
Trimble Navigation Proprietary

TRIMTRAC CALIBRATION PROCEDURES

Trimble Navigation Proprietary

1 INTRODUCTION 1

1.1 Overview 1

1.2 Measurable Parameters 1

1.3 Calibration and Development Signals 2

1.4 Equipment Required 2

1.5 Terminology 2

2 PRE-CALIBRATION 4

3 AUTOMATIC FREQUENCY CORRECTION 5

3.1 Purpose 5

3.2 Theory 5

3.3 Example 6

4 AUTOMATIC GAIN CONTROL 8

4.1 Purpose 8

4.2 Theory 8

4.3 Example 8

5 RSSI CORRECTION 10

5.1 Purpose 10

5.2 Theory 10

5.3 Example 11

6 TRANSMIT POWER SCALING FACTORS 12

6.1 Purpose 12

6.2 Theory 12

6.3 Example 13

7 TRANSMIT POWER FREQUENCY COMPENSATION 14

7.1 Purpose 14

7.2 Theory 14

8 POST CALIBRATION 17

8.1 Leaving Test Mode 17

8.2 Storing Calibration Data 17

Trimble Navigation Proprietary

1 INTRODUCTION

1.1 Overview

This document describes a suggested calibration procedure for all of the measurable parameters of
the target platform in production.

Individual sections cover each procedure. Information on how the resultant calibration data may be
incorporated into the target platform is included in the relevant configuration manual for the
platform.

1.2 Measurable Parameters

The aim of the calibration procedure is to measure the following parameters:

Type Name See
Section

Size

SignedInt32 slopePPB 3
Int16 nominalAfcValue 3
Int16 gainControlCodeTable 4 RADIO_GAIN_TABLE_SIZE

SignedInt16 accurateRadioGainTable 4 RADIO_GAIN_TABLE_SIZE

SignedInt8 rssiCorrectionTable 5 BAND_SIZE (number of channels in
the band)

Int16 rampFactorTable 6 NUM_POWER_CONTROL_LEVELS

Int16 txFreqCompensation 7 BAND_SIZE/4

Note: the gainControlCodeTable, accurateRadioGainTable, rssiCorrectionTable,
rampFactorTable and txFreqCompensation contain “size” values for each of the supported
bands.

– 2 –

Tr

1.3 Calibration and Development Signals

The procedures describe use the following Calibration and Development (CalDev) signals:

• CalDevGsmReq & CalDevGsmCnf
• CalDevGsmFinishReq & CalDevGsmFinishCnf
• CalDevGsmRssiReq & CalDevGsmRssiCnf
• CalDevGsmFreqOffsetMeasReq & CalDevGsmFreqOffsetMeasCnf
• CalDevGsmSetPowerRampReq & CalDevGsmSetPowerRampCnf
• CalDevGsmDcOffsetReq & CalDevGsmDcOffsetCnf
• CalDevGsmGainProgramReq & CalDevGsmGainProgramCnf
• CalDevGsmBurstReq & CalDevGsmBurstCnf
• CalDevGsmSetAfcDacReq & CalDevGsmSetAfcDacCnf
• CalDevGsmSetBurstDataReq & CalDevGsmSetBurstDataCnf
• CalDevGsmRxControlReq & CalDevGsmRxControlCnf
• CalDevGsmRampScaleReq & CalDevGsmRampScaleCnf
• CalDevGsmSetBandModeReq

1.4 Equipment Required

The suggested equipment required is a PC with a GPIB card to control a Signal Generator and a
Power Meter, or appropriate GSM tester. The target will be controlled via the serial interface.

1.

Th

imble Navigation Proprietary

Figure 1 Typical calibration station

5 Terminology

e following abbreviations are used throughout this document:

GPIB

PC

Signal Generator
/ Power Meter

Target

RS232 RF
Cable

– 3 –

Trimble Navigation Proprietary

AFC Automatic Frequency Correction
AGC Automatic Gain Control
ARFCN Absolute Radio Frequency Channel Number
BBC Base Band Codec
DAC Digital to Analogue Converter
GKI Generic Kernel Interface
GPIB General Purpose Interface Bus
NVRAM Non Volatile Random Access Memory
RSSI Received Signal Strength Indication

– 4 –

Trimble Navigation Proprietary

2 PRE-CALIBRATION

Calibration may only be performed whilst the Layer 1 software running on the target platform is in
the TEST state, which may only be reached from the NULL state.

NULL state is a state where the application layer, protocol stack and layer 1 have been shutdown. How
this state is reached is dependent on the software build and hardware implementation, but it should
be possible to enter NULL state by sending a signal to the target from the PC using Genie.

If a full Application Layer build is running, an ApexEmEnterNullStateSig needs to be sent to the
Application Foreground Layer task. This will shutdown the Application Layer and Protocol Stack
and causes an MphDeactivateReq signal to be sent, shutting down Layer 1.

If a PS application build is being used then an MphDeactivateReq signal may be sent directly to the
Layer 1 Background task from Genie.

Figure 2 Excerpt of Layer 1 State Diagram

Prior to starting calibration, assuming that the platform is connected as illustrated in Figure 1 and in
the NULL state, there are two steps to perform:

• notify the target to process received signals
• place the target into the TEST state

NULL
STATE

TEST
STATE

ANY
STATE

MphDeactivateReq

CalDevGsmReq

CalDevGsmFinishReq

– 5 –

Trimble Navigation Proprietary

3 AUTOMATIC FREQUENCY CORRECTION

3.1 Purpose

Calibration of the AFC is carried out to ensure that the target’s clock frequency can correctly
synchronise to that of the network.

3.2 Theory

Because the relationship between the DAC and the clock frequency is an essentially linear one, the
AFC calibration of an individual target may be characterised by two parameters:

• a nominal value
• the gradient of the VCXO

The nominal value is the DAC value required to give a zero frequency offset between the target and
the signal generator tuned to the centre frequency of the mid-band channel. The gradient allows for
the calculation of the correct DAC value for all other frequency offsets.

The calibration procedure outlined assumes that a theoretical nominal value has been calculated for
the radio used.

Figure 3 AFC Calibration

fbMax

fbMin

0

Multiplier

Divisor

Frequency
offset

DAC
dacMin dacMax

theoretical
nominal

value

nominal
value

-500 +500

– 6 –

Trimble Navigation Proprietary

3.3 Example

Below is a description of how to calculate the AFC slope (slopePPB) and nominal value
(nominalAfcValue) using CalDevGsmFreqOffsetMeasReq and CalDevGsmFreqOffsetMeasCnf

signals. These signals measure frequency bursts to detect the frequency offset.

frequency = MID_CHANNEL_FREQUENCY + 0.0677083333 MHz /* see note 1 */
amplitude = -62dBm + CABLE_LOSS
SET Signal Generator TO frequency & amplitude WITH MODULATION_OFF
SEND CalDevGsmFreqOffsetMeasReq (MID_CHANNEL_ARFCN,
 dacMax)
WAIT FOR CalDevGsmFreqOffsetMeasCnf (freqBurstFound, frequencyOffset)

IF freqBurstFound = TRUE THEN
 fbMax = frequencyOffset
 SEND CalDevGsmFreqOffsetMeasReq (MID_CHANNEL_ARFCN,
 dacMin)
 WAIT FOR CalDevGsmFreqOffsetMeasCnf (freqBurstFound, frequencyOffset)

 IF freqBurstFound = TRUE THEN
 fbMin = frequencyOffset
 multiplier = dacMax - dacMin
 divisor = (-1) * (fbMax - fbMin) /* see note 2 */
 nominalAfcValue = dacMin + ((fbMin * multiplier) / divisor)
 slopePPB = (divisor / multiplier) * (10 / BAND)
 * ((AFC_DAC_MAX_STEPS * 1000) / AFC_DAC_SPAN) /* see note 3 */
 END IF
END IF

/*
** Note 1 : this simulates a frequency burst of all 1’s.
** Note 2 : the target reports how far away the network frequency is from where
** it expects it to be, we want to know how far away the target’s frequency
** is from where the network is - we could multiply either:
** each offset by -1 or the sum by -1.
** Note 3 : the AFC slope is calculated in units of PPB/Volt to remove the need for AFC
** data to be stored for each band.
*/

Where:

MID_CHANNEL_ARFCN is the middle channel of the GSM/DCS/PCS band.

MID_CHANNEL_FREQUENCY matches the selected mid channel ARFCN.

dacMax is normally set to the theoretical nominal value +500.

dacMin is normally set to the theoretical nominal value -500.

A GSM tester may be used instead of a signal generator. In both these cases freqBurstFound is true
when a frequency burst has been detected, but calDevGsmFreqOffsetMeasCnf.status will hold a
value of FO_CW_DETECTED if a signal generator has been used or FO_GSM_FB_DETECTED if a tester was
used and a frequency burst was detected. If a frequency burst is not detected the reported value will
be FO_NOT_MEASURED.

frequencyOffset is the measured offset relative to the target.

BAND is a value related to the frequency of the band in which the measurement has been performed: 9
for GSM, 18 for DCS and 19 for PCS.

– 7 –

Trimble Navigation Proprietary

AFC_DAC_MAX_STEPS is the maximum AFC DAC input value.

AFC_DAC_SPAN is the range of DAC output voltages in mV

– 8 –

Trimble Navigation Proprietary

4 AUTOMATIC GAIN CONTROL

4.1 Purpose

The range of levels seen at the antenna is assumed to be between -10dBm and -110dBm (this slightly
exceeds the range defined in GSM 05.05). The range acceptable at the input to the BBC is considerably
less.

Calibration of the AGC is required to ensure that received signals remain within the useable range of
the BBC.

4.2 Theory

To keep the software controller (and the calibration scheme) manageable the input dynamic range is
covered by n discrete gain steps, nominally m dB per step, where n and m are the values
RADIO_GAIN_TABLE_SIZE and STEP_SIZE respectively, as described in Section Error! Reference
source not found.. Associated with each step are two parameters:

• a gainControlCodeTable value
• an accurateRadioGainTable value

The gainControlCodeTable value is the gain word programmed to the radio to apply the correct
amount of gain to the signal to present the optimum level to the BBC. This optimum level is the
SET_POINT as described in Section Error! Reference source not found..

The accurateRadioGainTable value (measured in 1/16ths of a dB) is used to calculate the actual
received level based upon the level seen at the input to the BBC. The theoretical value for each
accurateRadioGainTable entry is given by the formula:

accurateRadioGainTable[step] = ((m x step) + (SET_POINT - -10)) x 16

4.3 Example

Calibration of the AGC

BBC Input
(dBm)

m

receiv
level

(step n discrete
steps

step 0

step n-1

-10dBm

-110dBm
Antenna
Input
(dBm)
 shou

dB

SET_POINT

accurateRadioGainTable[8]ed

8)
gainControlCodeTable[8]
Figure 4 AGC Calibration

ld be carried out at the mid-band frequency for each supported band.

– 9 –

Trimble Navigation Proprietary

Sending the signal CalDevGsmGainProgramReq, set to the GAIN_CODE_WRITE mode, with the required
step (gain number) and gain word will set the gain to be applied to the incoming signal.

Sending the CalDevGsmRssiReq, set to DM_RSSI_NORMAL mode, with the required ARFCN and gain
number, will measure the RSSI level seen at the BBC. The results are returned in the associated
CalDevGsmRssiCnf.

Below is a description of how the gainControlCodeTable and accurateRadioGainTable are
derived, using the CalDevGsmGainProgramReq, CalDevGsmGainProgramCnf, CalDevGsmRssiReq
and CalDevGsmRssiCnf signals. It is assumed that the STEP_SIZE is 4dBm.

bbcSetPoint = SET_POINT dBm
stepSize = 4dBm
initialLevel = -10dBm
frequency = MID_CHANNEL_FREQUENCY
FOR each supported band
 FOR step = 0 TO (RADIO_GAIN_TABLE_SIZE - 1)
 amplitude = (initialLevel - (step * stepSize))
 sgAmplitude = amplitude + CABLE_LOSS
 SET Signal Generator to frequency and sgAmplitude WITH GSM_MODULATION
 gainWord = validGainControlCodeValue[step]
 DO SEND CalDevGsmGainProgramReq (step, gainWord)
 WAIT FOR CalDevGsmGainProgramCnf
 SEND CalDevGsmRssiReq (MID_CHANNEL_ARFCN, step)
 WAIT FOR CalDevGsmRssiCnf (rssiLevel)

 IF rssiLevel != (bbcSetPoint +/- acceptableRssiError) THEN
 IF rssiLevel > bbcSetPoint + acceptableRssiError THEN
 Increase gainWord
 ELSE
 Decrease gainWord
 END IF
 END IF
 WHILE rssiLevel != (bbcSetPoint +/- acceptableRssiError)
 gainControlCodeTable [step] = gainWord
 accurateRadioGainTable [step] = 16*((rssiLevel/16) - amplitude)
 NEXT step
NEXT band

Where:

SET_POINT is a BBC specific constant (see section Error! Reference source not found.).

CalDevGsmGainProgramReq(step,gainWord) should be sent with mode set to GAIN_CODE_WRITE.

In order for the RSSI value returned in the CalDevGsmRssiCnf to be the value measured at the BBC
input, the value in the accurateRadioGainTable[] in the target used during the RSSI measurement
must be zero. This can be done using the CalDevGsmGainProgramReq signal with mode set to
ACCURATE_GAIN_WRITE and gainWord set to zero to temporarily overwrite the
accurateRadioGainTable[].

validGainControlCodeValue[RADIO_GAIN_TABLE_SIZE] contains the best guess gain word for a
given gain step in order to shorten the time to achieve the bbcSetPoint.

acceptableRssiError is used to determine how accurate a bbcSetPoint is to be achieved. To
improve the resolution, both of these signed values are in sixteenths of a dB.

– 10 –

Trimble Navigation Proprietary

5 RSSI CORRECTION

5.1 Purpose

RSSI correction is calibrated to ensure that received levels are reported accurately across the entire
frequency band.

5.2 Theory

RSSI correction calibration is performed across the supported band at one mid-range level (i.e. -
62dBm) and is measured in 1/16ths of a dB relative to that level.

The RSSI correction value is applied to the RSSI level calculated using the
accurateRadioGainTable[] to allow for accurate level reporting at all levels and at all frequencies.

Figure 5 RSSI Correction

ARFCN[1]

RSSI[1]
Actual Level
(-62dBm)

Observed Level

Frequency

Mid-Band
ARFCN

– 11 –

Trimble Navigation Proprietary

5.3 Example

amplitude = -62dBm
sgAmplitude = amplitude + CABLE_LOSS
FOR each supported band
 FOR loopCount = BOTTOM_CHANNEL TO TOP_CHANNEL
 frequency = frequencyMeasPoint(loopCount)
 SET Signal Generator TO frequency and sgAmplitude WITH GSM_MODULATION
 SEND CalDevGsmRssiReq (loopCount, MID_GAIN_NUMBER)
 WAIT FOR CalDevGsmRssiCnf (rssiLevel)
 rssiCorrectionTable[loopCount] = -1 * ((16*amplitude - rssiLevel)
 NEXT loopCount
NEXT band

Where:

MID_GAIN_NUMBER is RADIO_GAIN_TABLE_SIZE / 2 (i.e. 13 for Bright radios)

BOTTOM_CHANNEL is the lowest ARFCN in the band (i.e. for GSM 900 ARFCN 1 is used; for DCS 1800
ARFCN 512 is used; for PCS 1900 ARFCN 512 is used).

TOP_CHANNEL is the highest ARFCN in the band (i.e. for GSM 900 ARFCN 124 is used; for DCS 1800
ARFCN 885 is used; for PCS 1900 ARFCN 810 is used).

frequencyMeasPoint(loopcount) is the frequency of the selected ARFCN.

rssiLevel is the measured level.

Note: Using one entry per ARFCN allows the correction value to be determined quickly at the
expense of memory. If storage of calibration data is an issue then it may be preferable to measure the
correction values at a number of points across the band and interpolate to find the correction for a
specific ARFCN.

– 12 –

Trimble Navigation Proprietary

6 TRANSMIT POWER SCALING FACTORS

6.1 Purpose

Scaling factors are calibrated to ensure that the transmitted output power of the target meets the
levels specified in GSM 05.05 for each supported power control level.

Note: This assumes that the ramp profiles for each power level have been defined.

6.2 Theory

The target’s transmitted output power may be modified in two ways:

• modifying the ramp profile
• modifying the scaling factor

The amount of memory required by the ramp profiles precludes their inclusion in NVRAM (they are
stored in ROM) so modification of the ramp shapes would require an individual software build for
each target. Therefore, modification of the scaling factor associated with each ramp shape is used.

Figure 6 Scaling Factors

x
Scaling
Factor

Up
Ramp

Down
Ramp

Data

Time

Power

Required
Level

Defined
Ramp

Output
 Ramp

– 13 –

Trimble Navigation Proprietary

6.3 Example

FOR each supported band
 FOR powerLevel = FIRST_POWER_LEVEL TO LAST_POWER_LEVEL
 scalingFactor = DEFAULT_SCALING_FACTOR
 powerLevelAchieved = FALSE
 SEND CalDevGsmBurstReq (MID_CHANNEL_ARFCN,
 transmit NORMAL_BURST,
 powerControlLevel(powerLevel) | 0x0100)
 WAIT FOR CalDevGsmBurstCnf
 REPEAT
 SEND CalDevGsmRampScaleReq (scalingFactor)
 WAIT FOR CalDevGsmRampScaleCnf
 MEASURE measuredPowerLevel USING Power Meter
 measuredPowerLevel = measuredPowerLevel + CABLE_LOSS
 IF measuredPowerLevel IS WITHIN powerLevel +/- (tolerance) dBm THEN
 powerLevelAchieved = TRUE
 ELSE
 IF measuredPowerLevel < powerLevel THEN
 scalingFactor = scalingFactor + POWER_INCREMENT
 ELSE
 scalingFactor = scalingFactor - POWER_INCREMENT
 ENDIF
 ENDIF
 UNTIL powerLevelAchieved = TRUE
 rampFactorTable[powerControlLevel(powerLevel)] = scalingFactor
 NEXT powerLevel
NEXT band

Where:

FIRST_POWER_LEVEL is 5dBm for GSM900 or 0dBm for DCS1800/PCS1900

LAST_POWER_LEVEL is 33dBm for GSM 900 or 30dBm for DCS 1800/PCS1900

POWER_INCREMENT is an integer value, which would give a 1dBm change

MID_CHANNEL_ARFCN is the middle channel of the GSM/DCS/PCS band.

scalingFactor is the scaling factor to be applied to the stored power ramp

powerLevel is the output power level in dBm that is to be achieved. It is incremented by 2dBm every
time round the loop.

powerControlLevel(powerLevel) gives the associated power control level (0-31) for each
powerLevel in dBm, as given in 05.05. When the power control level is passed in
CalDevGsmBurstReq.txPowerLevel then bit 8 of this field should be set to 1 (e.g. for power control
level 5 send 133). This is so the dynamic scale factor sent in the CalDevGsmRampScaleReq is used
when calculating the power ramp, otherwise the default scale factor compiled into the target code
will be used.

– 14 –

Trimble Navigation Proprietary

7 TRANSMIT POWER FREQUENCY COMPENSATION

7.1 Purpose

Frequency compensation is calibrated to ensure that the transmitted output power of the target meets
the levels specified in GSM 05.05 across the supported frequency band.

7.2 Theory

Calibration of frequency compensation is typically performed at several points across all supported
bands at the highest supported power level where the specified tolerances are tightest.

The frequency compensation factor modifies the scaling factor in the following manner:

scalingFactor = (scalingFactor x frequencyCompensation) >> 15

Therefore: A frequency compensation of 0x8000 is unity.
A frequency compensation < 0x8000 lowers the output power.
A frequency compensation > 0x8000 raises the output power.

Figure 7 Frequency Compensation

ARFCN[5]

Required

Observed

Frequency Band

Mid-Band
ARFCN

Actual
Scaling
Factor

Required
Scaling
Factor

– 15 –

Trimble Navigation Proprietary

The frequency compensation is calculated from the actual (mid-band) scaling factor and the scaling
factor required to reach the required output power level at that particular frequency. With these two
factors the necessary frequency compensation may then be calculated thus:

txFreqCompensation[point] = (requiredScalingFactor[point] * 0x8000)
 actualScalingFactor

Frequency compensation is typically performed every 4 ARFCNs across the band to decrease the
amount of calibration data stored in NVRAM. Each band has NUM_CHANNELS/4 locations reserved in
the txFreqCompensation[] table, with each location giving the compensation value for four
ARFCNs.

It may be that measurements can be performed for a much reduced set of channels, using
interpolation to calculate the values between measured points. This will speed up calibration times at
the expense of accuracy.

The location in the array for a particular ARFCN is given by the following algorithm:

IF (BAND(arfcn) == EGSM)
 index = int(((1024 – MIN_EGSM_ARFCN + arfcn) MOD 1024) / 4)
ELSE IF (BAND(arfcn) == GSM)
 index = int(((NUM_EGSM_CHANNELS + 3) / 4) + (arfcn / 4))
ELSE IF (BAND(arfcn) == DCS)
 index = int(((NUM_EGSM_CHANNELS + NUM_GSM_CHANNELS + 3) / 4) + ((arfcn – 512) / 4))
ELSE
 invalid ARFCN
ENDIF

– 16 –

Trimble Navigation Proprietary

Example
The following is an example of how scaling factors maybe calculated for the top power level across a
supported frequency band.

FOR each supported band
 FOR loopCount = 0 TO CHANNELS_TO_CAL
 SEND CalDevGsmBurstReq (txArfcnList[loopCount],
 transmit NORMAL_BURST,
 HIGH_POWER_CONTROL_LEVEL | 0x0100)
 WAIT FOR CalDevGsmBurstCnf
 scalingFactor = rampFactorTable[HIGH_POWER_CONTROL_LEVEL]
 powerLevelAchieved = FALSE
 REPEAT
 SEND CalDevGsmRampScaleReq (scalingFactor)
 WAIT FOR CalDevGsmRampScaleCnf
 MEASURE measuredPowerLevel USING Power Meter
 measuredPowerLevel = measuredPowerLevel + CABLE_LOSS
 IF measuredPowerLevel IS WITHIN powerLevel +/- (tolerance)dBm THEN
 powerLevelAchieved = TRUE
 ELSE
 IF measuredPowerLevel < powerLevel THEN
 scalingFactor = scalingFactor + POWER_INCREMENT
 ELSE
 scalingFactor = scalingFactor - POWER_INCREMENT
 ENDIF
 END IF
 UNTIL powerLevelAchieved = TRUE
 CALCULATE txFreqCompensation[loopCount] USING rampFactorTable[] & scalingFactor
 NEXT loopCount
NEXT band

Where:

HIGH_POWER_CONTROL_LEVEL is 5 for GSM 900 and 0 for DCS1800.

rampfactorTable[] is the calibrated scaling factor.

txArfcnList[CHANNELS_TO_CAL] contains the list of ARFCNs that are to be calibrated (i.e. for GSM
900 ARFCN 1, 5, 9, 13, … 117, 121 are used; for DCS1800 ARFCN 512, 516, 520… 880, 884 are used; for
PCS1900 ARFCN 512, 516, 520… 804, 808 are used).

– 17 –

Trimble Navigation Proprietary

8 POST CALIBRATION

8.1 Leaving Test Mode

Once the calibration procedure has completed the target must be taken out of TEST mode. This may
be achieved in one of two ways:

• send a CalDevGsmFinishReq.
• power the target off

The target should respond to a CalDevGsmFinishReq with a CalDevGsmFinishCnf.

The target should now be in NULL state.

8.2 Storing Calibration Data

Once calibration is completed each data table can be stored in NVRAM on the target using signal
L1AlNvramWriteCalReq sent from the PC. This signal contains a Calibration ID field, CalDataId,
which is a reference giving the table that is being stored. It also includes a data array in which to
place the table data. NOTE: in the default code this array is 255 bytes long, which is not large enough
to contain the rssiCorrectionTable[] for the DCS or PCS bands. To store these items the target
code must be recompiled using a larger data array size.

A L1AlNvramWriteCalCnf will be returned indicating whether the data was written correctly.

To protect the calibration data area, data for each Calibration ID may only be stored once. If the
Calibration ID has already been used it is not possible to overwrite the data stored without erasing
the calibration NVRAM entirely. This may be performed using signal L1AlNvramEraseCalReq. A
L1AlNvramEraseCalCnf will be returned indicating whether the memory was erased correctly.

To read back data stored in NVRAM signal L1AlNvramReadCalReq should be used, specifying the
Calibration ID. A L1AlNvramReadCalCnf will be returned containing the data.

Once calibration data has been stored in NVRAM it will be used immediately.

	INTRODUCTION
	Overview
	Measurable Parameters
	Calibration and Development Signals
	Equipment Required
	Terminology

	PRE-CALIBRATION
	AUTOMATIC FREQUENCY CORRECTION
	Purpose
	Theory
	Example

	AUTOMATIC GAIN CONTROL
	Purpose
	Theory
	Example

	RSSI CORRECTION
	Purpose
	Theory
	Example

	TRANSMIT POWER SCALING FACTORS
	Purpose
	Theory
	Example

	TRANSMIT POWER FREQUENCY COMPENSATION
	Purpose
	Theory

	POST CALIBRATION
	Leaving Test Mode
	Storing Calibration Data

