

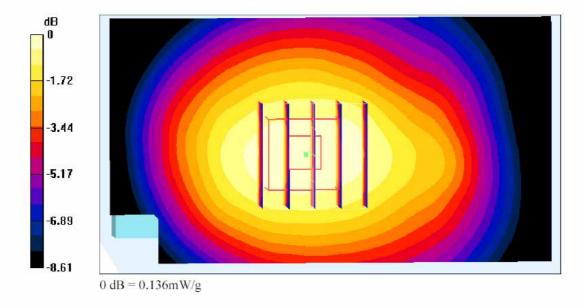
Date/Time: 01/05/05 14:52:47

Body_GSM850 Ch189_Keypad Up With Touch_20050105

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:4 Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.937$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.8 °C; Liquid Temperature : 22.1 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(6.53, 6.53, 6.53); Calibrated: 9/30/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

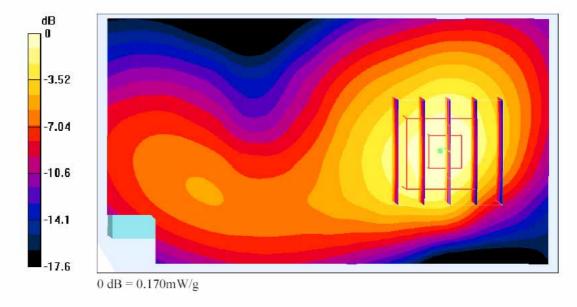
Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.135 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.67 V/m; Power Drift = 0.2 dB Peak SAR (extrapolated) = 0.171 W/kg SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.097 mW/g Maximum value of SAR (measured) = 0.136 mW/g

Date/Time: 01/05/05 13:40:37

Body_PCS Ch661_Keypad Up Touch_20050105

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001


Communication System: PCS; Frequency: 1880 MHz;Duty Cycle: 1:4 Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.6 °C; Liquid Temperature : 22.0 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

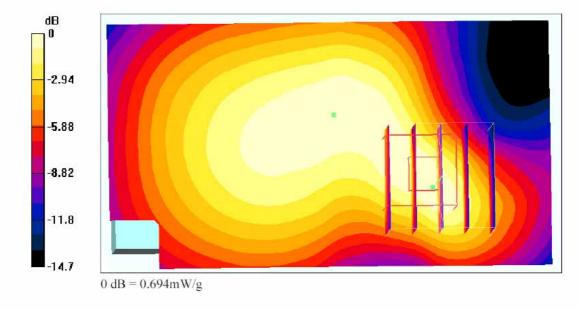
Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.183 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.31 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 0.235 W/kg SAR(1 g) = 0.153 mW/g; SAR(10 g) = 0.091 mW/g Maximum value of SAR (measured) = 0.170 mW/g

Date/Time: 01/05/05 14:38:29

Body_GSM850 Ch251_Keypad Down Touch_20050105

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001


Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium: MSL_850 Medium parameters used : f = 848.8 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.8 °C; Liquid Temperature : 22.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.53, 6.53, 6.53); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.679 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.63 V/m; Power Drift = -0.2 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.642 mW/g; SAR(10 g) = 0.385 mW/g Maximum value of SAR (measured) = 0.694 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

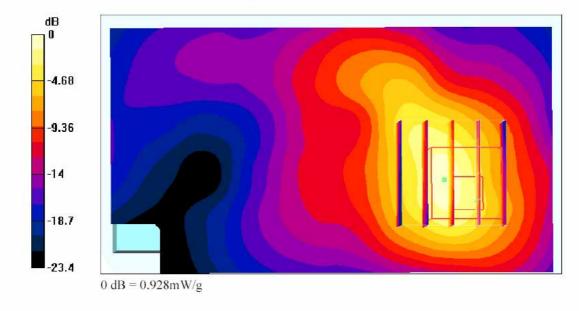
Date/Time: 01/05/05 13:56:04

Body_PCS Ch512_Keypad Down Touch_20050105

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:4 Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.7 °C; Liquid Temperature : 22.0 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

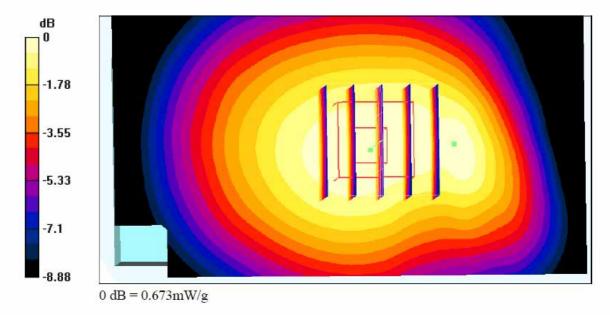
Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.742 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.1 V/m; Power Drift = -0.2 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.784 mW/g; SAR(10 g) = 0.370 mW/g Maximum value of SAR (measured) = 0.928 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 01/05/05 15:19:45

Body GSM850 Ch189 Keypad Down With 1.5cm Gap 20041109

DUT: BenQ P50; Type: GSM Smart Phone; Serial:35476800000001


Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:4 Medium: MSL_850 Medium parameters used : f = 836.4 MHz; σ = 0.964 mho/m; ϵ_r = 55.4; ρ = 1000 kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.9 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.53, 6.53, 6.53); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

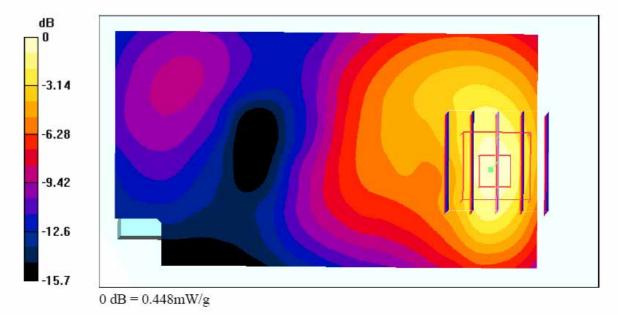
Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.668 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.4 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 0.811 W/kg SAR(1 g) = 0.634 mW/g; SAR(10 g) = 0.512 mW/g Maximum value of SAR (measured) = 0.673 mW/g

Date/Time: 01/05/05 12:16:56

Body_PCS Ch512_Keypad Down With 1.5cm Gap _20041109

DUT: BenQ P50; Type: GSM Smart Phone; Serial:35476800000001


Communication System: DCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:4 Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; σ = 1.5 mho/m; ϵ_r = 51.4; ρ = 1000 kg/m³ Ambient Temperature : 23.0 °C; Liquid Temperature : 22.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.457 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.622 W/kg SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.221 mW/g Maximum value of SAR (measured) = 0.448 mW/g

©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.02

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 10/13/04 11:13:01

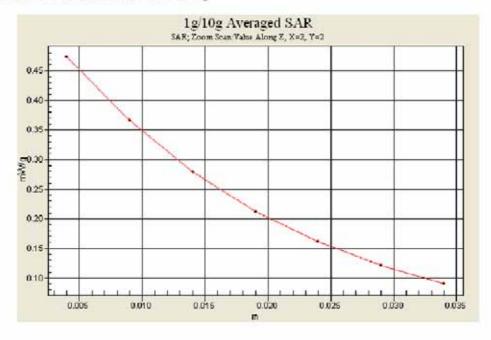
Left Cheek GSM850 Ch189 20041013

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001

Communication System: GSM850; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.879$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.6 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(6.5, 6.5, 6.5); Calibrated: 8/29/2003


- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150

- Measurement SW: DASY4, V4.3 Build 16; Postprocessing SW: SEMCAD, V1.8 Build 123

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.478 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.9 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.577 W/kg SAR(1 g) = 0.449 mW/g; SAR(10 g) = 0.328 mW/g Maximum value of SAR (measured) = 0.473 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

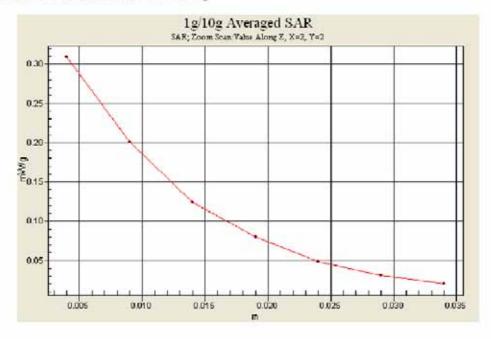
Date/Time: 10/28/04 11:27:48

Left Tilted_PCS Ch512_20041028

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: HSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $c_r = 39.3$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.8 °C; Liquid Temperature : 22.0 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(5.16, 5.16, 5.16); Calibrated: 9/30/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.311 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.2 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.419 W/kg SAR(1 g) = 0.282 mW/g; SAR(10 g) = 0.169 mW/g Maximum value of SAR (measured) = 0.309 mW/g

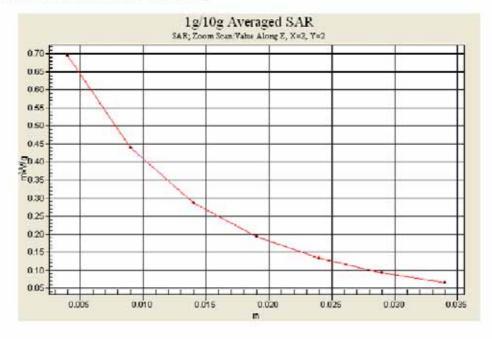
Date/Time: 01/05/05 14:38:29

Body GSM850 Ch251_Keypad Down Touch 20050105

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium: MSL_850 Medium parameters used : f = 848.8 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.8 °C; Liquid Temperature : 22.1 °C

DASY4 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(6.53, 6.53, 6.53); Calibrated: 9/30/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.4 Build 3: Postprocessing SW: SEMCAD, V1.8 Build 130

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.679 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.63 V/m; Power Drift = -0.2 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.642 mW/g; SAR(10 g) = 0.385 mW/g Maximum value of SAR (measured) = 0.694 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 01/05/05 13:56:04

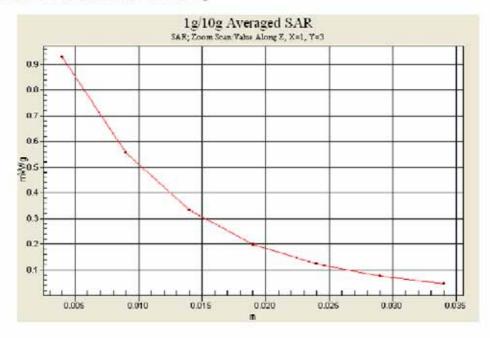
Body PCS Ch512 Keypad Down Touch 20050105

DUT: BenQ P50; Type: PDA Phone; Serial: 35476800000001

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:4 Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.53$ mho/m; $c_r = 51.6$; $\rho = 1000$ kg/m³ Ambient Temperature : 21.7 °C; Liquid Temperature : 22.0 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004


- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150

- Measurement SW: DASY4, V4.4 Build 3: Postprocessing SW: SEMCAD, V1.8 Build 130

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.742 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.1 V/m; Power Drift = -0.2 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.784 mW/g; SAR(10 g) = 0.370 mW/g Maximum value of SAR (measured) = 0.928 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghausstrasse 43, 8084 Zurich, Switzerland

a law and a second second		
Client	Sproton Int. (Auden)	

Object(s)	D835V2 - SN:499			
Calibration procedure(s)	QA CAL-05 v2 Calibration procedure for dipole validation kits			
Calibration date:	February 12,	2004		
Condition of the colibrated item	In Tolerance	(according to the specific calibration	document)	
This colloration statement docume 17025 international standard.	ents traceability of M&Ti	E used in the calibration procedures and conformity of	the procedures with the ISC/IEC	
All calibrations have been conduc	ted in the closed laborat	ory facility: environment temperature 22 +/-2 degrees	Geisius and humidity < 78%	
Colloration Equipment used (M&T	E critical for calibration)	l.		
Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Power meter EPM E442	GB37480704	6-Nov-03 (METAS, No. 252-0254)	Nov-04	
ower sensor HP 5481A	U\$37292783	6-Nov-03 (METAS, No. 252-0254)	Nov-04	
Power sensor HP 6481A	MY41092317	18-Oct-02 (Aglient, No. 20021018)	Oct-04	
RF generator R&S SML-03 Network Analyzer HP 8753E	100658 U337390585	27-Mer-2002 (R&S, No. 20-92389) 15-Oct-01 (SPEAG, in house check Nov-03)	In house check: Mar-05 In house check: Oct 05	
	Name	Function	Signature	
Calibrated by:	Jucith Mueller	Technician	MATAK	
Approved by:	Katja Poković	Laboratory Director	This Kata	
			Date issued: February 18, 2004	
This calibration certificate is issue Calibration Laboratory of Schmid		ution until the accreditation process (based on ISO/IE/ AG is completed.	C 17025 international Standard) for	

Schmid & Partner Engineering AG

S p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D835V2

Serial: 499

Manufactured: July 10, 2003 Calibrated: February 12, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity	42.1	± 5%
Conductivity	0.89 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.3 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>15mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250 mW \pm 3 %. The results are normalized to 1W input power,

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

 averaged over 1 cm³ (1 g) of tissue:
 9.96 mW/g \pm 16.8 % (k=2)¹

 averaged over 10 cm³ (10 g) of tissue:
 6.48 mW/g \pm 16.2 % (k=2)¹

1 validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.382 ns	(one direction)
Transmission factor:	0.985	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:	$Re\{Z\} = 51.2 \Omega$
	Im $\{Z\}$ = -1.7 Ω
Return Loss at 835 MHz	-33.9 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity	55.5	$\pm 5\%$
Conductivity	0.99 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.13 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>15mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250 mW \pm 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue:	10.3 mW/g = $16.8 \% (k=2)^2$
averaged over 10 cm3 (10 g) of tissue:	6.76 mW/g = $16.2 \% (k=2)^2$

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:	$Re\{Z\} = 46.7 \Omega$	
	Im $\{Z\} = -4.5 \Omega$	
Return Loss at 835 MHz	-24.7 dB	

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

9. Power Test

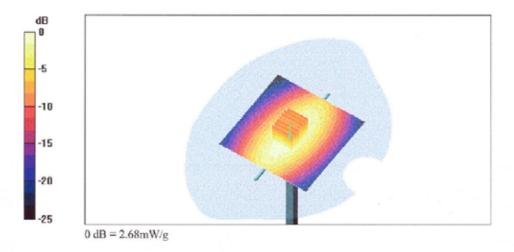
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

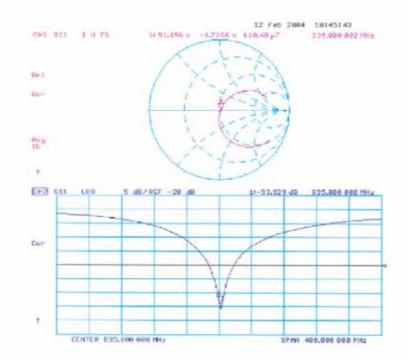
Page 1 of 1 Date/Time: 02/12/04 12:33:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN499


Communication System: CW-835; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL 835 MHz Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 42.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(6.3, 6.3, 6.3); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 98

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 56.5 V/m Power Drift = -0.0 dB Maximum value of SAR = 2.68 mW/g

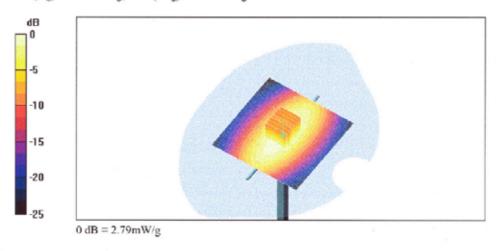
Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.62 mW/g Reference Value = 56.5 V/m Power Drift = -0.0 dB Maximum value of SAR = 2.68 mW/g

Page 1 of 1 Date/Time: 02/10/04 15:14:12

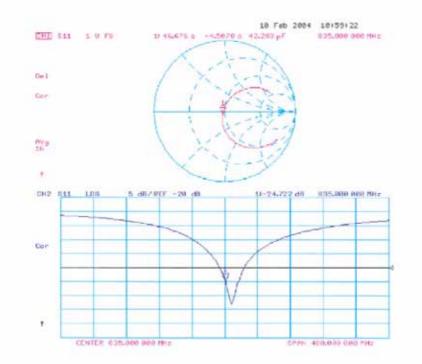
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN499

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Muscle 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.13, 6.13, 6.13); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
 Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 54.7 V/m; Power Drift = 0.002 dB Maximum value of SAR (interpolated) = 2.79 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.7 V/m; Power Drift = 0.002 dB Maximum value of SAR (measured) = 2.79 mW/g Peak SAR (extrapolated) = 3.82 W/kg SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.69 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sproton Int. (Auden)

Dbject(s)	D1900V2 - SI	N:5d041	
Calibration procedure(s)	QA CAL-05 v Calibration pr	2 ocedure for dipole validation kits	
Calibration date:	February 17,	2004	
Condition of the calibrated item	In Tolerance	according to the specific calibration	n document)
7025 International standard	ted in the closed laborat	E used in the calibration procedures and conformity of ory facility: environment temperature 22 +/- 2 degrees	
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03 Network Anatyzer HP 8753E	GB37480704 US37292783 MY41092317 100698 US37390585	6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilient, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03)	Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05
Calibrated by:	Name Judith Mueller	Function Technician	Signature
Approved by:	Kalja Pokovic	Laberatory Director	the litte
	The second s		Date issued: February 18, 2004
This calibration certificate is issue Calibration Laboratory of Schmid		ution until the accreditation process (based on ISO/IE/ AG is completed.	C 17025 International Standard) for

Schmid & Partner Engineering AG

S p e а g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1900V2

Serial: 5d041

Manufactured: July 4, 2003

Calibrated: February 17, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **head simulating liquid** of the following electrical parameters at 1900 MHz:

Relative Dielectricity	38.8	±5%
Conductivity	1.47 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.96 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue:

41.6 mW/g \pm 16.8 % (k=2)¹ **21.6 mW/g** \pm 16.2 % (k=2)¹

averaged over 10 cm3 (10 g) of tissue: 21.

1 validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.200 ns	(one direction)
Transmission factor:	0.993	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re\{Z\} = 51.2 \Omega$
	$Im \{Z\} = 4.9\Omega$
Return Loss at 1900 MHz	-26.1 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating tissue of the following electrical parameters at 1900 MHz:

Relative Dielectricity	52.5	$\pm 5\%$
Conductivity	1.58 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm ³ (1 g) of tissue:	42.0 mW/g \pm 16.8 % (k=2) ²
averaged over 10 cm3 (10 g) of tissue:	22.0 mW/g \pm 16.2 % (k=2) ²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$\operatorname{Re}\{Z\} = 46.6 \Omega$
	$Im \{Z\} = 5.1 \Omega$
Return Loss at 1900 MHz	-24.0 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.02

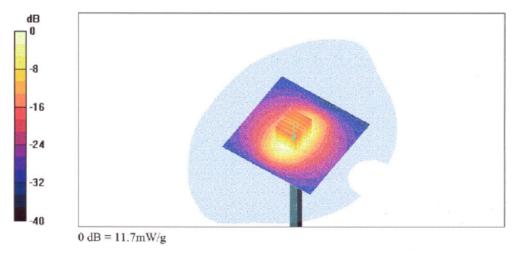
Page 1 of 1 Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

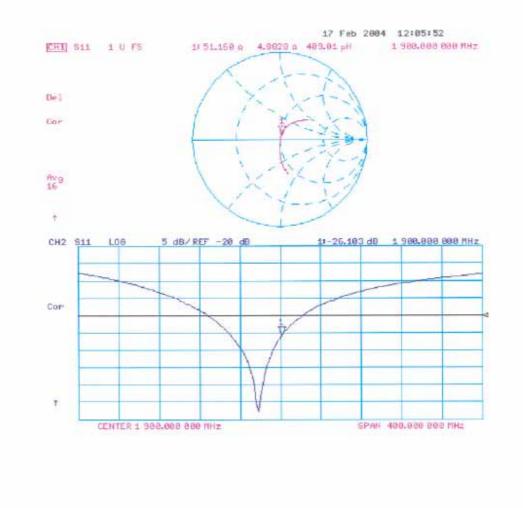
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

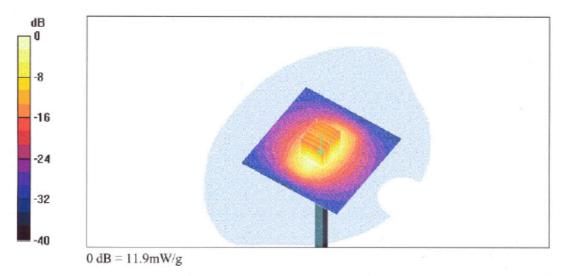
Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.7 mW/g

Page 1 of 1 Date/Time: 02/09/04 15:58:45

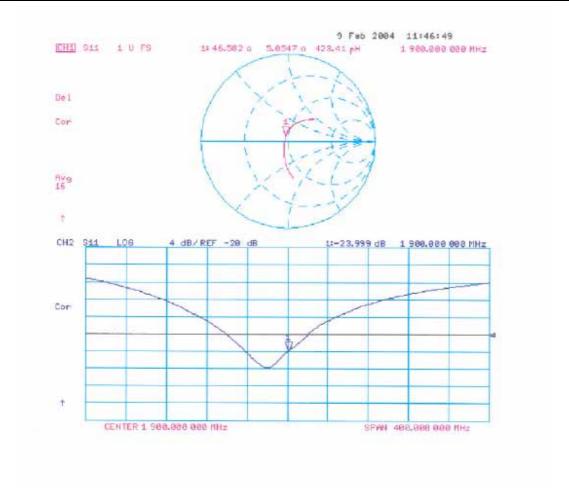
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 11.9 mW/gPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 3004 Zurich, Switzerland

	ERTIFICAT				
Jbject(s)	ET3DV6 - SN:1787				
Calibration procedure(s)	QA CAL-01 v2 Calibration procedure for dosimetric E-field probes				
Calibration date:	August 29, 200	03			
Condition of the calibrated item	In Tolerance (according to the specific calibration document)				
		ry facility: environment temperature 22 +/- 2 degrees	: Celsius and humidility < 75%.		
Calibration Equipment used (M&TE	critical for calibration)				
Model Type	0#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
RF generator HP 8684-G	US0642U01700 MY41495277	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apt-03 (METAS, No 252-0250)	In house check: Aug-05 Apr-04		
Power sensor E4412A Power sensor HP 8481A	MT41495211 MY41092180	2-Apr-03 (MC1A5, No. 252-0250) 18-Sep-02 (Agilent, No. 20020918)	Sep-03		
Power meter EPM E44198	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04		
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Aglent, No. 24BR1033101)	In house check: Oct 03		
Fluke Process Galbrator Type 702		3-5ep-01 (ELCAL, No.2360)	Sep 03		
	Name	Function	Signature		
	Nico Vetterf	Technicen	Dielle /		
Calibrated by:		the second s			
	Katja Pokovic	Caboratory Director	How With		
Calibrated by: Approved by:	Katja Pokovic	Subcratory Director	Dete issued: August 28, 200		

1

Test Report No 🔅 FA4O1206-2-2-02

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 Info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1787

Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1787				Augus	August 29, 2003		
DASY	- Parame	eters o	of Probe: ET3D	V6 SN:1	787		
Sensitiv	ity in Free	Space		Diode Co	mpressio	n	
,	NormX		62 μV/(V/m) ²		DCP X	94	mV
	NormY		1.63 µV/(V/m) ²		DCP Y	94	mV
	NormZ		96 μV/(V/m) ²		DCP Z	94	mV
Sensitivi	ty in Tissue	Simulat	ina Liquid				
Head	-	MHz	د= 41.5 ± 5%	6 o:	= 0.97 ± 5%	mho/m	
Valid for f=8	300-1000 MHz w	ith Head Tis	sue Simulating Liquid accordi	ing to EN 5036	1, P1528-200	x	
	ConvF X	6	5.5 ± 9.5% (k=2)		Boundary el	ffect:	
	ConvF Y	e	5.5 ± 9.5% (k=2)		Alpha	0.41	
	ConvF Z	e	5.5 ±9.5% (k=2)		Depth	2.23	
Head	1800) MHz	$\epsilon_r = 40.0 \pm 59$	- σ	= 1.40 ± 5%	mho/m	
Valid for f=	1710-1910 MHz	with Head T	issue Simulating Liquid accor	ding to EN 503	61, P1528-20	XOX	
	ConvF X	5	5.3 ± 9.5% (k=2)		Boundary e	ffect:	
	ConvF Y		5.3 ± 9.5% (k=2)		Alpha	0.43	
	ConvF Z		5.3 ± 9.5% (k=2)		Depth	2.90	
Bounda	ry Effect						
Head		0 MHz	Typical SAR gradient:	: 5 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without C	Correction Algorithm		8.6	4.8	
	SAR _{be} [%]	With Corr	rection Algorithm		0.2	0.4	
Head	180	0 MHz	Typical SAR gradient	: 10 % per mm	i .		
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]		Correction Algorithm		13.3	9.3	
	SAR _{be} [%]		rection Algorithm		0.2	0.1	
Sensor	Offset						
	Probe Tip to	Sensor Cer	nter	2.7		mm	
	Optical Surfa	ace Detectio	n	1.4 ± 0.2		mm	
			Page 2 of 10				