

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report for Radio Equipment Trimble Navigation Model: Apollo R8-M2 with 2.4GHz Module (RoHS Compliant) and SPS881 with 2.4GHz Module In Accordance With FCC Part 15.207 and RSS-Gen

COMPANY: **Trimble Navigation** 485 Potrero Sunnyvale, CA. 94086

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94085

TEST SITE: Elliott Laboratories, Inc. 41039 Boyce Road. Fremont, CA. 94538-2435

REPORT DATE: July 17, 2007

FINAL TEST DATES:

June 27, 2007

AUTHORIZED SIGNATORY:

Bare

David W. Bare Chief Technical Officer

2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	July 17, 2007	Initial Release	David Guidotti

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	5
EMISSION TEST RESULTS	6
CONDUCTED EMISSIONS (MAINS PORT)	
RADIATED EMISSIONS MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION EMISSIONS TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	11
INSTRUMENT CALIBRATION	11
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS (MAINS)	12
RADIATED EMISSIONS	12
SAMPLE CALCULATIONS	13
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	13
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A: Test Equipment Calibration Data	
APPENDIX B: Test Data Log Sheets	
APPENDIX C: Test Configuration Photographs	

SCOPE

Governments and standards organizations around the world have published requirements regarding the electromagnetic emissions of information technology equipment. Electromagnetic emissions testing has been performed on the Trimble Navigation model Apollo R8-M2 with 2.4GHz Module (RoHS Compliant), to establish compliance with these requirements. The SPS881 with 2.4GHz Module is electrically identical to the R8-M2 with 2.4GHz Module. There are only cosmetic differences.

Electromagnetic emissions data has been taken pursuant to the following standards. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with these specifications, test procedures, and measurement guidelines as outlined in Elliott Laboratories test procedures.

Standard	Title	Standard Date
FCC Part 15.207	Radio Frequency Devices – Conducted	October 2006 as
	Limits	Amended
RSS-Gen Sections 6	General Requirements and Information for	Issue 2, June 2007
and 7.2.2	the Certification of Radiocommunication	
	Equipment	

In order to demonstrate compliance with the requirements, the manufacturer or a contracted laboratory makes measurements and takes the necessary steps to ensure that the equipment complies with the appropriate technical standards.

OBJECTIVE

The objective of the manufacturer is to declare conformity for the Apollo R8-M2 with 2.4GHz Module (RoHS Compliant) and the SPS881 with 2.4GHz Module with the conducted emissions limits specified in the standards listed above.

STATEMENT OF COMPLIANCE

The tested sample of Trimble Navigation model Apollo R8-M2 with 2.4GHz Module (RoHS Compliant) complied with the requirements of:

Standard/Regulation	Equipment Type/Class	Standard Date
FCC Part 15.207	Radio	2006 as
		amended
RSS-Gen Section 7.2.2	Radio	2007

The test results recorded herein are based on a single type test of the Trimble Navigation model Apollo R8-M2 with 2.4GHz Module (RoHS Compliant) and therefore apply only to the tested sample. The sample was selected and prepared by Roy Urbach of Trimble Navigation.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that could result in increased emissions or susceptibility should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different enclosure, different line filter or power supply, harnessing and/or interface cable changes, etc.).

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

EMISSION TEST RESULTS

The following emissions tests were performed on the Trimble Navigation model Apollo R8-M2 with 2.4GHz Module (RoHS Compliant). The measurements were extracted from the data recorded during testing and represent the highest amplitude emissions relative to the specification limits. The actual test results are contained in an appendix of this report.

CONDUCTED EMISSIONS (MAINS PORT)

	June 27, 2007						
Test	Standard/Section	Requirement	Measurement	Result	Compliance Status		
CE, 0.15-30 MHz, 120V, 60Hz	FCC § 15.107(a) VCCI Table 4.2	0.15-0.5 MHz, 66-56 dBµV QP 0.5-5.0 MHz, 56 dBµV QP 5.0-30.0 MHz, 60 dBµV QP 0.15-0.5 MHz, 56-46 dBµV Av 0.5-5.0 MHz, 46 dBµV Av 5.0-30.0 MHz, 50 dBµV Av	43.1dBµV @ 0.197MHz	-10.6dB	Complied		

June 27, 2007

RADIATED EMISSIONS

Test	Standard/Section	Requirement	Measurement	Result	Compliance Status
RE, 30-1000 MHz	RSS-GEN	30 – 230, 30 dBµV/m 230 – 1000, 37 dBµV/m	29.0dBµV/m @ 767.986MHz	-8.0dB	Complied
RE, 1000- 7000 MHz	RSS-GEN	54.0 dBµV/m Av 74.0 dBµV/m Pk	51.0dBµV/m @ 5600.0MHz	-3.0dB	Complied

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)	
Conducted Emissions Radiated Emissions	0.15 to 30 30 to 1000	$ \pm 2.2 \pm 3.6 $	

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Trimble Navigation model Apollo R8-M2 with 2.4GHz Module (RoHS Compliant) is a radio with different plug-in radio modules. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/230 Volts, 50/60 Hz.

The sample was received on June 26, 2007 and tested on and June 27, 2007. The EUT consisted of the following components:

Manufacturer	Model	Description	Serial Number	FCC ID
Trimble	R8-M2 with	GPS/GNSS Reciever with	SN: RoHS	-
Navigation	2.4GHz Module	a 2.4GHz data radio	A00001	
			PN: 60250-24	
Cirronet	2.4GHz Module	2.4GHz data radio	SN: WIT2410T-	-
			A-020001	
			PN: 62481-24	
Ault	PW174KA180	AC Adapter for Radio	Date Code 0703	DoC
			rev A RoHS	
PCTEL	MaxRad Omni	2.4GHz Antenna	SN: Marked	-
			408757	
			PN: MFB24008	

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 19 cm wide by 19 cm deep by 10 cm high.

MODIFICATIONS

No modifications were made to the EUT in order to comply with the specifications.

SUPPORT EQUIPMENT

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Lattitude D160	Laptop PC	Service Tag 3STVK81	DoC
			Trimble #S-0002692	
Dell	ADP-90AHB	AC Adapter for	CN-OC8023-48661-	-
		Laptop	56S-1PT6	
HP	Deskjet 5650	Printer	MY3883K42P	DoC

The following equipment was used as local support equipment for emissions testing:

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Julie 20 ulie Julie27, 2007						
Port	Connected To		Cable(s)			
		Description	Shielded or	Length(m)		
			Unshielded			
Interface Ports of	Interface Ports on EUT					
7-Pin Serial/Power	Laptop PC DB9 Serial	Combo	Shielded	Power $= 2m$		
Port	Port and External AC	Serial/Power Cable		Serial $= 5m$		
	Adapter DC Output					
Serial DB9	Not Cabled	-	-	-		
Antenna	2.4 GHz Antenna	Coax	Shielded	5.1		

June	26	and	June27,	2007
June	20	anu	June27,	2007

Note: The Serial DB9 port was not connected during testing since the 7-Pin Serial/Power Port was already connected.

EUT OPERATION

During emissions testing the EUT was streaming data to the laptop and the radio was in hopping mode.

EMISSIONS TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 27, 2007 at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The test sites contain separate areas for radiated and conducted emissions testing. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1:1999 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1: Radio disturbance and immunity measuring apparatus. They are registered with the VCCI and are on file with the FCC.

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

Site	VCCI	FCC	Industry Canada	Location
	Registration #	Registration	Registration #'s	
		#'s		
Chamber 3	R-1683	769238	IC 4549-3	41039 Boyce
Chamber 3	C-1795	-	-	Road
				Fremont, CA
				94538-2435

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4 and CISPR 22. Mains port measurements are made with the EUT connected to the public power network through nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord. Telecommunication port measurements are made with the network cable connected through an ISN appropriate to the type of cable employed.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiated measurements made in a non-anechoic shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an Open Area Test Site or anechoic chamber, as defined in ANSI C63.4. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7 GHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer runs automated data collection programs that control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted emission measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz frequency range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors that are programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material up to 12 mm thick if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The standards require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS (MAINS)

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT. Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

 $R_r - S = M$

where:

R_r = Receiver Reading in dBuV S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

APPENDIX A: Test Equipment Calibration Data

Radiated Emissions, 30 - 7,000 MHz, 26-Jun-07 Engineer: Suhaila Khushzad

<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	27-May-08
EMCO	Antenna, Horn, 1-18GHz	3115	868	26-Apr-08
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	29-Aug-07
Com-Power Corp.	Pre Amplifier, 30-1000 MHz	PA-103	1632	25-May-08
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	03-May-08

Conducted Emissions, 0.150 - 30 MHz, 27-Jun-07 Engineer: Suhaila Khushzad

Engineer: Sunalia Khushzau				
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	25-Jan-08
EMCO	LISN, 10 kHz-100 MHz	3825/2	1293	19-Jan-08
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1594	11-Apr-08
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	11-Jan-08

APPENDIX B: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T68420 17 Pages

EMC Test Data

v			
Client:	Timble Navigation	Job Number:	J68417
Model:	R8-M2 with 2.4GHz Module (RoHS	Test-Log Number:	T68420
	Compliant)	Project Manager:	Dean Eriksen
Contact:	Roy Urbach		
Emissions Spec:	FCC Part 15 and EN 55022	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Timble Navigation

Model

R8-M2 with 2.4GHz Module (RoHS Compliant)

Date of Last Test: 7/13/2007

EMC Test Data

_			
Client:	Timble Navigation	Job Number:	J68417
Model:	R8-M2 with 2.4GHz Module (RoHS	Test-Log Number:	T68420
	Compliant)	Project Manager:	Dean Eriksen
Contact:	Roy Urbach		
Emissions Spec:	FCC Part 15 and EN 55022	Class:	В
Immunity Spec:	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a GPS/GNSS Receiver with a 2.4GHz data radio that is designed to receive GPS signals and corrections. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/230 Volts, 60/50 Hz, 2 Amps.

Equipment Under Test				
Manufacturer	Model	Description	Serial Number	FCC ID
Trimble Navigation	R8-M2 with 2.4GHz	GPS/GNSS Reciever	SN: RoHS A00001	-
	Module	with a 2.4GHz data radio	PN: 60250-24	
Cirronet	2.4GHz Module	2.4GHz data radio	SN: WIT2410T-A-	-
			020001	
			PN: 62481-24	
Ault	PW174KA180	AC Adapter for Radio	Date Code 0703 rev A	DoC
PCTEL	MaxRad Omni	2.4GHz Antenna	SN: Marked 408757	-
			PN: MFB24008	

Other EUT Details

None

EUT Enclosure

The EUT enclosure is primarily constructed of plastic . It measures approximately 19 cm wide by 19 cm deep by 10 cm high.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

EMC Test Data

U			
Client:	Timble Navigation	Job Number:	J68417
Model:	R8-M2 with 2.4GHz Module (RoHS	T-Log Number:	T68420
	Compliant)	Project Manager:	Dean Eriksen
Contact:	Roy Urbach		
Emissions Spec:	FCC Part 15 and EN 55022	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #1

The following information was collected during the test sessions(s).

	Lo	cal Support Equipm	ent	
Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Lattitude D160	Laptop PC w/	Service Tag 3STVK81	DoC
		BluetoothRadio	Trimble #S-0002692	
Dell	ADP-90AHB	AC Adapter for Laptop	CN-OC8023-48661-56S-	-
			1PT6	
HP	Deskjet 5650	Printer	MY3883K42P	DoC
Manufacturor		note Support Equipr		
Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-
		Cabling and Ports		
Port	Connected To		Cable(s)	
		Description	Shielded or Unshielded	Length(m)
Interface Ports on EUT				
7-Pin Serial/Power Port	Laptop PC DB9 Serial	Combo Serial/Power	Shielded	Power = 2m
	Port and External AC	Cable		Serial = 5m
	Adapter DC Output			
Serial DB9	Not Cabled	-	-	-
Antenna	2.4 GHz Antenna	Соах	Shielded	5.1

EUT Operation During Emissions Tests

During emissions testing the EUT was streaming data to the laptop and the radio was set in hopping mode.

6	Elliott	EMC Test Dat		
Client:	Timble Navigation	Job Number:	J68417	
Model	R8-M2 with 2.4GHz Module (RoHS Compliant)	T-Log Number:	T68420	
wouer.		Account Manager:	Dean Eriksen	
Contact:	Roy Urbach			
Standard:	FCC Part 15 and EN 55022	Class:	В	

Radiated Emissions FCC Part 15 and EN 55022

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

. . .

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/26/2007 Test Engineer: Suhaila Khushzad Test Location: Fremont Chamber #4 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

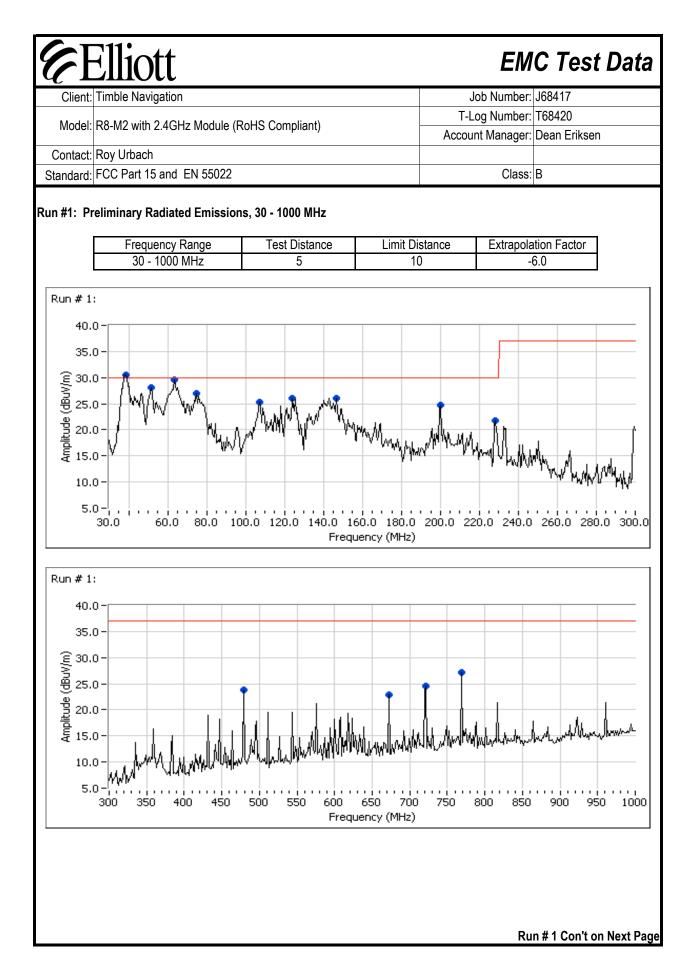
The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	23 °C
	Rel. Humidity:	37 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 1000 MHz,	EN 55022, Class B	Deee	27.5dBµV/m @
l	Preliminary Scan	EN 33022, Class B	Pass	767.986MHz (-9.5dB)
n	RE, 30 - 1000 MHz,	EN 55022, Class B	Deee	29.0dBµV/m @
Z	Maximized Emissions	EN 33022, Class D	Pass	767.986MHz (-8.0dB)
2	RE, 1000 - 7000 MHz,	FCC, Class B	Deee	51.0dBµV/m @
3	Maximized Emissions	FUU, UIASS D	Pass	5600.0MHz (-3.0dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Timble Navigation	Job Number:	J68417
Madal	R8-M2 with 2.4GHz Module (RoHS Compliant)	T-Log Number:	T68420
woder.		Account Manager:	Dean Eriksen
Contact:	Roy Urbach		
Standard:	FCC Part 15 and EN 55022	Class:	В

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

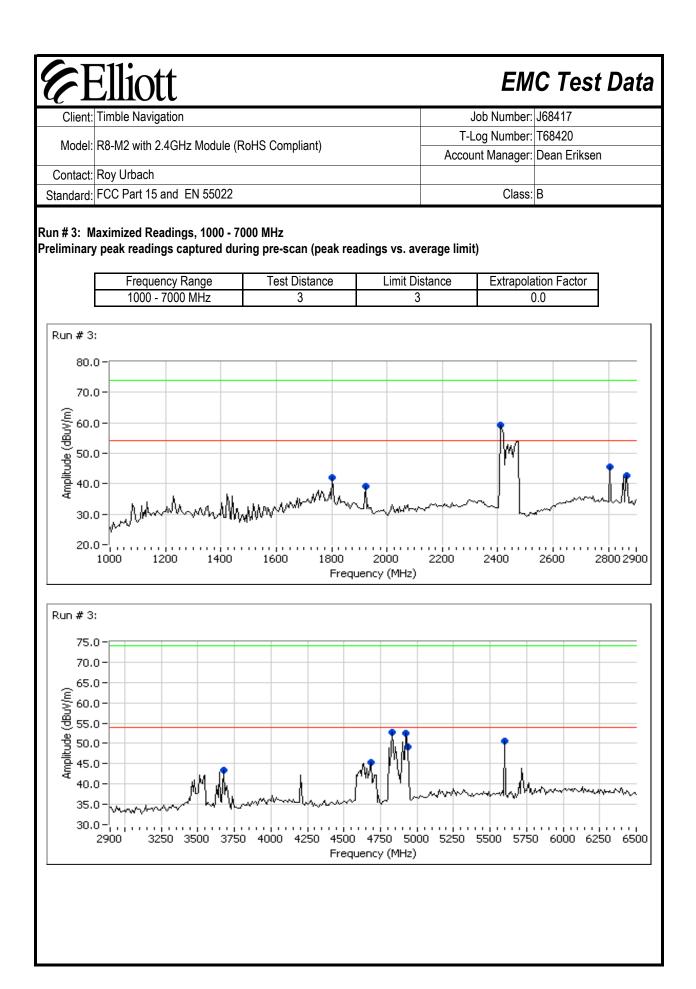
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	5	10	-6.0

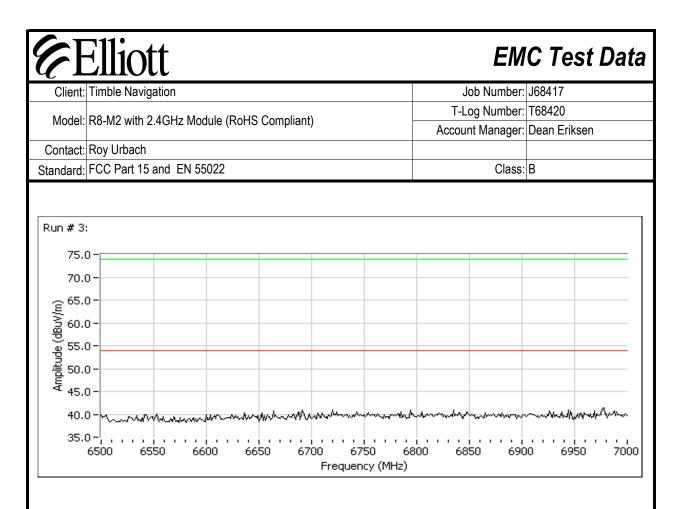
Preliminary peak readings captured during pre-scan

	peakiea	anige et	aptailea aai	ing pro cot	a11			
Frequency	Level	Pol	EN 55022	2, Class B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
38.009	30.5	V	30.0	0.5	Peak	299	2.0	
63.622	29.5	V	30.0	-0.5	Peak	32	3.5	
51.383	28.1	V	30.0	-1.9	Peak	97	2.0	
75.079	26.9	V	30.0	-3.1	Peak	269	1.5	
123.630	26.1	V	30.0	-3.9	Peak	152	1.0	
147.200	26.0	V	30.0	-4.0	Peak	53	1.0	
108.162	25.3	V	30.0	-4.7	Peak	296	3.0	
200.505	24.7	Н	30.0	-5.3	Peak	254	3.0	
227.401	21.7	V	30.0	-8.3	Peak	263	3.0	
767.986	27.1	Н	37.0	-9.9	Peak	218	1.5	
719.988	24.5	Н	37.0	-12.5	Peak	248	1.5	
480.001	23.8	V	37.0	-13.2	Peak	193	1.5	
671.991	22.8	Н	37.0	-14.2	Peak	267	2.0	
011.001			01.0	11.4	· Jun	201	2.0	

Preliminary quasi-peak readings (no manipulation of EUT interface cables)

Level	Pol	EN 55022	2, Class B	Detector	Azimuth	Height	Comments
dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
27.5	Н	37.0	-9.5	QP	227	1.5	
18.3	V	30.0	-11.7	QP	109	1.0	
25.1	V	37.0	-11.9	QP	190	1.5	
24.0	Н	37.0	-13.0	QP	255	1.5	
23.3	Н	37.0	-13.7	QP	264	2.0	
16.1	Н	30.0	-13.9	QP	258	3.0	
15.6	V	30.0	-14.4	QP	301	3.0	
14.5	V	30.0	-15.5	QP	299	2.0	
13.7	V	30.0	-16.3	QP	251	1.5	
12.4	V	30.0	-17.6	QP	229	3.0	
11.4	V	30.0	-18.6	QP	36	3.5	
7.2	V	30.0	-22.8	QP	93	2.0	
	dBμV/m 27.5 18.3 25.1 24.0 23.3 16.1 15.6 14.5 13.7 12.4 11.4	dBµV/m v/h 27.5 H 18.3 V 25.1 V 24.0 H 23.3 H 16.1 H 15.6 V 14.5 V 13.7 V 12.4 V 11.4 V	Level Pol EN 55022 dBµV/m v/h Limit 27.5 H 37.0 18.3 V 30.0 25.1 V 37.0 24.0 H 37.0 23.3 H 37.0 16.1 H 30.0 15.6 V 30.0 14.5 V 30.0 13.7 V 30.0 12.4 V 30.0 11.4 V 30.0	Level Pol EN 55022, Class B dBµV/m v/h Limit Margin 27.5 H 37.0 -9.5 18.3 V 30.0 -11.7 25.1 V 37.0 -11.9 24.0 H 37.0 -13.0 23.3 H 37.0 -13.7 16.1 H 30.0 -14.4 14.5 V 30.0 -15.5 13.7 V 30.0 -16.3 12.4 V 30.0 -17.6 11.4 V 30.0 -16.3	Level Pol EN 55022, Class B Detector dBµV/m v/h Limit Margin Pk/QP/Avg 27.5 H 37.0 -9.5 QP 18.3 V 30.0 -11.7 QP 25.1 V 37.0 -11.9 QP 24.0 H 37.0 -13.0 QP 23.3 H 37.0 -13.7 QP 16.1 H 30.0 -14.4 QP 15.6 V 30.0 -15.5 QP 13.7 V 30.0 -16.3 QP 14.5 V 30.0 -16.3 QP 13.7 V 30.0 -16.3 QP 12.4 V 30.0 -17.6 QP 11.4 V 30.0 -18.6 QP	Level Pol EN 55022, Class B Detector Azimuth dBµV/m v/h Limit Margin Pk/QP/Avg degrees 27.5 H 37.0 -9.5 QP 227 18.3 V 30.0 -11.7 QP 109 25.1 V 37.0 -11.9 QP 190 24.0 H 37.0 -13.0 QP 255 23.3 H 37.0 -13.7 QP 264 16.1 H 30.0 -14.4 QP 301 14.5 V 30.0 -15.5 QP 299 13.7 V 30.0 -16.3 QP 251 12.4 V 30.0 -17.6 QP 229 11.4 V 30.0 -18.6 QP 36	LevelPolEN 55022, Class BDetectorAzimuthHeightdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters27.5H37.0-9.5QP2271.518.3V30.0-11.7QP1091.025.1V37.0-11.9QP1901.524.0H37.0-13.0QP2551.523.3H37.0-13.7QP2642.016.1H30.0-14.4QP3013.015.6V30.0-15.5QP2992.013.7V30.0-16.3QP2511.512.4V30.0-17.6QP363.5


EMC Test Data

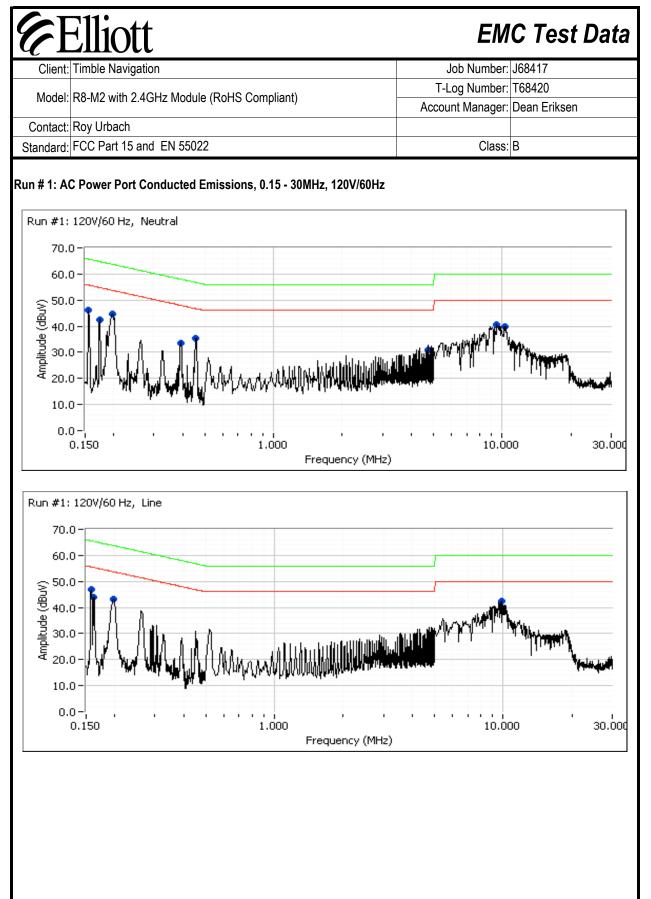

Client:	Timble Navigation	Job Number:	J68417
Model	R8-M2 with 2.4GHz Module (RoHS Compliant)	T-Log Number:	T68420
wouer.		Account Manager:	Dean Eriksen
Contact:	Roy Urbach		
Standard:	FCC Part 15 and EN 55022	Class:	В

Run # 2: Maximized Readings From Run # 1

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

	Fred	quency F	Range	Test D	istance	Limit Di	stance	Extrapolation Factor	
	30	- 1000 N	ИНz		5	1()	-6.0	
-									
Frequency	Level	Pol	EN 55022	2, Class B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
767.986	29.0	Н	37.0	-8.0	QP	227	1.5		
719.988	26.8	Н	37.0	-10.2	QP	254	1.4		
480.001	25.5	V	37.0	-11.5	QP	192	1.5		
147.200	18.3	V	30.0	-11.7	QP	70	1.0		
671.991	25.3	Н	37.0	-11.7	QP	255	1.7		
200.505	16.1	Н	30.0	-13.9	QP	253	2.7		

Run # 3: Maximized Readings, 1000 - 7000 MHz Preliminary peak readings captured during pre-scan (peak readings vs. average limit)


Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7000 MHz	3	3	0.0

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5600.070	50.7	V	54.0	-3.3	Peak	17	1.0	
4931.780	49.1	Н	54.0	-4.9	Peak	296	1.9	
2800.020	45.4	V	54.0	-8.6	Peak	18	1.0	
2860.040	42.6	V	54.0	-11.4	Peak	18	1.0	
1799.980	42.1	V	54.0	-11.9	Peak	318	1.3	
1919.970	39.2	V	54.0	-14.8	Peak	106	1.0	

Run # 3 Con't on Next Page

Client: Timble Navigation Job Number: J68417 Model: R8-M2 with 2.4GHz Module (RoHS Compliant) T-Log Number: T6820 Contact: Roy Urbach Dean Eriksen Dean Eriksen Standard: FCC Part 15 and EN 55022 Class: B Final peak and average readings Test Distance Limit Distance Extrapolation Factor 1000 - 7000 MHz 3 3 0.0 S Frequency Level Pol FCC Class B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 13.5 1.3 1919.970 37.2 V 54.0 -26.3 PK 19 1.0
Model: R8-M2 with 2.4GH2 Module (ROHS Compliant) Account Manager: Dean Eriksen Contact: Roy Urbach Image: Class: B Standard: FCC Part 15 and EN 55022 Class: B Inal peak and average readings Test Distance Limit Distance Extrapolation Factor 1000 - 7000 MHz 3 3 0.0
Model: R8-M2 with 2.4GH2 Module (ROHS Compilant) Account Manager: Dean Eriksen Contact: Roy Urbach Image: Class: B Standard: FCC Part 15 and EN 55022 Class: B Cinal peak and average readings Class: B Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 7000 MHz 3 3 0.0
Standard: FCC Part 15 and EN 55022 Class: B inal peak and average readings Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 7000 MHz 3 3 0.0 Frequency Level Pol FCC Class B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.800 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000
inal peak and average readings Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 7000 MHz 3 3 0.0 Frequency Level Pol FCC Class B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.8
Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 7000 MHz 3 3 0.0 Frequency Level Pol FCC Class B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 2799.960 47.7 V 54.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.4 PK 18 1.0
1000 - 7000 MHz 3 3 0.0 requency Level Pol FCC Class B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 2799.960 47.7 V 74.0 -20.7 PK 18 1.0 2799.960 47.7 V 74.0 -28.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.8 PK 315
1000 - 7000 MHz 3 3 0.0 requency Level Pol FCC Class B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 2799.960 47.7 V 74.0 -20.7 PK 18 1.0 2860.000 45.6 V 74.0 -28.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.8 PK 315<
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 5599.950 53.3 V 74.0 -26.3 PK 19 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.4 PK 18 1.0 1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 5599.950 53.3 V 74.0 -26.3 PK 19 1.0 2799.960 47.7 V 74.0 -28.4 PK 18 1.0 2799.930 45.2 V 74.0 -28.8 PK 13 1.3 1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0
5599.950 51.0 V 54.0 -3.0 AVG 18 1.0 2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 2799.960 47.7 V 74.0 -20.7 PK 18 1.0 2799.960 47.7 V 74.0 -28.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.8 PK 18 1.0 1799.830 45.2 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In a
2799.960 44.9 V 54.0 -9.1 AVG 19 1.0 2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 5599.950 53.3 V 74.0 -20.7 PK 18 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.4 PK 18 1.0 2799.980 45.2 V 74.0 -28.8 PK 315 1.3 1799.830 45.2 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the pereading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
2860.000 41.8 V 54.0 -12.2 AVG 18 1.0 1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 5599.950 53.3 V 74.0 -20.7 PK 18 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.4 PK 18 1.0 2799.930 45.2 V 74.0 -28.8 PK 315 1.3 1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0 -31.5 PK 106 1.0
1799.830 40.5 V 54.0 -13.5 AVG 315 1.3 1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 5599.950 53.3 V 74.0 -20.7 PK 18 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.4 PK 18 1.0 1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the pereeding of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
1919.970 37.2 V 54.0 -16.8 AVG 106 1.0 5599.950 53.3 V 74.0 -20.7 PK 18 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.4 PK 18 1.0 1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the pereeding of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
5599.950 53.3 V 74.0 -20.7 PK 18 1.0 2799.960 47.7 V 74.0 -26.3 PK 19 1.0 2860.000 45.6 V 74.0 -28.4 PK 18 1.0 1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the pereading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the period of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
2860.000 45.6 V 74.0 -28.4 PK 18 1.0 1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the pereeding of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
1799.830 45.2 V 74.0 -28.8 PK 315 1.3 1919.970 42.5 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the period of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
1919.970 42.5 V 74.0 -31.5 PK 106 1.0 ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the period of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
ote 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the period of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.
2.4GHz, 3.6GHz, 4.6GHz, 4.8GHz, 4.9GHz are not included in the final result because they are from the Bluet ote 2: and the Radio transmitter, therefore, they are covered under FCC Part 15.247. The 2.4GHz radio was mistake transmit mode, hopping and sweeping each channel, during the test.

aboratories Frei ve of this test session n listed above. ushzad namber #3	ucted Emissi mont Facility, Sem n is to perform final quali Config. Used Config Change EUT Voltage	T- Accou ons <i>i-Anecho</i> fication test : 1 : None : 120V/60H	ing of the EUT with respect to
55022 Cond aboratories Fred ve of this test session n listed above. ushzad amber #3 n was located on a wo	ucted Emissi mont Facility, Sem n is to perform final quali Config. Used Config Change EUT Voltage	Accou ONS <i>i-Anecho</i> fication test : 1 : None : 120V/60H	Class: B
55022 Cond aboratories Fred ve of this test session n listed above. ushzad amber #3 n was located on a wo	ucted Emissi mont Facility, Sem n is to perform final quali Config. Used Config Change EUT Voltage	ONS <i>i-Anecho</i> fication test : 1 : None : 120V/60H	Class: B
Cond aboratories Free we of this test session in listed above. ushzad namber #3 n was located on a wo	mont Facility, Sem n is to perform final quali Config. Used Config Change EUT Voltage	i-Anecho fication test : 1 : None : 120V/60H	Dic Chamber)
Cond aboratories Free we of this test session in listed above. ushzad namber #3 n was located on a wo	mont Facility, Sem n is to perform final quali Config. Used Config Change EUT Voltage	i-Anecho fication test : 1 : None : 120V/60H	Dic Chamber)
aboratories Frei ve of this test session n listed above. ushzad namber #3 n was located on a wo	mont Facility, Sem n is to perform final quali Config. Used Config Change EUT Voltage	i-Anecho fication test : 1 : None : 120V/60H	ing of the EUT with respect to
n listed above. ushzad namber #3 n was located on a wo	Config. Used Config Change EUT Voltage boden table inside the se	: 1 : None : 120V/60H	
ushzad lamber #3 1 was located on a wo	Config Change EUT Voltage oden table inside the se	: None : 120V/60H	Z
was located on a wo			
LIGN. A Second LI	ISN was used for all loss		c chamber, 40 cm from a vertic
T		a support e	quipment.
Temperature: Rel. Humidity:	20 °C 41 %		
rtoi. Humiorty.	1170		
t Performed	Limit	Result	Margin
Power,120V/60Hz	EN55022 Class B	Pass	43.1dBµV @ 0.197MHz (-10.6dB)
Power, 230V/50Hz	EN55022 Class B	Pass	39.6dBµV @ 0.197MHz (-14.1dB)
y Testing: EUT during testing			
dard	standard.		
)	Testing: EUT during testing	Testing: EUT during testing	Testing: EUT during testing

EMC Test Data

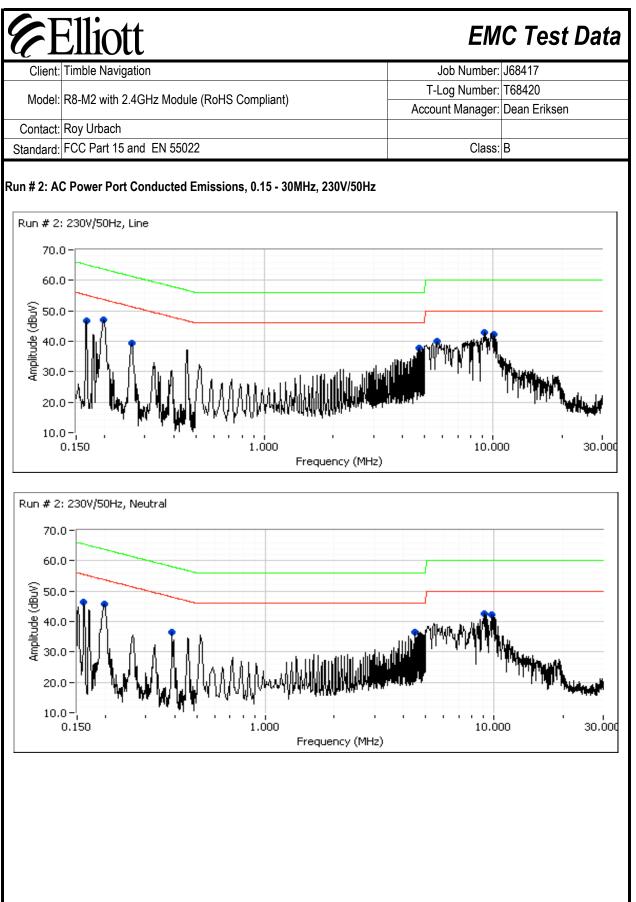
Client:	Timble Navigation	Job Number:	J68417
Model	R8-M2 with 2.4GHz Module (RoHS Compliant)	T-Log Number:	T68420
wouer.		Account Manager:	Dean Eriksen
Contact:	Roy Urbach		
Standard:	FCC Part 15 and EN 55022	Class:	В

Run # 1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

			01		0 0 /
Level	AC	EN55022	2 Class B	Detector	Comments
dBµV	Line	Limit	Margin	QP/Ave	
42.4	Line	50.0	-7.6	Peak	
42.4	Line	50.0	-7.6	Peak	
46.9	Line	55.6	-8.7	Peak	
44.7	Neutral	53.7	-9.0	Peak	
40.7	Neutral	50.0	-9.3	Peak	
46.2	Neutral	55.7	-9.5	Peak	
39.8	Neutral	50.0	-10.2	Peak	
43.1	Line	53.7	-10.6	Peak	
35.3	Neutral	46.7	-11.4	Peak	
44.0	Line	55.4	-11.4	Peak	
42.6	Neutral	54.8	-12.2	Peak	
33.5	Neutral	48.0	-14.5	Peak	
31.0	Neutral	46.0	-15.0	Peak	
	Level dBµV 42.4 46.9 44.7 40.7 46.2 39.8 43.1 35.3 44.0 42.6 33.5	Level AC dBμV Line 42.4 Line 42.4 Line 46.9 Line 44.7 Neutral 40.7 Neutral 46.2 Neutral 39.8 Neutral 43.1 Line 35.3 Neutral 44.0 Line 33.5 Neutral	Level AC EN55022 dBμV Line Limit 42.4 Line 50.0 42.4 Line 50.0 42.4 Line 50.0 46.9 Line 55.6 44.7 Neutral 53.7 40.7 Neutral 55.7 39.8 Neutral 50.0 43.1 Line 53.7 35.3 Neutral 50.4 42.6 Neutral 55.4 42.6 Neutral 54.8 33.5 Neutral 54.8	Level AC EN55022 Class B dBμV Line Limit Margin 42.4 Line 50.0 -7.6 42.4 Line 50.0 -7.6 42.4 Line 50.0 -7.6 44.7 Line 55.6 -8.7 44.7 Neutral 53.7 -9.0 40.7 Neutral 50.0 -9.3 46.2 Neutral 55.7 -9.5 39.8 Neutral 50.0 -10.2 43.1 Line 53.7 -10.6 35.3 Neutral 46.7 -11.4 44.0 Line 55.4 -11.4 42.6 Neutral 54.8 -12.2 33.5 Neutral 48.0 -14.5	Level AC EN55022 Class B Detector dBμV Line Limit Margin QP/Ave 42.4 Line 50.0 -7.6 Peak 46.9 Line 55.6 -8.7 Peak 44.7 Neutral 53.7 -9.0 Peak 40.7 Neutral 55.7 -9.5 Peak 39.8 Neutral 50.0 -10.2 Peak 33.1 Line 53.7 -10.6 Peak 43.1 Line 55.4 -11.4 Peak 35.3 Neutral 46.7 -11.4 Peak 42.6 Neutral 54.8 -12.2 Peak 33.5 Neutral 54.8 -12.2 Peak

Run #1 Con't on Next Page


EMC Test Data

-			
Client:	Timble Navigation	Job Number:	J68417
Model	R8-M2 with 2.4GHz Module (RoHS Compliant)	T-Log Number:	T68420
MOUEI.		Account Manager:	Dean Eriksen
Contact:	Roy Urbach		
Standard:	FCC Part 15 and EN 55022	Class:	В

Run # 1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Final quasi-peak and average readings

Final quasi-peak and average readings							
Frequency	Level	AC	EN55022	2 Class B	Detector	Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave		
0.197	43.1	Line	53.7	-10.6	AVG		
0.197	42.6	Neutral	53.7	-11.1	AVG		
9.517	34.7	Neutral	50.0	-15.3	AVG		
9.903	34.7	Line	50.0	-15.3	AVG		
10.231	34.5	Neutral	50.0	-15.5	AVG		
9.842	34.1	Line	50.0	-15.9	AVG		
0.458	30.3	Neutral	46.7	-16.4	AVG		
4.760	27.6	Neutral	46.0	-18.4	AVG		
0.197	45.2	Line	63.7	-18.5	QP		
0.197	43.9	Neutral	63.7	-19.8	QP		
9.903	39.7	Line	60.0	-20.3	QP		
0.393	27.6	Neutral	48.0	-20.4	AVG		
9.842	38.9	Line	60.0	-21.1	QP		
10.231	38.9	Neutral	60.0	-21.1	QP		
9.517	38.8	Neutral	60.0	-21.2	QP		
0.458	33.8	Neutral	56.7	-22.9	QP		
0.157	40.5	Line	65.6	-25.1	QP		
0.154	40.6	Neutral	65.8	-25.2	QP		
4.760	30.3	Neutral	56.0	-25.7	QP		
0.162	39.3	Line	65.4	-26.1	QP		
0.393	31.5	Neutral	58.0	-26.5	QP		
0.173	36.1	Neutral	64.8	-28.7	QP		
0.157	16.4	Line	55.6	-39.2	AVG		
0.154	16.4	Neutral	55.8	-39.4	AVG		
0.162	15.9	Line	55.4	-39.5	AVG		
0.173	15.1	Neutral	54.8	-39.7	AVG		

EMC Test Data

Client:	Timble Navigation	Job Number:	J68417				
Model:	R8-M2 with 2.4GHz Module (RoHS Compliant)	T-Log Number:	T68420				
		Account Manager:	Dean Eriksen				
Contact:	Roy Urbach						
Standard:	FCC Part 15 and EN 55022	Class:	В				

Run # 2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	AC	EN55022	2 Class B	Detector	Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave		
0.197	46.9	Line	53.7	-6.8	Peak		
9.180	43.0	Line	50.0	-7.0	Peak		
9.049	42.6	Neutral	50.0	-7.4	Peak		
10.091	42.2	Line	50.0	-7.8	Peak		
0.197	45.9	Neutral	53.7	-7.8	Peak		
9.833	42.1	Neutral	50.0	-7.9	Peak		
4.754	37.9	Line	46.0	-8.1	Peak		
0.167	46.6	Line	55.2	-8.6	Peak		
0.161	46.3	Neutral	55.4	-9.1	Peak		
4.492	36.5	Neutral	46.0	-9.5	Peak		
5.664	40.0	Line	50.0	-10.0	Peak		
0.391	36.4	Neutral	48.1	-11.7	Peak		
0.262	39.3	Line	51.3	-12.0	Peak		

Run # 2 Con't on Next Page

EMC Test Data

Client:	Timble Navigation	Job Number:	J68417					
Model:	R8-M2 with 2.4GHz Module (RoHS Compliant)	T-Log Number:	T68420					
		Account Manager:	Dean Eriksen					
Contact:	Roy Urbach							
Standard:	FCC Part 15 and EN 55022	Class:	В					

Run # 2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

Final quasi-peak and average readings

Final quasi-peak and average readings							
Frequency	Level	AC	EN55022	2 Class B	Detector	Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave		
0.197	39.6	Line	53.7	-14.1	AVG		
0.197	37.4	Neutral	53.7	-16.3	AVG		
9.180	33.5	Line	50.0	-16.5	AVG		
4.754	29.4	Line	46.0	-16.6	AVG		
0.197	46.7	Line	63.7	-17.0	QP		
10.091	32.5	Line	50.0	-17.5	AVG		
9.049	32.5	Neutral	50.0	-17.5	AVG		
9.180	42.4	Line	60.0	-17.6	QP		
9.049	42.3	Neutral	60.0	-17.7	QP		
4.492	28.0	Neutral	46.0	-18.0	AVG		
10.091	41.6	Line	60.0	-18.4	QP		
9.833	31.4	Neutral	50.0	-18.6	AVG		
0.197	44.8	Neutral	63.7	-18.9	QP		
4.754	36.8	Line	56.0	-19.2	QP		
9.833	40.7	Neutral	60.0	-19.3	QP		
0.391	38.2	Neutral	58.0	-19.8	QP		
0.262	31.5	Line	51.4	-19.9	AVG		
0.391	27.9	Neutral	48.0	-20.1	AVG		
5.664	29.6	Line	50.0	-20.4	AVG		
4.492	35.5	Neutral	56.0	-20.5	QP		
5.664	38.9	Line	60.0	-21.1	QP		
0.262	38.3	Line	61.4	-23.1	QP		
0.161	36.8	Neutral	65.4	-28.6	QP		
0.167	35.7	Line	65.1	-29.4	QP		
0.161	16.4	Neutral	55.4	-39.0	AVG		
0.167	15.3	Line	55.1	-39.8	AVG		

APPENDIX C: Test Configuration Photographs

4 Pages