# The 80350 Module Integration Guide

Version 0.02

| Prepared by: | Cros Fan      |
|--------------|---------------|
|              | Bing Xu       |
|              | Chester Liu   |
|              |               |
| Checked by:  | Dong-Ming Xia |
|              | Brian Pan     |
|              | Yan-Jing Ji   |
|              | Zheng-Bo Han  |
| Approved by: |               |

### Contents

| SAFE       | ΓΥ INFORMATION                                                                                                  | 4 |
|------------|-----------------------------------------------------------------------------------------------------------------|---|
| OVER       | VIEW                                                                                                            | 5 |
| DOCU       | MENT HISTORY                                                                                                    | 5 |
| REGU       | LATORY COMPLIANCE FCC                                                                                           | 6 |
|            | GRATION CONSIDERATIONS AND INSTALLATION REQUIREMENTS                                                            |   |
|            | CLAIMER                                                                                                         |   |
| 1. IN      | VTRODUCTION                                                                                                     | 6 |
| 1.1        | PRODUCT OVERVIEW                                                                                                |   |
| 1.2<br>1.3 | Key Features<br>Providing Multi-Band Operation                                                                  |   |
| 1.3        | SUMMARY OF FEATURES                                                                                             |   |
| 1.5        | General Design Guidelines                                                                                       |   |
|            | <ul> <li>5.1 Advanced tips for an RF friendly layout</li> <li>5.2 Audio Reference Design</li> </ul>             |   |
|            |                                                                                                                 |   |
|            | ECHNICAL SPECIFICATION                                                                                          |   |
| 2.1<br>2.2 | BLOCK DIAGRAM                                                                                                   |   |
| 2.2        | ABSOLUTE MAXIMUM RATINGS                                                                                        |   |
| 3. PI      | HYSICAL INTERFACES                                                                                              |   |
| 3.1        | Module Mounting to Host Board (Reference)                                                                       | 6 |
| 3.2        | CONNECTORS                                                                                                      |   |
| 3.3        | RF CONNECTION                                                                                                   |   |
| -          | <ul> <li>3.1 Coaxial Connector Option</li></ul>                                                                 |   |
| ma         | anufacturer specifications; for more details, please refer to the specifications of the part manufacturer. $IO$ |   |
|            | onnector Pin Assignment                                                                                         |   |
| 3.4        | ANTENNA                                                                                                         |   |
| 3.5        | CONTROL CONNECTOR SIGNAL DESCRIPTIONS AND FUNCTIONS                                                             |   |
| -          | 5.1 Module Power (Pins 41, 42, 43, 44 & 45)                                                                     |   |
| -          | 5.2 Reset Signal (Pin 55)<br>5.3 Power Control (pin 56)                                                         |   |
|            | 5.4 SIM Interface (pins 16, 17,18 & 19)                                                                         |   |
|            | 5.5 PCM Interface (pins 23, 24, 25 & 26)                                                                        | 6 |
|            | 5.6 Auxiliary Audio Interface                                                                                   |   |
|            | <ul> <li>5.7 Serial Interface UART0</li> <li>5.8 Debug communication(Pins 10, 31)</li> </ul>                    |   |
|            | SM/GPRS SERVICES                                                                                                |   |
| 4.1        | TRANSMISSION MODES FOR THE GSM/GPRS SERVICES                                                                    |   |
| 4.2        | Voice Communication                                                                                             |   |
| 4.3        | CIRCUIT-SWITCHED DATA                                                                                           | 6 |
| 4.4        | SHORT MESSAGE SERVICES(SMS)                                                                                     | 6 |
| 5. SI      | M OPERATION                                                                                                     | 6 |
| 5.1        | PROVISIONING THE SIM                                                                                            |   |
| 5.2<br>5.3 | GSM SUPPORTED SERVICES                                                                                          |   |
| 0.5        | GENG SUPPORTED SERVICES.                                                                                        | 0 |

| 5.4   | GSM MODES OF OPERATION                                                  | 6 |
|-------|-------------------------------------------------------------------------|---|
| 6. SO | DFTWARE INTERFACE                                                       | 6 |
| 6.1   | API INTERFACE                                                           |   |
| 6.2   |                                                                         |   |
|       | TUP AND INITIALIZATION                                                  |   |
| 7.1   | INITIALIZATION<br>1.1 Start HyperTerminal<br>1.2 Initialization Command | 6 |
| 7.1   | 1.1 Start HyperTerminal                                                 |   |
| 7.1   | 1.2 Initialization Command                                              |   |
| 72    | SEND SMS EXAMPLE                                                        | 6 |
| 7.3   | VOICE CALL EXAMPLE                                                      | 6 |
| 7.3   | VOICE CALL EXAMPLE                                                      |   |
| 7.3   | 3.2 MT                                                                  |   |
| 7.4   | GPRS PACKET EXAMPLES                                                    | 6 |
| REFER | RENCES                                                                  | 6 |
| ABBRE | EVIATION                                                                | 6 |

### Safety Precautions

Before you use the 80350 module, please carefully read this section to understand the correct method of use and ensure the safety of the holder, others and properties.

- Do not expose the 80350 module to open flames.
- Ensure that liquids do not spill onto the 80350 module.
- Do not use the 80350 module in an environment of extremely high or low temperature, otherwise, malfunctions may be caused.
- Using the 80350 module in an environment of moist or high humidity may cause malfunctions of the product.
- Do not drop or strongly impact the 80350 module; otherwise, malfunctions may be caused and the product cannot be used.
- Do not use the 80350 module near any electronic device vulnerable to interference. Otherwise, malfunctions of electronic device may result. Such electronic devices include medical electronic devices, such as hearing aids and pacemaker, fire alarms, auto doors and other automatic equipment. If you have to use the 80350 module near such devices, please first consult the manufacturers and dealers of these devices to avoid interference.
- Do not dispose the 80350 module as urban waste. For details, please refer to the local regulations for proper disposal of waste electronics.
- Do not attempt to disassemble the 80350 module; doing so will void the warranty. With the exception of the Subscriber Identification Module (SIM), this product does not contain consumer-serviceable components.
- The specifications of this product are subject to change due to improvement of its functionality without notice.

### **Overview**

This document is intended to offer the application developer a reference to the 80350 module's hardware and software specifications and interfaces.

### **Document History**

| Version | Date       | Author | Comments                                            |
|---------|------------|--------|-----------------------------------------------------|
| 0.00    | 09/05/2008 | PPD    | Draft                                               |
| 0.01    | 10/29/2008 | PPD    | Revised per TNL's comments and other<br>comments    |
| 0.02    | 11/25/2008 | PPD    | FCC/IC/CE compliance declaration<br>wording revised |
|         |            |        |                                                     |
|         |            |        |                                                     |
|         |            |        |                                                     |

### **Regulatory Compliance**

### **Declaration of Conformity**

This device meets the FCC Radiofrequency Emission Guidelines and is certified with the FCC as: Model number: 80350 FCC ID number: JUP80350000A. Industry Canada ID number: 1756A-8035000A Identification mark: 1588 (Notified Body) CE.

Person responsible for making this declaration: Brian Jackson, Trimble Navigation Ltd., 935 Steward Dr., Sunnyvale, CA 94085, USA.

### **Compliance with CE Rules and Regulations**

For compliance purposes, the label must show the CE Mark and Notified Body number. The product must be correctly installed in order to maintain compliance. The RF safety has been based on an MPE calculation; therefore, the device must be used at more than 20 cm (or 7.9 in.) from the body. Also, the compliance of the host product (containing the module) is the responsibility of the integrator who puts the host product on the market, and further testing may be required, with this module installed in the host device.

### **Compliance with FCC/IC Rules and Regulations**

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference, and that this device must accept any interference received, including interference that may cause undesired operation.

#### Caution

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

When incorporating the 80350 module in a host product, the integrator must ensure that the host product comply with relevant FCC requirements and regulations.

For mobile or fixed applications (with the device at least 20 cm or 7.9 in. distance from the body), the integrator is authorized to use the FCC/IC Grants and Certificates of this module for their host product if the module is integrated and installed in accordance with the conditions under which the module has been tested and certified. In this case the FCC label of the module shall be visible from the outside, or the host product shall bear a label making reference to the module inside (the label should state "Contains FCC ID JUP80350000A" or something to the effect). FCC RF safety regulations require a warning label prompting the user to keep the antenna of a device in operation at least 20 cm or 7.9 in. distance from the body.

#### Important

For portable applications (with the device less than 20 cm or 7.9 in. distance from the body), the integrator are required to have their host product certified to obtain its own FCC/IC Grants and Certificates. This is mandatory to meet the SAR requirements for portable wireless devices. See <u>www.fcc.gov/oet/rfsafety</u> for more information on RF exposure safety and product labeling requirements.

### Disclaimer

The 80350 module and the information and statement in this document, at the time of its publication, are in compliance with FCC, PTCRB, IC and CE rules and regulations. Liability from any usage that violates these rules and regulations is the sole responsibility of the user.

It is strongly recommended that the installation and tuning of the 80350 module be only undertaken by RF specialists with adequate experience and credentials. The reference design and suggested methods for installing and tuning the module shall not be deemed applicable under all possible environments and conditions of application; the manufacturer shall not be held liable for incorrect parameters or measurements as a result of egression from the range of environments and conditions considered by the manufacturer.

The manufacturer shall not be held responsible for bodily injuries or property damages as a result of installing and using the 80350 module.

### 1. Introduction

### **1.1 Product Overview**

The 80350 module is a highly integrated GSM/GPRS module, which has built-in support for RF, voice, power management, among other functionalities, and is in compliance with GSM/GPRS wireless communication standards.

### **1.2 Key Features**

The following table summarizes the main features of the 80350 module.

| Interface  | Data input/output interface                 | 80-pin connector                                                                                                                                                                |
|------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Primary serial port                         | full 9-pin, UART implementation                                                                                                                                                 |
|            | PCM Port                                    | Only support salve (only for Audio PCM)                                                                                                                                         |
|            | Voice                                       | Support 2 Audio In and 2 Audio out                                                                                                                                              |
|            | Antenna Interface                           | Ultra-miniature coaxial connector                                                                                                                                               |
|            | Command protocol                            | GSM AT command set (80350 GSM/GPRS Modem Module AT Command Specification)                                                                                                       |
|            | Subscriber Identification<br>Module (SIM)   | Optional 1.8/3 V mini-SIM carrier and interface on-board with SIM detect                                                                                                        |
| Power      | Electrical power                            | 3.55V to 4.2V (VBATT)                                                                                                                                                           |
|            | Peak currents and average power dissipation | Refer to the Operating Power table in the summary of features<br>for peak currents and average power dissipation for various<br>modes of operation.                             |
| Radio      | Frequency bands                             | EGSM 900, GSM1800, GSM 850 and GSM 1900 capability.                                                                                                                             |
| Features   | GSM/GPRS features<br>supported              | Provides for all GSM/GPRS authentication, encryption, and frequency hopping algorithms. GPRS Coding Schemes CS1-CS4 supported. Multi-Slot Class 10 (4RX/2TX, Max 5 Slots)       |
| Regulatory | Agency approvals                            | <ul> <li>GCF Type Approval</li> <li>PTCRB Type Approval</li> <li>FCC Certification</li> <li>CE (<i>Conformité Européenne</i>)</li> <li>IC (Industry Canada) Approval</li> </ul> |

| GSM/GPRS<br>Functionality | <ul> <li>Mobile-originated and mobile-terminated SMS messages: up to 140 bytes or up to 160 GSM<br/>7-bit ASCII characters.</li> <li>Reception of Cell Broadcast Messages</li> <li>SMS Receipt acknowledgement</li> <li>Circuit Switched Data (Transparent &amp; Non-transparent up to 9.6 Kbps)</li> <li>Voice (EFR, FR, HR, and AMR)</li> <li>Supports Unstructured Supplementary Service Data (USSD)</li> <li>Multi-Slot Class 10 Supported (4Rx/2TX, 5 Slot Max)</li> <li>PBCCH/PCCCH supported</li> </ul> |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audio<br>Features         | <ul> <li>Microphone biasing</li> <li>2 Analog Audio Input</li> <li>2 Analog Audio Output</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |
| SIM                       | 1.8/3 V Mini-Subscriber Identity Module (SIM) compatible                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### **1.3 Providing Multi-Band Operation**

The 80350 module supports quad-band GSM operation: 850/900/1800/1900MHz.

### **1.4 Summary of Features**

#### Mechanical:

| Dimensions | 45.7 mm x 34.1 mm x 3.5 mm (not including mounting tabs) |  |
|------------|----------------------------------------------------------|--|
| Weight     | 8.1 g                                                    |  |

#### Packet Data Transfer:

| Protocol                                    | GPRS Release 97             |
|---------------------------------------------|-----------------------------|
| Coding Schemes                              | CS1-CS4                     |
| Multi-Slot Capability: (Demonstrated @MS10) | MS10 (4RX/2TX, Max 5 Slots) |
| Packet Channel Support                      | PBCCH/PCCCH                 |

#### **Circuit Switched Data Transfer:**

| V110            | 300 bps/1200 bps/2400 bps/4800 bps/9600 bps/14,400 bps |
|-----------------|--------------------------------------------------------|
| Non-Transparent | 300 bps/1200 bps/2400 bps/4800 bps/9600 bps/14,400 bps |

#### Short Message Services:

| GSM SMS  | MO, MT, CB, Text and PDU Modes |
|----------|--------------------------------|
| GPRS SMS | MO, MT, CB, Text and PDU Mode  |
|          |                                |

#### Voice Capability:

| Speech Codec | EFR, FR, HR, and AMR |
|--------------|----------------------|
|              |                      |

#### **GSM/GPRS** Radio Performance Multi-Band:

| Radio Frequencies              | 850 MHz, 900 MHz, 1800 MHz and 1900 MHz |
|--------------------------------|-----------------------------------------|
| Sensitivity                    | <-102 dBm (Typical GPRS CS1)            |
| 850 & 900 MHz Transmit Power   | Class 4 (2 W)                           |
| 1800 & 1900 MHz Transmit Power | Class 1 (1 W)                           |

#### System Requirements:

| Host Interface | Serial Interface |  |
|----------------|------------------|--|
| DC Voltage     | 3.55 to 4.2 V    |  |

#### **Application Interface:**

| Host Protocol      | AT Commands                                |  |
|--------------------|--------------------------------------------|--|
| Internal Protocols | UDP stack, TCP/IP stack, PPP, PAD and CMUX |  |
| Physical Interface | 1 serial (primary) and I <sup>2</sup> C    |  |
| Audio Interface    | Microphone biasing                         |  |
|                    | 2 Analog Audio Input                       |  |
|                    | 2 Analog Audio Output                      |  |

#### SIM Interface:

| _ |                   |                           |
|---|-------------------|---------------------------|
|   | Remote SIM Option | 1.8/3-Volt SIM Capability |
|   |                   |                           |

#### **Environmental:**

| Compliant Operating Temp | -20 °C to 60 °C (Fully GSM Spec Compliant) |
|--------------------------|--------------------------------------------|
| Operating Temperature    | -20 °C to 70 °C                            |
| Storage Temperature      | -40 °C to 85 °C                            |
| Humidity                 | 5 to 95% non-condensing                    |

#### EMC:

| Emissions FCC Parts 15 Class B & 22 & 24, IC & CE |
|---------------------------------------------------|
|---------------------------------------------------|

# Operating Power (Typical): GSM Operation

| GSM 850/900 (1 RX/1 TX, full power) | 66 mA min, 221 mA average, 1.23 A peak |
|-------------------------------------|----------------------------------------|
| GSM 1800 (1 RX/1 TX, full power)    | 59 mA min,170 mA average, 775 mA peak  |
| GSM 1900 (1 RX/1 TX, full power)    | 58 mA min,161 mA average, 711mA peak   |
| Idle                                | <5 mA Average                          |
| Shutdown                            | <1mA                                   |

#### **GPRS Operation Power**

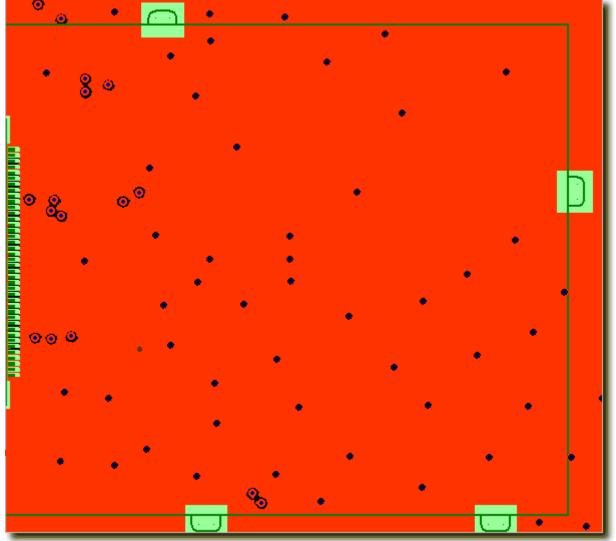
| EGSM 850/900 (4 RX/1 TX, full power) | 146 mA min, 247 mA average, 1.28 A peak |
|--------------------------------------|-----------------------------------------|
| EGSM 850/900 (2 RX/2 TX, full power) | 71 mA min, 370 mA average, 1.28 A peak  |
| GSM 1800 (4 RX/1 TX, full power)     | 159mA min, 193 mA average, 796 mA peak  |
| GSM 1800 (2 RX/2 TX, full power)     | 112 mA min, 259 mA average,786 mA peak  |
| GSM 1900 (4 RX/1 TX, full power)     | 154 mA min, 185 mA average, 751mA peak  |
| GSM 1900 (2 RX/2 TX, full power)     | 60 mA min, 246 mA average, 736mA peak   |
| Idle                                 | <5 mA average                           |
| Shutdown                             | <1mA                                    |
|                                      |                                         |

#### **GSM Transmit Power:**

| 1800/1900 MHz | GSM Power Class 1 (30 dBm ± 2 dB @ antenna connection  |
|---------------|--------------------------------------------------------|
| 850/900 MHz   | GSM Power Class 4 (33 dBm ± 2 dB @ antenna connection) |

#### **GSM/GPRS** Receiver Sensitivity (Typical):

| 1800/1900 MHz | <-102 dBm, GPRS Coding Scheme 1 (CS1) |
|---------------|---------------------------------------|
| 850/900 MHz   | <-102 dBm, GPRS Coding Scheme 1 (CS1) |

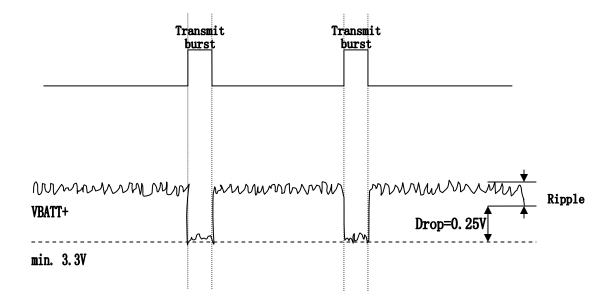

## 1.5 General Design Guidelines

### 1.5.1 Advanced tips for an RF friendly layout

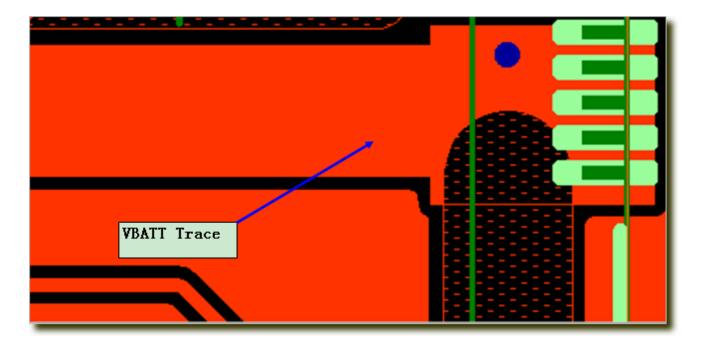
### 1.5.1.1 Ground Plane

When designing the 80350 module into the host application, special care must be taken regarding the design of grounding on the host PCB. Proper grounding of the module' is an essential part of any good application, as it can very effectively keep EMI in check and ensure good heat dissipation. An example is shown in the drawing below:

- 1. It is recommended that the entire board space underneath the 80350 module be made the ground plate with sufficient ground vias, and this ground be adequately connected to the mounting tab ground. In doing so, good connectivity can be achieved between the module's ground and that of the host board.
- 2. Running traces beneath this ground plate is strongly discouraged.




#### 1.5.1.2 Antenna and RF Signal Trace

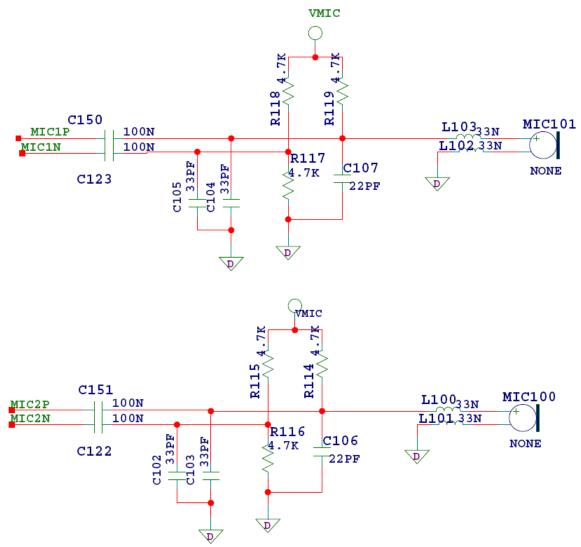

For best antenna performance, please ensure that the antenna's RF trace be designed to be 50 ohm special impedance line, and that there are a sufficient number of ground holes around the antenna impedance line and connector. Keep other traces of the module and the host board as far from this impedance line as possible. It should be avoided that other traces run in parallel to or cross the antenna impedance line. The antenna should be kept away metallic components.

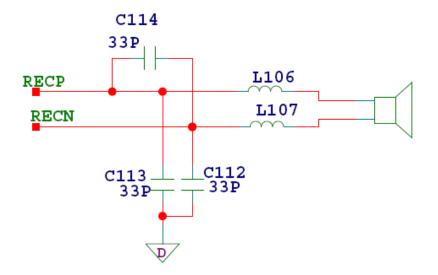
#### 1.5.1.3 Vbatt Input

The power supply of the 80350 module is of critical importance to the module's stability and safety. The 80350 module encompasses all working elements of GSM. It is recommended that the width of power trace be greater than 2 mm, and that a sufficiently large capacitor be placed in the nearest vicinity of the Power pin (two 1000uF capacitors, preferably, low ESR Tantalum capacitors) in order to cope with bursts during GSM operation (such bursts cause voltage transients as shown in the figure below).



The following picture shows an example of the power supply trace for the module. The trace covers the entire power pin of the module. The wide trace is intended to minimize voltage drop over the trace.



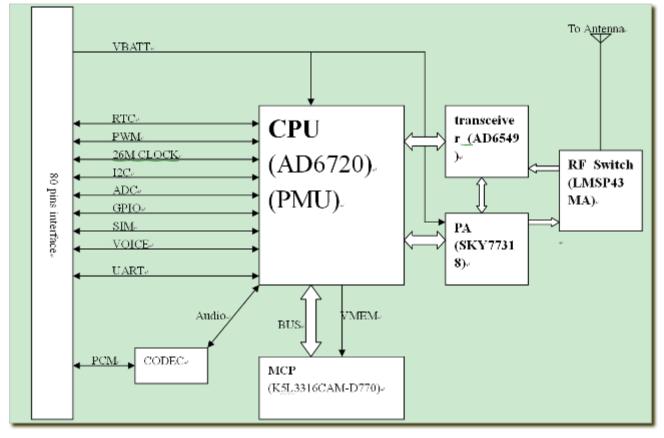


### 1.5.2 Audio Reference Design

#### 1.5.2.1 Audio schematics

The audio quality is very much dependent on the circuit design and layout. As an aid to obtaining good audio quality, a reference design has been included below.

- 1. Please serially place a Bead on Audio In/Out (see in the following circuit: L100, L101, L102, L103, L106 and L107) in order to reduce GSM TDD noise. Bead (100MHz, R>=1K ohm) is recommended.
- 2. Add a small capacitor on each audio trace. This small capacitor is for further reducing the TDD noise. The typical value of capacitance is 10pF to 100pF. The actually value needs to be tuned based on the location and layout of the audio circuitry.
- 3. The suggested locations of the capacitors and Bead are in the vicinity of Microphone and Receiver, rather than the module.
- 4. Maintain proper separation of the Audio In reference ground from the Audio Out reference ground so as to minimize ECHO coupling in the circuitry.
- 5. Microphone and Receiver should be physically separated from one another, e.g., on the two far ends of the evaluation board, as the spatial coupling of voice signal may occur, resulting in ECHO or screeching sound.






#### 1.5.2.2 Audio Layout

Audio signals are very weak and are in the category of weak analog signals; they are extremely susceptible to interference from digital signals. Therefore, it is suggested that audio signal traces follow the same layer differential trace layout method, and be kept far away from strong digital signals (e.g., power signal, RF related signal, CLK signal and high-speed Bus).

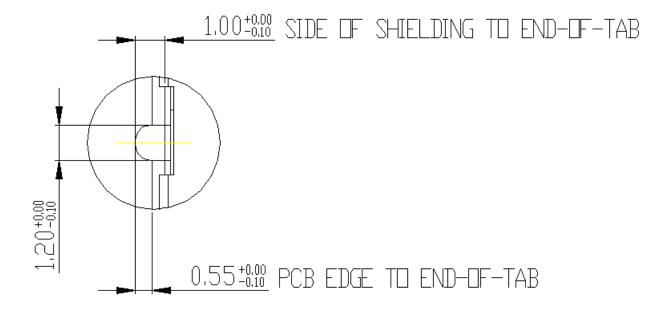
## 2. Technical Specification

### 2.1 Block Diagram

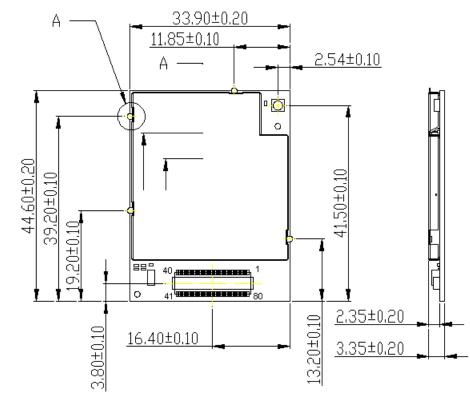


### 2.2 Hardware Key Parts

| Part                                                          | Description                                                |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--|--|
| CPU                                                           | IC-CPU,AD6720ABCZ-RL,GP,BGA,TAP,39MHZ,289PIN,ADI           |  |  |
| Memory IC-MEMORY,K5L3316CAM-D770,GP,FBGA,TRAY,SAMSUNG         |                                                            |  |  |
| Transceiver                                                   | IC-RF,AD6549BCPZ,GP,LFCSP,TAP,32PIN,GSM850/900 DCS/PCS,ADI |  |  |
| RF Switcher IC-RFSW,LMSP43MA-271TEMP,GP,QFN,TAP,16PIN,GSM,MUF |                                                            |  |  |
| SAW-Filter FILTER,SAFED881MFL0F05R00,GP,881.5MHZ,5P,MURATA    |                                                            |  |  |
| SAW-Filter                                                    | FILTER,SAFED1G96FA0F00R00-GP,GP,1.96GHZ,5P,MURATA          |  |  |
| SAW-Filter                                                    | FILTER,SAFED942MFM0F00R00-GP,GP,942.5MHZ,5P,MURATA         |  |  |
| SAW-Filter FILTER,SAFED1G84FB0F00R00-GP,GP,1842.5MHZ,5P,MURAT |                                                            |  |  |
| Oscillator                                                    | XTAL,MC-146,GP,32.768KHZ,20PPM,12.5PF,EPS                  |  |  |
| TCXO XTAL,TTS18VSG-A5,GP,26MHZ,10PPM,3.5PF,TOKYO              |                                                            |  |  |
| RF-PA                                                         | IC-RF,SKY77318,GP,TAP,20PIN,GSM900/GSM850,SKYWORKS         |  |  |
| B2B Connector                                                 | CONN,AXK880125WG,GP,80PIN,SMD,TAP,FPC,MA                   |  |  |
| RF Connector                                                  | CONN,CL331-0471-0-10,GP,ML,2PIN,SMD,TAP,HRS                |  |  |


### 2.3 Absolute Maximum Ratings

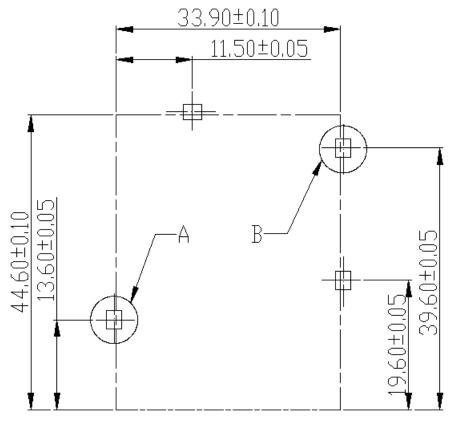
The absolute maximum ratings stated in following Table are stress ratings under any conditions. Stresses beyond any of these limits will cause permanent damage to the 80350 module.


| Parameter                                   | Min  | Max                 | Unit |
|---------------------------------------------|------|---------------------|------|
| Supply Voltage BATT                         | -0.3 | 5.5                 | V    |
| Voltage at digital pins in POWER DOWN mode  | -0.3 | 0.3                 | V    |
| Voltage at digital pins in normal operation | -0.3 | 3.05 or<br>VEXT+0.3 | V    |
| Voltage at analog pins in POWER DOWN mode   | -0.3 | 0.3                 | V    |
| Voltage at VCHARGE pin                      | -0.3 | 5.5                 | V    |
| VSENSE                                      |      | 5.5                 | V    |
| ISENSE                                      |      | 5.5                 | V    |
| VRTC                                        | -0.3 | 5.5                 | V    |

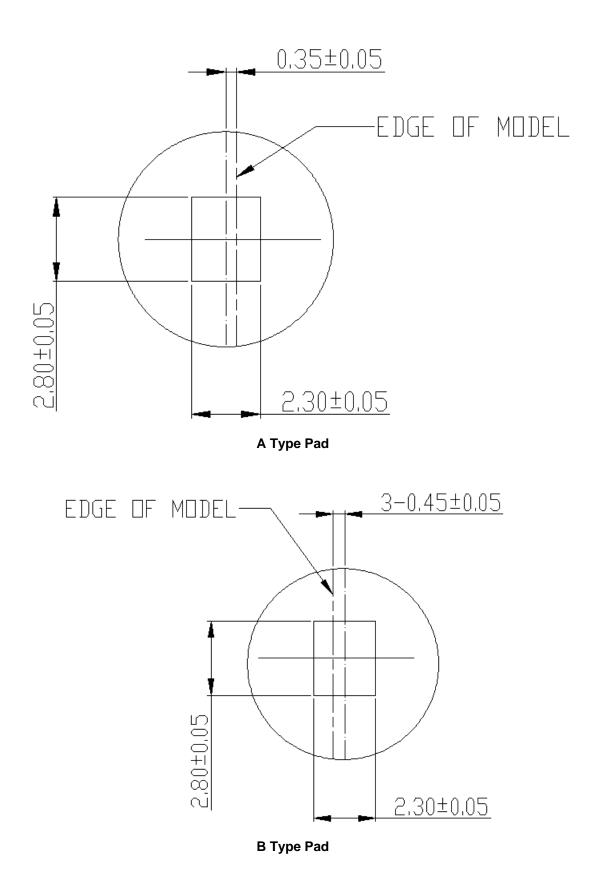
Operating Rating: -20°C to +70°C Storage Temperatures: -40°C to +85°C

### 3. Physical Interfaces



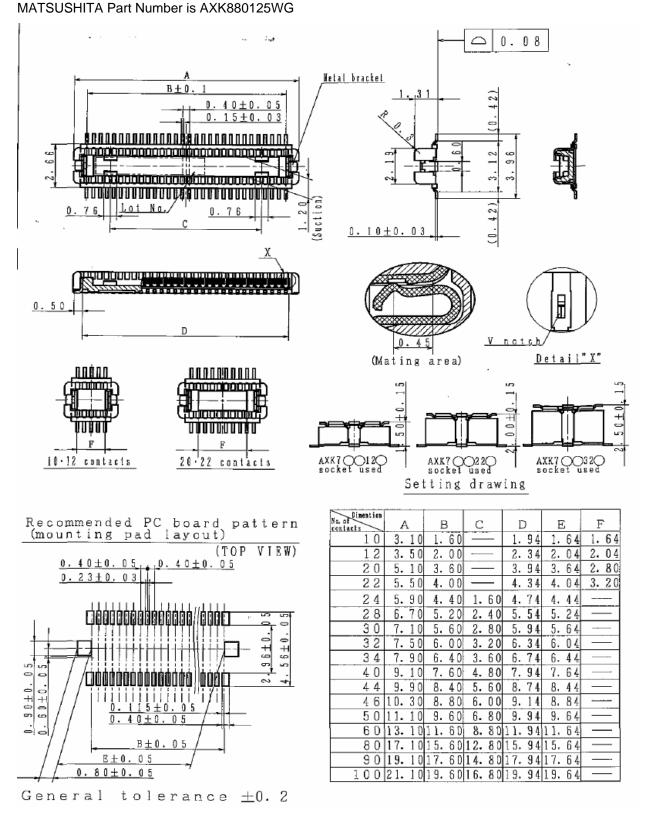

**Mounting Tabs** 



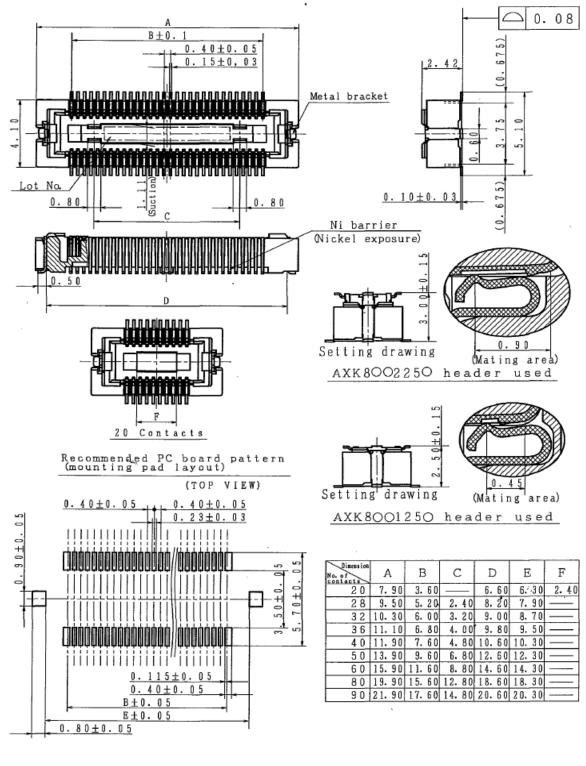

80350 Dimension (mm)

### 3.1 Module Mounting to Host Board (Reference)

The module provides mounting tabs that needs to be soldered to a PCB. These tabs provide circuit grounding for the module.




Host Board Layout



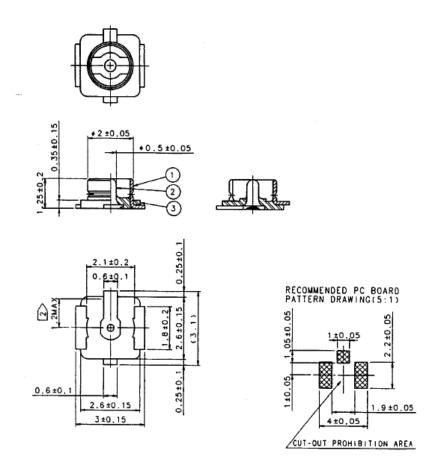

### 3.2 Connectors

On the 80350 module: CONN,AXK880125WG,GP,80PIN,SMD,TAP,FPC,MAT Modem module manufacturer Part Number is 6012A0190101.



**On the Host**: CONN,AXK780327G,GP,x,80PIN,SMD,TAP,FPC,MAT Modem module manufacturer Part Number = 6012A0190001 MATSUSHITA Part Number is AXK780327G




General tolerance  $\pm 0.2$ 

Note: The above information regarding the connector and mating connector are taken from the pertinent manufacturer specifications; for more details, please refer to the specifications of the part manufacturer

### 3.3 RF Connection

### 3.3.1 Coaxial Connector Option

**On the module:** GP,ML,2PIN,SMD,TAP Internal Part Number = 6012A0189501 HIROSE: CL331-0471-0-10



**3.3.2** Note: The above information regarding the connector and mating connector are taken from the pertinent manufacturer specifications; for more details, please refer to the specifications of the part manufacturer.

### I/O Connector Pin Assignment

The following table shows the pin assignment on the input/output connector.

| Pin             | I/O    | 80350 Define         | Description (Default function / secondary function) |
|-----------------|--------|----------------------|-----------------------------------------------------|
| 1               | Ground | DGND                 | Ground                                              |
| 2               | Giouna | Reserved             | Floating                                            |
| 3               |        | NC                   | No connect                                          |
| 4               | Ground | DGND                 | Ground                                              |
| 5               | Giouna | Reserved             | Floating                                            |
| 6               |        | Reserved             | Floating                                            |
| 7               |        | Reserved             | Floating                                            |
| 8               |        | Reserved             | Floating                                            |
| 9               |        | Reserved             | Floating                                            |
| 10              |        | DBGTX                | Debug TX                                            |
| 11              |        | Reserved             | Floating                                            |
| 12              |        | NC                   | No connect                                          |
| 12              |        | NC                   | No connect                                          |
| 13              |        | Reserved             | Floating                                            |
| 14              |        | NC                   | No connect                                          |
| 15              |        | SIM_CLK              | SIM interface clock                                 |
| 16              |        | SIM_CLK              | SIM Interface clock                                 |
| 17              |        | SIM_VCC              | SIM Interface data                                  |
|                 |        |                      | SIM interface reset                                 |
| 19              |        | SIM_RST              |                                                     |
| 20              |        | NC<br>NC             | No connect                                          |
| 21              |        | NC                   | No connect                                          |
| 22              |        |                      | No connect                                          |
| 23<br>24        |        | PCM_CLK<br>PCM_SYNC  | PCM interface clock                                 |
|                 |        | PCM_STNC             | PCM interface sync<br>PCM interface RXD             |
| 25<br>26        |        | PCM_RAD<br>PCM TXD   | PCM Interface TXD                                   |
| 20              |        |                      |                                                     |
| 27              |        | Reserved<br>Reserved | Floating<br>Floating                                |
| 20              |        | Reserved             | Floating                                            |
| 30              | UART   | Reserved<br>RXD0     |                                                     |
|                 | UART   | DBGRX                | Serial data input                                   |
| 31              | UART   | TXD0                 | Debug RXD<br>Social data autout                     |
| 32              | UART   | -                    | Serial data output                                  |
| <u>33</u><br>34 |        | Reserved<br>Reserved | Floating                                            |
|                 |        |                      | Floating<br>Floating                                |
| 35              | Cround | Reserved             | 0                                                   |
| 36<br>37        | Ground | DGND                 | Ground                                              |
|                 | Ground | DGND<br>DGND         | Ground                                              |
| 38              | Ground | DGND                 | Ground                                              |
| 39              | Ground |                      | Ground                                              |
| 40              | Ground |                      | Ground                                              |
| 41              | Power  | VBATT<br>VBATT       | Power                                               |
| 42              | Power  |                      | Power                                               |
| 43              | Power  | VBATT                | Power                                               |
| 44              | Power  | VBATT                | Power                                               |
| 45              | Power  | VBATT                | Power                                               |

| 46 |        | Reserved  | Floating               |
|----|--------|-----------|------------------------|
| 47 | UART   | RING0     | ring indicate          |
| 48 | UART   | DSR0      | Data set ready         |
| 49 | UART   | RTS0      | Ready to send          |
| 50 | UART   | DTR0      | Data terminal ready0   |
| 51 |        | Reserved  | Floating               |
| 52 | UART   | CTS0      | Clear to Send          |
| 53 |        | Reserved  | Floating               |
| 54 | UART   | DCD0      | Data carrier detect    |
| 55 | 1      | /RESET    | External Reset input   |
| 56 | 0      | POWER_KEY | Power Key              |
| 57 | Ground | AGND      | Ground                 |
| 58 | Analog | MIC1N     | Auxiliary Audio input  |
| 59 | Analog | MIC1P     | Auxiliary Audio input  |
| 60 | Analog | MIC2P     | Auxiliary Audio input  |
| 61 | Analog | MIC2N     | Auxiliary Audio input  |
| 62 | Analog | SPKN      | Auxiliary Audio output |
| 63 | Analog | SPKP      | Auxiliary Audio output |
| 64 | Analog | RECP      | Auxiliary Audio output |
| 65 | Analog | RECN      | Auxiliary Audio output |
| 66 |        | Reserved  | Floating               |
| 67 | Power  | Reserved  | Floating               |
| 68 |        | NC        | No connect             |
| 69 |        | NC        | No connect             |
| 70 |        | Reserved  | Floating               |
| 71 |        | NC        | No connect             |
| 72 |        | NC        | No connect             |
| 73 |        | NC        | No connect             |
| 74 |        | Reserved  | Floating               |
| 75 |        | Reserved  | Floating               |
| 76 |        | Reserved  | Floating               |
| 77 |        | NC        | No connect             |
| 78 |        | Reserved  | Floating               |
| 79 |        | NC        | No connect             |
| 80 | Ground | DGND      | Ground                 |

I = Input;

O = Output;

NC = No connect

### 3.4 Antenna

The 80350 module has an RF antenna interface; for its specification, please refer to Section 3.3.1. Note that this RF connector is a connector only, and is not a switch. Through this connector, various RF performance parameters of the module can be measured.

### 3.5 Control Connector Signal Descriptions and Functions

### 3.5.1 Module Power (Pins 41, 42, 43, 44 & 45)

The 80350 module requires a single power supply and no additional working power supply is required. The relevant parameters are defined in the following table.

The module has multiple LDOs (Low Drop Linear Voltage Regulators) inside, which support various different working units, including internal memory, GSM RF, CPU, IO ports, audio, etc. Therefore, the 80350 module depends heavily on external power supply, which directly impacts, the stability and RF performance parameters of the module. Please carefully follow the description of power supply and ground in Sections 1.5.1 and 1.5.3.

The 80350 module uses a single voltage source of VBATT = +3.55V to 4.2V.

| VBATT               | Parameters/Conditions | Min. | Тур. | Max. | Units |
|---------------------|-----------------------|------|------|------|-------|
| Main Battery Supply | Voltage In Regulation | 3.55 | 3.8  | 4.2  | Vdc   |

#### Minimizing Power Loss

The measurement network monitors outburst and inburst values. The drop is the difference of both values. The maximum drop (Dmax) since the last start of the module will be saved. In IDLE and SLEEP mode, the module switches off if the minimum battery voltage (V<sub>batt</sub>min) is reached. Example:

 $\begin{array}{l} V_{imin} = 3.3V \\ Dmax = \ 0.25 \ V \\ V_{batt}min = V_{imin} + Dmax \\ V_{batt}min = 3.3V + 0.25V = 3.55V \\ For Example: \end{array}$ 

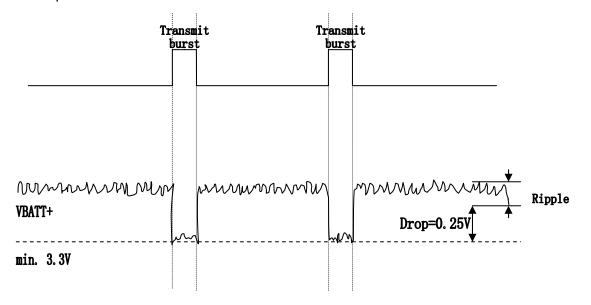



Figure : Power supply limits during transmit burst

### 3.5.2 Reset Signal (Pin 55)

The Reset signal is an input to the 80350 module. It is used to reset the module during emergency situations; the signal is Low active..

When the module is running in a undefined or uncontrollable state, it can be reset by forcefully pulling Low the RESET signal port. It should be noted that all pending processes will be aborted, and hence, will need to be restarted.

Note: During normal module operation, please do not operate on the RESET signal pin. The following diagram shows the relevant signal timings in the module during its Power-On/Power-Off

#### Power-On / Power-Off and RESET Scenarios

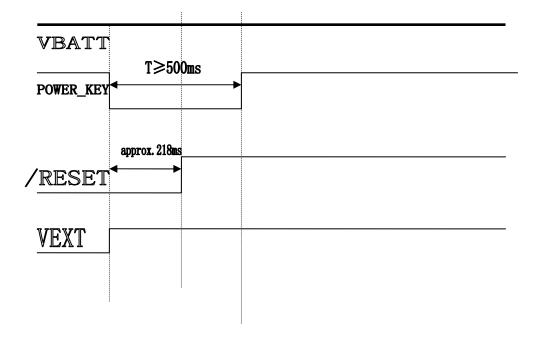



Figure : Power-on and reset with operating voltage at VBATT

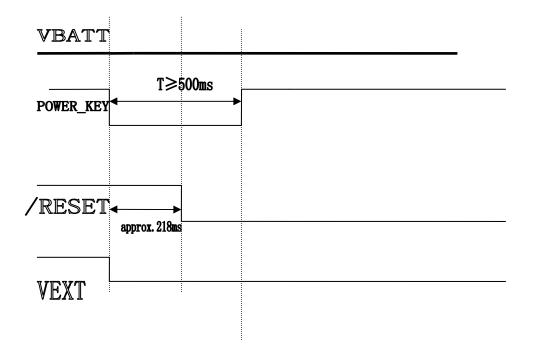


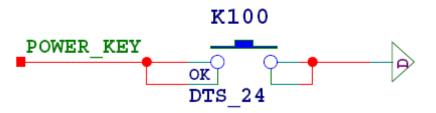

Figure : Power-Off and RESET with operating voltage at VBATT

### 3.5.3 Power Control (pin 56)

The input is equivalent to a "phone ON-button". A falling-edge on this Active-Low input will switch-ON the module or switch-OFF the module after a delay.

Please see the "Power-On / Power-Off and RESET Scenarios"

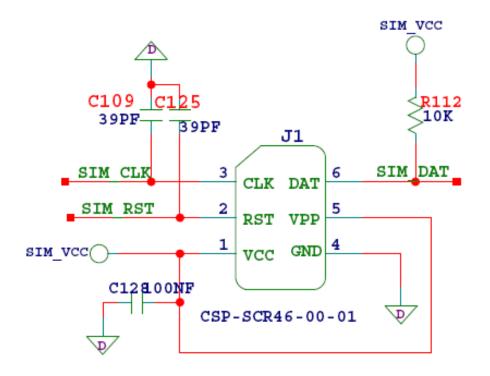
#### 3.5.3.1 Power On


Pulling the POWER\_KEY line on the module LOW for at least 500 msec (after Vbatt is applied and stabilized) is required to turn it ON.

#### 3.5.3.2 Power Off

The module can be turned off by a low pulse on the POWER\_KEY pin.

#### 3.5.3.3 Using the Power Control Signal


Typical use powering module on/off with a switch:

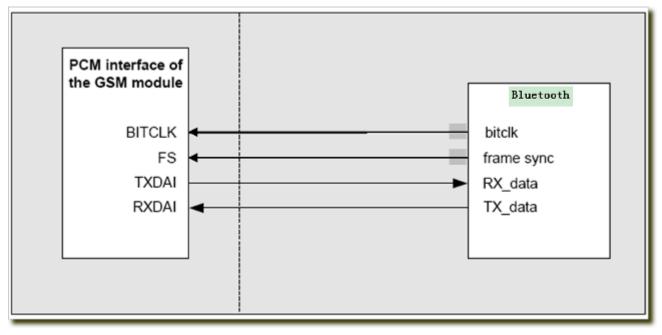


### 3.5.4 SIM Interface (pins 16, 17,18 &19)

The 80350 module's built-in baseband processor has SIM card interface support compatible with ISO7816 IC card standard. Each of the SIM card pins is connected to the corresponding pins of the baseband processor; please refer to pin assignment defined in a preceding section. The following figure shows a reference connection scheme of the SIM card slot, where C109,C125 and R112 are reserved, and are only used when tuning to reduce EMI The user is free to disregard these optional components.

The SIM card interface supports  $3V\ \text{and}\ 1.8V\ \text{SIM}\ \text{cards}.$ 




### 3.5.5 PCM Interface (pins 23, 24, 25 & 26)

The PCM can be used to connect the 80350 module with audio devices capable of PCM (Pulse Code Modulation).

| Interface Name | Function   | Input/Output |
|----------------|------------|--------------|
| PCM_TXD        | TXDAI      | Output       |
| PCM_RXD        | RXDAI      | Input        |
| PCM_SYNC       | Frame SYNC | Output       |
| PCM_CLK        | Bit Clock  | Output       |

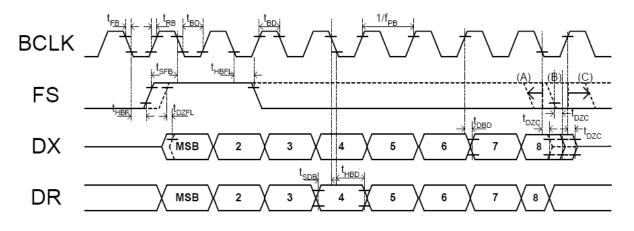
For the PCM signal pins, please pay attention to the direction of I/O pinout. The 80350 module's PCM codec does not generate any clock signals, but only receive external PCM clock signal; hence, the module can act as a slave PCM device, but not as a master device.

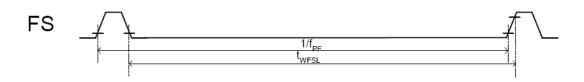
Next, more details on parameters and timing of PCM signal are presented. (Excerpts taken from the datasheet of the PCM codec IC)



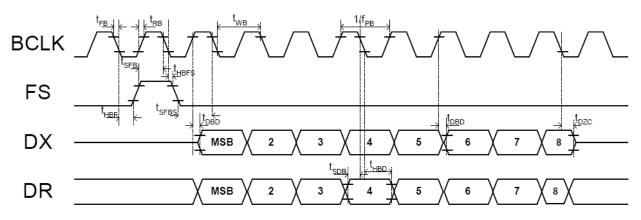
#### PCM interface timing and parameters

#### **PCM INTERFACE** (Long Frame, Short Frame)


All timing parameters of the output pins are measured at VOH = 0.8VDD and VOL = 0.4V. Input pins are measured at VIH = 0.7VDD and VIL = 0.3VDD.


#### AC Characteristics

| Parameter                                                                                                 | Symbol                             | Min   | Тур                             | Max   | Unit |
|-----------------------------------------------------------------------------------------------------------|------------------------------------|-------|---------------------------------|-------|------|
| FS Frequency                                                                                              | f <sub>PF</sub>                    | -1.0% | 8                               | +1.0% | kHz  |
| BCLK Frequency                                                                                            | f <sub>PB</sub>                    | -     | f <sub>PF</sub> ×8N<br>(N=1∼32) | -     | kHz  |
| BCLK Duty Cycle                                                                                           | t <sub>wB</sub>                    | 40    |                                 | 60    | %    |
| Rising/Falling Time: (BCLK,FS, DX,DR)                                                                     | t <sub>RB</sub><br>t <sub>FB</sub> |       |                                 | 40    | ns   |
| Hold Time: BCLK Low to FS High                                                                            | t <sub>HBF</sub>                   | 60    |                                 |       | ns   |
| Setup Time: FS High to BCLK Low                                                                           | t <sub>sFB</sub>                   | 60    |                                 |       | ns   |
| Setup Time: DR to BCLK Low                                                                                | t <sub>sDB</sub>                   | 60    |                                 |       | ns   |
| Hold Time: BCLK Low to DR                                                                                 | t <sub>HBD</sub>                   | 60    |                                 |       | ns   |
| Delay Time: BCLK High to DX valid Note1)                                                                  | t <sub>DBD</sub>                   | 0     |                                 | 60    | ns   |
| Delay Time: (A) BCLK High to DX High-Z or (B) FS Low to<br>DX High-Z or (C) BCLK High to DX High-Z Note1) | t <sub>DZC</sub>                   | 0     |                                 | 60    | ns   |
| Long Frame                                                                                                |                                    |       |                                 |       |      |
| Hold Time: 2 <sup>nd</sup> period of BCLK Low to FS Low                                                   | t <sub>HBFL</sub>                  | 60    |                                 |       | ns   |
| Delay Time: FS or BCLK High, whichever is later,to DX valid<br>注1)                                        | t <sub>DZFL</sub>                  |       |                                 | 60    | ns   |
| FS Pulse Width Low                                                                                        | t <sub>WFSL</sub>                  | 1     |                                 |       | BCLK |
| Short Frame                                                                                               |                                    |       |                                 |       |      |
| Hold Time: BCLK Low to FS Low                                                                             | t <sub>HBFS</sub>                  | 60    |                                 |       | ns   |
| Setup Time: FS Low to BCLK Low                                                                            | t <sub>sfbs</sub>                  | 60    |                                 |       | ns   |


Note1) Measured with 50pF load capacitance and 0.2mA drive.

#### Figure 1: Long Frame timing





### Figure 2: Short Frame timing



#### - Frame sync signal (FS)

8kHz reference signal. This signal indicated the timing and the frame position of 8kHz PCM interface. All the internal clock of the LSI is generated based on this FS signal.

#### -Bit clock (BCLK)

BCLK defines the PCM data rate. BCLK rate is  $64kHz \times N$  (N=1~32). This clock must be synchronized with FS.

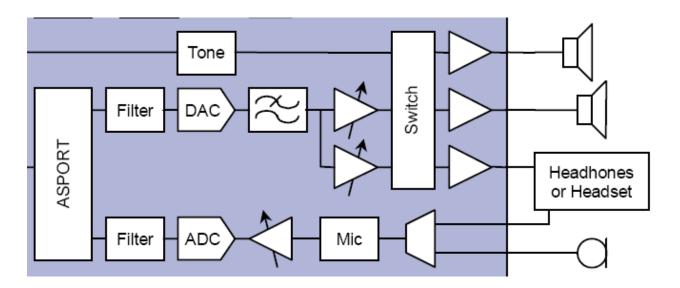
| LongF         | rame            |   |   |   |   |   |   |   |            |
|---------------|-----------------|---|---|---|---|---|---|---|------------|
| $\mathbf{FS}$ |                 |   |   |   |   |   |   |   |            |
| BCLK          |                 |   |   |   |   |   |   |   |            |
| DX            | 1               | 2 | 3 | 4 | 5 | 6 | 7 | 8 |            |
| DR            | Don't<br>care 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Don't care |
|               |                 |   |   |   |   |   |   |   |            |

#### ShortFrame

| FS   |               |   |   |   |   |   |   |   |   |            |
|------|---------------|---|---|---|---|---|---|---|---|------------|
| BCLK |               |   |   |   |   |   |   |   |   |            |
| DX   |               | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |            |
| DR   | Don't<br>care | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Don't care |

#### **Important notice!**

Please don't stop feeding FS with out power down mode.


FS is used as the internal reference clock. LSI does not work when the FS is not provided.

### 3.5.6 Auxiliary Audio Interface

The 80350 module allows four analog audio channels with physical interfaces on the board-to-board connector; these channels are programmable by software:

- Two Auxiliary audio input interfaces, both with balanced or single-ended inputs.
- Two Auxiliary audio output interfaces, both with balanced or single-ended outputs.

This means that you can connect up to four different audio devices, although only one interface can be operated at any given time. Using software command you can easily switch back and forth among the channels.



#### 3.5.6.1 Auxiliary Audio output interface (Pins 62, 63, 64 & 65)

The analog output interface has two channels switchable by software. Specially, A. SPKP/SPKN(pin62, 63) Normal Differential Audio Output Specifications

| Specification                                               | Min | Тур                   | Max | Units              |
|-------------------------------------------------------------|-----|-----------------------|-----|--------------------|
| Operating Conditions                                        | •   |                       |     |                    |
| External Load Resistance                                    | 7.5 | 8                     |     | Ω                  |
| External Load Capacitance                                   |     |                       | 100 | pF                 |
| Performance                                                 |     |                       |     |                    |
| PGA Gain Step Size                                          |     | 1.9                   |     | dB                 |
| PGA Gain Step Size Error                                    |     | ± 0.25                |     | dB                 |
| PGA Gain corresponding to minimum PGA Gain Setting          |     | -44                   |     | dB                 |
| PGA Gain corresponding to maximum PGA Gain Setting          |     | 11.8                  |     | dB                 |
| Mute Attenuation                                            |     | -80                   |     | dB                 |
| Output Bias Voltage                                         |     | V <sub>SPWR</sub> / 2 |     | V                  |
| Maximum Output Level (THD $\leq$ -30 dB, PGA = +12 dB)      |     | 6.0                   |     | Vpp (differential) |
| Full-Scale Output Level (PGA = +12 dB)                      |     | 6.0                   |     | Vpp (differential) |
| Full-Scale Output Level (PGA = 0 dB)                        |     | 1.573                 |     | Vpp (differential) |
| Nominal Output Level: 0 dBm0 (PGA = 0 dB)                   |     | 1.092                 |     | Vpp (differential) |
| Power Supply Rejection <sup>1</sup> (PGA = $0 \text{ dB}$ ) |     | -65                   |     | dBm0               |

† Performance specifications are based on operation with a 7.5  $\Omega$  load resistor and SPWR = 3.6 V.

‡ The PGA exhibits monotonic behavior.

<sup>1</sup> The test signal for performance measurement is a 217 Hz, 100 mV peak-to-peak sine wave, applied to the SPWR terminal in addition to the nominal SPWR supply potential.

#### B. RECP/RECN(Pin64,65), Normal Differential Audio Output Specifications

| Specification                                               | Min | Тур    | Max | Units              |
|-------------------------------------------------------------|-----|--------|-----|--------------------|
| Operating Conditions                                        |     |        |     |                    |
| External Load Resistance                                    | 27  | 32     |     | Ω                  |
| External Load Capacitance                                   |     |        | 100 | pF                 |
| Performance                                                 |     |        |     |                    |
| PGA Gain Step Size                                          |     | 1.9    |     | dB                 |
| PGA Gain Step Size Error                                    |     | ± 0.25 |     | dB                 |
| PGA Gain corresponding to minimum PGA Gain Setting          |     | -44.9  |     | dB                 |
| PGA Gain corresponding to maximum PGA Gain Setting          |     | 11.6   |     | dB                 |
| Mute Attenuation                                            |     | -80    |     | dB                 |
| Output Bias Voltage                                         |     | VREF   |     | V                  |
| Full-Scale Output Level (PGA = 0 dB)                        |     | 1.525  |     | Vpp (differential) |
| Nominal Output Level: 0 dBm0 (PGA = 0 dB)                   |     | 1.062  |     | Vpp (differential) |
| Power Supply Rejection <sup>1</sup> (PGA = $0 \text{ dB}$ ) |     | -95    |     | dBm0               |

 $\dagger$  Performance specifications are based on operation with a 27  $\Omega$  load resistor.

‡ The PGA exhibits monotonic behavior.

<sup>1</sup> The test signal for performance measurement is a 217 Hz, 100 mV peak-to-peak sine wave, applied to the VBAT terminal in addition to the nominal VBAT supply potential.

Note: For guidelines on the layout of Audio Output circuitry. please refer to Section 1.5.2.2.

### 3.5.6.2 Auxiliary Audio input interface (Pins 58, 59, 60 & 61)

There are two reserved channels for analog audio input:

| Specification            | Тур. | Units |
|--------------------------|------|-------|
| Full-scale Input Voltage | 2.0  | Vpp   |
| Input Resistance         | 10   | Kohm  |

Comments:

A. For voice call, MIC1P/MIC1N interface is recommended as Audio Input.

B. On the 80350 module, only Audio Input interface is reserved. Except for the utility for microphone bias voltage, the 80350 board possesses no specific microphone support circuitry; therefore, such needs to be taken into account in the host board design.

C. For microphone circuitry layout, please refer to Section 1.5.2.2.

### 3.5.7 Serial Interface UART0

The module offers an 8-wire unbalanced, asynchronous modem interface ASC0.

The module is designed for use as a DCE. Based on the conventions for DTE-DCE connections it communicates with the customer application (DTE) using the following signals:

• Port TXD @ application sends data to the module's TXD0 signal line

| • Port RXD @ application receives data from the module's RXE | 00 signal line |
|--------------------------------------------------------------|----------------|
|--------------------------------------------------------------|----------------|

| Pin Name | Pin Number | Signal Direction | Description                                 |
|----------|------------|------------------|---------------------------------------------|
| RXD0     | 30         | I                | Serial data input (DTE < DCE)               |
| TXD0     | 32         | 0                | Serial data output (DTE $\rightarrow$ DCE)  |
| RTS0     | 49         | 0                | Request to send (DTE $\rightarrow$ DCE)     |
| CTS0     | 52         | I                | Clear to Send (DTE < DCE)                   |
| DCD0     | 54         | I                | Data carrier detect (DTE < DCE)             |
| DTR0     | 50         | 0                | Data terminal ready (DTE $\rightarrow$ DCE) |
| DSR0     | 48         | I                | Data set ready (DTE < DCE)                  |
| RING0    | 47         | 1                | Ring detect output (DTE < DCE)              |

Note:

Pin Name and Signal Direction from HOST(DTE) Confirm, not the module.

# 3.5.8 Debug communication(Pins 10, 31)

The module can be calibrated by software through there two pins.

| PINS | Assignment | Description       | Input/Output |
|------|------------|-------------------|--------------|
| 10   | DBGTX      | Debug transmitter | Output       |
| 31   | DBGRX      | Debug receiver    | Input        |

# 4. GSM/GPRS Services

The 8035 module supports the following GSM/GPRS services:

- Short Message Services (SMS)
- Class B GPRS Functionality
- Voice communication
- Circuit-switched data

# 4.1 Transmission Modes for the GSM/GPRS Services

Each of the GSM/GPRS services has two modes that can be enabled separately:

- Mobile-originated (MO): allows the making of a service request (such as making a telephone call or sending an SMS)
- Mobile-terminated (MT): allows receiving a service request (such as receiving a telephone call or an SMS)

**Note:** Contact your local GSM operator to ensure that the services and modes have been provisioned for the SIM card.

# 4.2 Voice Communication

The 80350 module supports voice functions. On the 80-pin board-to-board connector, there are reserved pins for microphone and earphone hardware interfaces. When these are connected with microphone and earphone hardware, the desired voice functions can be executed by invoking relevant commands in the AT Command set (please refer to 80350 GSM/GPRS Modem Module AT Command Specification).

The 80350 module supports the following four audio coding formats:

- 1. Full-Rate (FR)
- 2. Enhanced Full-Rate (EFR)
- 3. Half-rate (HR)
- 4. Adaptive Multi-rate (AMR)

# 4.3 Circuit-Switched Data

In this mode, the 80350 module supports both of the connection modes of transmission that are provided by GSM:

 Non-Transparent mode delivers a constantly low error rate but with a non-guaranteed throughput or delay. The Non-Transparent service provides a performance that is closest to using a modem over a fixed Public Switched Telephone Network (PSTN) line.

**Note:** All GSM service providers may not support transparent mode. In those cases, the 80350 module can be configured to switch automatically to Non-Transparent mode. This capability depends on the settings in the AT+CBST command.

# 4.4 Short Message Services(SMS)

The 80350 module can perform the following tasks for the GSM Short Message Services:

- Sending and receiving binary messages of up to 160 characters (7-bit characters)
- Sending and receiving text messages of up to 140 bytes (8-bit data)
- Submitting a SMS Protocol Data Unit (PDU) to a SMSC (Short Message Service Center) and storing a copy of the PDU until either a report arrives from the network or a timer expires
- Receiving a SMS PDU from a SMSC
- Returning a delivery report to the network for a previously received message
- Receiving a report from the network
- Notifying the network when the module has sufficient memory capacity available to receive one or more SMS messages (after the module had previously rejected a message because its memory capacity was exceeded)

# 5. SIM Operation

# 5.1 Provisioning the SIM

The SIM card is configurable. To most users, the basic requirement on the SIM card is the ability to configure and use voice call and SMS Receive services, while some users may further need SMS Send and GPRS data services. The 80350 module can meet the MO (Mobile-Originated) and MT (Mobile-Terminated) usage requirements, and can configure the relevant services of the SIM card through AT commands (this will need support from the application layer software).

# 5.2 GSM Supported Services

The 80350 module supports the following services:

- Voice calls (MO and MT): requires a telephone number
- SMS (MO and MT): requires a telephone number
- Circuit-switched data calls (MO and MT): requires a telephone number
- The GSM SIM can have multiple telephone numbers.

Note: The services depend on the actual network; please contact the network operator in order make sure that the services are enabled.

# 5.3 GPRS Supported Services

The 80350 module supports the following GPRS (modes of operation) that must be enabled by the operator:

- GPRS Packet Connectivity (MO and MT) with Both Dynamic and Static IP option
- GPRS SMS (MO and MT): uses the IP (Dynamic or Static) set by the operator
- Multiple APN Setting
- Quality of Service Options
- Multi-slot 10 Class of Service

# 5.4 GSM Modes of Operation

When provisioning the SIM for the 80350 module, enable the following modes of operation:

- Voice calls: configure the SIM for both MO and MT service (to send and receive)
- SMS: configure the SIM either for MT alone (to receive) or for both MO and MT (to send and receive)
- Circuit Switched Data: configure the SIM either for MO alone (to send) or for both MO and MT (to send and receive)

| Voice | SMS   | CS    | GPRS | Function                                                   |
|-------|-------|-------|------|------------------------------------------------------------|
|       |       | Data  |      |                                                            |
| MO/MT | MT    | MO    |      | Voice calls, receive SMS, make data calls                  |
| MO/MT | MO/MT | MO    |      | Voice calls, receive / send SMS, make data calls           |
| MO/MT | MO/MT | MO/MT |      | Voice calls, receive / send SMS, make / receive data calls |
|       |       |       |      | (requires an additional data telephone number)             |

# 6. Software Interface

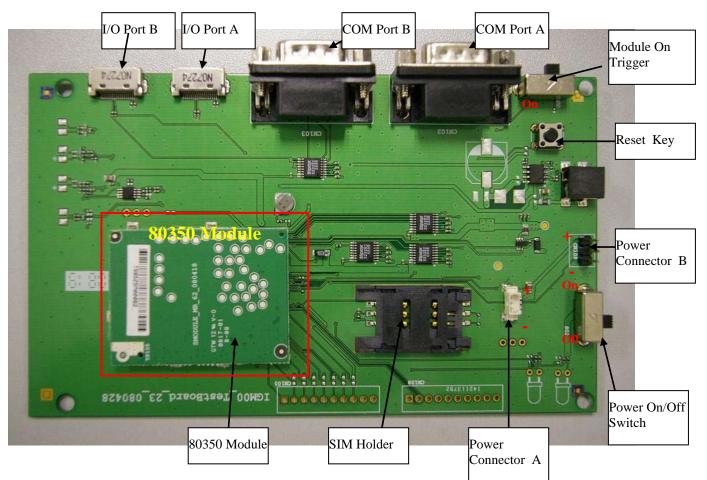
# 6.1 API Interface

The 80350 module's default startup mode is the AT command mode. In this mode, PC Super Terminal or other serial port communication tools may be used to issue AT commands to the module.

The 80350 module's default serial communication is set at 115200 baud, no parity, 8 data bits, 1 stop bit, and no flow control. A user can send/receive AT commands, data, or response to/from the module via one of the two methods:

• Straight serial communication via HyperTerminal or similar application

Straight serial communication provides the user with the following capabilities:


- Send AT commands and receive response
- Receive SMS notification
- Make a voice, data or fax call
- Receive any unsolicited message

# 6.2 AT Command Set

This is addressed separately in the document "80350 GSM/GPRS Modem Module AT Command Specification".

# 7. Setup and Initialization

The 80350 module can be controlled by AT command through the COM Port A on the 80350 motherboard.



### 80350 Motherboard Outline:

80350 Motherboard

| Item                          | Function                        | Comments         |
|-------------------------------|---------------------------------|------------------|
| I/O Port A                    | Reserved                        |                  |
| I/O Port B                    | Reserved                        |                  |
| COM Port A                    | COM port to communicate with PC | DB9 Connector    |
| COM Port B                    | Reserved                        |                  |
| Power Connector A             | Connect with power supply       | DC 3.55 to 4.2 V |
| Power Connector B             | Connect with power supply       | DC 3.55 to 4.2 V |
| Power On/Off Switch           | On/Off the power                |                  |
| Module On Trigger             | Power On the module             |                  |
| Reset Key                     | Reset the module                |                  |
| 80350 Module The 80350 Module |                                 |                  |
| SIM Holder Using for SIM card |                                 |                  |

#### Steps for setting up the testing hardware environment:

- 1. Install the 80350 module to the 80350 motherboard
- 2. Put the SIM card into the SIM Holder
- 3. Plug the power supply to any one of the Power Connector.
- 4. Power on the 80350 module by switch the GSM On Trigger to "On".

## 7.1 Initialization

Parts:

## 7.1.1 Start HyperTerminal

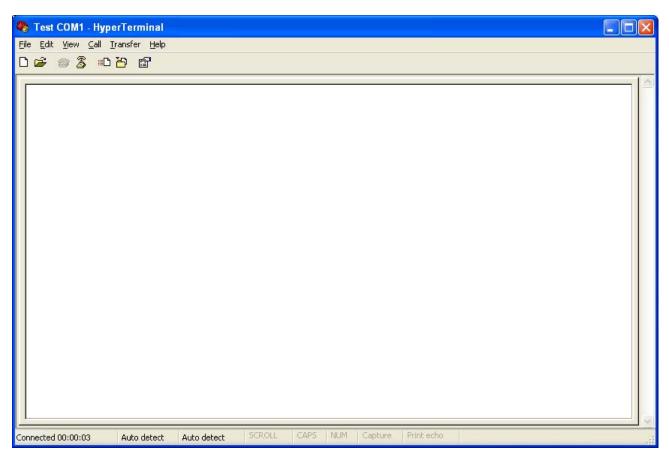
On Windows XP, click on: Start>Programs>Accessories>Communications>HyperTerminal

1. You should see the following screen.



- 2. Enter a name for the **Connection**. In this example, the **Name** is **Test COM1**.
- 3. Click OK.

4. The next window that will appear is the **Connect To** window.


| Connect To                                                |  |  |
|-----------------------------------------------------------|--|--|
| Test COM1                                                 |  |  |
| Enter details for the phone number that you want to dial: |  |  |
| Country/region: United States (1)                         |  |  |
| Ar <u>e</u> a code: 214                                   |  |  |
| Phone number:                                             |  |  |
| Connect using: COM1                                       |  |  |
| OK Cancel                                                 |  |  |

- 5. Change the **Connect Using** setting to the Com port that was determined in **Step 2**.
- 6. Click OK.
- 7. The next window is the **Port Settings** window.

| COM1 Properties          | × |
|--------------------------|---|
| Port Settings            |   |
|                          |   |
| Bits per second: 115200  |   |
| Data bits: 8             |   |
| Parity: None             |   |
| Stop bits: 1             |   |
| Elow control: None       |   |
| <u>R</u> estore Defaults |   |
| OK Cancel Apply          |   |

- 8. Make sure the settings match the example.
- 9. Click OK.

10. Now the Main Program Window should appear.



11. Terminal Setup Testing.

- a. Make sure the cursor is in the main window.
- b. Type "AT" and press "Enter"
- c. You should see the module responds back with "OK" in the Main Window
- d. If this happens, the COM port is configured correctly.
- e. At this point you are ready to configure and test the 80350 with AT commands.

# 7.1.2 Initialization Command

After the module power on, user can initialize the module by following AT commands

| Unsolicite | *TSYSSTART  | System start                                                             |
|------------|-------------|--------------------------------------------------------------------------|
| d          |             |                                                                          |
| Unsolicite | +CFUN: 1    | Full functionality (Default)                                             |
| d          |             |                                                                          |
| Entry      | ATE1        | Echo mode on                                                             |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT&D1       | ON->OFF on DTR: Change to command mode with call                         |
| _          |             | remaining connected                                                      |
| Response   | OK          | Command is valid                                                         |
| Entry      | ATS0=0      | automatic answering is disabled                                          |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+CMEE=1   | enable result code and use numeric values                                |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+CRC=1    | the extended format of incoming call                                     |
| -          |             | indication is used                                                       |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+CREG=1   | enable network registration unsolicited result code +CREG: <stat></stat> |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+COPS=3,2 | set only <format> (for read command +COPS?) – not shown in Read</format> |
|            |             | command response and short format alphanumeric <oper></oper>             |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+VTD=3    | duration of the tone in 1/10 seconds                                     |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+CCWA=1   | enable presentation of an unsolicited result code                        |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+CLIP=1   | display unsolicited result codes                                         |
| Response   | OK          | Command is valid                                                         |
| Entry      | AT+CMUT=0   | mute off                                                                 |
| Response   | OK          | Command is valid                                                         |

# 7.2 Send SMS Example

| Entry    | AT+CMGF=1                                       | Select SMS format is text               |
|----------|-------------------------------------------------|-----------------------------------------|
| Respons  | OK                                              | Command is valid                        |
| e        |                                                 |                                         |
| Entry    | AT+CNMI=2,2,2,0,0                               | New SMS unsolicited result code: +CMT:  |
| Respons  | OK                                              | Command is valid                        |
| e        |                                                 |                                         |
| Entry    | AT+CSCS="IRA"                                   | Select international reference alphabet |
| Respons  | OK                                              | Command is valid                        |
| е        |                                                 |                                         |
| Entry    | AT+CSCA="987654321"                             | Select SMS Service Centre Address       |
| Respons  | OK                                              | Command is valid                        |
| е        |                                                 |                                         |
| Entry    | AT+CMGS="123456789"                             | Send a message to 123456789             |
| Respons  | >                                               | Ready to enter a message.               |
| е        |                                                 |                                         |
| Entry    | This is a test message <sup>A</sup> Z           | Enter the text message "This is a test  |
|          |                                                 | message". End the message with Control  |
|          |                                                 | Ζ.                                      |
| Respons  | +CMGS: 1                                        | Successful transmission. The number     |
| е        | OK                                              | will increment with each SMS sent.      |
| Entry    | AT+CMGL= "ALL"                                  | List All messages from preferred store  |
| Respons  | +CMGL:1,"REC                                    | List all message                        |
| е        | READ","+123456789",,"08/08/08,18:02:15+32"      |                                         |
|          | M                                               |                                         |
|          | 014                                             |                                         |
|          | OK<br>AT+CMGR=1                                 |                                         |
| Entry    |                                                 | Read SMS message in preferred store 1   |
| Respons  | +CMGR: "REC                                     | Read 1 message                          |
| е        | READ","+987654321",,"08/08/08,18:02:15+32"<br>M |                                         |
|          |                                                 |                                         |
|          | ок                                              |                                         |
| Entry    | AT+CMGD= 1                                      | Delete SMS message in preferred store   |
| спау     |                                                 | 1.                                      |
| Respons  | ОК                                              | Successful delete                       |
| e        |                                                 |                                         |
| <b>~</b> |                                                 |                                         |

# 7.3 Voice Call Example

## 7.3.1 MO

## The call is OK:

| TD10086;<br>VIND: 5,1 | Make a call                            |
|-----------------------|----------------------------------------|
|                       |                                        |
| VIND. 5, I            | The call (id =1) has been established  |
|                       |                                        |
| <                     | Command is valid                       |
| VIND: 2               | The MT is ringing                      |
|                       |                                        |
| VIND: 9,1             | The call is connected                  |
|                       |                                        |
| ΓH                    | End the call                           |
| VIND: 6,1             | The call is disconnected               |
|                       |                                        |
| <                     | Command is valid                       |
|                       | /IND: 2<br>/IND: 9,1<br>H<br>/IND: 6,1 |

### MT is busy:

| IVIT IS DUSY. |            |                                       |
|---------------|------------|---------------------------------------|
| Entry         | ATD10086;  | Make a call                           |
| Unsolicite    | +WIND: 5,1 | The call (id =1) has been established |
| d             |            |                                       |
| Response      | OK         | Command is valid                      |
| Unsolicite    | +WIND: 6,1 | The call is disconnected              |
| d             |            |                                       |
| Unsolicite    | BUSY       | MT is busy                            |
| d             |            |                                       |

#### MT can't be connected:

| Entry      | ATD10086;  | Make a call                           |
|------------|------------|---------------------------------------|
| Unsolicite | +WIND: 5,1 | The call (id =1) has been established |
| d          |            |                                       |
| Response   | ОК         | Command is valid                      |
| Unsolicite | +WIND: 6,1 | The call is disconnected              |
| d          |            |                                       |
| Unsolicite | NO CARRIER | MT cannot be connected                |
| d          |            |                                       |

## 7.3.2 MT

| Unsolicite<br>d | +WIND: 5,1 | The call (id =1) has been established |
|-----------------|------------|---------------------------------------|
| Unsolicite<br>d | RING       | The MT is ringing                     |
| Entry           | ATA        | Accept the call                       |
| Response        | OK         | Command is valid                      |
| Unsolicite<br>d | +WIND: 9,1 | The call is connected                 |

# 7.4 GPRS Packet Examples

### After the module register on a GSM network:

| Entry    | AT+CGATT=1 | AT command to start the ATTACH sequence |
|----------|------------|-----------------------------------------|
| Response | OK         | Successfully Attached                   |

# If the network is a transparent network, then you can activate using HyperTerminal. If it is non transparent, you have to use a PPP link to activate:

| Entry    | AT+CGDCONT=1,"IP","CMWAP","",0, | CMWAP value will be provided by carrier |
|----------|---------------------------------|-----------------------------------------|
|          | 0                               |                                         |
| Response | OK                              | Command is valid                        |
| Entry    | AT+CGACT=1,1                    | Request context activation.             |
| Response | OK                              | Successful context activation.          |

#### GPRS detach and deactivate:

| Entry    | AT+CGACT=0,1 | AT command to deactivate. |
|----------|--------------|---------------------------|
| Response | OK           | Successful deactivation.  |
| Entry    | AT+CGATT=0   | AT command to detach.     |
| Response | OK           | Successful detach.        |

# References

1. AT Command Set Reference [80350 GSM/GPRS Modem Module AT Command Specification]

2. GSM 07.05: "Digital cellular telecommunications systems (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)".

3. GSM 07.07: "Digital cellular telecommunications systems (Phase 2+); AT command set for GSM Mobile Equipment (ME)".

- 4. ITU-T Draft new Recommendation V.25ter: "Serial asynchronous automatic dialing and control".
- 5. AD6720 Technical Data (REV. OCTOBER 18,2005)
- 6. NARROW-PITCH CONNECTORS Specifications (Jul.13, 2006)
- 7. U.FL-R-SMT (10) Specifications (Apr.17, 1997)
- 8. AK2301-MS0416-1-00 Specifications (Aug 31, 2005)

# Abbreviation

| Abbreviation | Description                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------|
| ADC          | Analog-to-Digital Converter                                                                            |
| AFC          | Automatic Frequency Control                                                                            |
| AGC          | Automatic Gain Control                                                                                 |
| ANSI         | American National Standards Institute                                                                  |
| ARFCN        | Absolute Radio Frequency Channel Number                                                                |
| ARP          | Antenna Reference Point                                                                                |
| ASC0 / ASC1  | Asynchronous Serial Controller. Abbreviations used for first and second serial inter-<br>face of MC55i |
| ASIC         | Application Specific Integrated Circuit                                                                |
| В            | Thermistor Constant                                                                                    |
| B2B          | Board-to-board connector                                                                               |
| BER          | Bit Error Rate                                                                                         |
| BTS          | Base Transceiver Station                                                                               |
| CB or CBM    | Cell Broadcast Message                                                                                 |
| CE           | Conformité Européene (European Conformity)                                                             |
| CHAP         | Challenge Handshake Authentication Protocol                                                            |
| CPU          | Central Processing Unit                                                                                |
| CS           | Coding Scheme                                                                                          |
| CSD          | Circuit Switched Data                                                                                  |
| CTS          | Clear to Send                                                                                          |
| DAC          | Digital-to-Analog Converter                                                                            |
| DAI          | Digital Audio Interface                                                                                |
| dBm0         | Digital level, 3.14dBm0 corresponds to full scale, see ITU G.711, A-law                                |
| DCE          | Data Communication Equipment (typically modems, e.g. Siemens GSM engine)                               |
| DCS 1800     | Digital Cellular System, also referred to as PCN                                                       |
| DRX          | Discontinuous Reception                                                                                |
| DSB          | Development Support Box                                                                                |
| DSP          | Digital Signal Processor                                                                               |
| DSR          | Data Set Ready                                                                                         |
| DTE          | Data Terminal Equipment (typically computer, terminal, printer or, for example, GSM application)       |
| DTR          | Data Terminal Ready                                                                                    |
| DTX          | Discontinuous Transmission                                                                             |
| DUN          | Dial-Up Networking                                                                                     |

| EFR          | Enhanced Full Rate                                  |
|--------------|-----------------------------------------------------|
| EGSM         | Enhanced GSM                                        |
|              |                                                     |
| Abbreviation | Description                                         |
| EMC          | Electromagnetic Compatibility                       |
| ESD          | Electrostatic Discharge                             |
| ETS          | European Telecommunication Standard                 |
| FCC          | Federal Communications Commission (U.S.)            |
| FDMA         | Frequency Division Multiple Access                  |
| FR           | Full Rate                                           |
| GMSK         | Gaussian Minimum Shift Keying                       |
| GPRS         | General Packet Radio Service                        |
| GSM          | Global Standard for Mobile Communications           |
| HiZ          | High Impedance                                      |
| HR           | Half Rate                                           |
| I/O          | Input/Output                                        |
| IC           | Integrated Circuit                                  |
| IMEI         | International Mobile Equipment Identity             |
| ISO          | International Standards Organization                |
| ITU          | International Telecommunications Union              |
| kbps         | kbits per second                                    |
| LED          | Light Emitting Diode                                |
| Li-Ion       | Lithium-Ion                                         |
| Mbps         | Mbits per second                                    |
| MMI          | Man Machine Interface                               |
| МО           | Mobile Originated                                   |
| MS           | Mobile Station (GSM engine), also referred to as TE |
| MSISDN       | Mobile Station International ISDN number            |
| MT           | Mobile Terminated                                   |
| NTC          | Negative Temperature Coefficient                    |
| OEM          | Original Equipment Manufacturer                     |
| PA           | Power Amplifier                                     |
| PAP          | Password Authentication Protocol                    |
| PBCCH        | Packet Switched Broadcast Control Channel           |
| РСВ          | Printed Circuit Board                               |
| PCL          | Power Control Level                                 |
| РСМ          | Pulse Code Modulation                               |
|              | 1                                                   |

| PCN | Personal Communications Network, also referred to as DCS 1800 |
|-----|---------------------------------------------------------------|
| PCS | Personal Communication System, also referred to as GSM 1900   |
| PDU | Protocol Data Unit                                            |

| Abbreviation | Description                                    |
|--------------|------------------------------------------------|
| PLL          | Phase Locked Loop                              |
| PPP          | Point-to-point protocol                        |
| PSU          | Power Supply Unit                              |
| R&TTE        | Radio and Telecommunication Terminal Equipment |
| RAM          | Random Access Memory                           |
| RF           | Radio Frequency                                |
| RMS          | Root Mean Square (value)                       |
| ROM          | Read-only Memory                               |
| RTC          | Real Time Clock                                |
| Rx           | Receive Direction                              |
| SAR          | Specific Absorption Rate                       |
| SELV         | Safety Extra Low Voltage                       |
| SIM          | Subscriber Identification Module               |
| SMS          | Short Message Service                          |
| SRAM         | Static Random Access Memory                    |
| ТА           | Terminal adapter (e.g. GSM engine)             |
| TDMA         | Time Division Multiple Access                  |
| TE           | Terminal Equipment, also referred to as DTE    |
| Тх           | Transmit Direction                             |
| UART         | Universal asynchronous receiver-transmitter    |
| URC          | Unsolicited Result Code                        |
| USSD         | Unstructured Supplementary Service Data        |
| VSWR         | Voltage Standing Wave Ratio                    |