Specific Absorption Rate (SAR) Test Report for BenQ Corporation on the PDA Phone

Report No. : FA4O1206-1-2-02

Trade Name : BenQ

Model Name : P50(57P50) FCC ID : JVP57P50

Date of Testing : Nov. 16, 2004 and Jan. 10, 2005

Date of Report.

Date of Review

: Jan. 13, 2005

: Feb. 22, 2005

- The test results refer exclusively to the presented test model/sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Tel:886-22696-2468 Fax:886-2-2696-2255

Table of Contents

1. Statement of Compliance	
2. Administration Data	
2.1 Testing Laboratory	1
2.2 Detail of Applicant	1
2.4 Application Detail	
3.General Information	
3.1 Description of Device Under Test (DUT)	2
3.2 Product Photo	
3.3 Applied Standards	4
3.3 Device Category and SAR Limits	
3.4 Test Conditions	
3.4.1 Ambient Condition	
3.4.2 Test Configuration	
4.Specific Absorption Rate (SAR)	6
4.1 Introduction	
4.2. SAR Definition	
5. SAR Measurement Setup	
5.1.DASY4 E-Field Probe System	
5.1.1.ET3DV6 E-Field Probe Specification	
5.1.2 ET3DV6 E-Field Probe Calibration	
5.2 DATA Acquisition Electronics (DAE)	
5.3 Robot	
5.4 Measurement Server	
5.5 SAM Twin Phantom	
5.6. Device Holder for SAM Twin Phantom	
5.7 Data Storage and Evaluation	
5.7.1 Data Storage	
5.7.2 Data Evaluation	
5.8. Test Equipment List	
6. Tissue Simulating Liquids	
7. Uncertainty Assessment	
8.1 Purpose of System Performance check	
8.2 System Setup	
,	
8.3 Validation Results	
10. Measurement Procedures	
10.1 Spatial Peak SAR Evaluation	
10.2 Scan Procedures	
11. SAR Test Results	
11.1 Right Cheek	
11.2 Right Tilted	
11.2 1 dg/10 11000	

11.3 Left Cheek	
11.4 Left Tilted	
11.5 Keypad Up with Holster Touch	
11.6 Keypad Down with Holster Touch	
12.References	34
Appendix A - System Performance Check Data	
Appendix B - SAR Measurement Data	
Appendix C – Calibration Data	

SPORTON INTERNATIONAL INC.

FCC SAR Test Report

Test Report No FA401206-1-2-02

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum result found during testing for the BenQ Corporation PDA Phone P50(57P50) is 0.475 W/Kg on the WLAN head SAR and 0.16 W/Kg on the WLAN body SAR with expanded uncertainty 19.6%. The co-location of GSM/GPRS, WLAN and Bluetooth were also checked. It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Tested by

Approved by

Nilson She

Test Engineer

Dr. C.H. Daniel Lee SAR Lab. Manager

©2004 SPORTON International Inc..SAR Testing Lab

Page I of 34

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.02

Test Report No : FA4O1206-1-2-02

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc. **Department :** Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,

TaoYuan Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-327-0973

2.2 Detail of Applicant

Company Name : BenQ Corporation

Address: 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.

Telephone Number: 886-3-3598800 #3995

Fax Number: 886-3-3593395 **Position:** nicolelin@benq.com

2.3 Detail of Manufacturer

Company Name : BenQ Corporation

Address: 157 Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.

2.4 Application Detail

Date of reception of application:Oct. 12, 2004Start of test:Nov. 16, 2004End of test:Jan. 10, 2005

Test Report No : FA4O1206-1-2-02

3.General Information

3.1 Description of Device Under Test (DUT)

DUT Type:	PDA Phone
Trade Name :	BenQ
Model Name :	P50(57P50)
FCC ID:	JVP57P50
	GSM 850: 824~849 MHz
Tr. Francisco en Domos	PCS 1900: 1850~1910 MHz
Tx Frequency Range:	WLAN: 2400~2483.5 MHz
	Bluetooth: 2400~2483.5 MHz
	GSM 850: 869~894 MHz
Rx Frequency Range :	PCS 1900: 1930~1990 MHz
Kx Frequency Kange:	WLAN: 2400~2483.5 MHz
	Bluetooth: 2400~2483.5 MHz
IMEI Code:	354768000000001
	GSM850: 32.68 dBm
Maximum Output Power of Antenna:	PCS 1900: 29.19 dBm
Maximum Output Fower of Antenna.	WLAN: 17.82 dBm
	Bluetooth: 0.58 dBm
	GSM850 / PCS1900: GMSK
Type of Modulation:	WLAN: DSSS
	Bluetooth: FHSS
	GSM850 / PCS1900: PIFA
Antenna Type:	WLAN: FPA Antenna
	Bluetooth: PCB Antenna
Power Rating (DC/AC, Voltage):	3.8V / 300mA
Earpiece:	EMC147-X043 57P30
Charger:	NAC060240U807-1
Battery:	BAT LI-I 3.7V 1240MA 57P50
Holster:	47.G7223.001 leather case
Data Cable :	50.G4702.001
DUT Stage:	Identical Prototype
Application Type:	Certification

Test Report No : FA4O1206-1-2-02

3.2 Product Photo

Test Report No : FA4O1206-1-2-02

3.3 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this PDA Phone is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528 -2003, and OET Bulletin 65 Supplement C (Edition 01-01)

Test Report No : FA4O1206-1-2-02

3.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.4 Test Conditions

3.4.1 Ambient Condition

Item	Head	Body	
Ambient Temperature (°C)	20-2	24	
Tissue simulating liquid temperature (°C)	22.3 22.3		
Humidity (%)	<60 %		

3.4.2 Test Configuration

Engineering testing software installed on the phone can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1. The measurements were performed on the lowest, middle, and highest channel, i.e. channel 1, channel 6, and channel 11 for each testing position.

The worst case above were checked by transmitting both WLAN and Bluetooth. The SAR values of GPRS and WLAN were summed to verify its compliance.

Test Report No : FA4O1206-1-2-02

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Test Report No : FA4O1206-1-2-02

5. SAR Measurement Setup

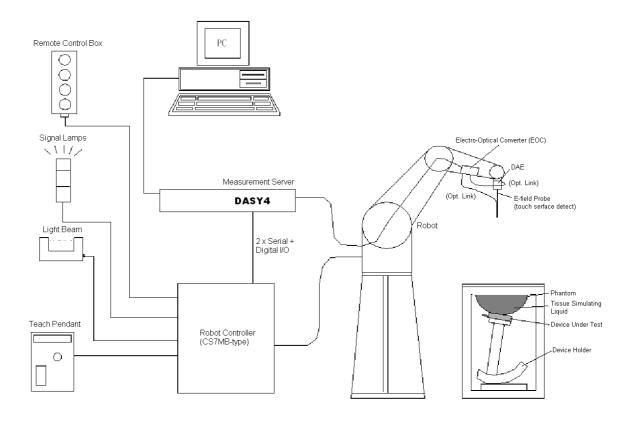


Fig. 5.1 DASY4 system

Test Report No : FA4O1206-1-2-02

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- ➤ DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- ➤ The SAM twin phantom
- > A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1.DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

Test Report No : FA4O1206-1-2-02

5.1.1.ET3DV6 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

system

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents)

Calibration Simulating tissue at frequencies of

900MHz, 1.8GHz and 2.45GHz for brain

and muscle (accuracy ±8%)

Frequency 10 MHz to > 3 GHz

Directivity ± 0.2 dB in brain tissue (rotation around

probe axis)

 \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)

Dynamic Range $5 \mu \text{ W/g to} > 100 \text{mW/g}$; Linearity: $\pm 0.2 \text{dB}$ **Surface Detection** $\pm 0.2 \text{ mm}$ repeatability in air and clear

 \pm 0.2 mm repeatability in air and clear liquids on reflecting surface

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm

Tip diameter: 6.8mm

Distance from probe tip to dipole centers:

2.7mm

Application General dosimetry up to 3GHz

Compliance tests for mobile phones and

Wireless LAN

Fast automatic scanning in arbitrary

phantoms

Fig. 5.2 Probe setup on robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Sensitivity	X axis : 1.68 μV		Y axis : 1.70 μV		Z axis : 1.74 μV
Diode compression point	X axis : 94 mV		Y axis : 94 mV		Z axis : 94 mV
Conversion factor	Frequency (MHz)	X axis		Y axis	Z axis
(Head / Body)	2350~2550	4.56 / 4.26		4.56 / 4.26	4.56 / 4.26
Boundary effect	Frequency (MHz)	Alp	oha	Depth	
(Head / Body)	2350~2550	0.65 /	0.72	2.22 / 2.00	

NOTE:

- 1. The probe parameters have been calibrated by the SPEAG.
- 2. For the detailed calibration data is shown in Appendix C.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Test Report No : FA4O1206-1-2-02

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- ➤ High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box

the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➤ Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Test Report No : FA4O1206-1-2-02

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

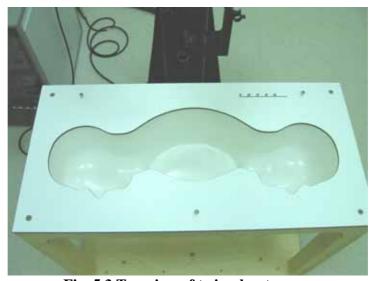


Fig. 5.3 Top view of twin phantom

Fig. 5.4 Bottom view of twin phantom

5.6. Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $_{\rm r}$ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.1 Device Holder

Test Report No : FA4O1206-1-2-02

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a loseless media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the

Test Report No : FA4O1206-1-2-02

DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$

 $\text{H-field probes}: \quad \boldsymbol{H}_{i} \quad = \quad \sqrt{V_{i}} \frac{a_{i0+} a_{i1} f + a_{i2} f^{2}}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

with

FCC SAR Test Report

Test Report No : FA4O1206-1-2-02

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm3

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

 P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

Test Report No : FA4O1206-1-2-02

5.8. Test Equipment List

Manuscatura	Name of Familian and	T	Carial Namel an	Calibration			
Manufacture	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 30, 2004	Sep. 30, 2005		
SPEAG	835MHz System Validation Kit	D835V2	499	Feb. 12, 2004	Feb. 12, 2006		
SPEAG	900MHz System Validation Kit	D900V2	190	July 17, 2003	July 17, 2005		
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	July 16, 2003	July 16, 2005		
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Feb. 17, 2004	Feb. 17, 2006		
SPEAG	2450MHz System Validation Kit	D2450V2	736	Aug. 26, 2003	Aug. 26, 2005		
SPEAG	Data Acquisition Electronics	DAE3	541	Apr. 26, 2004	Apr. 26, 2005		
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 17, 2004	Nov. 17, 2005		
SPEAG	Device Holder	N/A	N/A	NCR	NCR		
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR		
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR		
SPEAG	Software	DASY4 V4.4 Build 3	N/A	NCR	NCR		
SPEAG	Software	SEMCAD V1.8 Build 130	N/A	NCR	NCR		
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR		
Agilent	S-Parameter Network Analyzer (PNA)	E8358A	US40260131	Nov. 19, 2003	Nov. 19, 2004		
Agilent	S-Parameter Network Analyzer (PNA)	E8358A	US40260131	Nov. 24,2004	Nov. 24, 2005		
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR		
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR		
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR		
R & S	Radio Communication Tester	CMU200	105934	Aug. 24, 2004	Aug 24, 2005		
Agilent	Power Meter	E4416A	GB41292344	Feb. 12, 2004	Feb. 12, 2005		
Agilent	Signal Generator	E8247C	MY43320596	Feb. 10, 2004	Feb. 10, 2005		
Agilent	Base Station Emulator	E5515C	GB43460754	Jan. 12, 2004	Jan. 12, 2006		

Table 5.1 Test Equipment List

Test Report No : FA4O1206-1-2-02

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height is 15.2 centimeters, which is shown in Fig. 6.1 for body testing and Fig.6.2 for head testing.

The following ingredients for tissue simulating liquid are used:

- \triangleright Water: deionized water (pure H₂0), resistivity 16M as basis for the liquid
- > Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- ➤ Salt: pure NaCl to increase conductivity
- ➤ **Cellulose**: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- ➤ **Preservative**: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- ➤ **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of tissue simulating liquid for frequency band 2450 MHz.

Ingredient	MSL-2450	HSL-2450
Water	698.3 ml	450.0 ml
DGMBE	301.7 ml	550.0 ml
Total amount	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	f = 2450MHz	f = 2450MHz
	$_{\rm r}$ = 52.7±5%, = 1.95±5	$S/M = 1.8 \pm 5\%$ S/m

Table 6.1

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent E8358A Network Analyzer.

Test Report No : FA4O1206-1-2-02

Table 6.2 shows the measuring results for simulating liquid.

Position	Bands	Frequency(MHz)	Permittivity (r)	Conductivity ()	Measurement date
		2412	38.6	1.73	
Head	2450 MHz	2437	38.2	1.74	Nov. 16, 2004
		2462	38.0	1.78	
		2412	51.1	1.93	
Body	2450 MHz	2437	50.7	1.94	Jan. 10, 2005
		2462	50.6	1.99	

Table 6.2

The measuring data are consistent with $_r$ = 39.2 \pm 5% and = 1.80 \pm 5% for head tissue and $_r$ = 52.7 \pm 5% = $1.95 \pm 5\%$ for body tissue. and

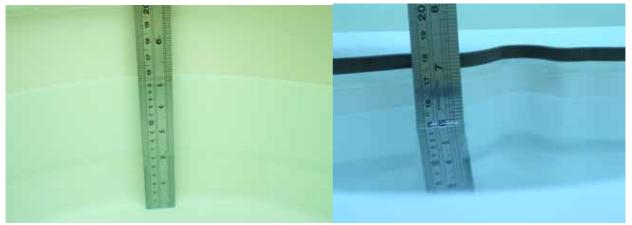


Fig. 6.2 Fig. 6.1

Test Report No : FA4O1206-1-2-02

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

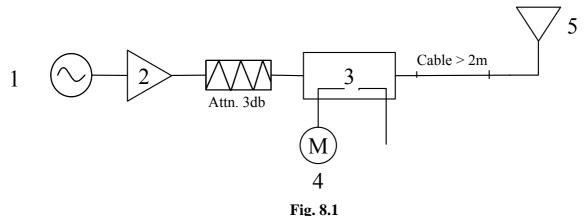
Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

⁽b) is the coverage factor

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci Ig	Standard Unc. (1-g)	vi or V _{eff}
Measurement System		•				
Probe Calibration	± 4.8	Normal	1	1	±4.8	
Axial Isotropy	± 4.7	Rectangular	$\sqrt{3}$	0.7	±1.9	
Hemispherical Isotropy	± 9.6	Rectangular	$\sqrt{3}$	0.7	±3.9	
Boundary Effect	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Linearity	± 4.7	Rectangular	$\sqrt{3}$	1	±2.7	
System Detection Limit	± 1.0	Rectangular	√3	1	±0.6	
Readout Electronics	± 1.0	Normal	1	1	±1.0	
Response Time	± 0.8	Rectangular	√3	1	± 0.5	
Integration time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5	
RF Ambient Conditions	± 3.0	Rectangular	$\sqrt{3}$	1	±1.7	
Probe Positioner Mech. Tolerance	± 0.4	Rectangular	$\sqrt{3}$	1	±0.2	
Probe Positioning with respect to Phantom Shell	± 2.9	Rectangular	√3	1	±1.7	
Extrapolation and Interpolation Algorithms for Max. SAR Evaluation	± 1.0	Rectangular	√3	1	±0.6	
Test sample Related						
Test sample Positioning	±2.9	Normal	1	1	±2.9	145
Device Holder Uncertainty	±3.6	Normal	1	1	±3.6	5
Output Power Variation-SAR drift measurement	±5.0	Rectangular	√3	1	±2.9	
Phantom and						
Setup						
Phantom uncertainty(Including shar and thickness tolerances)	±4.0	Rectangular	√3	1	±2.3	
Liquid Conductivity Target tolerance	±5.0	Rectangular	√3	0.64	±1.8	
Liquid Conductivity measurement uncertainty	±2.5	Normal	1	0.64	±1.6	
Liquid Permittivity Target tolerance	±5.0	Rectangular	√3	0.6	±1.7	
Liquid Permittivity measurement uncertainty	±2.5	Normal	1	0.6	±1.5	
Combined standard uncertainty					±10.3	330
Coverage Factor for 95 %		K=2	•			
Expanded uncertainty (Coverage factor = 2)			Normal (k=2) 27		±20.6	

Table 7.2. Uncertainty Budget of DASY

8. SAR Measurement Evaluation


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom, shown in Fig. 8.2. The equipment setup is shown below:

Test Report No : FA4O1206-1-2-02

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz Dipole

The output power on dipole port must be calibrated to 100mW (20dBm) before dipole is connected.

Fig 8.2 Dipole Setup

Test Report No : FA4O1206-1-2-02

8.3Validation Results

Comparing to the original SAR value provided by Speag, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

		Target (W/kg)	Measurement data (W/kg)	Variation	Measurement date	
Head	SAR (1g)	55.6	51.9	-6.7	Nov. 16, 2004	
неац	SAR (10g)	25	24.4	-2.4	1107. 10, 2004	
Dody	SAR (1g)	56	55.6	-0.7	lon 10 2005	
Body	SAR (10g)	25.8	25.5	-1.2	Jan. 10, 2005	

Table 8.1

The table above indicates the system performance check can meet the variation criterion.

Test Report No : FA4O1206-1-2-02

9. Description for DUT Testing Position

This DUT was tested in 6 different positions. They are left cheek, left tilted, right cheek, right tilted, body worn with keypad up and body worn with keypad down as illustrated below:

1) "Cheek Position"

- i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).

2) "Tilted Position"

- i) To position the device in the "cheek" position described above.
- ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).

3) "Body Worn"

- i) To position the device parallel to the phantom surface with either keypad up or down.
- ii) To adjust the phone parallel to the flat phantom.
- iii) To adjust the distance between the phone holster surface and the flat phantom to touch.

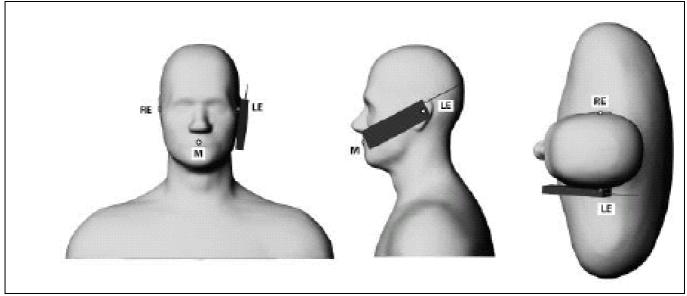


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

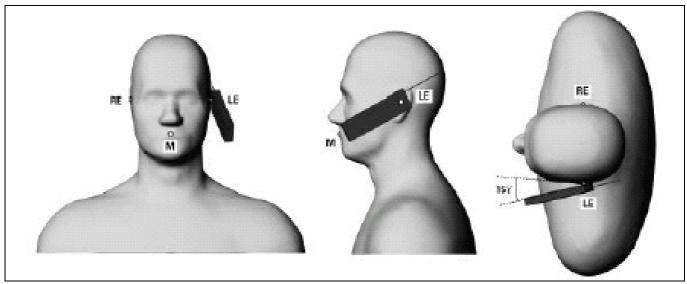


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

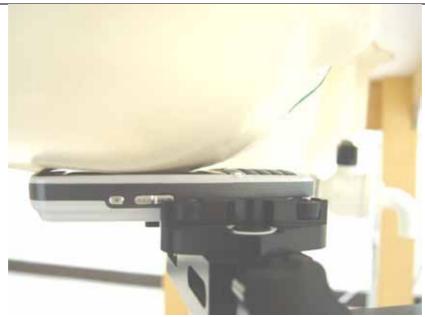


Fig. 9.3 Right Cheek

Fig. 9.4 Right Tilted

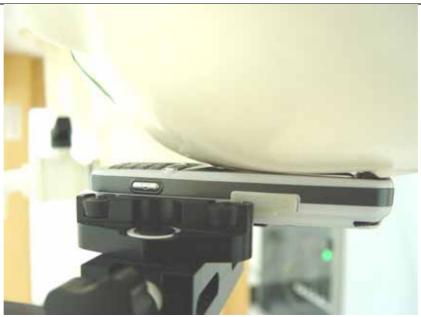


Fig. 9.5 Left Cheek

Fig. 9.6 Left Tilted

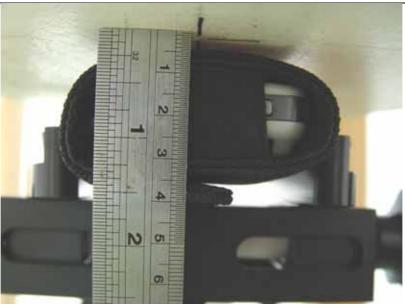


Fig. 9.7 Keypad Up with Touch

Fig. 9.8 Keypad Down with Touch

Test Report No : FA4O1206-1-2-02

10. Measurement Procedures

The measurement procedures are as follows:

- ➤ Using engineering software to transmit RF power continuously (continuous Tx) in the middle channel
- ➤ Placing the DUT in the positions described in the last section
- > Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the channel
- Repeat the previous steps for the low and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- > Power reference measurement
- > Area scan
- > Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume

Test Report No : FA4O1206-1-2-02

- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First **Area Scan** is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an **Area Scan** is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, **Zoom Scan** is required. The **Zoom Scan** measures 5x5x7 points with step size 8, 8 and 5 mm. The **Zoom Scan** is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger then 5 mm.

Test Report No : FA4O1206-1-2-02

11. SAR Test Results

11.1 Right Cheek

Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
1	2412(Low)	CCK	17.82	-0.1	0.475	1.6	Pass
6	2437(Mid)	CCK	17.62	-0.1	0.474	1.6	Pass
11	2462(High)	CCK	17.34	0	0.437	1.6	Pass

11.2 Right Tilted

Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
1	2412(Low)	CCK	17.82	-	-	-	-
6	2437(Mid)	CCK	17.62	-0.1	0.344	1.6	Pass
11	2462(High)	CCK	17.34	-	-	-	-

11.3 Left Cheek

Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
1	2412(Low)	CCK	17.82	-	-	-	-
6	2437(Mid)	CCK	17.62	0	0.308	1.6	Pass
11	2462(High)	CCK	17.34	-	-	-	-

11.4 Left Tilted

Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
1	2412(Low)	CCK	17.82	-	-	-	-
6	2437(Mid)	CCK	17.62	0	0.286	1.6	Pass
11	2462(High)	CCK	17.34	-	-	-	-

Test Report No : FA4O1206-1-2-02

11.5 Keypad Up with Holster Touch

Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
1	2412(Low)	CCK	17.82	-0.1	0.16	1.6	Pass
6	2437(Mid)	CCK	17.62	-0.1	0.157	1.6	Pass
11	2462(High)	CCK	17.34	-0.2	0.072	1.6	Pass

11.6 Keypad Down with Holster Touch

Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
1	2412(Low)	CCK	17.82	-	-	-	-
6	2437(Mid)	CCK	17.62	-0.2	0.02	1.6	Pass
11	2462(High)	CCK	17.34	_	-	-	-

Remark:

- 1. The largest summation of GSM/GPRS and WLAN for head SAR is 0.905 W/Kg and its position is right cheek.
- 2. The largest summation of GSM/GPRS and WLAN for body SAR is 0.804 W/Kg and its position is keypad down with holster touch.
- 3. The worst SAR testing modes were retested for WLAN and Bluetooth co-location. The results are 0.467 W/Kg for Right Cheek WLAN Ch01 and Bluetooth Ch39.

Test Report No : FA4O1206-1-2-02

12.References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-10) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Test Report No : FA4O1206-1-2-02

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 11/16/04 05:37:29

System Check_Head_2450MHz_20041116

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

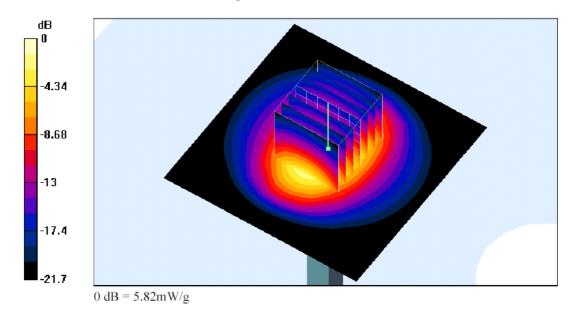
Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.76 \text{ mho/m}$; $\varepsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.8°C; Liquid Temperature: 22.3°C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn541; Calibrated: 4/26/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.45 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.4 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 10.9 W/kg

SAR(1 g) = 5.19 mW/g; SAR(10 g) = 2.44 mW/g

Maximum value of SAR (measured) = 5.82 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 01/10/05 11:25:03

System Check_Body_2450MHz_20050110

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

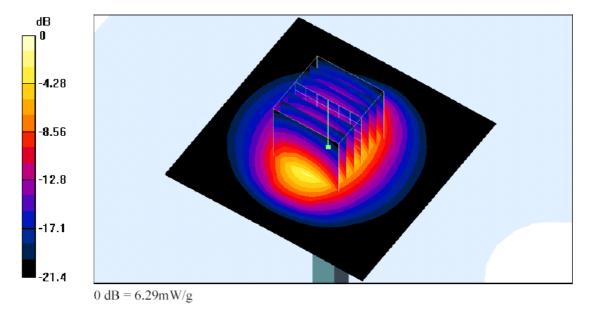
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 50.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.6°C; Liquid Temperature: 22.1°C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130


Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.5 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.2 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 12.6 W/kg

SAR(1 g) = 5.56 mW/g; SAR(10 g) = 2.55 mW/gMaximum value of SAR (measured) = 6.29 mW/g

Test Report No : FA4O1206-1-2-02

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 11/16/04 18:48:44

Right Cheek 802.11b Ch1 20041116

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

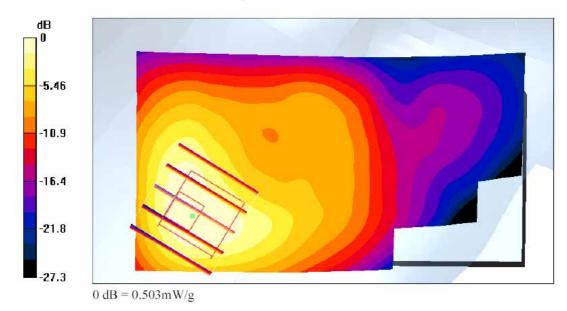
Medium: HSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.73$ mho/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8 °C; Liquid Temperature: 22.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn541; Calibrated: 4/26/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.614 mW/g


Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 1.3 W/kg

SAR(1 g) = 0.475 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.503 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 11/16/04 18:04:09

Right Tilted 802.11b Ch6 20041116

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

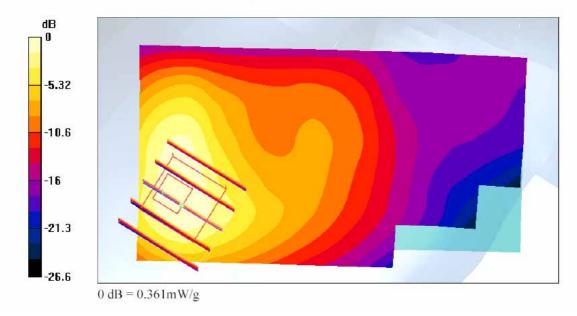
Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.74$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C; Liquid Temperature: 22.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn541; Calibrated: 4/26/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.373 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 0.978 W/kg

SAR(1 g) = 0.344 mW/g; SAR(10 g) = 0.163 mW/g

Maximum value of SAR (measured) = 0.361 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 11/16/04 18:18:25

Left Cheek 802.11b Ch6 20041116

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

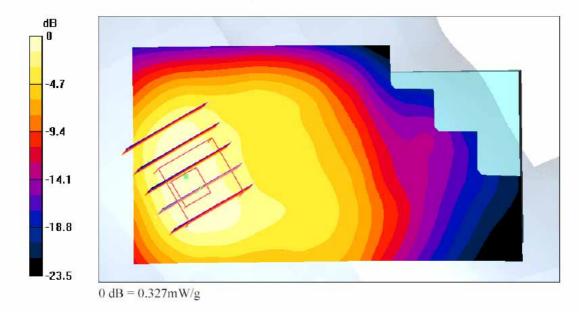
Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.74$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C; Liquid Temperature: 22.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn541; Calibrated: 4/26/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.352 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.4 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 0.687 W/kg

SAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.165 mW/g

Maximum value of SAR (measured) = 0.327 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 11/16/04 18:35:16

Left Tilted 802.11b Ch6 20041116

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

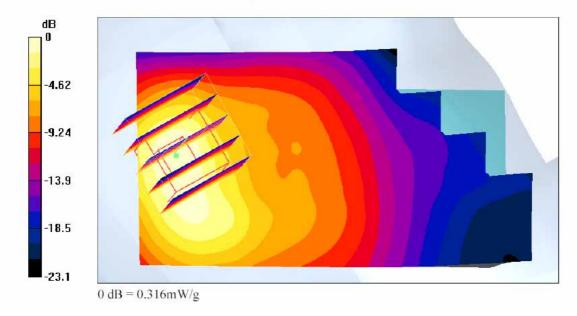
Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.74$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C; Liquid Temperature: 22.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn541; Calibrated: 4/26/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.312 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 0.621 W/kg

SAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.145 mW/g

Maximum value of SAR (measured) = 0.316 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 01/10/05 12:36:31

Body 802.11b Ch1 Keypad Up With Touch 20050110

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

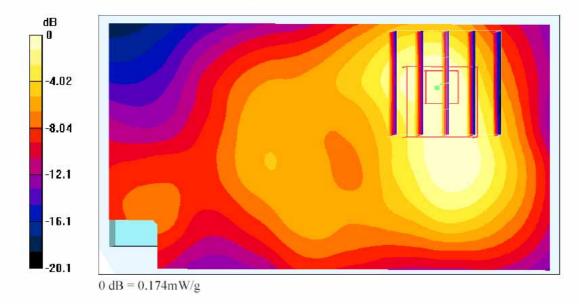
Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.4°C; Liquid Temperature: 21.5°C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.197 mW/g


Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.160 mW/g; SAR(10 g) = 0.085 mW/g

Maximum value of SAR (measured) = 0.174 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 01/10/05 12:08:13

Body 802.11b Ch6 Keypad Down With Touch 20050110

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

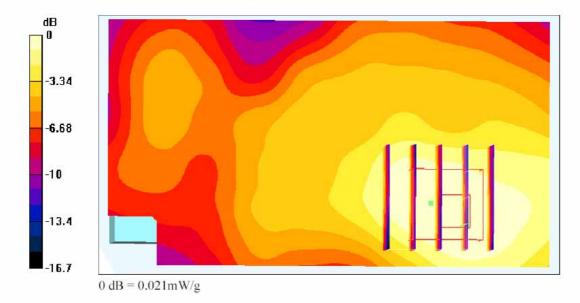
Medium: MSL 2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.2 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.023 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.67 V/m; Power Drift = -0.2 dB

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.012 mW/g

Maximum value of SAR (measured) = 0.021 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 11/16/04 19:27:40

Right Cheek 802.11b Ch1 20041116 BlueTooth

DUT: BenQ P50; Type: GSM Smart Phone; Serial:354768000000001

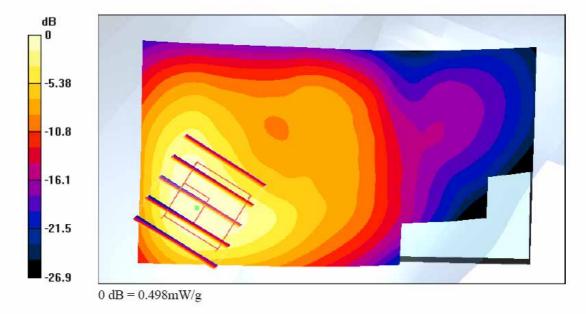
Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1.315

Medium: HSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.73$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 22.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn541; Calibrated: 4/26/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127


Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.593 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.467 mW/g; SAR(10 g) = 0.234 mW/gMaximum value of SAR (measured) = 0.498 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 11/16/04 18:48:44

Right Cheek 802.11b Ch1 20041116

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

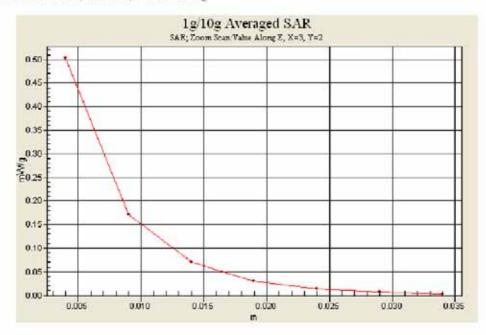
Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium; HSL 2450 Medium parameters used; f = 2412 MHz; $\sigma = 1.73$ mho/m; $\varepsilon_c = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8 °C; Liquid Temperature: 22.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn541; Calibrated: 4/26/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127


Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.614 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 1.3 W/kg

SAR(1 g) = 0.475 mW/g; SAR(10 g) = 0.237 mW/gMaximum value of SAR (measured) = 0.503 mW/g

Test Report No : FA4O1206-1-2-02

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 01/10/05 12:36:31

Body 802.11b Ch1 Keypad Up With Touch 20050110

DUT: BenQ P50; Type: PDA Phone; Serial: 354768000000001

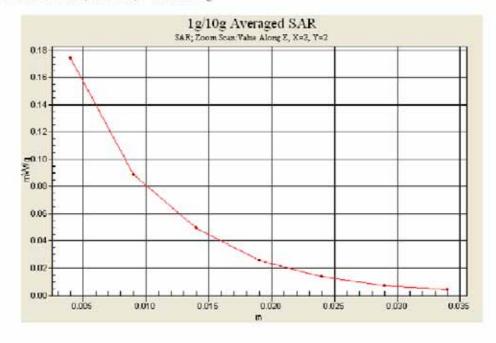
Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium; MSL, 2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.93 \text{ mho/m}$; $\varepsilon_c = 51.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.4 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.26, 4.26, 4.26); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130


Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.197 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.160 mW/g; SAR(10 g) = 0.085 mW/gMaximum value of SAR (measured) = 0.174 mW/g

Test Report No : FA4O1206-1-2-02

Appendix C - Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	D2450V2 - St	N:736					
Calibration procedure(s)	Calibration pr	2 ocedure for dipole validation kits					
Calibration date:	August 27, 20	003					
Condition of the calibrated item	In Tolerance (according to the specific calibration document)						
7025 international standard.	ted in the closed laborat	E used in the calibration procedures and conformity or conformity or facility: environment temperature 22 +/- 2 degree					
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
F generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05				
		and the manual frames, the manual sections					
	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04				
ower sensor HP 8481A	MY41092317 US37292783	18-Oct-02 (Agilent, No. 20021018) 30-Oct-02 (METAS, No. 252-0236)	Oct-04 Oct-03				
ower sensor HP 8481A ower sensor HP 8481A		그림 사고 있었다. 이 경험 지하면 하겠었다면 하는 것이 하면 하면 하는 것이 있다면 하다.					
Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03				
Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442 Network Analyzer HP 8753E	US37292783 GB37480704	30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236)	Oct-03 Oct-03				
Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442 Jetwork Analyzer HP 8753E	US37292783 GB37480704 US37390585	30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agillent, No. 24BR1033101)	Oct-03 Oct-03 In house check: Oct 03				
Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442 Retwork Analyzer HP 8753E Calibrated by:	US37292783 GB37480704 US37390585 Name	30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101) Function	Oct-03 Oct-03 In house check: Oct 03				
ower sensor HP 8481A ower sensor HP 8481A ower meter EPM E442	US37292783 GB37480704 US37390585 Name	30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0238) 18-Oct-01 (Agilient, No. 24BR1033101) Function	Oct-03 Oct-03 In house check: Oct 03				
lower sensor HP 8481A lower sensor HP 8481A lower meter EPM E442 letwork Analyzer HP 8753E	US37292783 GB37480704 US37390585 Name	30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101) Function	Oct-03 Oct-03 In house check: Oct 03				

Page 1 (1)

Test Report No : FA4O1206-1-2-02

Schmid & Partner Engineering AG

a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003

Calibrated: August 27, 2003

Test Report No : FA4O1206-1-2-02

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 55.6 mW/g \pm 16.8 % (k=2)¹ averaged over 10 cm³ (10 g) of tissue: 25.0 mW/g \pm 16.2 % (k=2)¹

1 validation uncertainty

Test Report No : FA4O1206-1-2-02

Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.158 ns (one direction)

Transmission factor:

0.983

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:

 $Re\{Z\} = 52.5 \Omega$

Im $\{Z\} = 3.6 \Omega$

Return Loss at 2450 MHz

-27.5 dB

Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity

± 5%

Conductivity

2.03 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was $\underline{10\text{mm}}$ from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input

Test Report No : FA4O1206-1-2-02

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: 56.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm³ (10 g) of tissue: 25.8 mW/g \pm 16.2 % (k=2)²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz: $Re\{Z\} = 48.7 \Omega$

Im $\{Z\} = 4.8 \Omega$

Return Loss at 2450 MHz -25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Test Report No : FA4O1206-1-2-02

Page 1 of 1

Date/Time: 08/27/03 15:43:04

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736 SN3013 M2450 270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Muscle 2450 MHz ($\sigma = 2.03 \text{ mho/m}, \epsilon_r = 50.75, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

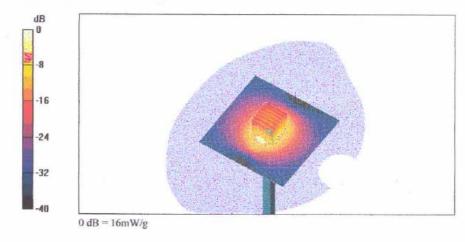
DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15 mm, dy=15 mm Reference Value = 91 V/m

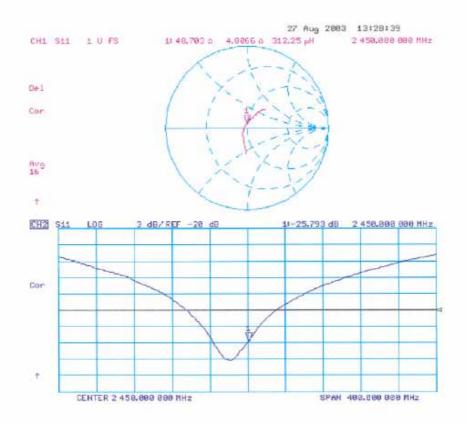
Power Drift = -0.02 dB

Maximum value of SAR = 15.7 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0; Measurement grid: dx=5mm, dy=5mm,

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/gReference Value = 91 V/m


Power Drift = -0,02 dB

Maximum value of SAR = 16 mW/g

Test Report No : FA4O1206-1-2-02

Test Report No : FA4O1206-1-2-02

Page 1 of 1

Date/Time: 08/27/03 11:42:12

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_HSL2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency; 2450 MHz; Duty Cycle: 1:1 Medium: HSL 2450 MHz ($\sigma = 1.89 \text{ mho/m}, \epsilon_r = 38.19, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

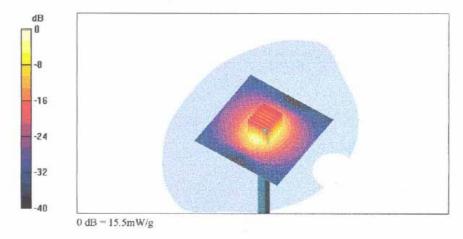
- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 91.5 V/m

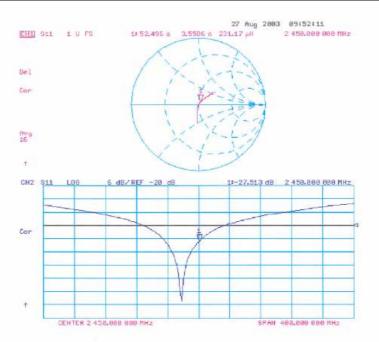
Power Drift = -0.04 dB

Maximum value of SAR = 15.3 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.25 mW/g Reference Value = 91.5 V/m


Power Drift = -0.04 dB

Maximum value of SAR = 15.5 mW/g

Test Report No : FA4O1206-1-2-02

Test Report No : FA4O1206-1-2-02

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: ET3-1788_Sep04 Sporton (Auden) CALIBRATION CERTIFICATE ET3DV6 - SN:1788 Object QA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probes September 30, 2004 Calibration date: In Tolerance Condition of the colibrated item. This calibration certificate documents the traceability to national standards, which realize the physical units of manaumments (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Gal Date (Calibrated by, Corff cate No.) Scheduled Calibration Primary Standards ID# 5-May-04 (METAS, No. 251-00388) May-05 Power meter E44198 GB41293874 5-May-04 (METAS, No. 251-00388) Power sensor F4412A MY41495277 May-05 SN: 55054 (3c) 3-Apr-03 (METAS, No. 251-00403) Reference 3 dB Attenuator Aug 05 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-04 (METAS, No. 251-00389) May-05 Reference 30 dB Attenuator SN: S5129 (30b) 3-Apr-03 (METAS, No. 251-00404) Aug-05 Reference Probe ES3DV2 SN:3013 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) Jan-05 28-May-04 (SPEAG, No. DAE4-617_May04) May-05 SN: 817 Secondary Standards ID # Check Date [in house) Scheduled Check 18-Sop-02 (SPEAG, in house check Oct-03) In house check: Oct 05 Power sensor HP 8481A MY41092180 RF generator HP 8648C US3842U01700 4 Aug 99 (SPEAG, in house check Dec-03) In house check: Dec-05 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-03) In house check: Nov 04 Function Name Calibrated by: Nico Vetterii Laboratory Technician Katis Pokovic Approved by: Technical Manager Issued: October 1, 2004 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1788 Sep04

Page 1 of 9

Calibration Laboratory of CWISC

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C

Test Report No : FA4O1206-1-2-02

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConF DCP diode compression point Polarization o φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at Polarization 9

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,v,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- . DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788 Sep04

Test Report No : FA4O1206-1-2-02

ET3DV6 SN:1788

September 30, 2004

Probe ET3DV6

SN:1788

Manufactured: Last calibrated: May 28, 2003 August 29, 2003 September 30, 2004

Recalibrated:

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep04

Page 3 of 9

Test Report No : FA4O1206-1-2-02

ET3DV6 SN:1788

September 30, 2004

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Fre	Diode Compression ⁶			
NormX	1.68 ± 9.8%	$\mu V/(V/m)^2$	DCP X	94 mV
NormY	1.70 ± 9.9%	$\mu V/(V/m)^2$	DCP Y	94 mV
NormZ	1.74 ± 9.9%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TOI	000 4411-	Timbert CAD conditions fill non-	i.
TSL	900 MHz	Typical SAR gradient: 5 % per mm	

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SARbe [%]	Without Correction Algorithm	8.1	4.4
SAR _{be} [%]	With Correction Algorithm	0.7	0.1

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.0	8.2
SAR _{be} [%]	With Correction Algorithm	0.9	0.1

Sensor Offset

Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788_Sep04

Page 4 of 9

 $^{^{\}rm A}$ The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty reside TSL (see Page 8).

^{*} Numerical linearization parameter: uncertainty not required.