Trimble Navigation Ltd. 35 MHz 300 watt transceiver

FCC ID: JUP-ELIZABETH35 FCC Rule Part: 22

General Overview

A description of the theory of operation and product configuration is found in an attachment to this application and report.

SPECIFICATIONS

Transmitter

TX operating frequency:	35.2 – 35.66 MHz
TX output power:	400 watts
Digital Modulation:	9600 GMSK
C	20000 8PSK
	Modulation is internally generated and limited
Power requirements:	120 VAC
Antenna connector:	N- type
Frequency Tolerance	20 ppm
	-30 to +50 C
	85%-115% supply voltage at 20C

Block diagram and theory of operation is provided in a separate attachment.

FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part 2.

1.1307(b) the	RF exposure information is provided in a separate attach							
2.1033(c)1	Applicant:	Trimble Navigation Ltd. 749 North Mary Avenue, P.O. Box 3642 Sunnyvale, CA 94088-3642						
2.1033(c)2	FCC ID: JUP-ELIZA	BETH35						
2.1033(c)3	Installation instruction	ns are found in separate document.						
2.1033(c)4	Emission type: GMSK Para. 22.531 Channel Ba	andwidth: 20 kHz						
	Emission designator:	14K0F1D (9600 GMSK) 19K0G1D (20000 8PSK)						
2.1033(c)5	Frequency range:	35.2 – 35.66 MHz						

2.1033(c)6 Range of Operating Power

400 watt maximum (56 dBm)

2.1033(c)7 Maximum Power Rating

56 dBm (400 watts) measured

Maximum allowed per Section 22.535: 600 watts EIRP

2.1033(c)8 Applied voltages and currents into the final transistor elements

Refer to schematics, separate submission accompanying this application

2.1033(c)9 Tune-up procedure

Refer to installation instructions..

2.1033(c)10 Circuit and Functional Block Diagram, Description of Circuitry

Product schematics are provided in separate attachments. Circuit description and theory of operation are found in separate attachment.

2.1033(c)11 FCC ID Label

Refer to separate attachment.

2.1033(c)12 Product Photographs

Refer to separate attachment.

2.1033(c)13 Description of Modulation System

9600 bps GMSK or 20000 bps 8PSK

2.1033(c)14 Test Data per 2.1046 – 2.1057

2.1046 RF Output Power Measurements

Measurement equipment used:

HP 8542E EMI Receiver HP 85420E RF Filter Section 30 dB attenuator, 600 watts 20 dB attenuator, 50 watts 20 dB attenuator, 2 watts 4 short lengths coaxial cable

Test Procedures

- 1. Set the transmitter to produce maximum un modulated power at the desired frequency
- 2. Input total reference level offset
- 3. Read value directly from spectrum analyzer

Test Results

400 watts maximum (56 dBm). Refer to attached spectrum analyzer plots.

Low Channel Output Power

Company Name: REF 56.000 dBm ATTEN 10 dB					Project No.: Tim			Date		
					050337	78	12:19:2	в РМ Ар	ril 06, 2	2005
						Mł	<r 28.560<="" td=""><td>)00 MHz</td><td>-16.2</td><td>2 dBm</td></r>)00 MHz	-16.2	2 dBm
POS PK LOG 10 dB/		3								
DL -13.000 dBm										
RL OFFSET 71.00 dB						- All	man	hum	n.Man	
START 1.00000 MHz CCS RES BW 30 KHz				VID BW	100 K	Hz	STOP 50.00000 MHz SWP 163.3330 msec			
Test Ite	em: CW, I	Low Ch								
CCS RI Test Ite Descript	ES BW 30 em: CW, I ion: Low) KHz Low Ch Freq H	igh Powe	r Radic	VID BW	100 K : JUP-E	HZ	SWP 1 H35	63.333	0 mse

Mid Channel Output Power

Company				Project No.: Time &			Date				
					050337	'8	12:21:32	32 PM April 06, 2005			
REF 56.000 dBm ATTEN 10 dB						Mk	(R 36.890	00 MHz	-16.4	4 dBm	
POS PK LOG 10 dB/											
DL											
-13.000 dBm		2 									
RL OFFSET 71.00								1 			
dB		and the second	hannen	mm	-	man	mann	Vanno	www.me	~~~~	
START 1.00000 MHz CCS RES BW 30 KHz					VID BW	100 K	Hz	STOP 50.00000 MHz SWP 163.3330 msec			
Test Ite	m: CW,	Mid Ch.									

High Channel Output Power

Compan	y Name:			Project No	as -	Time & Date					
				0503378		2:59:03	PM April	06, 20)05		
REF 56.0)00 dBm	ATTEN	l 10 dB		MK	R 28.070)00 MHz	-14.8	5 dBm		
SAMPLE LOG 10 dB/	-										
DL -13.000 dBm											
RL OFFSET 71.00					I						
dB	<u>^</u>	2			<u>مار</u>	-	-	~			
START 1.00000 MHz CCS RES BW 100 KHz				VID BW 30 KHz			STOP 50.00000 MHz SWP 49.0000 msec				
Test Ite	em: 2000	O GMSK	, High Ch.								
Descript	ion: Low	Freq Hi	gh Power R	adio, FCC ID: J	UP-E	LIZABETI	H35				

Section 2.1047 Modulation Characteristics Requirement/Limit: 22.359 (b)1

(b) *Digital modulation*. For transmitters not equipped with an audio low pass filter and for transmitters employing digital modulation techniques, the mean or peak envelope power of sideband emissions must be attenuated below the mean or peak envelope power of the total emission (P, in Watts) in accordance with the following schedule:

(1) For transmitters that operate in the frequency ranges 35 to 44 MHz, 72 to 73 MHz, 75.4 to 76.0 MHz and 152 to 159 MHz,

(i) On any frequency removed from the center frequency of the assigned channel by a displacement frequency fd (in kHz) of more than 5 kHz but not more than 10 kHz:

at least 83 log (fd÷5) dB;

(ii) On any frequency removed from the center frequency of the assigned channel by a displacement frequency fd (in kHz) of more than 10 kHz but not more than 250 percent of the authorized bandwidth:

at least 29 log fd2÷11) dB or 50 dB, whichever is the lesser attenuation;

(iii) On any frequency removed from the center frequency of the assigned channel by more than 250 percent of the authorized bandwidth:

at least 43 + 10 log P dB, or 80 dB, whichever is the lesser attenuation.

Measurement equipment used:

HP 8542E EMI Receiver HP 85420E RF Filter Section 30 dB attenuator, 600 watts 20 dB attenuator, 50 watts 20 dB attenuator, 2 watts 4 short lengths coaxial cable

Test set-up: Refer to Figure 1, above

Test Procedures

Software was run to produce two different modulations; 9600 bps GMSK 20000 bps 8PSK

Test Results

PASS. Refer to attached spectrum analyzer charts for two modulations. Emissions are shown with mask lines superimposed on spectrum analyzer charts.

Low Channel 9600 bps GMSK

Low Channel 20000 bps 8PSK

MID Channel 9600 bps GMSK

Description: Low Freq High Power Radio, FCC ID: JUP-ELIZABETH35

MID Channel 20000 bps 8PSK

Time & Date Company Name: Project No.: 4:12:12 PM April 06, 2005 0503378 REF 56.000 dBm ATTEN 10 dB MKR 35.65980 MHz 49.72 dBm POS PK AMAL LOG 10 dB/ DL -13.000 W\ dBm RL OFFSET 4 N 71.00 dB CENTER 35.66000 MHz SPAN 100.00000 KHz CCS RES BW 300 Hz SWP 3.33 sec VID BW 300 Hz Test Item: 9600 GMSK, High Ch. Description: Low Freq High Power Radio, FCC ID: JUP-ELIZABETH35

HIGH Channel 9600 bps GMSK

HIGH Channel 20000 bps 8PSK

Section 2.1049 Occupied Bandwidth Requirement/Limit: 22.531

20 kHz maximum

Measurement equipment used:

HP 8542E EMI Receiver HP 85420E RF Filter Section 30 dB attenuator, 600 watts 20 dB attenuator, 50 watts 20 dB attenuator, 2 watts 4 short lengths coaxial cable

Test set-up: Refer to Figure 1, above

Test Procedures and Results:

Occupied bandwidth was measured manually using graphical means .

For 9600 bps GMSK worst case (LOW channel) occupied BW = 14 kHz For 20000 bps 8PSK worst case (HIGH channel) occupied BW = 19 kHz

Occupied bandwidth is per definition in Rule para. 2.1 (99%, or 20 dB BW)

Occupied Bandwidth, 9600 bps GMSK

Occupied Bandwidth, 20000 bps 8PSK

Section 2.1051 Spurious and Harmonic Emissions at Antenna Terminals Requirement/Limit: 22.531

Measurement equipment used:

HP 8542E EMI Receiver HP 85420E RF Filter Section 30 dB attenuator, 600 watts 20 dB attenuator, 50 watts 20 dB attenuator, 2 watts 4 short lengths coaxial cable

Test set-up: Refer to Figure 1, above

Test Procedures

- 1. Set spectrum analyzer to TX output center frequency, RES BW = 100 kHz, VID BW = 100 kHz Hz.
- 2. Set spectrum analyzer to record Average reading.
- 3. Set DISPLAY LINE to a level 60 dB below flat top peak
- 4. Record transmitter output spectrum from 1 MHz to 10th harmonic of TX output frequency
- 5. Plot spectrum analyzer output traces.

Test Results

PASS. Refer to data plots below.

Spurious Emissions, Antenna Conducted Output Spectrum Analyzer Graph

Company Name:				Project N	o.:	Time & Date				
				0503378)	2:55:14	PM April	06, 200)5	
REF 56.000 dBm ATTEN 10 dB				1	МК	R 28.07	000 MHz	-20.62	dBm	
SAMPLE LOG 10 dB/										
									s	
DL -13.000 dBm	-									
RL OFFSET 71.00 dB										
			STOP 50,00000 M							
CCS RES BW 100 KHz			VID BW 30 KHz			SWP 49.0000 msec				
Test Ite	m: 2000	O GMSK	, Mid Ch.							
Descripti	ion: Low	Freq Hi	gh Power R	adio, FCC ID:	JUP-EI	LIZABET	H35			

Company Name:	? 		Project 05U3	:t No.: 378	Time & Date 3:05:33 PM April 06, 2005				
REF 56.000 dBm	1	M	KR 165.5	50000 MH	z -19.96 dBm				
SAMPLE LOG 10 dB/			-						
DL -13.000 dBm									
RL OFFSET									
CCS RES BW 100 KHz				VID BW 30 KHz			STOP 350.00000 MHz SWP 300.0000 msec		
Test Item: 200 Description: Lov	DO GMSK, v Freq Hig	Mid Ch. h Power R	adio, FCC	ID: JUP-E	ELIZABE	TH35			

Section 2.1053 Field Strength of Spurious and Harmonic Radiation Requirement/Limit: 22.531

Measurement equipment used

HP 8542E EMI Receiver HP 85420E RF Filter Section 30 dB attenuator, 600 watts 20 dB attenuator, 50 watts 20 dB attenuator, 2 watts 4 short lengths coaxial cable

Test Set-Up

Turntable

Signal Generator Substituted Horn antenna

Horn antenna

		_
	~	
1 /		

Spectrum analyzer/pre-amp

Minimum Requirement

-13 dBm EIRP beyond 250% of authorized bandwidth

Test Method

The antenna output port of the EUT was terminated with a 50 ohm load. With the transmitter operating at full power, the EUT was rotated 360° and the search antenna was raised and lowered in both polarities, all in an attempt to maximize the levels of the received emission for each harmonic and spurious emission up to 10 fo.

The EUT was removed and was replaced by a substitution antenna connected via coax to a signal generator. The generator output was set to each emission frequency detected, the search antenna was raised and lowered, the turntable was rotated, until the maximum emission level was obtained. The signal generator output level was adjusted to match the radiated emission level from the EUT. After correcting for substitution antenna factor and generator cable loss, output power level is compared to the limit.

Test Results

Pass. All emissions detected were at least 18.5 dB below limits. Refer to test data below.

04/06/05 Compli	30 - 1000MH iance Certification	Iz Substitution Services, Morg	Measurement gan Hill 5m Cha	umber Site						
Test En Project Compar EUT De EUT M	gr:William Zhuang #:05U3378 ny:Tom Cokenias sscrip.:Low Freq Hig /N-Low Band	sh Power Radio								
Test Ta Mode O	rget:FCC Part22 per:CW									
Test Eq	uipment:									
	Bilog Antenna]	(able		Pre-amplifer 844	7D	Г	Limit	t
Ē	5m Chamber Sunol Bilo	eg 🖵	5m Chamb	er Cable			•		EIRP	•
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	EIRP	Limit	Margin	Notes
MH	z (dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
CW Hi	gh Ch		<u> </u>		. /					
71.2	8 35.8	Н	-51.6	1.2	-1.6	-3.8	-56.5	-13.0	-43.5	
107.4	44 41.1	Н	-40.3	1.4	-1.6	-3.7	-45.4	-13.0	-32.4	
142.0	54 53.2	H	-27.2	1.5	-0.6	-2.7	-31.5	-13.0	-18.5	
214 (40 <u>59.0</u>	н	-42.8	1.7	5.8	0.8	-45./	-13.0	-30.7	
250.4	48 32.9	Н	-48.9	1.9	6.1	3.9	-46.9	-13.0	-33.9	
321.8	34 33.7	Н	-45.1	2.2	6.0	3.9	-43.4	-13.0	-30.4	
61.0	4 40.1	V	-47.9	1.1	-2.2	-4.3	-53.4	-13.0	-40.4	
142.0	54 50.7	V	-30.4	1.4	-1.6	-3.7	-42.2	-13.0	-29.2	
178.4	48 35.6	V	-46.4	1.7	2.9	0.8	-47.3	-13.0	-34.3	
214.0	54 40.4	V	-42.6	1.9	5.8	3.6	-40.8	-13.0	-27.8	
321.8 CW M	34 30.9	V	-48.9	2.2	6.0	3.9	-47.1	-13.0	-34.1	
CW M	Id Ch	п	50.9	12	17	2.9	55.0	13.0	42.0	
106.4	4 30.5	H	-40.0	1.2	-1.5	-3.6	-35.9	-13.0	-42.9	
141.0	58 53.0	Н	-27.4	1.5	-0.7	-2.9	-31.7	-13.0	-18.7	
177.8	34 42.1	Н	-39.6	1.7	2.9	0.7	-40.6	-13.0	-27.6	
213.0	04 45.8 24 37.0	H	-37.3	1.9	5.8	3.6	-35.6	-13.0	-22.6	
70.6	4 31.0	V	-53.7	1.2	-1.7	-3.8	-58.7	-13.0	-45.7	
106.4	48 43.4	V	-38.1	1.4	-1.5	-3.7	-43.1	-13.0	-30.1	
141.0	58 <u>49.1</u>	V	-31.9	1.5	-0.7	-2.9	-36.2	-13.0	-23.2	
213.0	52 56.4)4 42.9	V	-45.6	1.7	2.8	3.6	-40.5	-13.0	-33.5	
319.0	50 32.7	V	-47.1	2.1	6.0	3.9	-45.3	-13.0	-32.3	
CW Lo	ow Ch									
70.6	4 38.6	Н	-48.8	1.2	-1.7	-3.8	-53.8	-13.0	-40.8	
105.8	<u>84 44.9</u> 14 49.2	H	-36.8	1.4	-1.4	-3.6	-41.7	-13.0	-28.7	
176.2	24 45.2	Н	-36.4	1.7	2.7	0.6	-37.5	-13.0	-24.5	
211.7	76 45.6	Н	-37.6	1.9	5.8	3.6	-35.8	-13.0	-22.8	
317.0	58 38.9	H	-40.0	2.1	6.0	3.9	-38.3	-13.0	-25.3	
70.6	4 <u>33.6</u> 16 <u>45.9</u>	V	-51.0	1.2	-1.7	-3.8	-56.0	-13.0	-43.0	
141.3	36 46.4	V	-34.6	1.5	-0.7	-2.9	-39.0	-13.0	-26.0	
176.2	24 39.2	V	-42.7	1.7	2.7	0.6	-43.8	-13.0	-30.8	
211.4	44.0	V	-39.2	1.9	5.8	3.6	-37.4	-13.0	-24.4	
517.0	38 39.0	• •	-40.5	2.1	0.0	5.9	-36.5	-13.0	-23.5	
							-			
			-							

2.1055 Frequency Stability

Requirement/Limit: Section 22.355

Frequency Tolerance : .002% (20 parts per million)

The TX VCO is 10 MHz, obtained from an oscillator module manufactured by Trimble Navigation Ltd. Known as "Thunderbolt". This oscillator is highly stable over temperature and time with a frequency variance of 1 part in 10^{-12} . Thunderbolt data sheet is provided in a separate attachment.

Test Site

All testing was performed at Compliance Certification Services either by me or under my supervision. Conducted and radiated emissions were performed using test equipment with calibration traceable to NIST, and following test procedures accepted by the industry.

THOMAS N. COKENIAS Consultant, EMC&Radio Type Approvals Agent for Trimble Navigation Ltd.