. RF Testing Lab

Page 14 of 18

Test Laboratory: AUDEN TECHNO CORP. RF Testing Lab Date/Time: 06/02/03 19:22:04 Right Tilted BenQ C260 PCS Ch600 DUT: BenQ C260; Type: Single-Mode Cellular Phone (PCS CDMA); Serial: 71380001 Program: SAR-00679 Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: Head 1800MHz ($\sigma = 1.43434$ mho/m, $\varepsilon_r = 39.6206$, $\rho = 1000$ kg/m³) Phantom section: Right Section DASY4 Configuration: - Probe: ET3DV6 - SN1720; ConvF(5.2, 5.2, 5.2); Calibrated: 5/15/2003 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn393; Calibrated: 12/18/2002 - Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009 - Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115 Right Tilted/Area Scan (41x101x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 15.5 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.365 mW/g dB 0 -3.32 -6.64 -9.96 -13.3 -16.6 0 dB = 0.365 mW/g

©2003 Auden Techno. Corp. RF Testing Lab

Page 15 of 18

The 2-D plot of Right Tilted BenQ C260 PCS Ch600

Page 16 of 18

19:44:55	asy. Hobest Horiso Coki, ki Toshig Lab	Date/Time: 06/02/03
Right Tilt	ed BenQ C260 PCS Ch1175	
DUT: BenQ Program: S	Q C260; Type: Single-Mode Cellular Phone (PCS CD SAR-00679	MA); Serial: 71380001
Communica Medium: He Phantom se	ttion System: PCS 1900; Frequency: 1908.75 MHz;Duty ead 1800MHz ($\sigma = 1.46214$ mho/m, $\varepsilon_r = 39.4806$, $\rho = 10$ ction: Right Section	(Cycle: 1:1 000 kg/m ³)
DASY4 Cor - Probe: ET. - Sensor-Sur - Electronic: - Phantom: - Measurem Right Tilte Reference V	nfiguration: 3DV6 - SN1720; ConvF(5.2, 5.2, 5.2); Calibrated: 5/15/ rface: 4mm (Mechanical And Optical Surface Detection s: DAE3 Sn393; Calibrated: 12/18/2002 SAM 12; Type: SAM v4.0; Serial: TP:1009 ent SW: DASY4, V4.1 Build 47; Postprocessing SW: S d/Area Scan (41x101x1): Measurement grid: dx=15mm /alue = 12.6 V/m	2003) EMCAD, V1.6 Build 115 1, dy=15mm
Power Drift	= -0.1 dB	
Maximum v	alue of SAR = 0.259 mW/g	
dB 0 -3.52	value of SAR = 0.259 mW/g	
dB 0 -3.52 -7.04	value of SAR = 0.259 mW/g	
Maximum v dB -3.52 -7.04 -10.6	value of SAR = 0.259 mW/g	
dB 0 -3.52 -7.04 -10.6 -14.1	alue of SAR = 0.259 mW/g	

©2003 Auden Techno. Corp. RF Testing Lab

Page 17 of 18

The 2-D plot of Right Tilted BenQ C260 PCS Ch600

Page 18 of 18