FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E

TEST REPORT

For

EGSM850/DCS1800/PCS1900 GSM/GPRS Mobile Phone

Model: Siemens C71a

Trade Name: Siemens

Issued to

BenQ Corporation 157 Shan-Ying Road, Gueishan Taoyuan 333, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. TEL: 886-3-324-0332

FAX: 886-3-324-0332

Date of Issue: January 23, 2006

Total Page: 67

TABLE OF CONTENTS

1. T.	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2		
3.3	GENERAL TEST PROCEDURES	5
3.4	DESCRIPTION OF TEST MODES	5
4. IN	NSTRUMENT CALIBRATION	6
5. F.	ACILITIES AND ACCREDITATIONS	8
5.1	FACILITIES	8
5.2	EQUIPMENT	8
5.3	LABORATORY ACCREDITATIONS AND LISTING	8
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	9
6. Sl	ETUP OF EQUIPMENT UNDER TEST	10
6.1	SETUP CONFIGURATION OF EUT	10
6.2	SUPPORT EQUIPMENT	10
7. F	CC PART 22 & 24 REQUIREMENTS	11
7.1	AVERAGE POWER	11
7.2	Era WERE MERIOOTEMENT	
7.3		
7.4		
7.5		
7.6		
7.7		
7.8	POWERLINE CONDUCTED EMISSIONS	62

1. TEST RESULT CERTIFICATION

Applicant: BenQ Corporation

157 Shan-Ying Road, Gueishan Taoyuan 333, Taiwan, R.O.C.

Date of Issue: January 23, 2006

Equipment Under Test: EGSM850/DCS1800/PCS1900 GSM/GPRS Mobile Phone

Trade Name: Siemens

Model Number: Siemens C71a

Date of Test: January $16 \sim 22, 2006$

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA/EIA-603-A-2001 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 Subpart H and PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by: Reviewed by:

Gavin Lim

Javin. Lim

Section Manager

Compliance Certification Services Inc.

Compliance Certification Services Inc.

Page 3 Rev. 00

Ananha Ilw

Amanda Wu

Section Manager

2. EUT DESCRIPTION

Product	EGSM850/DCS1800/PCS1900 GSM/GPRS Mobile Phone
Trade Name	Siemens
Model Number	Siemens C71a
Model Discrepancy	N/A
Power Supply	Adapter: Model Number: MP21 I/P: AC 100-240V, 0.3A, 50-60Hz O/P: DC 3-9V, 1-0.5A, 5W Battery: Li-ion (DC 3.7V, 860mAh)
Frequency Range	TX: 824 ~ 849 MHz / 1850 ~ 1910 MHz RX: 869 ~ 894 MHz / 1930 ~ 1989.8 MHz
Transmit Power (ERP & EIRP Power)	824.2 ~848.8 MHz: 32.31dBm: 28.67 dBm (0.736W) 1850.2 ~ 19098.8 MHz: 30.99 dBm (1.26W)
Cellular Phone Protocol	GSM 850, GSM1900: Class B GPRS 850, GPRS1900: Class 10
Type of Emission	242KGXW
Antenna Gain	850 MHz: -1.33 dBi 1900 MHz: 2.93 dBi
Antenna Type	PIFA Antenna

Date of Issue: January 23, 2006

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>JVPC71A</u> filing to comply with Part 22 and Part 24 of the FCC 47 CFR Rules.

Page 4 Rev. 00

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 and FCC CFR 47, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

Date of Issue: January 23, 2006

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4DESCRIPTION OF TEST MODES

The EUT (model: Siemens C71a) had been tested under operating condition.

EUT staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except power line conducted emissions below 30MHz, which worst case was in normal link mode only.

GSM850, GPRS 850: Channel Low (CH128), Channel Mid (CH190) and Channel High (CH251) were chosen for full testing.

GSM1900, GPRS 1900: Channel Low (CH512), Channel Mid (CH661) and Channel High (CH810) were chosen for full testing.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

Page 5 Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: January 23, 2006

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site							
Name of Equipment Manufacturer Model Serial Number Calibratic							
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2007			
Power Meter	Agilent	E4416A	GB41291611	06/02/2006			
Power Sensor	Agilent	E9327A	US40441097	06/02/2006			
Temp. / Humidity Chamber	TERCHY	MHG-150LF	930619	07/26/2006			
DC Power Source	Agilent	E3640A	MY40001774	01/12/2007			

	3M Sen	ni Anechoic Cham	ber			
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	07/25/2006		
Test Receiver	Rohde&Schwarz	ESCI	100064	06/28/2006		
Switch Controller	TRC	Switch Controller	SC94050010	05/05/2006		
4 Port Switch	TRC	4 Port Switch	SC94050020	05/05/2006		
Horn-Antenna	TRC	HA-0502	06	06/02/2006		
Horn-Antenna	TRC	HA-0801	04	05/05/2006		
Bilog- Antenna	Sunol Sciences	ЈВ3	A030205	03/09/2006		
Turn Table	Max-Full	MFT-120S	T120S940302	N.C.R.		
Antenna Tower	Max-Full	MFA-430	A440940302	N.C.R.		
Controller	Max-Full	MF-CM886	CC-C-1F-13	N.C.R.		
Site NSA	CCS	N/A	FCC: 965860 IC: IC 6106	09/26/2008		
Reject Filter	Micro-Tronics	HPM13194	003	04/27/2006		
S.G.	HP	83630B	3844A01022	01/14/2007		
Substituted Dipole	SCHWAZBECK	VHAP/UHAP	998 +999/ 981+982	06/12/2006		
Substituted Horn	EMCO	3115	00022257	12/12/2006		
Test S/W	Test S/W LABVIEW (V 6.1)					

Remark: The measurement uncertainty is less than +/-2.0065dB (30MHz ~ 1GHz), +/-3.0958dB (Above 1GHz) which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 6 Rev. 00

Powerline Conducted Emissions Test Site							
Name of Equipment Manufacturer Model Serial Number Calibration							
EMI TEST RECEIVER 9kHz-30MHz	ROHDE & SCHWARZ	ESHS30	828144/003	09/24/2006			
TWO-LINE V-NETWORK 9kHz-30MHz	SCHAFFNER	NNB41	03/10013	06/11/2006			
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	02/17/2006			
Test S/W	LABVIEW (V 6.1)						

Remark: The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 7 Rev. 00

5. FACILITIES AND ACCREDITATIONS

5.1FACILITIES

	No. 199, Chunghsen Road, Hsintlen City, Taipei Hsien, Taiwan, R.O.C.
	Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
\boxtimes	No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
\boxtimes	No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

Page 8 Rev. 00

5.4TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS CISPR 22, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	NVLAJ 200600-0
USA	FCC	3/10 meter Open Area Test Sites (93105, 90471) / 3M Semi Anechoic Chamber (965860) to perform FCC Part 15/18 measurements	93105, 90471 965860
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1/2, EN 300 220-1/2/3, EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3, 47 CFR FCC Part 15 Subpart C/D/E, EN 55013, CNS 13439, EN 55014-1, CNS 13783-1, EN 55022, CNS 13438, CISPR 22, AS/NZS 3548, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, IEEE Std 1528, FCC OET Bulletin, 65+Supplement C, EN50360, EN50361, EN50371, RSS102	CNLA 0 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	3/10 meter Open Area Test Sites (IC 3991-3, IC 3991-4) / 3M Semi Anechoic Chamber (IC 6106) to perform RSS 212 Issue 1	Canadä IC 3991-3 IC 3991-4 IC 6106

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 9 Rev. 00

^{*} Australia: MRA of NVLAP AS/NZS 4771 &AS/NZS 4268.

6. SETUP OF EQUIPMENT UNDER TEST

6.1SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

Date of Issue: January 23, 2006

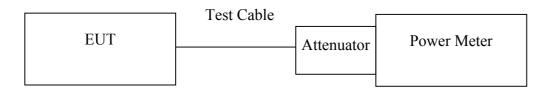
6.2SUPPORT EQUIPMENT

No	Equipment	Model	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1.	Universal Radio Communication Tester (Remote)	CMU 200	100535	N/A	N/A	N/A	N/A

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 10 Rev. 00


7. FCC PART 22 & 24 REQUIREMENTS

7.1AVERAGE POWER

LIMIT

According to FCC §2.1046.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

Page 11 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Attenuator (dB)	Average Power (dBm)
	128	824.20	8.17		32.17
GSM 850 (Class B)	190	836.60	8.31		32.31
	251	848.80	8.07	24	32.07
	128	824.20	8.24	24	32.24
GPRS 850 (Class 10)	190	836.60	8.07		32.07
(23.50 10)	251	848.80	7.84		31.84

Remark: The value of factor includes both the loss of cable and external attenuator

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Attenuator (dB)	Average Power (dBm)
	512	1850.20	3.57		27.57
GSM 1900 (Class B)	661	1880.00	3.85		27.85
(Cluss B)	810	1910.00	4.77	24	28.77
	512	1850.20	3.58	24	27.58
GPRS 1900 (Class 10)	661	1880.00	3.85		27.85
(3-112-3-7)	810	1910.00	4.78		28.78

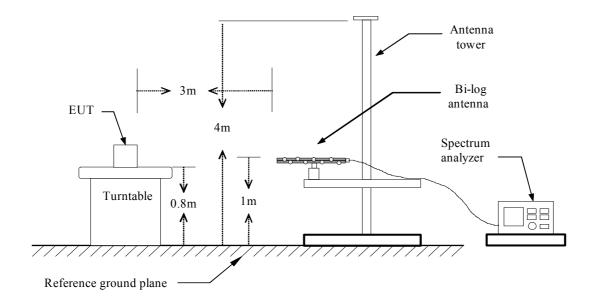
Remark: The value of factor includes both the loss of cable and external attenuator

Page 12 Rev. 00

7.2ERP & EIRP MEASUREMENT

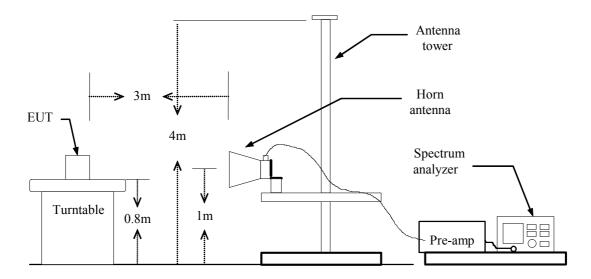
LIMIT

According to FCC §2.1046

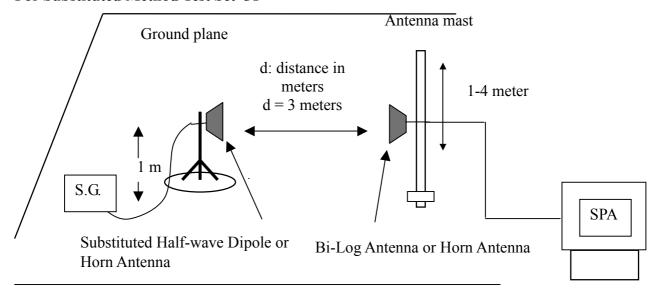

FCC 22.913(b): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7 Watts.

Date of Issue: January 23, 2006

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.


TEST CONFIGURATION

Below 1 GHz



Page 13 Rev. 00

Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

Page 14 Rev. 00

TEST RESULTS

No non-compliance noted.

GSM 850 Test Data (Class B)

EUT Pol.	Channel	Frequency (MHz)	Antenna Pol.	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	128	824.20	V	30.53	-4.03	26.49	38.50	-12.01
	120	824.20	Н	31.62	-4.18	27.44	38.50	-11.06
X	190	836.70	V	30.46	-3.93	26.53	38.50	-11.97
Λ	190	836.70	Н	31.73	-4.03	27.70	38.50	-10.80
	251	848.90	V	30.70	-3.79	26.92	38.50	-11.58
	231	848.90	Н	31.13	-3.89	27.24	38.50	-11.26
	128	824.20	V	28.00	-4.03	23.97	38.50	-14.53
		824.20	Н	32.46	-4.18	28.28	38.50	-10.22
Y	190	836.60	V	28.72	-3.93	24.79	38.50	-13.71
1		836.60	Н	32.70	-4.03	*28.67	38.50	-9.83
	251	848.90	V	27.85	-3.79	24.06	38.50	-14.44
	231	848.90	Н	32.25	-3.89	28.36	38.50	-10.14
	120	824.40	V	28.69	-4.03	24.65	38.50	-13.85
	128	824.20	Н	31.99	-4.18	27.81	38.50	-10.69
Z	100	836.70	V	29.74	-3.93	25.81	38.50	-12.69
Z	190	836.60	Н	32.55	-4.03	28.51	38.50	-9.99
	251	848.80	V	28.62	-3.79	24.83	38.50	-13.67
	251	848.70	V	32.09	-3.89	28.20	38.50	-10.30

GPRS 850 Test Data (Class 10)

EUT Pol.	Channel	Frequency (MHz)	Antenna Pol.	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	128	824.10	V	30.61	-4.04	26.58	38.50	-11.92
	120	824.20	Н	31.25	-4.18	27.08	38.50	(dB) -11.92 -11.42 -11.96 -10.93 -11.81 -10.50 -14.28 -10.55 -13.30 -9.96 -14.03 -10.23 -10.29 -13.22 -10.53 -12.72 -9.89
X	190	836.60	V	30.46	-3.93	26.54	38.50	-11.96
Λ	190	836.60	Н	31.60	-4.03	27.57	38.50	-10.93
	251	848.70	V	30.48	-3.79	26.69	38.50	-11.81
	231	848.90	Н	31.89	-3.89	28.00	38.50	-10.50
	120	824.20	V	28.26	-4.03	24.22	38.50	-14.28
	120	824.20	Н	32.13	-4.18	27.95	38.50	(dB) -11.92 -11.42 -11.96 -10.93 -11.81 -10.50 -14.28 -10.55 -13.30 -9.96 -14.03 -10.23 -10.29 -13.22 -10.53 -12.72
Y	190	836.70	V	29.13	-3.93	25.20	38.50	-13.30
1		836.60	Н	32.57	-4.03	28.54	38.50	-9.96
	251	848.80	V	28.26	-3.79	24.47	38.50	-14.03
	231	848.90	Н	32.16	-3.89	28.27	38.50	-10.23
	120	824.20	V	32.24	-4.03	28.21	38.50	-10.29
	120	824.20	Н	29.46	-4.18	25.28	38.50	-13.22
Z	100	836.60	V	31.89	-3.93	27.97	38.50	-10.53
L	190	836.60	Н	29.81	-4.03	25.78	38.50	-12.72
	251	848.90	V	32.40	-3.79	28.61	38.50	-9.89
	251 -	848.90	Н	30.36	-3.89	26.47	38.50	-12.03

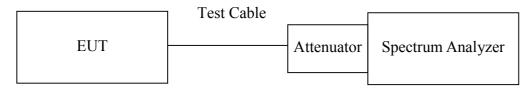
Page 15 Rev. 00

GSM 1900 Test Data (Class B)

EUT Pol.	Channel	Frequency (MHz)	Antenna Pol.	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	512	1850.25	V	24.02	1.01	25.02	33.00	-7.98
	312	1850.25	Н	28.00	1.37	29.37	(dBm) (dB)	
X	661	1879.95	V	23.63	1.04	24.67	33.00	-8.33
Λ	001	1880.10	Н	27.55	1.32	28.87	33.00	-7.98 -3.63 -8.33 -4.13 -8.29 -4.36 -6.68 -2.66 -8.46 -3.13 -9.32 -3.63 -4.06 -5.68 -3.55 -7.31 -5.07
	810	1909.95	V	23.63	1.08	24.71	33.00	-8.29
	810	1909.95	Н	27.37	1.28	28.64	33.00	-4.36
	512	1850.40	V	25.32	1.01	26.32	33.00	(dB) (dB)
	312	1850.10	Н	28.97	1.37	30.34	33.00	
Y	661	1879.95	V	23.5	1.04	24.54	33.00	-8.46
1		1879.95	Н	28.55	1.32	29.87	33.00	-3.13
	810	1909.80	V	22.6	1.08	23.68	33.00	-9.32
	810	1909.65	Н	28.1	1.28	29.37	33.00	n) (dB) 0 -7.98 0 -3.63 0 -8.33 0 -4.13 0 -8.29 0 -4.36 0 -6.68 0 -2.66 0 -8.46 0 -3.13 0 -9.32 0 -3.63 0 -4.06 0 -5.68 0 -3.55 0 -7.31 0 -5.07
	512	1850.10	V	27.93	1.01	28.94	33.00	(dB) (dB)
	312	1850.25	Н	25.95	1.37	27.32	33.00	-5.68
Z	661	1879.95	V	28.41	1.04	29.45	33.00	-3.55
Z	001	1879.95	Н	24.37	1.32	25.69	33.00	-7.98 -3.63 -8.33 -4.13 -8.29 -4.36 -6.68 -2.66 -8.46 -3.13 -9.32 -3.63 -4.06 -5.68 -3.55 -7.31 -5.07
	810	1909.95	V	26.85	1.08	27.93	33.00	-5.07
	810	1909.95	Н	25.6	1.28	26.88	33.00	-6.12

GPRS 1900 Test Data (Class 10)

EUT Pol.	Channel	Frequency (MHz)	Antenna Pol.	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	512	1850.40	V	24.63	1.01	25.64	33.00	-7.36
	312	1850.40	Н	28.76	1.37	30.13	33.00	(dB)
X	661	1879.95	V	24.55	1.04	25.59	33.00	-7.41
Λ	661	1879.95	Н	26.96	1.32	28.29	33.00	-7.36 -2.87 -7.41 -4.71 -6.18 -3.21 -6.61 -2.01 -6.77 -2.31 -6.57 -2.31 -4.37 -5.9 -3.43 -7.18 -4.45
	810	1909.65	V	25.74	1.08	26.82	33.00	-6.18
	810	1909.80	Н	28.51	1.28	29.79	33.00	-3.21
	512	1850.40	V	25.39	1.01	26.39	33.00 -6.18 33.00 -3.21 33.00 -6.61 33.00 -2.01 33.00 -6.77 33.00 -2.31	-6.61
	312	1850.40	Н	29.62	1.37	*30.99	33.00	dBm) (dB) 33.00 -7.36 33.00 -2.87 33.00 -7.41 33.00 -4.71 33.00 -6.18 33.00 -6.61 33.00 -6.61 33.00 -6.77 33.00 -6.57 33.00 -6.57 33.00 -4.37 33.00 -5.9 33.00 -7.18 33.00 -4.45
Y	661	1879.95	V	25.19	1.04	26.23	33.00	-6.77
I	001	1879.95	Н	29.36	1.32	30.69	33.00	-2.31
	810	1909.80	V	25.36	1.08	26.43	33.00	-6.57
	810	1909.95	Н	29.41	1.28	30.69	33.00	-2.31
	512	1850.25	V	27.62	1.01	28.63	33.00	-4.37
	312	1850.25	Н	25.73	1.37	27.1	33.00	-5.9
Z	661	1879.95	V	28.53	1.04	29.57	33.00	-3.43
L	001	1879.95	Н	24.5	1.32	25.82	33.00	-7.18
	810	1909.65	V	27.48	1.08	28.55	33.00	-4.45
	010	1909.65	Н	26.02	1.28	27.30	33.00	-5.70


Page 16 Rev. 00

7.3OCCUPIED BANDWIDTH MEASUREMENT

LIMIT

According to §FCC 2.1049.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

Page 17 Rev. 00

TEST RESULTS

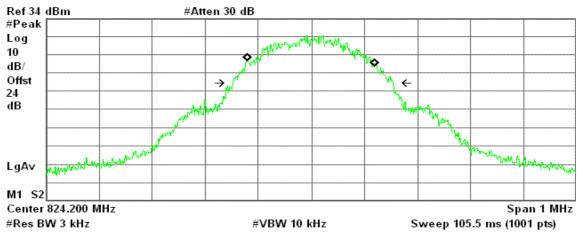
No non-compliance noted

Test Data

Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)
	128	824.20	241.67
GSM 850 (Class B)	190	836.60	236.42
	251	848.80	238.34
	128	824.20	238.08
GPRS 850 (Class 10)	190	836.60	236.08
	251	848.80	236.98

Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)
	512	1850.20	240.53
GSM 1900 (Class B)	661	1880.00	240.89
, ,	810	1909.80	241.96
	512	1850.20	238.84
GPRS 1900 (Class 10)	661	1880.00	234.99
	810	1909.80	236.37

Page 18 Rev. 00


D: JVPC71A Date of Issue: January 23, 2006

Test Plot

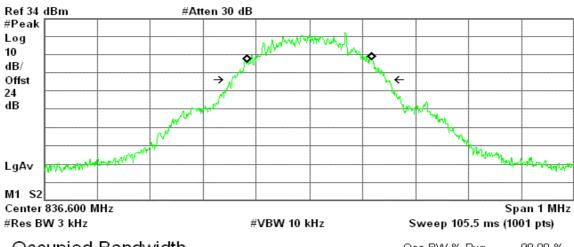
GSM 850 (CH Low)

🔆 Agilent 20:41:20 Jan 19, 2006

Τ

Occupied Bandwidth 241.6657 kHz

Occ BW % Pwr 99.00 %


x dB -26.00 dB

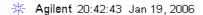
Transmit Freq Error -593.829 Hz x dB Bandwidth 304.480 kHz

GSM 850 (CH Mid)

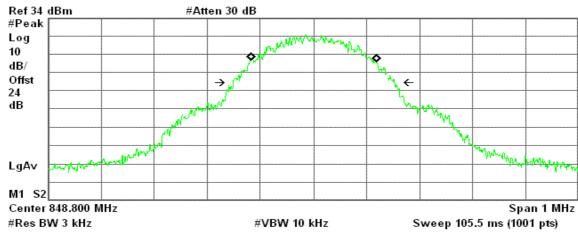
* Agilent 20:41:58 Jan 19, 2006

Τ

Occupied Bandwidth 236.4222 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 332.451 Hz x dB Bandwidth 291.291 kHz

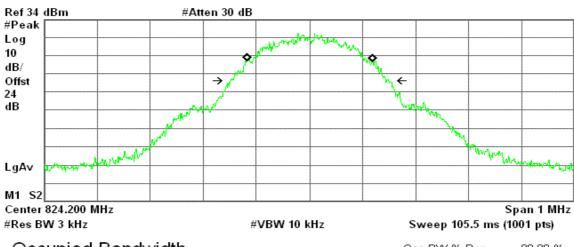

Page 19 Rev. 00

ID: JVPC71A Date of Issue: January 23, 2006

GSM 850 (CH High)

Т

Occupied Bandwidth 238.3448 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 174.316 Hz x dB Bandwidth 307.170 kHz

GPRS 850 (CH Low)

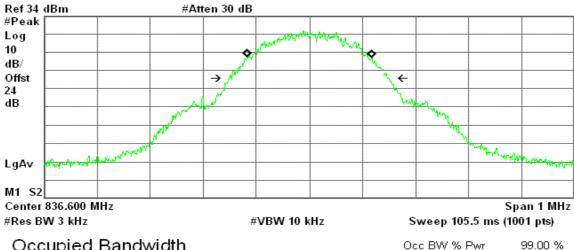
Agilent 20:44:25 Jan 19, 2006

Т

Occupied Bandwidth 238.0809 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 1.446 kHz x dB Bandwidth 300.441 kHz

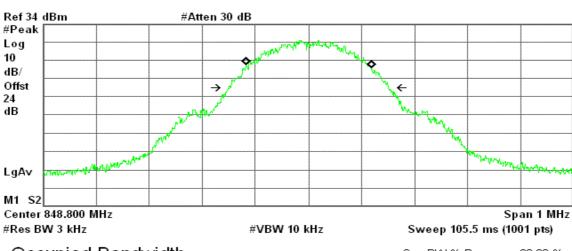

Page 20 Rev. 00

GPRS 850 (CH Mid)

Τ

Date of Issue: January 23, 2006

Occupied Bandwidth 236.0771 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 79.691 Hz x dB Bandwidth 304.593 kHz

GPRS 850(CH High)

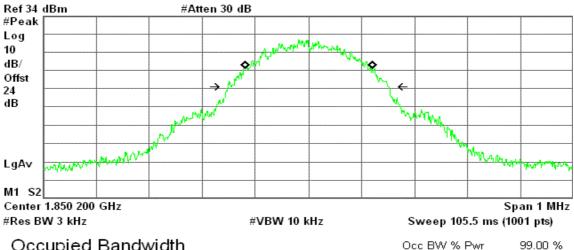
* Agilent 20:46:08 Jan 19, 2006

Τ

Occupied Bandwidth 236.9841 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 947.299 Hz x dB Bandwidth 304.140 kHz


Page 21 Rev. 00

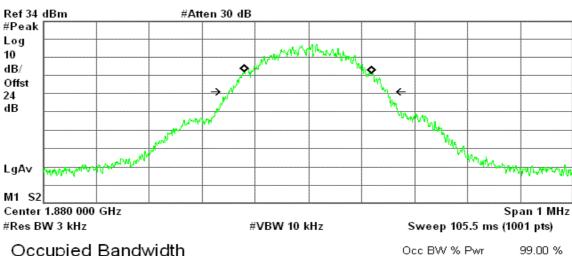
GSM 1900 (CH Low)

* Agilent 20:38:54 Jan 19, 2006

Τ

Date of Issue: January 23, 2006

Occupied Bandwidth 240.5320 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 762.438 Hz x dB Bandwidth 306.768 kHz

GSM 1900 (CH Mid)

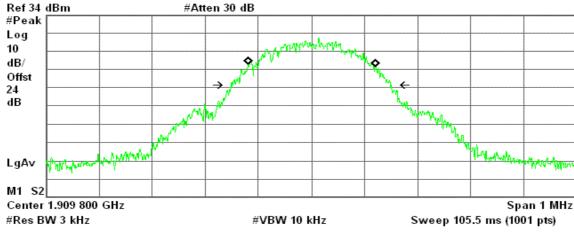
* Agilent 20:39:28 Jan 19, 2006

Τ

Occupied Bandwidth 240.8926 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -936.535 Hz x dB Bandwidth 301.825 kHz

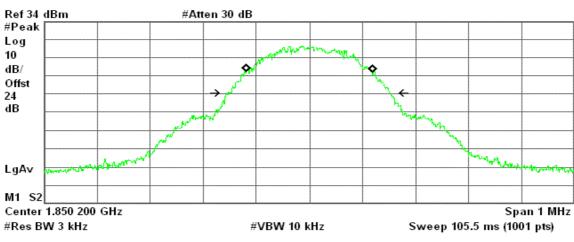

Page 22 Rev. 00

C ID: JVPC71A Date of Issue: January 23, 2006

GSM 1900 (CH High)

Т

Occupied Bandwidth 241.9580 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 791.645 Hz x dB Bandwidth 304.871 kHz

GPRS 1900 (CH Low)

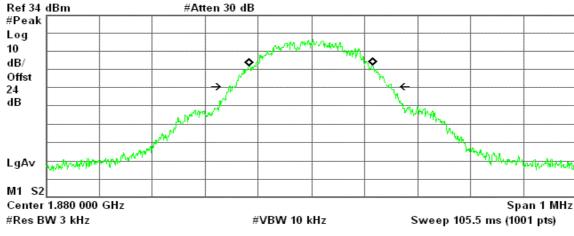
Agilent 20:19:12 Jan 19, 2006

Т

Occupied Bandwidth 238.8406 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -26.203 Hz x dB Bandwidth 307.745 kHz

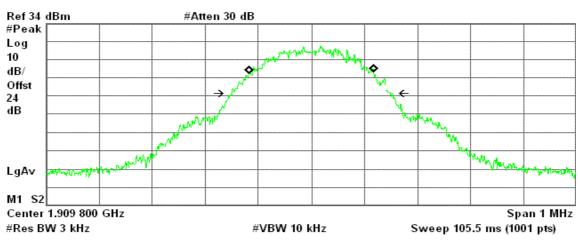

Page 23 Rev. 00

ID: JVPC71A Date of Issue: January 23, 2006

GPRS 1900 (CH Mid)

Т

Occupied Bandwidth 234.9929 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Т

Transmit Freq Error -1.044 kHz x dB Bandwidth 308.445 kHz

GPRS 1900 (CH High)

🔆 Agilent 20:35:26 Jan 19, 2006

Occupied Bandwidth 236.3715 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -78.960 Hz x dB Bandwidth 300.790 kHz

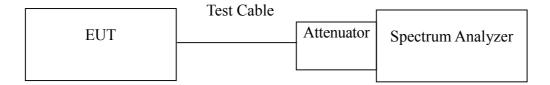
Page 24 Rev. 00

7.4OUT OF BAND EMISSION AT ANTENNA TERMINALS

LIMIT

According to FCC §2.1051, FCC §22.917, FCC §24.238(a).

<u>Out of Band Emissions:</u> The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease 43 + 10 log P dB.


Date of Issue: January 23, 2006

Mobile Emissions in Base Frequency Range: The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission

TEST CONFIGURATION

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz/1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

Page 25 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

Mode	СН	Location	Description	
	128	Figure 7-1	Conducted spurious emissions, 30MHz - 2.5GHz	
	120	Figure 7-2	Conducted spurious emissions, 2.5GHz - 20GHz	
GSM 850	190	Figure 7-3	Conducted spurious emissions, 30MHz - 2.5GHz	
(Class B)	190	Figure 7-4	Conducted spurious emissions, 2.5GHz - 20GHz	
	251	Figure 7-5	Conducted spurious emissions, 30MHz - 2.5GHz	
		Figure 7-6	Conducted spurious emissions, 2.5GHz - 20GHz	
	128	Figure 7-7	Conducted spurious emissions, 30MHz - 2.5GHz	
		Figure 7-8	Conducted spurious emissions, 2.5GHz - 20GHz	
GPRS 850	190	Figure 7-9	Conducted spurious emissions, 30MHz - 2.5GHz	
(Class 10)	190	Figure 7-10	Conducted spurious emissions, 2.5GHz - 20GHz	
	251	Figure 7-11	Conducted spurious emissions, 30MHz - 2.5GHz	
	231	251	Figure 7-12	Conducted spurious emissions, 2.5GHz - 20GHz

Mode	СН	Location	Description
	512	Figure 8-1	Conducted spurious emissions, 30MHz - 2.5GHz
	312	Figure 8-2	Conducted spurious emissions, 2.5GHz - 20GHz
GSM 1900	661	Figure 8-3	Conducted spurious emissions, 30MHz - 2.5GHz
(Class B)	001	Figure 8-4	Conducted spurious emissions, 2.5GHz - 20GHz
	810	Figure 8-5	Conducted spurious emissions, 30MHz - 2.5GHz
		Figure 8-6	Conducted spurious emissions, 2.5GHz - 20GHz
	512	Figure 8-7	Conducted spurious emissions, 30MHz - 2.5GHz
		Figure 8-8	Conducted spurious emissions, 2.5GHz - 20GHz
GPRS 1900	661	Figure 8-9	Conducted spurious emissions, 30MHz - 2.5GHz
(Class 10)	001	Figure 8-10	Conducted spurious emissions, 2.5GHz - 20GHz
	810	Figure 8-11	Conducted spurious emissions, 30MHz - 2.5GHz
		Figure 8-12	Conducted spurious emissions, 2.5GHz - 20GHz

Page 26 Rev. 00

Mode	СН	Location	Description
GSM 850	128	Figure 9-1	Band Edge emissions
(Class B)	251	Figure 9-2	Band Edge emissions
GPRS 850	128	Figure 9-3	Band Edge emissions
(Class 10)	251	Figure 9-4	Band Edge emissions

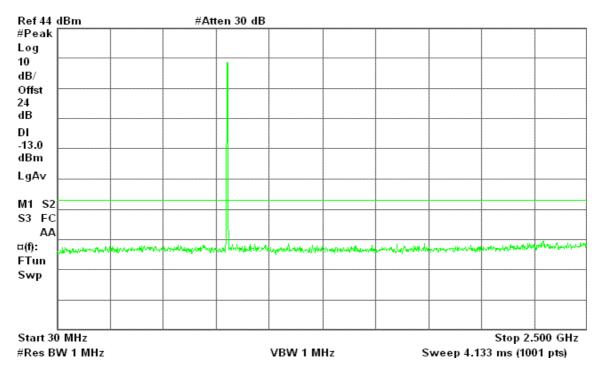
Mode	СН	Location	Description
GSM 1900 (Class B)	512	Figure 10-1	Band Edge emissions
	810	Figure 10-2	Band Edge emissions
GPRS 1900 (Class 10)	512	Figure 10-3	Band Edge emissions
	810	Figure 10-4	Band Edge emissions

Page 27 Rev. 00

Test Plot

GSM 850

Figure 7-1: Out of Band emission at antenna terminals – GSM CH Low



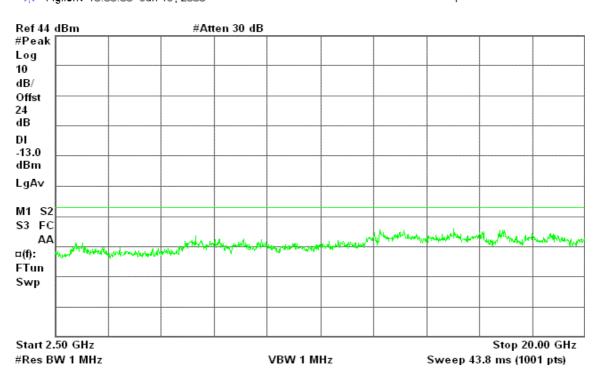


Figure 7-2: Out of Band emission at antenna terminals – GSM CH Low

Page 28 Rev. 00

Figure 7-3: Out of Band emission at antenna terminals – GSM CH Mid

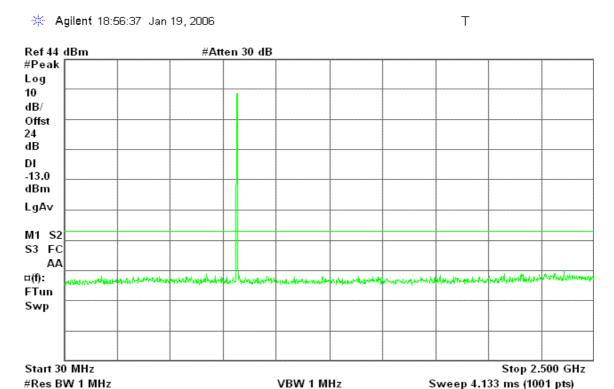
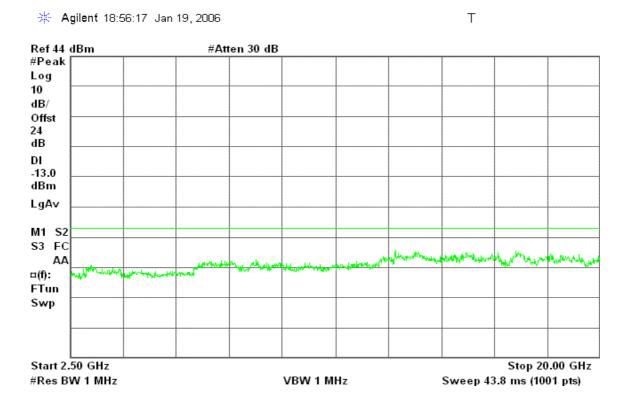



Figure 7-4: Out of Band emission at antenna terminals – GSM CH Mid

Page 29 Rev. 00

Figure 7-5: Out of Band emission at antenna terminals – GSM CH High

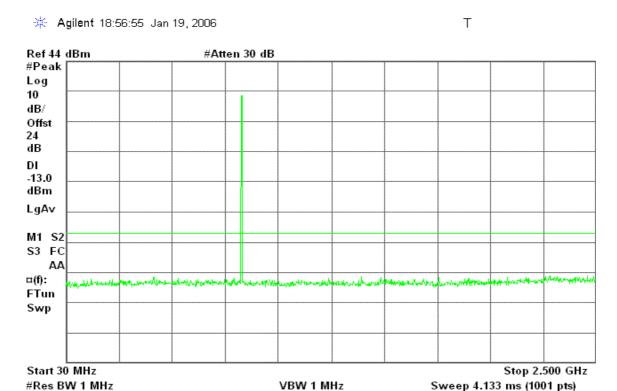
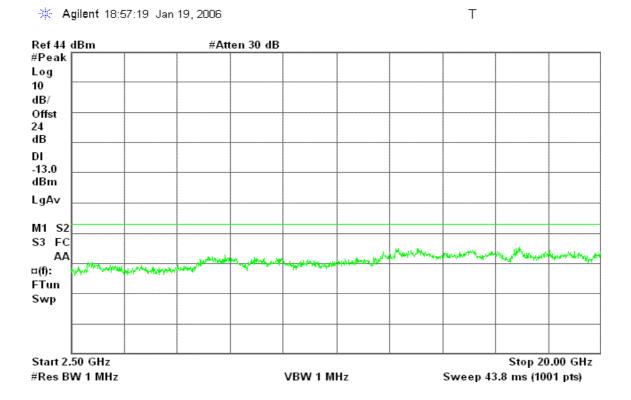



Figure 7-6: Out of Band emission at antenna terminals – GSM CH High

Page 30 Rev. 00

GPRS 850

Figure 7-7: Out of Band emission at antenna terminals – GPRS CH Low

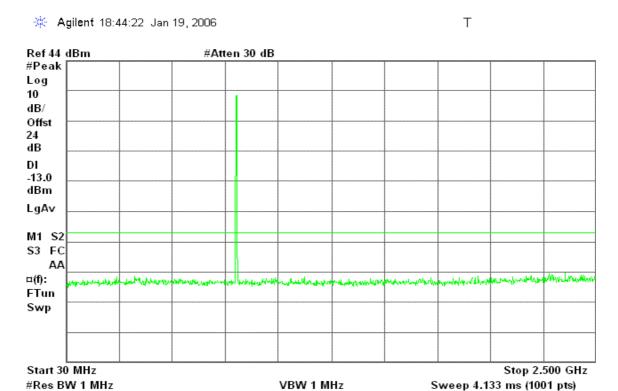
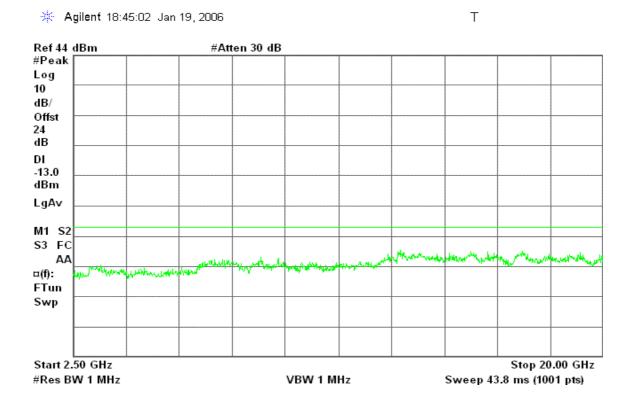



Figure 7-8: Out of Band emission at antenna terminals – GPRS CH Low

Page 31 Rev. 00

Figure 7-9: Out of Band emission at antenna terminals – GPRS CH Mid

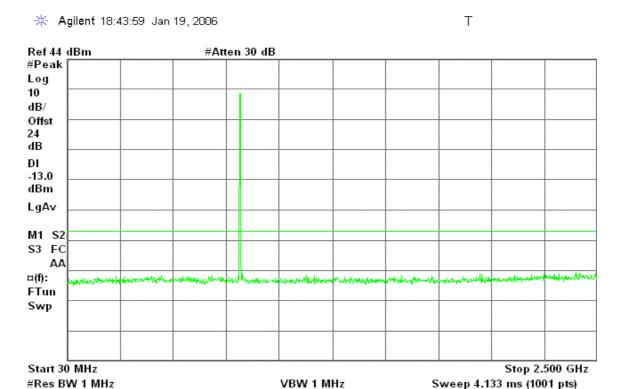
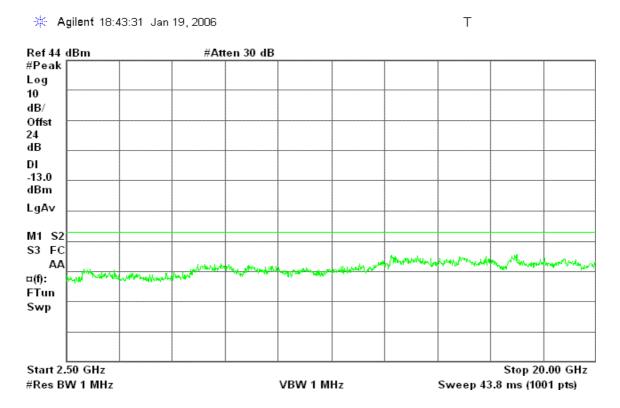



Figure 7-10: Out of Band emission at antenna terminals – GPRS CH Mid

Page 32 Rev. 00

Figure 7-11: Out of Band emission at antenna terminals – GPRS CH High

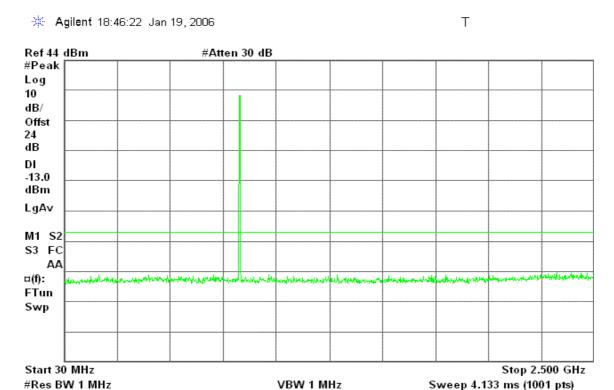
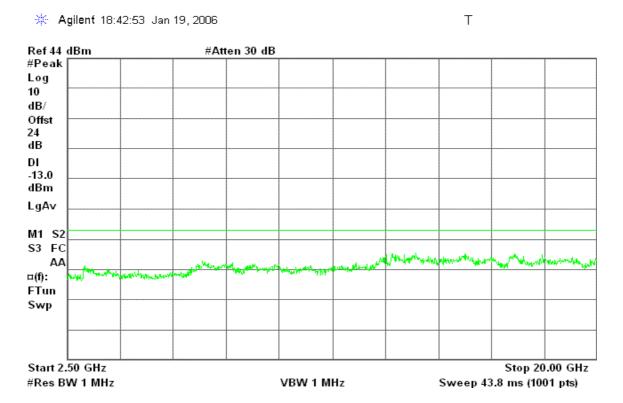
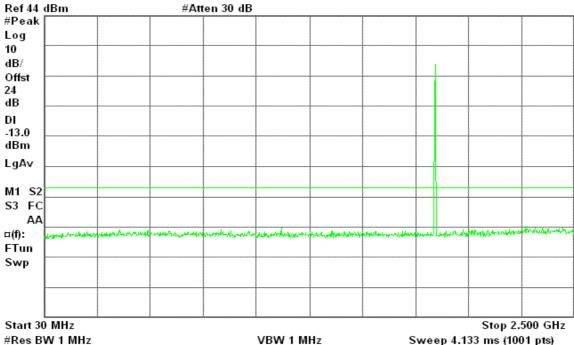
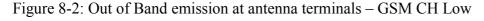
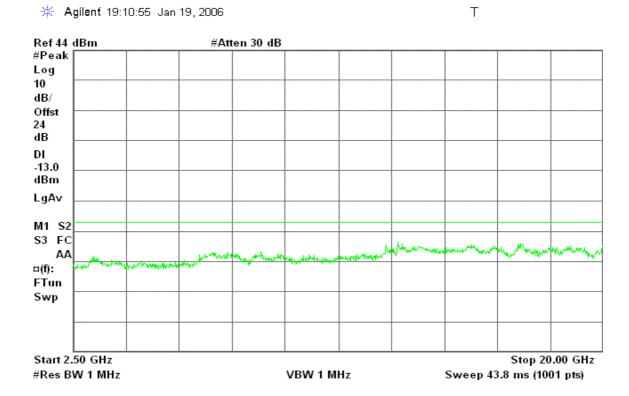




Figure 7-12: Out of Band emission at antenna terminals – GPRS CH High



Page 33 Rev. 00


GSM 1900


Figure 8-1: Out of Band emission at antenna terminals – GSM CH Low

#Res BW 1 MHz VBW 1 MHz Sweep 4.133 ms (1001 pt

Page 34 Rev. 00

Figure 8-3: Out of Band emission at antenna terminals – GSM CH Mid

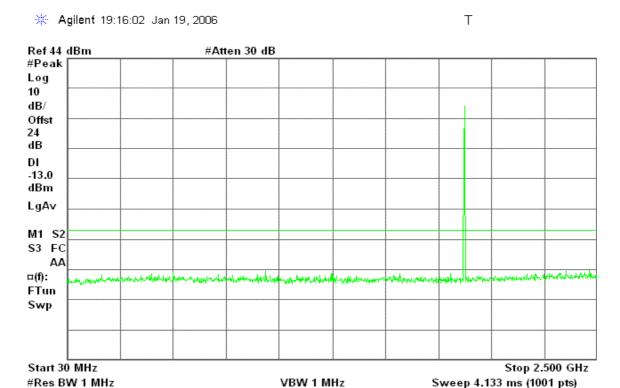
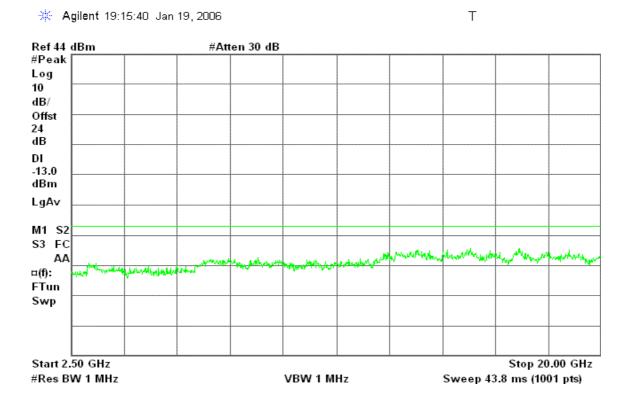



Figure 8-4: Out of Band emission at antenna terminals – GSM CH Mid

Page 35 Rev. 00

Figure 8-5: Out of Band emission at antenna terminals – GSM CH High

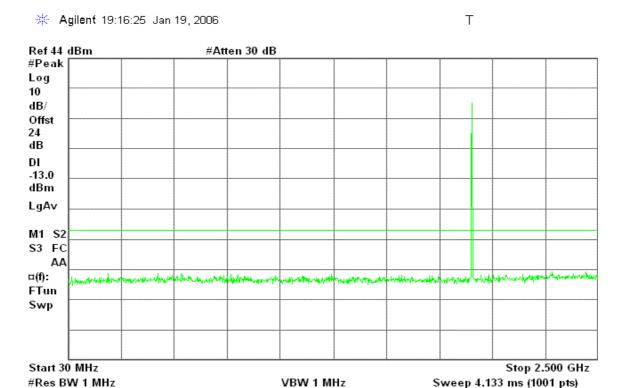
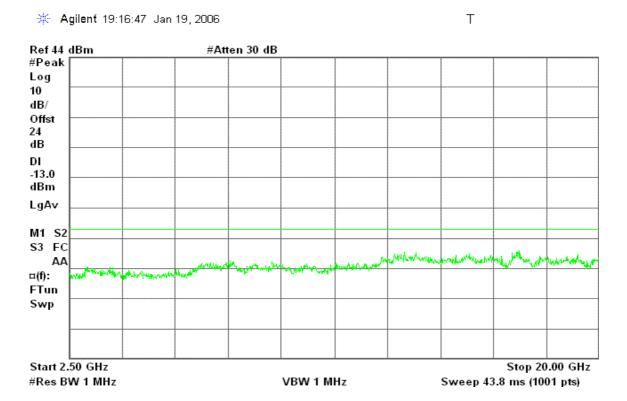



Figure 8-6: Out of Band emission at antenna terminals – GSM CH High

Page 36 Rev. 00

GPRS 1900

Figure 8-7: Out of Band emission at antenna terminals – GPRS CH Low

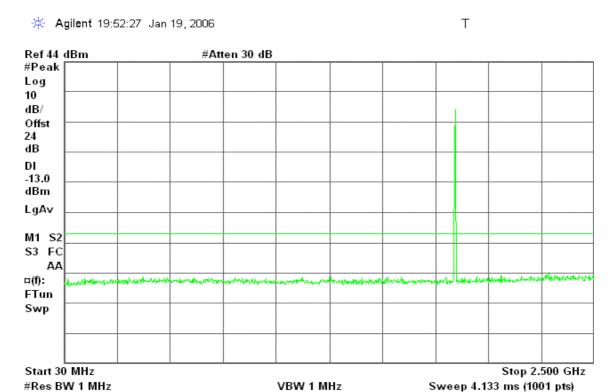
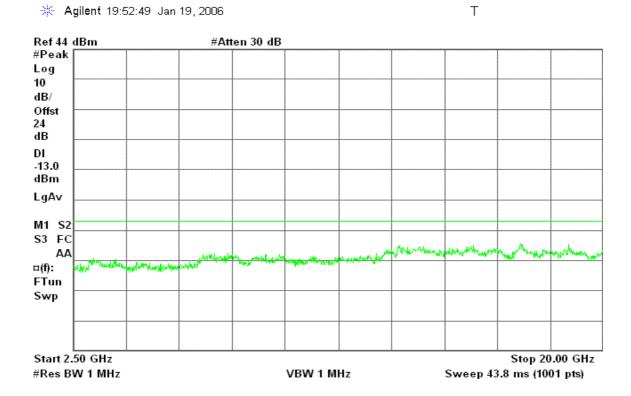
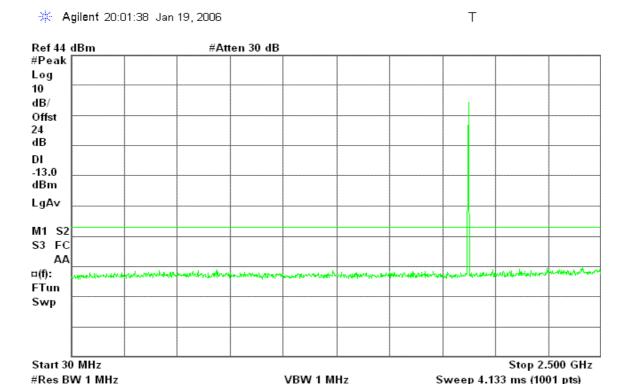




Figure 8-8: Out of Band emission at antenna terminals – GPRS CH Low

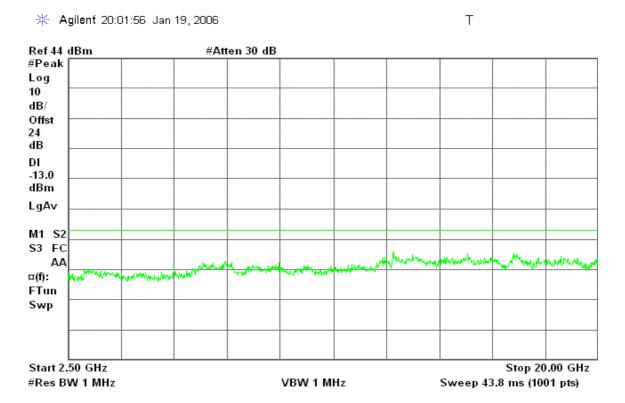

Page 37 Rev. 00

Figure 8-9: Out of Band emission at antenna terminals – GPRS CH Mid

VBW 1 MHz

Figure 8-10: Out of Band emission at antenna terminals – GPRS CH Mid

Page 38 Rev. 00

Sweep 4.133 ms (1001 pts)

Figure 8-11: Out of Band emission at antenna terminals – GPRS CH High

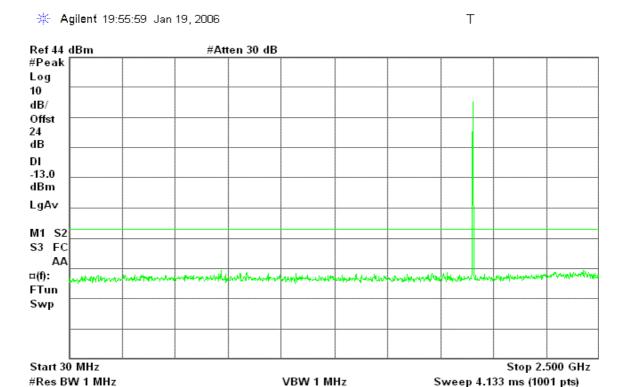
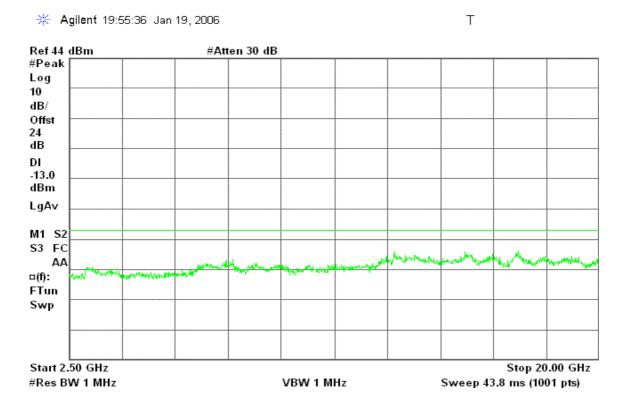



Figure 8-12: Out of Band emission at antenna terminals – GPRS CH High

Page 39 Rev. 00

GSM 850

Figure 9-1: Band Edge emissions – GSM CH Low

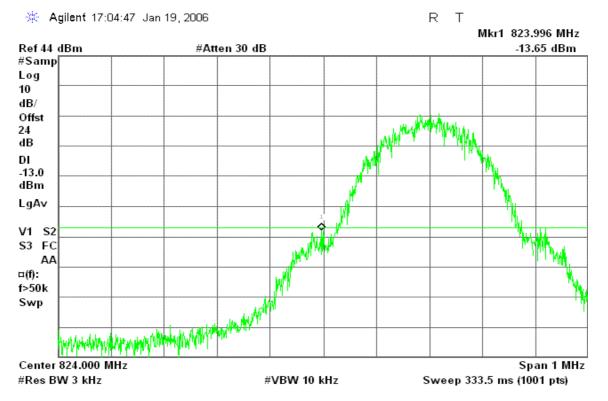
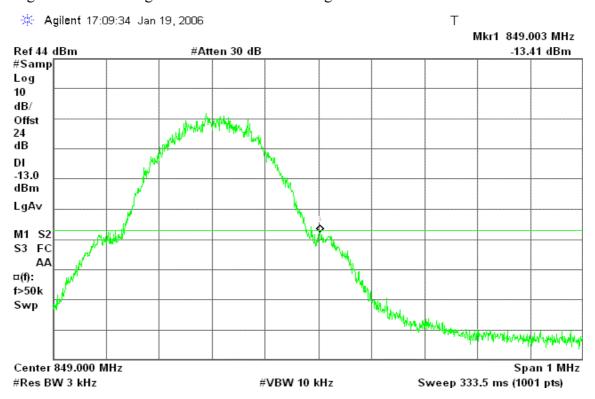



Figure 9-2: Band Edge emissions – GSM CH High

Page 40 Rev. 00

GPRS 850

Figure 9-3: Band Edge emissions – GPRS CH Low

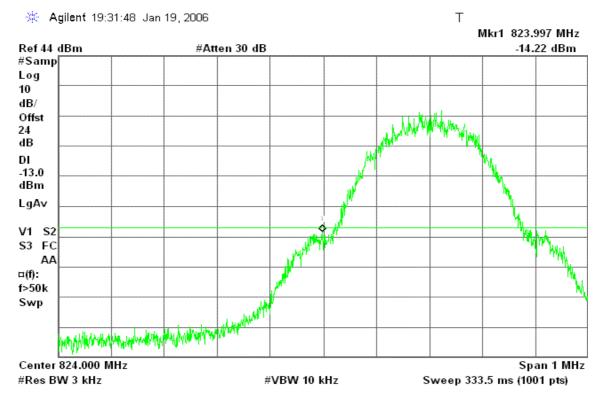
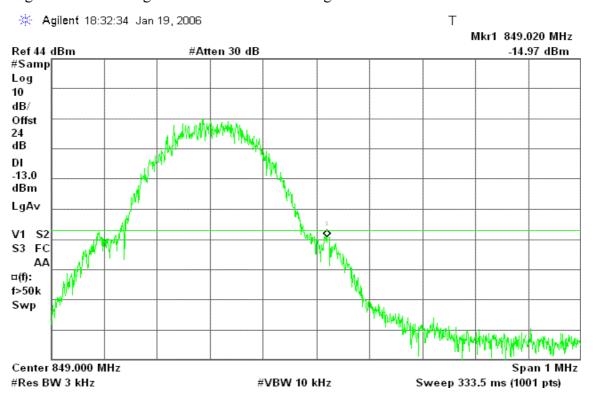



Figure 9-4: Band Edge emissions –GPRS CH High

Page 41 Rev. 00

GSM 1900

Figure 10-1: Band Edge emissions – GSM CH Low

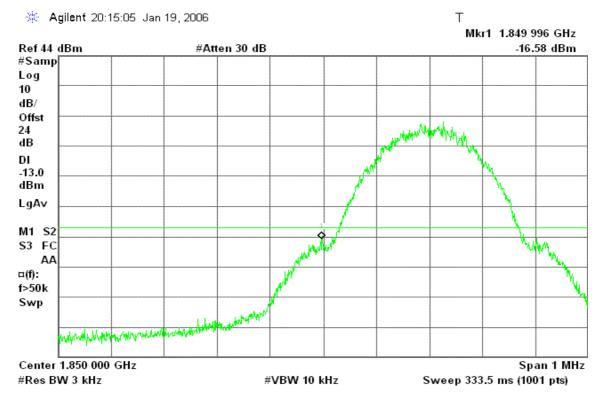
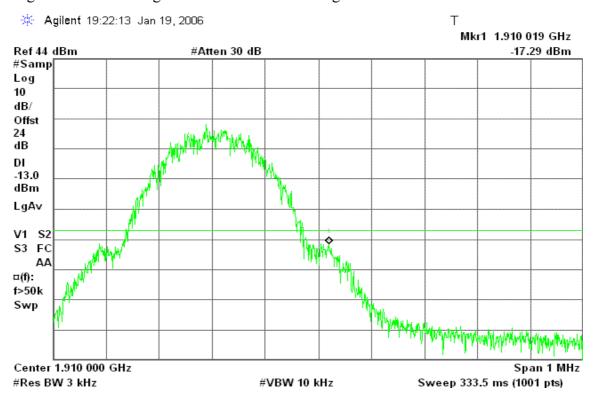



Figure 10-2: Band Edge emissions – GSM CH High

Page 42 Rev. 00

GPRS 1900

Figure 10-3: Band Edge emissions – GPRS CH Low

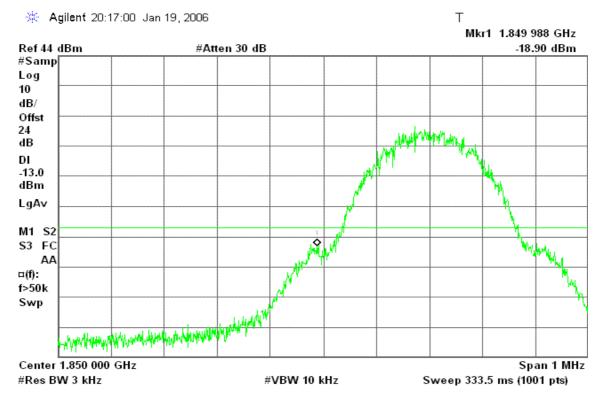
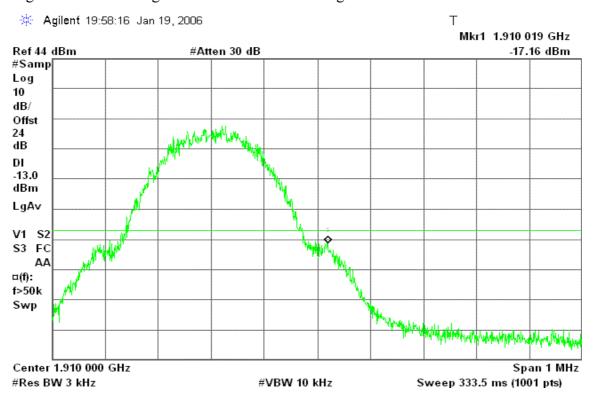
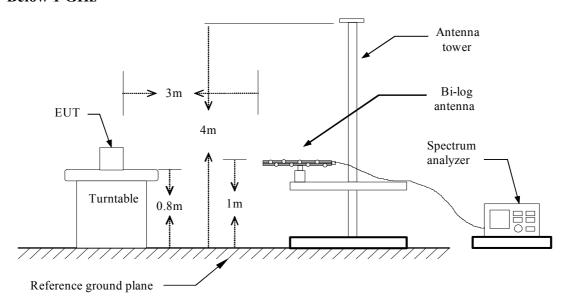
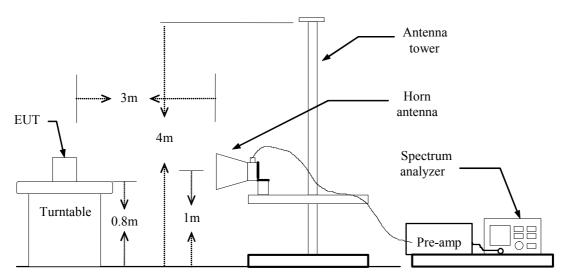



Figure 10-4: Band Edge emissions – GPRS CH High

Page 43 Rev. 00

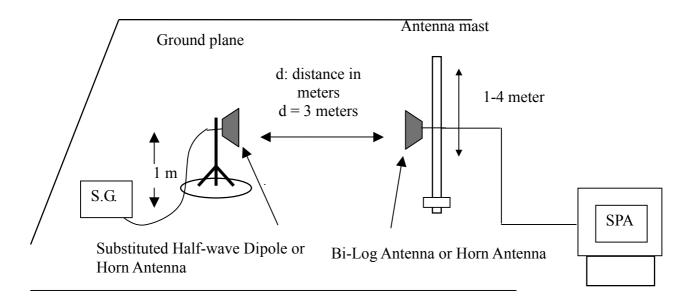

7.5FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

LIMIT


According to FCC §2.1053

Test Configuration

Below 1 GHz



Above 1 GHz

Page 44 Rev. 00

Substituted Method Test Set-up

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Page 45 Rev. 00

Radiated Spurious Emission Measurement Result

Below 1GHz

No emissions to be recorded. (Since no specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 850 / TX / CH 128 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
2475.00	V	-43.40	3.24	-40.16	-13.00	-27.16
N/A						
1650.00	Н	-47.15	1.70	-45.45	-13.00	-32.45
2475.00	Н	-48.53	3.21	-45.32	-13.00	-32.32
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 46 Rev. 00

Operation Mode: GSM 850 / TX / CH 190 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature:22°CTested by:Tom JenHumidity:565 % RHPolarity:Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1675.00	V	-48.79	0.80	-47.99	-13.00	-34.99
N/A						
1675.00	Н	-47.99	1.66	-46.34	-13.00	-33.34
2510.00	Н	-46.05	3.34	-42.71	-13.00	-29.71
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 47 Rev. 00

Operation Mode: GSM 850 / TX / CH 251 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1700.00	V	-48.77	0.83	-47.94	-13.00	-34.94
N/A						
1700.00	Н	-48.08	1.62	-46.46	-13.00	-33.46
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 48 Rev. 00

Operation Mode: GPRS 850 / TX / CH 128 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1650.00	V	-48.32	0.77	-47.55	-13.00	-34.55
N/A						
1650.00	Н	-51.03	1.70	-49.34	-13.00	26.24
1030.00	П	-31.03	1.70	-49.34	-13.00	-36.34
2475.00	Н	-43.87	3.21	-40.66	-13.00	-27.66
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 49 Rev. 00

Operation Mode: GPRS 850 / TX / CH 190 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature:22°CTested by:Tom JenHumidity:56 % RHPolarity:Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1675.00	V	-50.08	0.80	-49.28	-13.00	-36.28
N/A						
1675.00	Н	-49.70	1.66	-48.04	-13.00	-35.04
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 50 Rev. 00

Operation Mode: GPRS 850 / TX / CH 251 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature:25°CTested by:Tom JenHumidity:55 % RHPolarity:Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1700.00	V	-46.99	0.83	-46.16	-13.00	-33.16
N/A						
1700.00	Н	-47.94	1.62	-46.33	-13.00	-33.33
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 51 Rev. 00

Below 1GHz

No emissions to be recorded. (Since no specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 1900 / TX / CH 512 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.00	V	-46.12	5.88	-40.25	-13.00	-27.25
N/A						
3700.00	Н	-45.66	5.85	-39.80	-13.00	-26.80
N/A	22	10.00	0.00	33.00	15.00	20.00

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 52 Rev. 00

Operation Mode: GSM 1900 / TX / CH 661 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3760.00	V	-45.47	5.77	-39.71	-13.00	-26.71
N/A						
3760.00	Н	-39.46	5.75	-33.71	-13.00	-20.71
5640.00	Н	-47.55	6.42	-41.13	-13.00	-28.13
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 53 Rev. 00

Operation Mode: GSM 1900 / TX / CH 810 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3820.00	V	-45.43	5.65	-39.78	-13.00	-26.78
5730.00	V	-43.08	6.67	-36.40	-13.00	-23.40
N/A						
3820.00	Н	-37.17	5.64	-31.53	-13.00	-18.53
5730.00	Н	-43.58	6.68	-36.91	-13.00	-23.91
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 54 Rev. 00

Operation Mode: GPRS 1900 / TX / CH 512 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.00	V	-47.03	5.88	-41.15	-13.00	-28.15
5550.00	V	-49.85	6.15	-43.69	-13.00	-30.69
N/A						
3700.00	Н	-40.80	5.85	-34.95	-13.00	-21.95
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 55 Rev. 00

Operation Mode: GPRS 1900 / TX / CH 661 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature:25°CTested by:Tom JenHumidity:55 % RHPolarity:Ver. / Hor.

Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3760.00	V	-46.68	5.77	-40.91	-13.00	-27.91
N/A						
3760.00	Н	-36.91	5.75	-31.16	-13.00	-18.16
5640.00	Н	-51.20	6.42	-44.78	-13.00	-31.78
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 56 Rev. 00

Operation Mode: GPRS 1900 / TX / CH 810 Test Date: January 22, 2006

Date of Issue: January 23, 2006

Temperature: 22°C **Tested by:** Tom Jen **Humidity:** 56 % RH **Polarity:** Ver. / Hor.

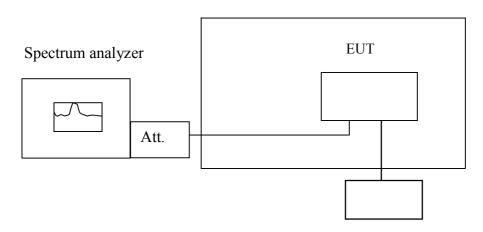
Frequency (MHz)	Antenna Polarization	Reading level (dBuV)	Correction Factor (dB)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3820.00	V	-41.33	5.65	-35.68	-13.00	-22.68
5730.00	V	-44.77	6.67	-38.10	-13.00	-25.10
N/A						
3820.00	Н	-34.03	5.64	-28.39	-13.00	-15.39
N/A						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 57 Rev. 00

7.6FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT


LIMIT

According to FCC §2.1055, FCC §24.235.

Frequency Tolerance: 2.5 ppm

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector

Page 58 Rev. 00

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST RESULTS

No non-compliance noted.

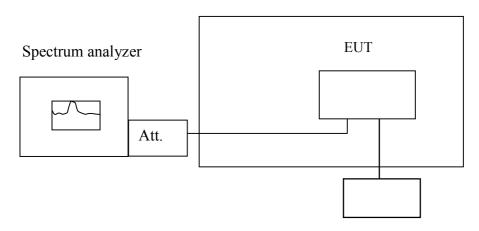
Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C							
Limit: $\pm 2.5 \text{ ppm} = 2090 \text{ Hz}$							
Power Supply Vdc	Environment Frequency Temperature (°C) (Hz)		Delta (Hz)	Limit (Hz)			
	50	83600020	36				
	40	83600020	36				
4.2	30	83600021	37				
	20	83599984	0				
	10	83600016	32	2090			
	0	83600018	34				
	-10	83600015	31				
	-20		33				
	-30	83600017	33				

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C							
Limit: ± 2.5 ppm = 4700 Hz							
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)			
	50	1880000029	60				
	40	1880000034	65				
4.2	30	1880000030	61				
	20	1879999969	0				
	10	1880000032	63	4700			
	0	1880000029	60				
	-10		68				
	-20	1880000035	66				
	-30	1880000031	62				

Page 59 Rev. 00

7.7FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT


According to FCC §2.1055, FCC §24.235,

Frequency Tolerance: 2.5 ppm.

Test Configuration

Temperature Chamber

Date of Issue: January 23, 2006

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector.

Page 60 Rev. 00

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C							
Limit: ± 2.5 ppm = 2090Hz							
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)			
4.6		83599983	-1				
4.2	20	83599984	0	2090			
3.8	20	83599984	0	2090			
3.7(End Point)		83599741	-243				

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C							
Limit: ± 2.5 ppm = 4700 Hz							
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)			
4.6		1879999970	1				
4.2	20	1879999969	0	4700			
3.8	20	1879999968	-1	4/00			
3.3(End Point)		1879999357	-612				

Page 61 Rev. 00

7.8POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Date of Issue: January 23, 2006

Frequency Range (MHz)	Limits (dBμV)				
Frequency Range (MIIIZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete..

Page 62 Rev. 00

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

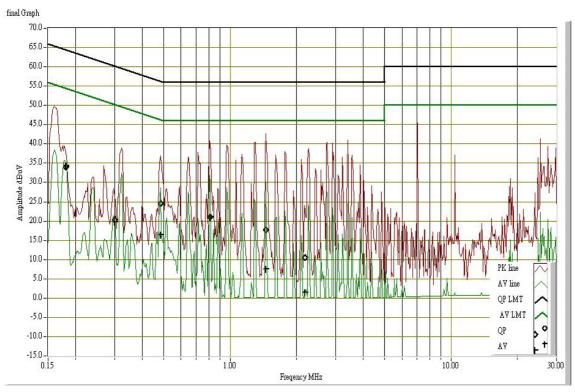
Date of Issue: January 23, 2006

Operation Mode: Normal Link **Test Date:** January 16, 2006

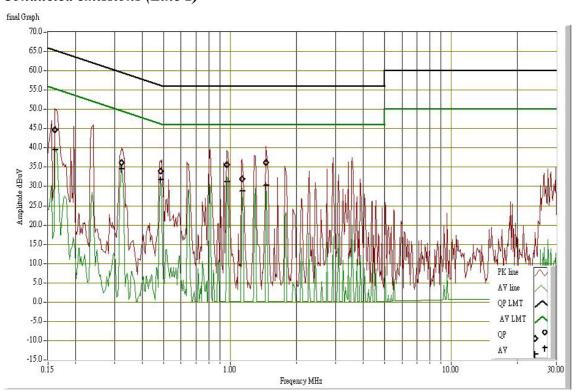
Temperature: 25°C **Tested by:** Rex Lai

Humidity: 55% RH

Freq. (MHz)	QP Reading	AV Reading	Corr. factor	QP Result	AV Result	QP Limit	AV Limit	QP Margin	AV Margin	Note
0.180	33.900	34.350	0.139	34.039	34.489	64.465	54.465	-30.426	-19.976	L1
0.300	20.220	19.770	0.100	20.320	19.870	60.240	50.240	-39.920	-30.370	L1
0.484	24.570	16.350	0.100	24.670	16.450	56.270	46.270	-31.600	-29.820	L1
0.812	21.050	21.000	0.100	21.150	21.100	56.000	46.000	-34.850	-24.900	L1
1.453	17.760	7.540	0.100	17.860	7.640	56.000	46.000	-38.140	-38.360	L1
2.180	10.570	1.390	0.100	10.670	1.490	56.000	46.000	-45.330	-44.510	L1
0.161	44.770	39.510	0.178	44.948	39.688	65.412	55.412	-20.464	-15.724	L2
0.322	36.110	34.580	0.100	36.210	34.680	59.655	49.655	-23.445	-14.975	L2
0.484	33.910	31.700	0.100	34.010	31.800	56.270	46.270	-22.260	-14.470	L2
0.968	35.610	31.190	0.100	35.710	31.290	56.000	46.000	-20.290	-14.710	L2
1.135	32.000	28.870	0.100	32.100	28.970	56.000	46.000	-23.900	-17.030	L2
1.453	36.190	30.320	0.100	36.290	30.420	56.000	46.000	-19.710	-15.580	L2

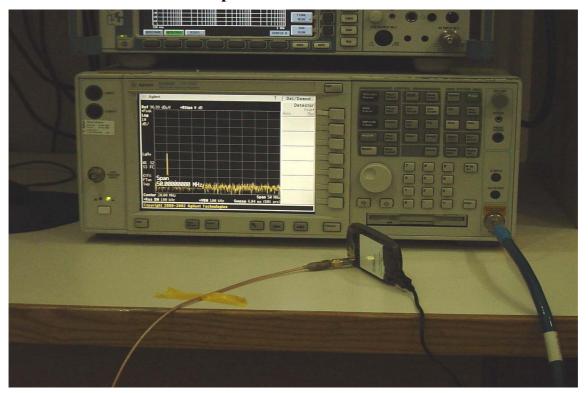

Remark:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

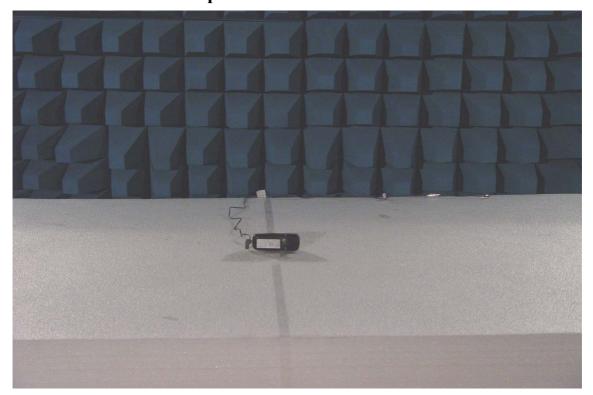

Page 63 Rev. 00

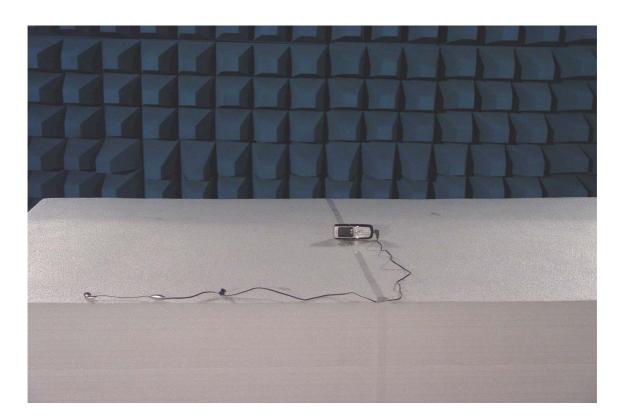
Test Plots

Conducted emissions (Line 1)

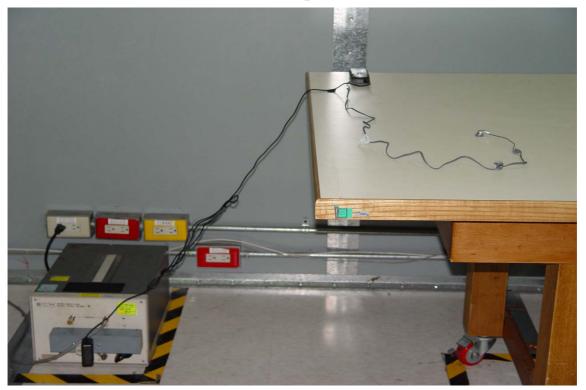

Conducted emissions (Line 2)

Page 64 Rev. 00


APPENDIX 1 PHOTOGRAPHS OF TEST SETUP


Conducted Emission Set Up Photo

Page 65 Rev. 00


Radiated Emission Set up Photos

Page 66 Rev. 00

Powerline Conducted Emissions Setup Photos

Page 67 Rev. 00