

FCC Test Report FCC Part 15.247 for FHSS systems/ **CANADA RSS-210**

FOR:

MODEL #: R8-Model 2, SPS880

TRIMBLE NAVIGATION LTD., 935 STEWART DR. P.O BOX 3642 SUNNYVALE, CA 94088-3642 U.S.A

FCC ID: Q23 31307 / 09EQ2426-SK IC ID: 1756A-50158

TEST REPORT #: EMC_1098_2005_BLUETOOTH **DATE: DECEMBER 05, 2005**

Accredited according to ISO/IEC 17025

Bluetooth Qualification Test Facility (BQTF)

FCC listed # 101450

IC recognized # 3925

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

V1.1 2003-03-01

The BLUETOOTH trademarks are owned by Bluetooth SIG, Inc., U.S.A. and licensed to CETECOM Inc.

© Copyright by CETECOM

TABLE OF CONTENTS

Test Report #:

Date of Report:

1	Assessment	4
2	Administrative Data	5
	2.1 Identification of the Testing Laboratory Issuing the EMC Test Report	
	2.2 Identification of the Client	
	2.3 Identification of the Manufacturer	
3		
5		
	3.1 Identification of the Equipment under Test	
4		
5	Measurements For Bluetooth Module	8
	5.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (RADIATED)	8
	5.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1) (2) (3) (4)	8
	5.2 MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)	
	5.2.1 LIMIT SUB CLAUSE § 15.247 (b) (1)	12
	5.2.2 RESULTS:	12
	5.3 20dB BANDWIDTH	
	5.3.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii) 5.3.2 RESULTS:	
	5.4 CARRIER FREQUENCY SEPARATION	20
	5.4.2 RESULTS:	
	5.5 NUMBER OF HOPPING CHANNELS	
	5.5.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (iii)	22
	5.5.2 RESULTS:	22
	5.6 TIME OF OCCUPANCY (DWELL TIME)	27
	5.6.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii) 5.6.2 RESULTS:	
	5.7 CONDUCTED SPURIOUS EMISSIONS 5.7.1 LIMIT SUB CLAUSE § 15.247 (d)	
	5.7.2 RESULTS	
	5.8 RESTRICTED BAND EDGE COMPLIANCE RADIATED §15.247/15.205	38
	5.8.1 LIMITS	38
	5.8.2 RESULTS (2402MHz)	39
	5.9 TRANSMITTER SPURIOUS EMISSIONS RADIATED § 15.247/15.205/15.20	עע 43 43
	5.9.2 RESULTS	44
	5.10 RECEIVER SPURIOUS RADIATION § 15.209/RSS210	56
	5.10.1 LIMITS	56
	5.10.2 RESULTS	57

Test Report #:	EMC_1098_2005_BL	EMC_1098_2005_BLUETOOTH	
Date of Report:	2005-12-05	Page 3 of 81	CETECOM [™]
5.11 AC POWE	ER LINE CONDUCTED EN	AISSIONS § 15.107/207	63
5.11.1 LIMIT	S		63
		80	
6.1 CO-LOCA 6.1.1 RESULT	TION		65 66
6.2.1 LIMITS		N § 15.209/RSS210	72
6.3 AC POWE 6.3.1 LIMITS	ER LINE CONDUCTED EN	AISSIONS § 15.107/207	78 78
		RIES USED FOR TESTS	
6.5 BLOCK D	IAGRAMS		81

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Part 15.247 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS210.

Company	Description	Model #
TRIMBLE NAVIGATION LTD	GPS RECEIVER WITH BLUETOOTH DEVICE AND CELLULAR MOBILE GSM (824- 849MHz) PCS DEVICE (2GHz) RECEIVER	R8-MODEL 2, SPS880

2005-12-05 Neelesh Raj Project Leader

2005-12-05 Lothar Schmidt Test Lab Manager

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc. USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Neelesh Raj
Date of test:	2005-11-22 to 2005-12-02

2.2 Identification of the Client

Applicant's Name:	Trimble Navigation Ltd
Street Address:	935 Stewart Dr. P.O. Box 3642
City/Zip Code	Sunnyvale 94088-3642
Country	USA
Contact Person:	Roy Urbach
Phone No.	408-481-8667
Fax:	408-481-7866
e-mail:	roy_urbach@trimble.com

2.3 Identification of the Manufacturer

Manufacturer's Name:	Trimble Navigation Ltd
Manufacturers Address:	935 Stewart Dr. P.O. Box 3642
City/Zip Code	Sunnyvale 94088-3642
Country	USA

3 Equipment under Test (EUT)

3.1 Identification of the Equipment under Test

Marketing Name:	R8-MODEL 2, SPS880
Description:	GPS Receiver with Bluetooth Device and Cellular Mobile GSM (824-849 MHz) PCS Device (2 GHz) Receiver
Model No:	R8-MODEL 2, SPS880
FCC ID:	Q23 31307 / 09EQ2426-SK
IC ID:	1756A-50158
Frequency Range:	2400-2483.5MHz
Type(s) of Modulation:	GFSK
Number of Channels:	79
Antenna Type:	INTERNAL
Output Power:	0.0019W CONDUCTED @ 2480MHz

4 Subject Of Investigation

FCC:

FCC ID#: JUP-50158-R8, applies to previous R8 with different BT module. This ID isn't being permissive changed, but will be replaced on the label with the BT module ID (Q23 31307) and the GPRS module ID (O9EQ2426-SK).

INDUSTRY CANADA:

We are requesting a permissive change to 1756A-50158, which currently is based on the previous version of the R8 (has different digital and GPS electronics) with a different BT module, but with the same GPRS module. We will continue to ship both the existing R8 and the new R8-Model 2 (also called SPS880), all with the same IC ID: 1756A-50158.

SUMMARY:

This report contains Full testing on the Bluetooth Module (testing was performed on a stand-alone module in a testjig) as per FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS210.

This report also contains tests that were performed on the R8-Model 2, SPS880 with the new Bluetooth Module, new CPU (MPC5200 CPU), and a second Maxwell V ASIC (GPS processing chip).

The following tests were performed on the R8-Model 2, SPS880:

- 30MHz 25GHz RADIATED TRANSMITTER EMISSIONS as per FCC15.247 and RSS210 (Co-Location with Bluetooth and GPRS transmitting simultaneously)
- 30MHz 25GHz RADIATED RECEIVER EMISSIONS as per RSS210 (with R8-Model 2, SPS880 in receive mode)
- 150KHz-30MHz AC POWERLINE CONDUCTED EMISSIONS as per FCC15.247 and RSS210 (Co-Location with Bluetooth and GPRS transmitting simultaneously)

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS210.

5 Measurements For Bluetooth Module

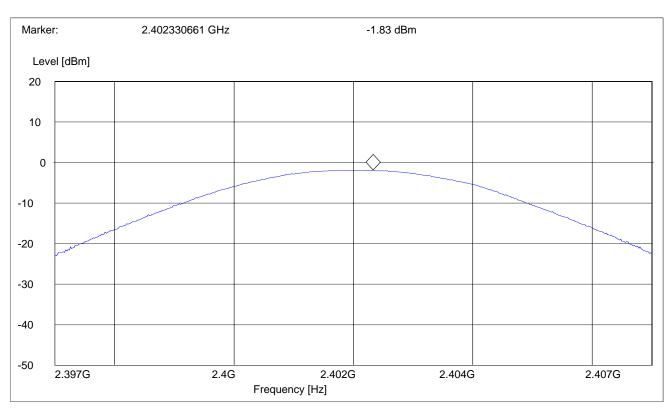
5.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (RADIATED)

5.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1) (2) (3) (4)

Frequency range	RF power output
2400-2483.5 MHz	36dBm EIRP

*limit is based upon antenna gain of less than or equal to 6dBi.

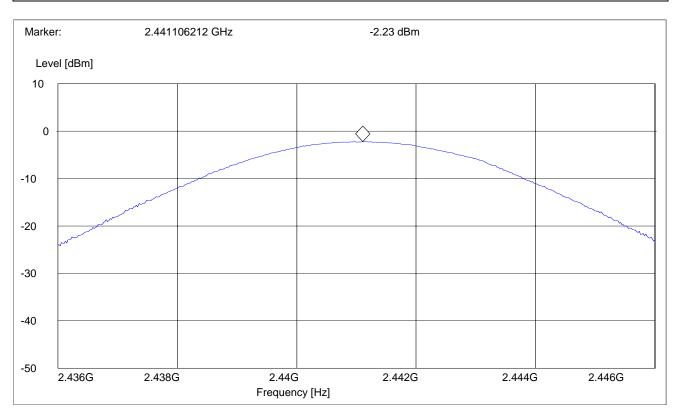
5.1.2 RESULTS:


TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequence	cy (MHz)	2402 MHz	2441 MHz	2480 MHz
T _{nom} (23)°C	V _{nom} VDC	-1.83	-2.23	-2.35
Measurement uncertainty		±0.5dBm		

Test Report #:	EMC_1098_2005_BLUETOO	TH
Date of Report:	2005-12-05	Page 9 of 81

EIRP (2402 MHz)

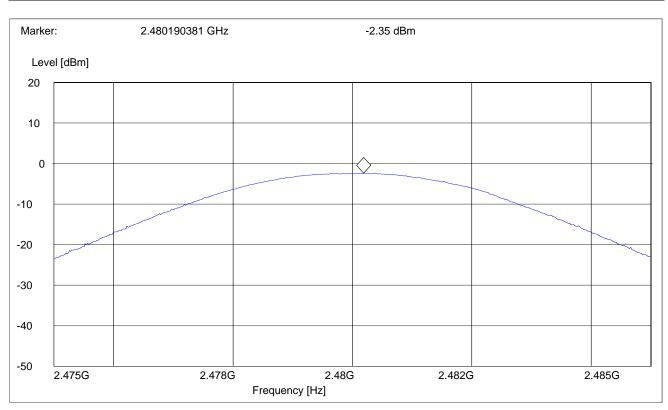
Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
2397 MHz	2407 MHz	Max Peak	Coupled	3 MHz



Test Report #:	EMC_1098_2005_BLUETOO	TH
Date of Report:	2005-12-05	Page 10 of 81

EIRP (2441 MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
2436 MHz	2446 MHz	Max Peak	Coupled	3 MHz

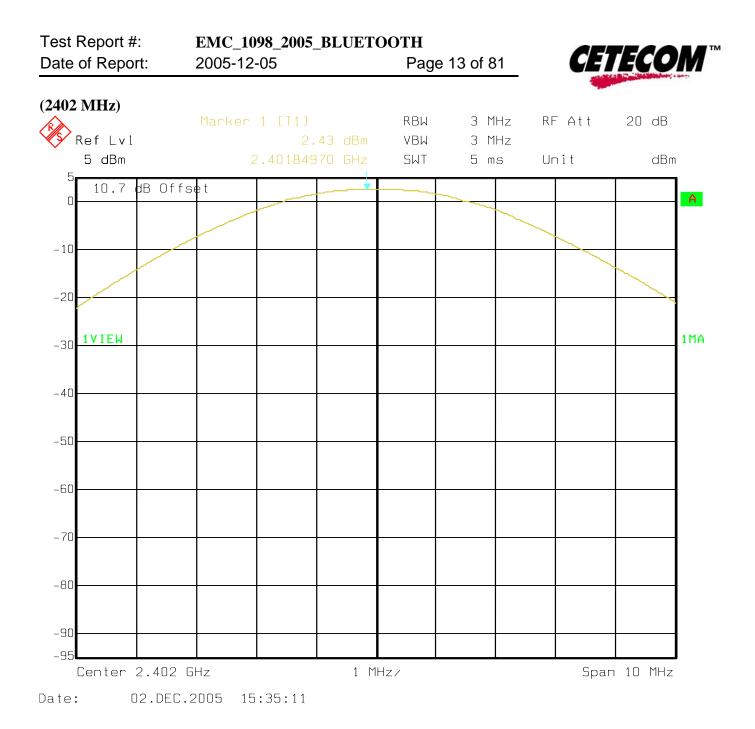


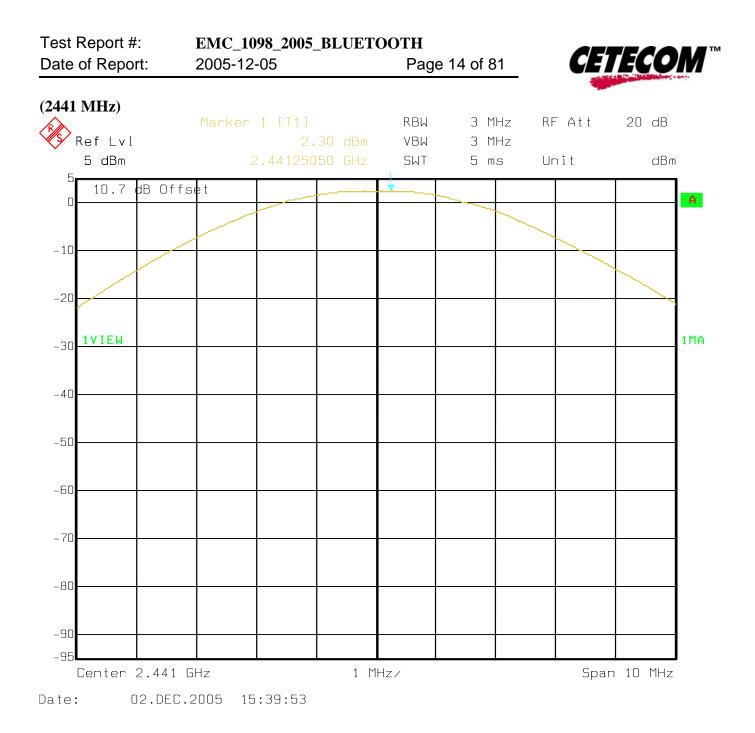
Test Report #:	EMC_1098_2005_BLUETOO	TH
Date of Report:	2005-12-05	Page 11 of 81

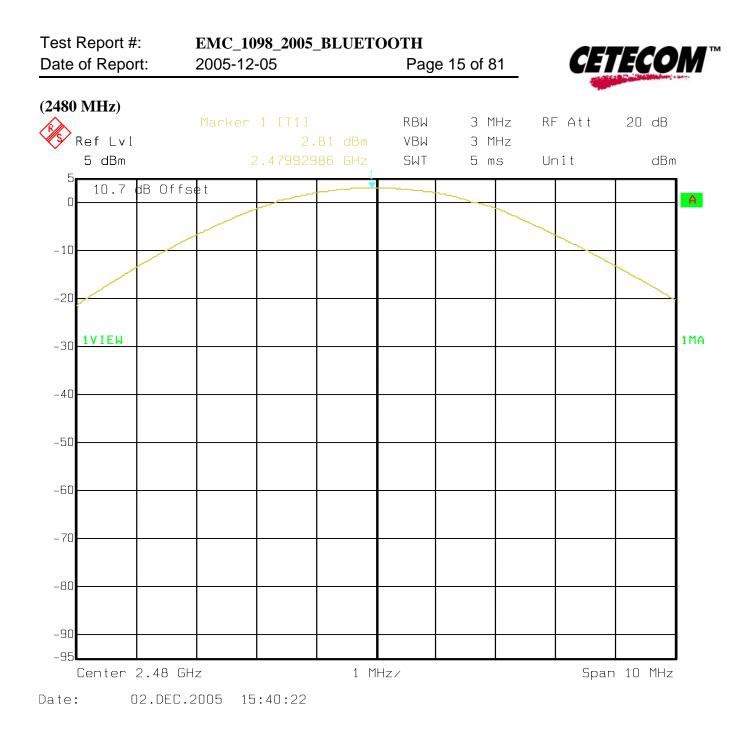
EIRP (2480 MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
2475 MHz	2478 MHz	Max Peak	Coupled	3 MHz

5.2 MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)

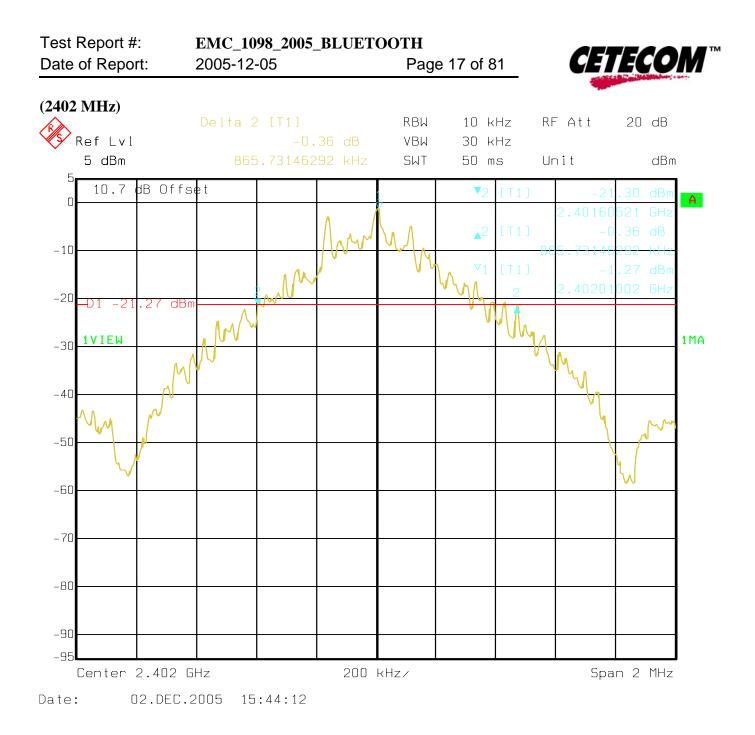

5.2.1 LIMIT SUB CLAUSE § 15.247 (b) (1)


Frequency range	RF power output
2400-2483.5 MHz	30dBm

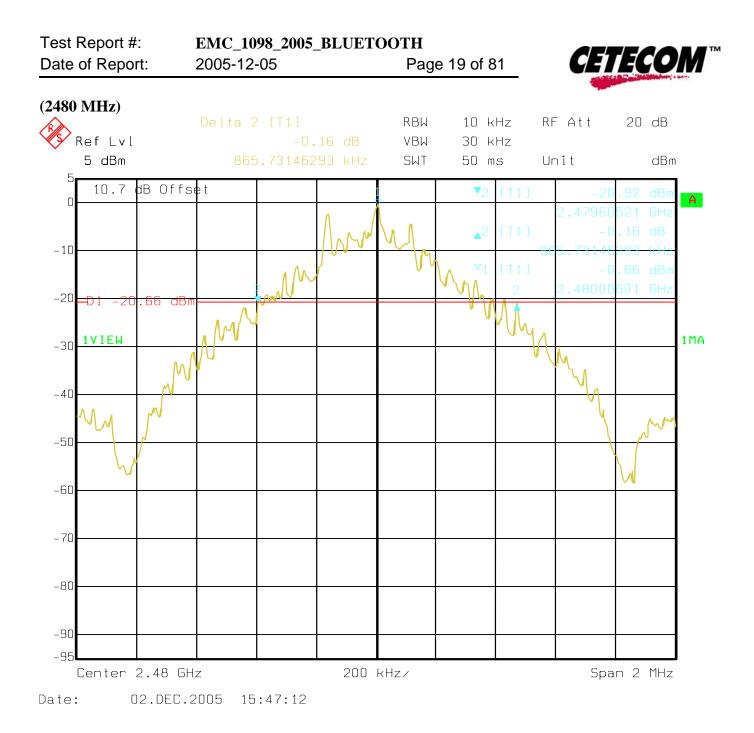

*limit is based upon antenna gain of less than or equal to 6dBi.

5.2.2 RESULTS:

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		2402 MHz	2441 MHz	2480 MHz
T _{nom} (23)°C	V _{nom} VDC	2.43	2.30	2.81

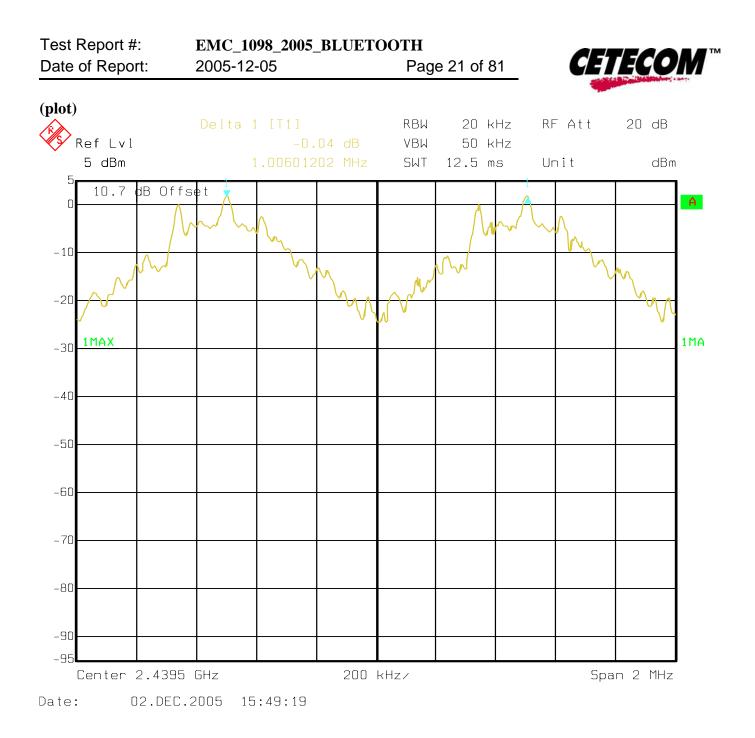

5.3 20dB BANDWIDTH

5.3.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)


NUMBER OF CHANNELS	BANDWIDTH	
79	<1MHz	

5.3.2 RESULTS:

TEST CONDITIONS		BANDWIDTH (KHz)		
Frequency (MHz)		2402 MHz	2441 MHz	2480 MHz
T _{nom} (23)°C	V _{nom} VDC	865.73	865.73	865.73

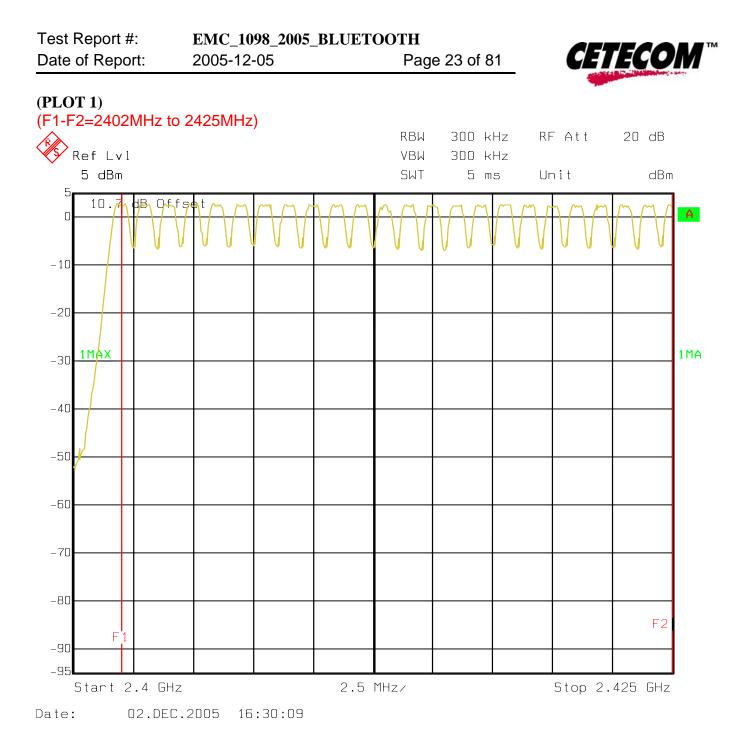

5.4 CARRIER FREQUENCY SEPARATION

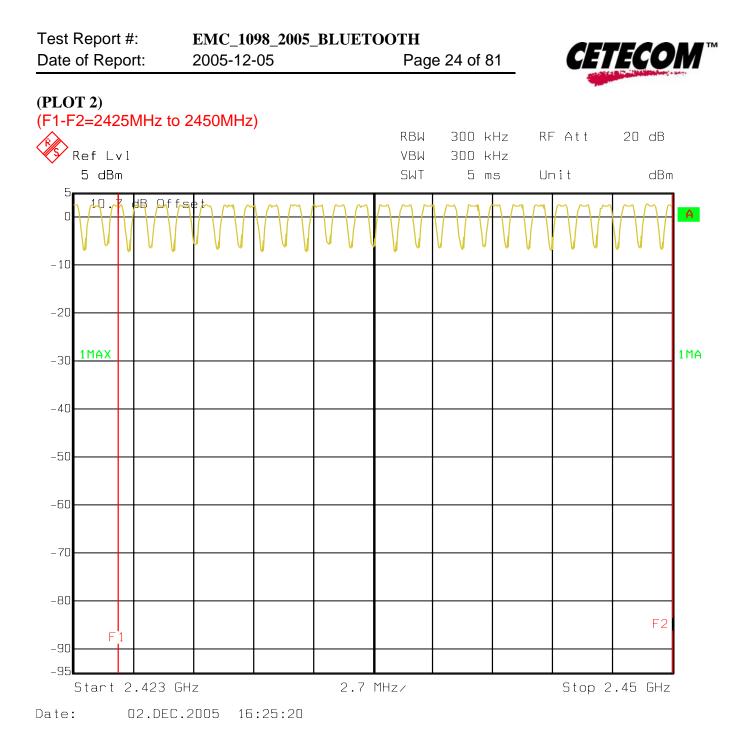
5.4.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

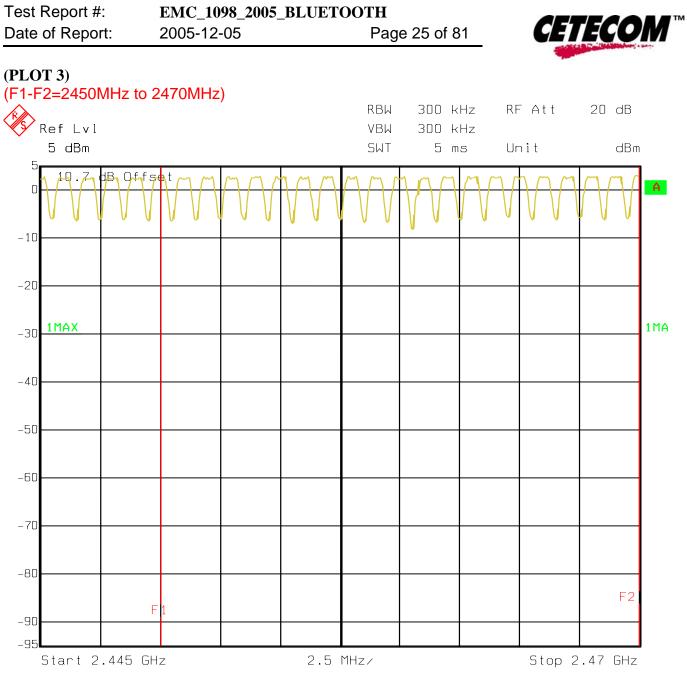
SEPARATION > 25 KHz or > 20 dB BANDWIDTH

5.4.2 RESULTS:

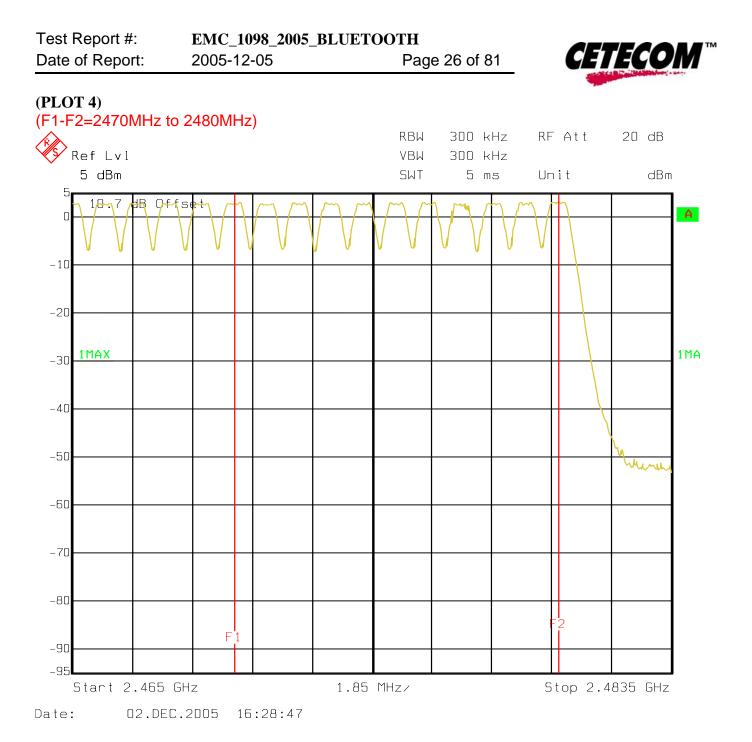
TEST CONDITIONS		SEPARATION (MHz)
T _{nom} (23)°C	V _{nom} VDC	1.006


5.5 NUMBER OF HOPPING CHANNELS


5.5.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (iii)


NUMBER OF CHANNELS
> 15

5.5.2 **RESULTS**:


TEST CONDITIONS		NUMBER OF CHANNELS
T _{nom} (23)°C	V _{nom} VDC	79

Date: 02.DEC.2005 16:26:21

5.6 TIME OF OCCUPANCY (DWELL TIME)

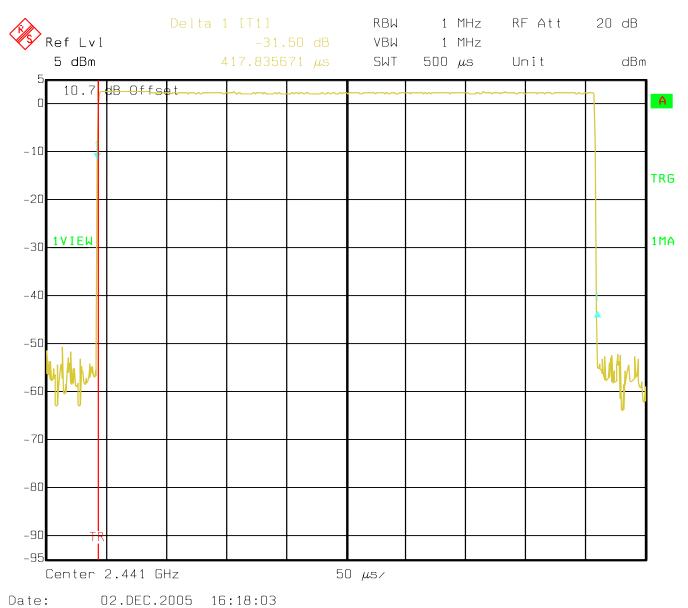
5.6.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

FREQUENCY RANGE	AVERAGE TIME OF
	OCCUPANCY PER
	31.6 SECONDS (LIMIT)
2400-2483.5	0.4 SECONDS

5.6.2 RESULTS:

TEST CONDITIONS		TIME OF OCCUPANCY IN 31.6 SECONDS		
PACKET TYPE		DH1	DH3	DH5
T _{nom} (23)°C	V _{nom} VDC	0.1338 Sec	0.271 Sec	0.311 Sec

Test Report #:	EMC_1098_2005_BLUETOO	TH
Date of Report:	2005-12-05	Page 28 of 81

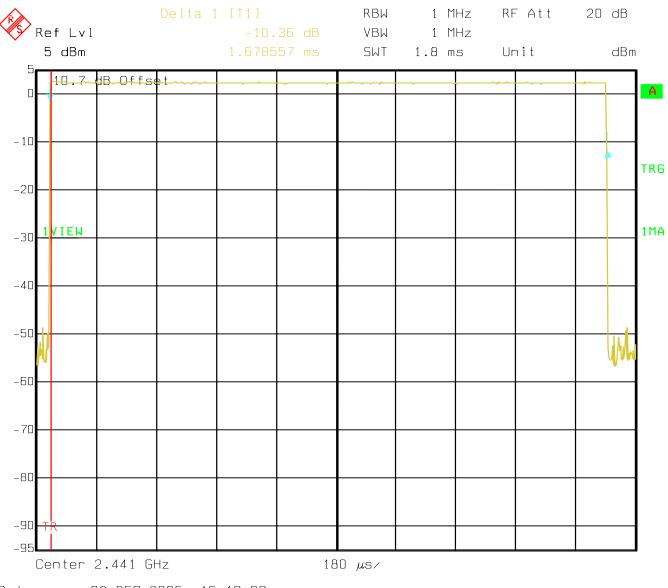


(DH1)

The system makes worst case 1600 hops per second or 1 time slot has a length of 625µs with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 79 channels. So you have each channel 10.13 times per second and so for 31.6 seconds you have 320.108 times of appearance. Each Tx-time per appearance is 417.84µs.

Each 1x-time per appearance is 417.04μ s.

So we have 320.108 * 417.84µs = 133.8ms per 31.6 seconds.

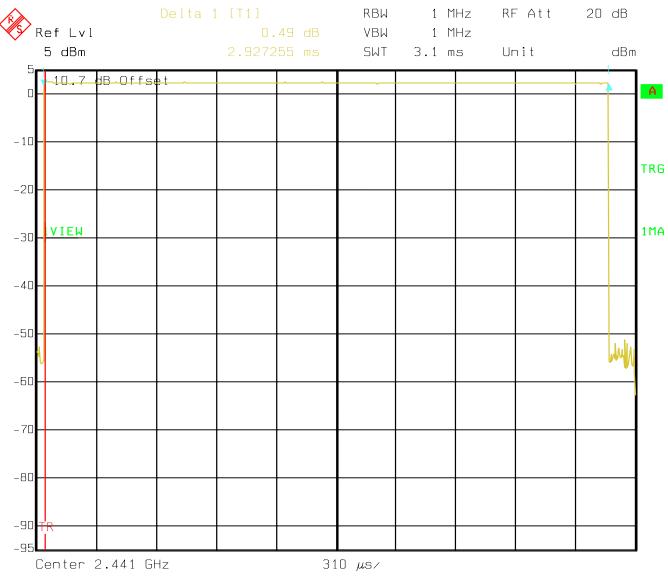


(DH3)

A DH3 Packets need 3 time slots for transmit and 1 for receiving, then the system makes worst case 400 hops per second with 79 channels. So you have each channel 5.1 times per second and so for 31.6 seconds you have 161.16 times of appearance.

Each Tx-time per appearance is 1.679ms.

So we have 161.16 * 1.679ms = 271ms per 31.6 seconds.



(DH5)

At DH5 Packets you need 5 time slots for transmit and 1 for receiving, then the system makes worst case 266.7 hops per second with 79 channels. So you have each channel 3.36 times per second and so for 30 seconds you have 106.176 times of appearance.

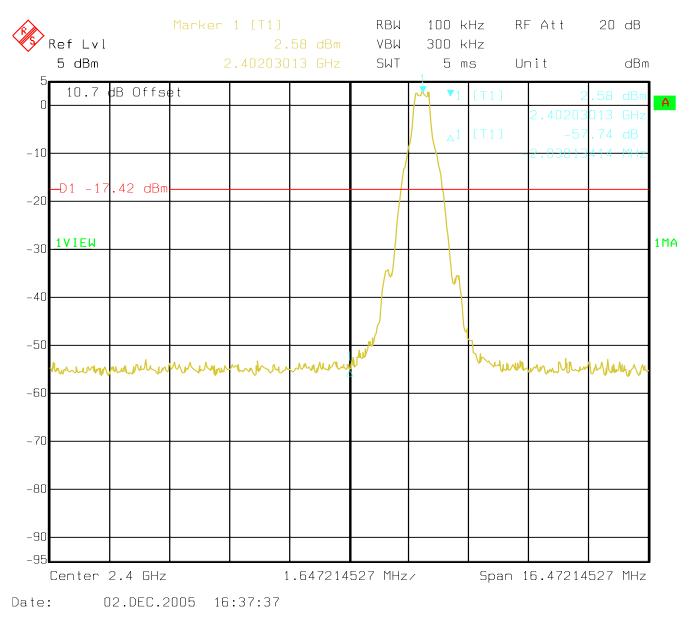
Each Tx-time per appearance is 2.93ms.

So we have 106.176 * 2.93ms = 311ms per 31.6 seconds.

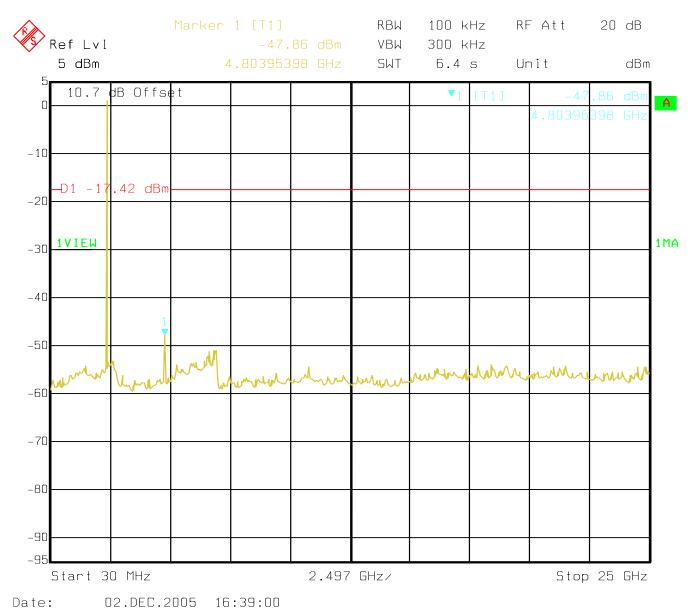
Date: 02.DEC.2005 16:21:11

5.7 CONDUCTED SPURIOUS EMISSIONS

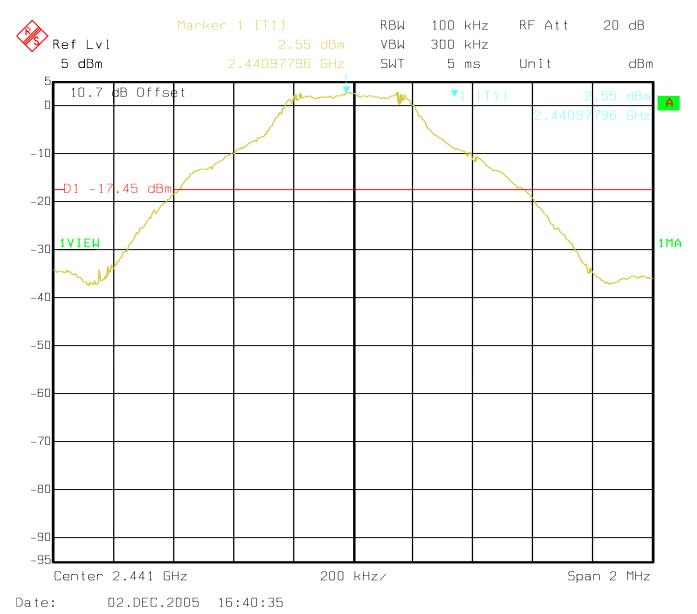
5.7.1 LIMIT SUB CLAUSE § 15.247 (d)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

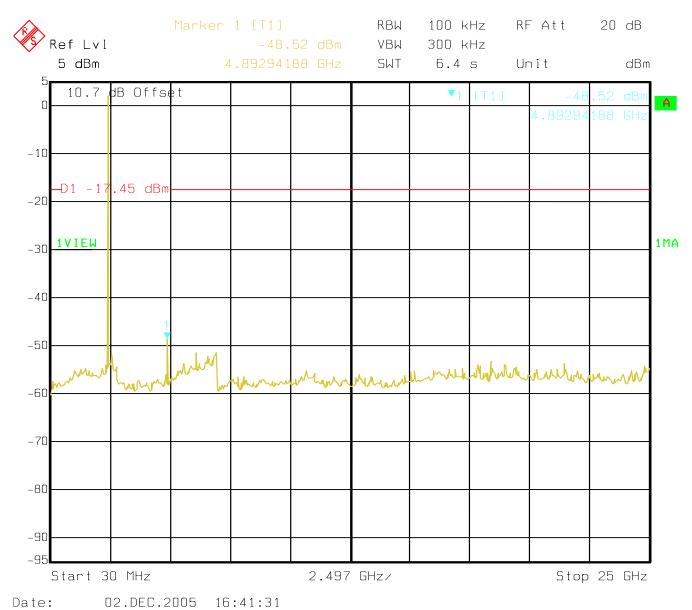
Test Report #:	EMC_1098_2005_BLUETOC	TH
Date of Report:	2005-12-05	Page 32 of 81


5.7.2 RESULTS

CONDUCTED BANDEGDE COMPLIANCE 2402 MHz

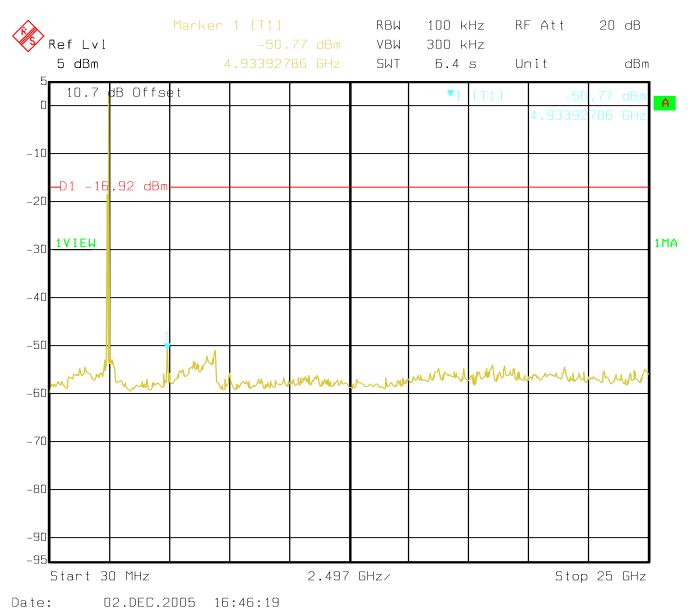


CONDUCTED SPURIOUS 2402 MHz



REFERENCE 2441 MHz

CONDUCTED SPURIOUS 2441 MHz



CONDUCTED BANDEGDE COMPLIANCE 2480 MHz

CONDUCTED SPURIOUS 2480 MHz

5.8 RESTRICTED BAND EDGE COMPLIANCE RADIATED §15.247/15.205

5.8.1 LIMITS

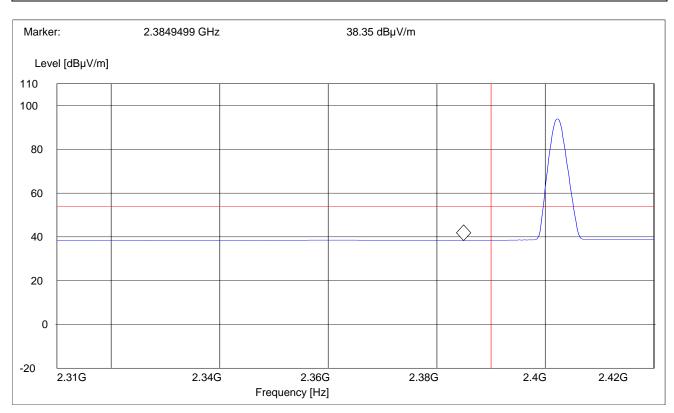
(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

*PEAK LIMIT= 74dBuV *AVG. LIMIT= 54dBuV

5.8.2 **RESULTS (2402MHz)**

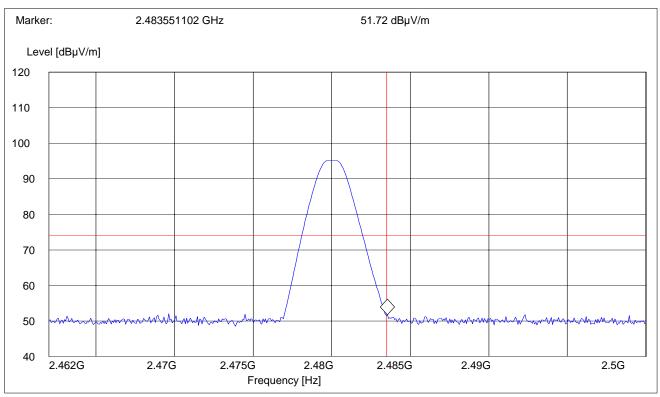
PEAK


Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
2310 MHz	2442 MHz	Max Peak	Coupled	1 MHz	1 MHz

Marke	er:	2.389623	246 GHz	5).84 dBµ\	//m				
Lev	el [dBµV/n	n]								
120										
110										
100										
90							\bigwedge			
80										
70										
60										
50	Anna	www.www.when	mm han	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	>~~~~~		howand	vh~A~A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h
40	2.31G	2.340				2.4G			2.442G	
			Frequ	ency [Hz]						

AVG

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
2310 MHz	2420 MHz	Max Peak	Coupled	1 MHz	10 Hz



5.8.3 **RESULTS (2480MHz)**

PEAK

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
2462 MHz	2500 MHz	Max Peak	Coupled	1 MHz	1 MHz

AVG

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
2462 MHz	2500 MHz	Max Peak	Coupled	1 MHz	10 Hz

Marker:	2.483551102 GHz		46.65 dBµV/m		
Level [dBµV/m]				
110					
00					
90					
80					
70					
60					
50					
40					
30					
20 2.462G	2.47G 2.47	75G 2.48G	2.485G	2.49G	2.5G
2.462G	2.47G 2.47	Frequency [Hz]	2.485G	2.49G	2.5G

Test Report #:EMC_1098_2005_BLUETOOTHDate of Report:2005-12-05Page 43 of 81

5.9 TRANSMITTER SPURIOUS EMISSIONS RADIATED § 15.247/15.205/15.209

5.9.1 LIMITS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

*PEAK LIMIT= 74dBuV *AVG. LIMIT= 54dBuV

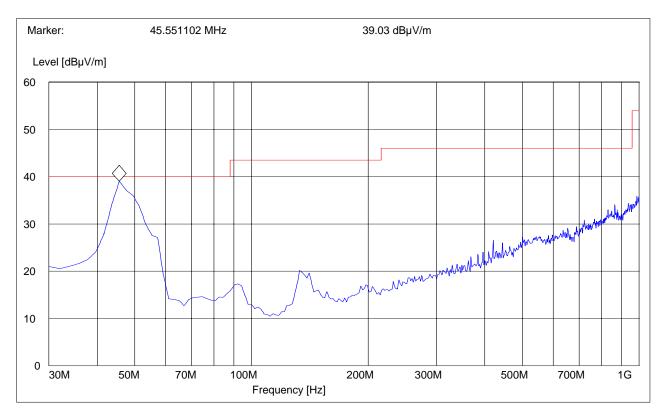
NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.

2. All measurements are done in peak mode using an average limit, unless specified with the plots.

Results for the radiated measurements below 30MHz according § 15.33

Frequency Measured values		Remarks
	No amissions found coused by the EUT	This is valid for all the tested
9KHz – 30MHz	No emissions found, caused by the EUT	channels

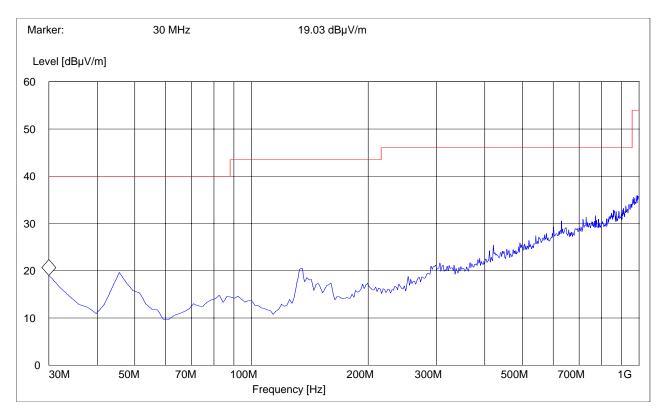


5.9.2 RESULTS

30MHz – 1GHz Antenna: vertical

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

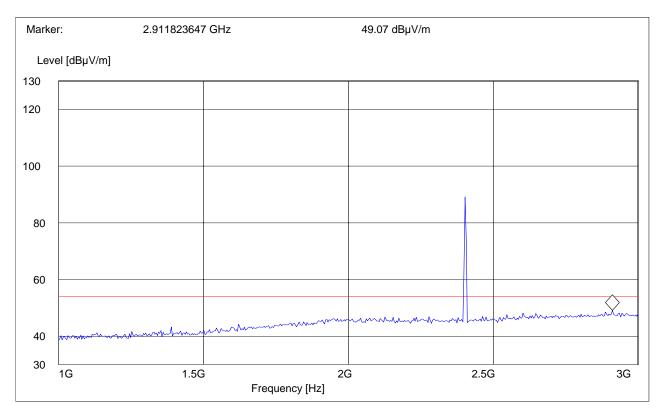
Note: This plot is valid for low, mid, high channels (worst-case plot) Note: Peak reading vs. Quasi-peak limit



30MHz – 1GHz Antenna: horizontal

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

Note: This plot is valid for low, mid, high channels (worst-case plot) Note: Peak reading vs. Quasi-peak limit



1-3GHz (2402MHz)

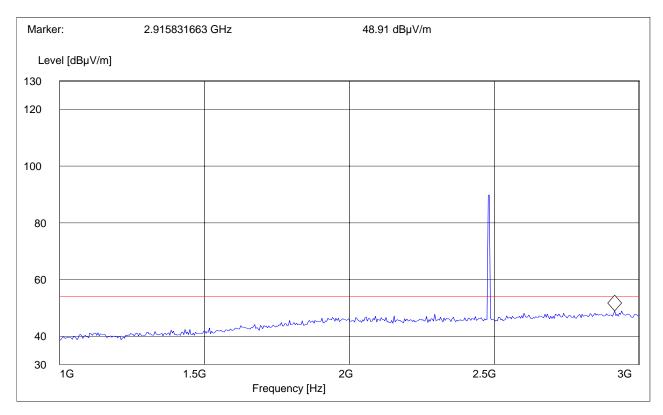
Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peaks above the limit line is the carrier freq. Note: Peak Reading vs. Average limit

1-3GHz (2441MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peaks above the limit line is the carrier freq. Note: Peak Reading vs. Average limit



1-3GHz (2480MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peaks above the limit line is the carrier freq. Note: Peak Reading vs. Average limit

3-18GHz (2402MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: Peak Reading vs. Average limit, see next page for Average Reading vs. Average limit

Marke	er:	5.2585	517034 GHz		57.61 dB	µV/m		
Lev	vel [dBµV	/m]						
130								
120								
100								
80								
60		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓						
40	mm	mulalum	mlumm	muluh				·····
20								
10	3G	60			G 120	 G 140	G 160	G 18G
			I	Frequency [Hz]				

3-18GHz (2402MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	10 Hz

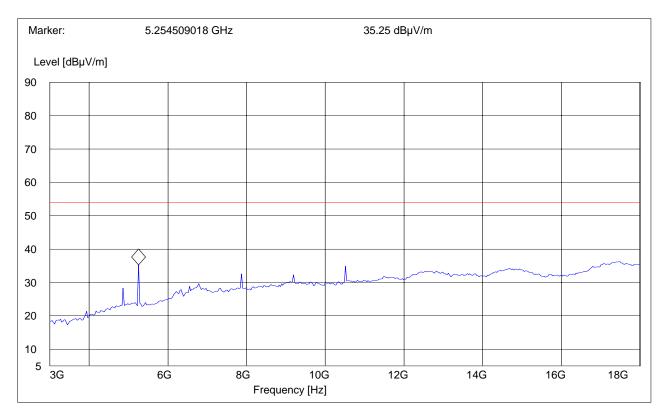
Note: Average Reading vs. Average limit

Mar	ker:	5.25	4509018 GH	łz		34.23 dE	βµV/m		
Le	vel [dBµ'	V/m]							
90									
80									
70									
60									
50									
40		\diamond							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
30			m	~h~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Amm			
20	m	www.www.							
10									
5	3G	60	3	8G Frequ	10G iency [Hz]	120	G 140	G 160	6 18G

3-18GHz (2441MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: Peak Reading vs. Average limit, see next page for Average Reading vs. Average limit


Level [di 130 120 100	1ΒμV/m]						
120							
100							
80							
60							
40	Mundula	www.		- Alman			mm
20							
103G	60		10G Frequency [Hz]	6 120	G 140	G 160	6 18G

3-18GHz (2441MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	10 Hz

Note: Average Reading vs. Average limit

3-18GHz (2480MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

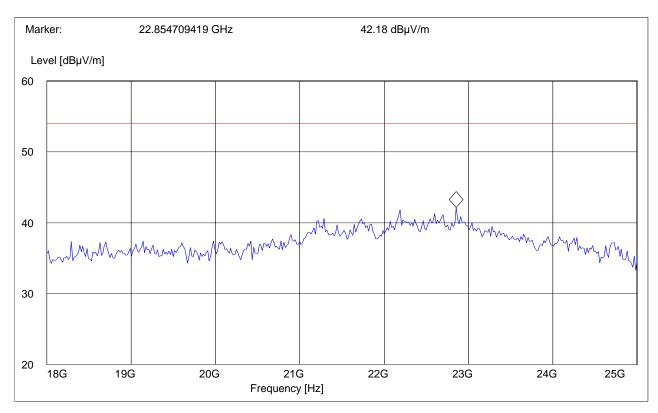
Note: Peak Reading vs. Average limit, see next page for Average Reading vs. Average limit

Marke	r:	5.2585	517034 GHz		57.88 dBj	µV/m		
Leve	el [dBµV/	/m]						
130								
120								
100								
80								
60								
40	mml	man	monto	lin	m			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20								
10	3G	60		100 Trequency [Hz]	G 120	G 140	G 160	6 18G

3-18GHz (2480MHz)

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	10 Hz

Note: Average Reading vs. Average limit


Marl	ker:	5.25	4509018 GHz		35.25 dE	βµV/m		
Lev	/el [dBµ	V/m]						
90								
80								
70								
60								
50								
40		\diamond						~~~~~
30			mount	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
20	~~~~~	hander						
10								
5	3G	60	G 80	G 100 Frequency [Hz]		G 140	G 160	G 18G

18-25GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	25GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: This plot is valid for low, mid, high channels (worst-case plot) Note: Peak Reading vs. Average limit

5.10 RECEIVER SPURIOUS RADIATION § 15.209/RSS210

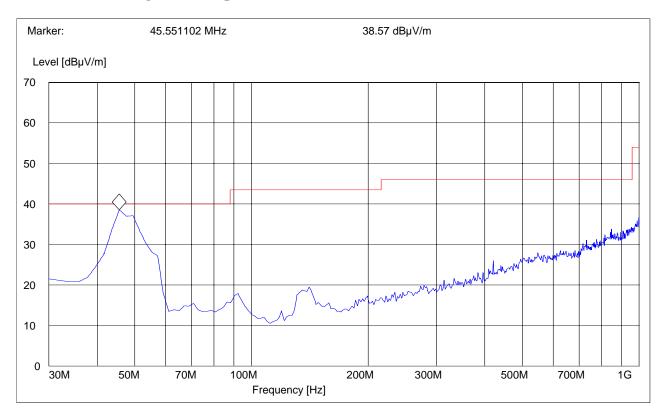
5.10.1 LIMITS

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.

2. All measurements are done in peak mode using a quasi-peak or average limit, unless specified with the plots.

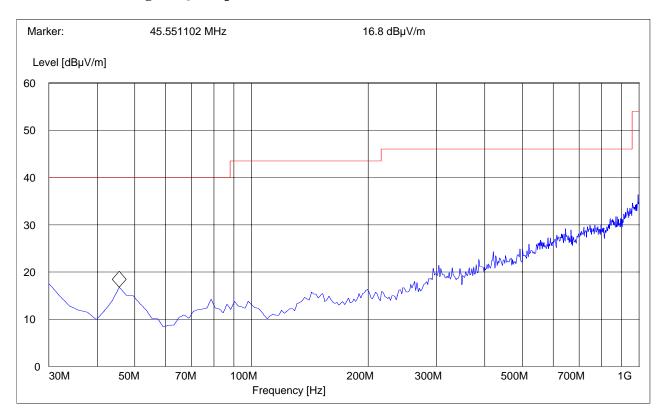


5.10.2 RESULTS

30MHz – 1GHz Antenna: vertical

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

Note: Peak Reading vs. Quasi-peak limit



30MHz – 1GHz Antenna: horizontal

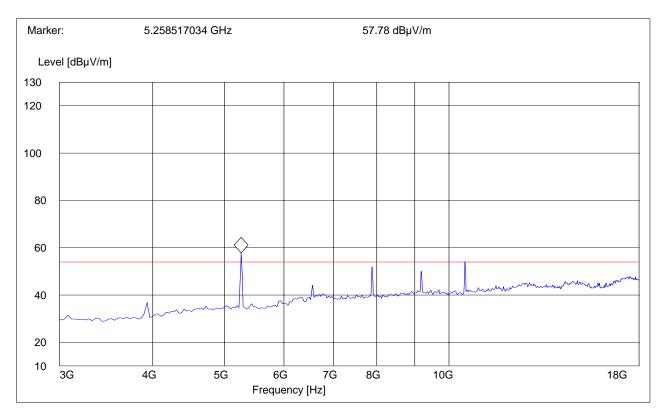
Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

Note: Peak Reading vs. Quasi-peak limit

1-3GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

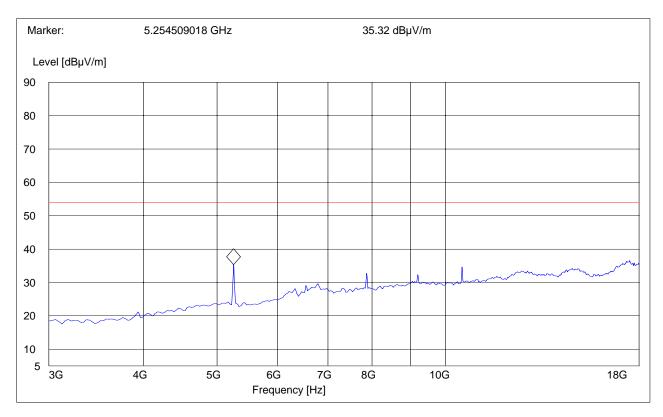
Note: Peak Reading vs. Average limit


Marker:	1 GHz	39.24 dBµV/m		
Level [dBµV/m]			
120				
110				
100				
90				
80				
70				
60				
50			mahaman management	mm
40	Marrow Marro	mar man and a marked and a	and an an an and an	
30				
1G	1.5G	2G Frequency [Hz]	2.5G	3G

3-18GHz

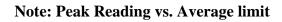
Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

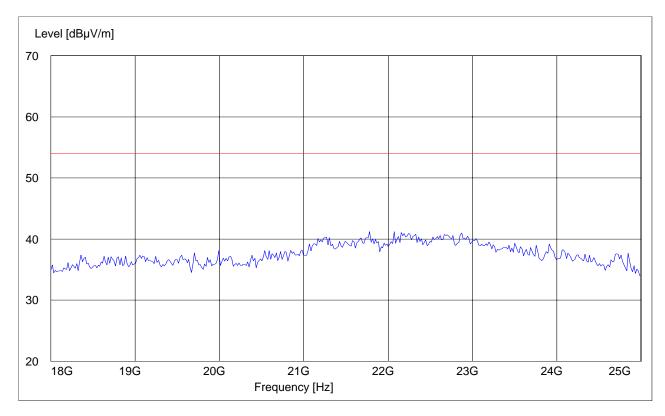
Note: Peak Reading vs. Average limit, see next page for Average Reading vs. Average limit



3-18GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	10 Hz


Note: Average Reading vs. Average limit



18-25GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	25GHz	Max Peak	Coupled	1 MHz	1 MHz

5.11 AC POWER LINE CONDUCTED EMISSIONS § 15.107/207

5.11.1 LIMITS

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002) Limit

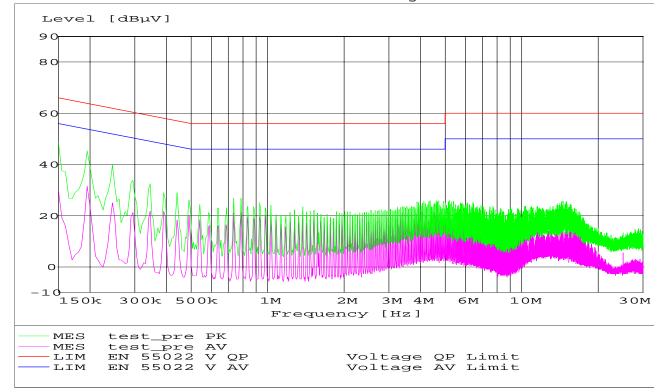
Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-Peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	
5-30	60	50	

* Decreases with logarithm of the frequency

ANALYZER SETTINGS: RBW = 10KHz

VBW = 10KHz

Test Report #:	EMC_1098_2005_BLUETOC	OTH
Date of Report:	2005-12-05	Page 64 of 81


5.11.2 RESULTS Measured with AC/DC power adapter FRIWO model#:SDA5518 *LISN*

411 Dixon Landing Road, CA 95035

EUT / Description:	bluetooth
Manufacturer:	trimble nav
Test mode:	tx @ 2402
Test Engineer:	neelesh
Phase:	L & N
Comment:	110 volt
Start of Test:	11/23/2005 / 1:08:23PM

SCAN TABLE: "EN 55022 Voltage"

Short Desc	ription:		ΕN	55022 Vol	tage		
Start	Stop	Step		Detector	Meas.	IF	
Transducer							
Frequency	Frequency	Width			Time	Bandw.	
150.0 kHz	30.0 MHz	5.0 kHz		MaxPeak	10.0 ms	9 kHz	None
				Average			

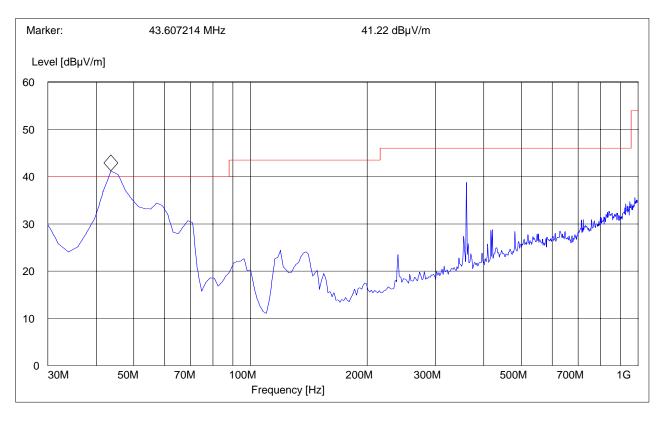
6 Measurements For R8-MODEL 2, SPS880

6.1 CO-LOCATION

All Co-location testing was performed with the EUT transmitting in the PCS band (1880MHz) and the EUT transmitting in Bluetooth mode(2402MHz).

These channels were deemed worst case due to there EIRP readings. All testing was performed using FCC 15.247 procedures/limits.

The attached graph (6.1.1) reflects peak measurements. If peak measurements exceeded the specified peak limits, additional quasi peak measurements have been conducted (if required by the standard). The quasi peak test result is then reflected in the result table below the graph, too.

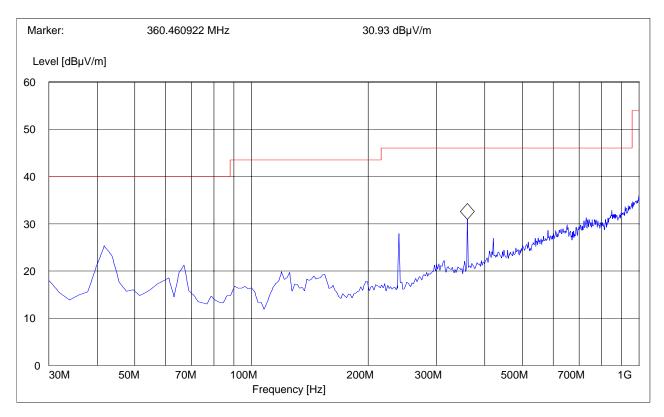


6.1.1 RESULTS (PCS AND BLUETOOTH)

30MHz – 1GHz Antenna: vertical

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

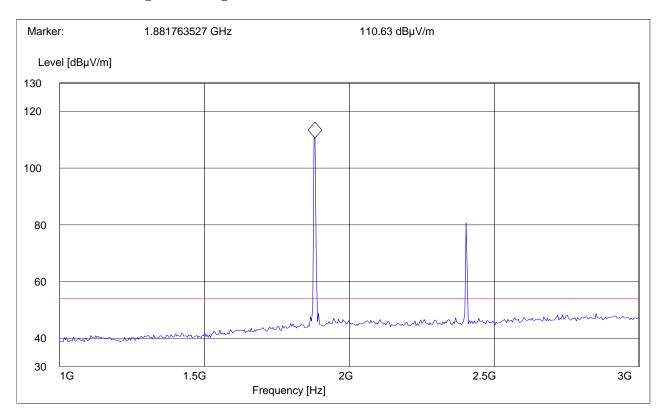
Note: Peak Reading vs. Quasi-Peak limit


Frequency	Max Peak	Quasi-peak	Limit	Margin
43.6 MHz	41.22dBuV	36.22dBuV	40 dBuv	-3.78dB

30MHz – 1GHz Antenna: horizontal

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

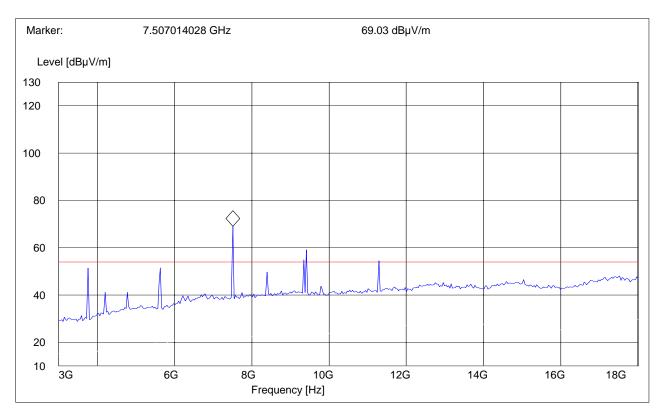
Note: Peak Reading vs. Quasi-Peak limit



1-3GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peaks above the limit line is the carrier freq of the Bluetooth and PCS transmitter. Note: Peak Reading vs. Average limit



3-18GHz

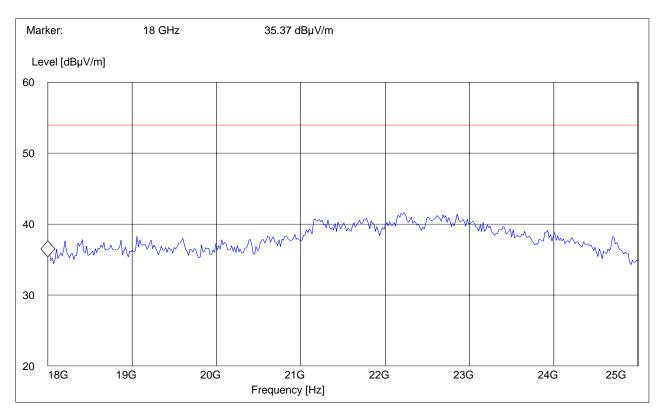
Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: Peak Reading vs. Average limit, see next page for Average Reading vs. Average limit

3-18GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	10 Hz

Note: Average Reading vs. Average limit


Mar	ker:	7.50	9018036 GHz		43.78 dE	βµV/m		
Le	vel [dBµ\	//m]						
90								
80								
70								
60								
50			\diamond					
40			Ť					
30		A	m	man		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
20	vnu	mant						
10								
5	3G	60	G 80	G 100 Frequency [Hz]		G 140	G 160	6 18G

18-25GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	25GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: Peak Reading vs. Average limit

6.2 RECEIVER SPURIOUS RADIATION § 15.209/RSS210

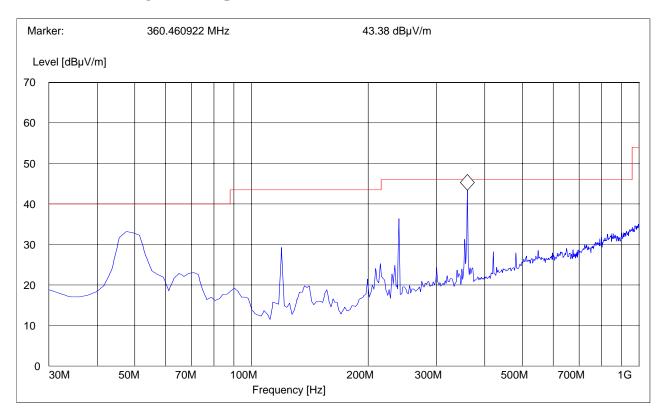
6.2.1 LIMITS

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.

2. All measurements are done in peak mode using a quasi-peak or average limit, unless specified with the plots.

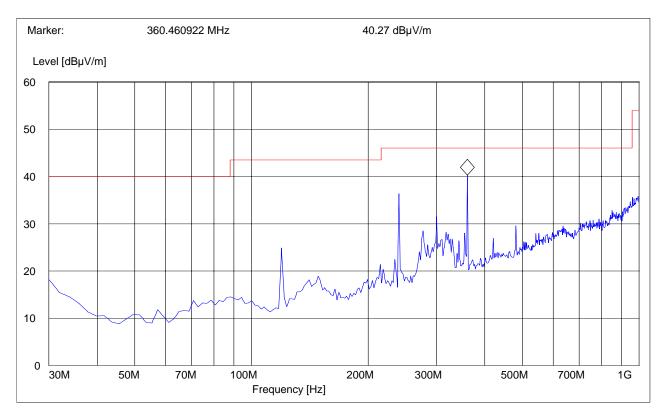


6.2.2 RESULTS

30MHz – 1GHz Antenna: vertical

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

Note: Peak Reading vs. Quasi-peak limit



30MHz – 1GHz Antenna: horizontal

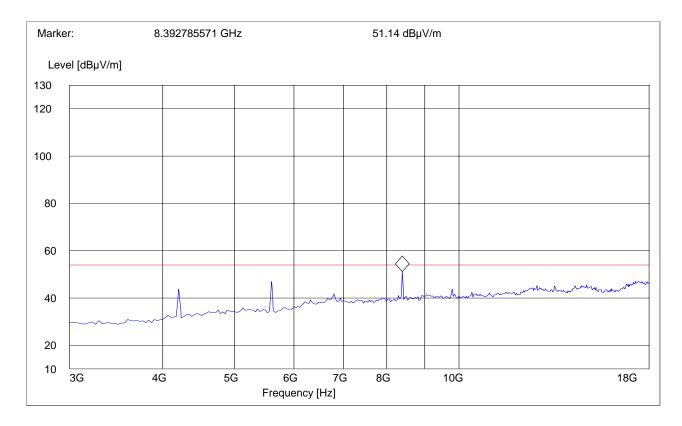
Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

Note: Peak Reading vs. Quasi-peak limit

1-3GHz

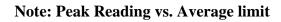
Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

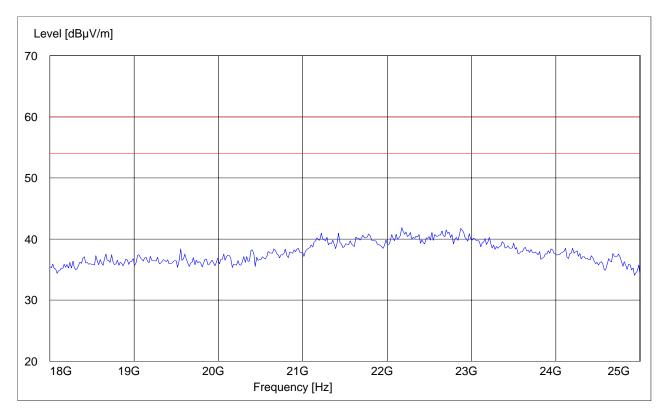
Note: Peak Reading vs. Average limit


Marker:	1 GHz	39.55 dBµV/m		
Level [dBµV/m]]			
120				
110				
100				
90				
80				
70				
60				
50				
40	And a market was a m	Markan markan	Multiment and a second s	mmmmm
30				
30 1G	1.5G	2G Frequency [Hz]	2.5G	3G

3-18GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz


Note: Peak Reading vs. Average limit



18-25GHz

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	25GHz	Max Peak	Coupled	1 MHz	1 MHz

6.3 AC POWER LINE CONDUCTED EMISSIONS § 15.107/207

6.3.1 LIMITS

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002) Limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)					
	Quasi-Peak	Average				
0.15 - 0.5	66 to 56*	56 to 46*				
0.5 - 5	56	46				
5 - 30	60	50				
* Decreases with logarithm of the frequency						

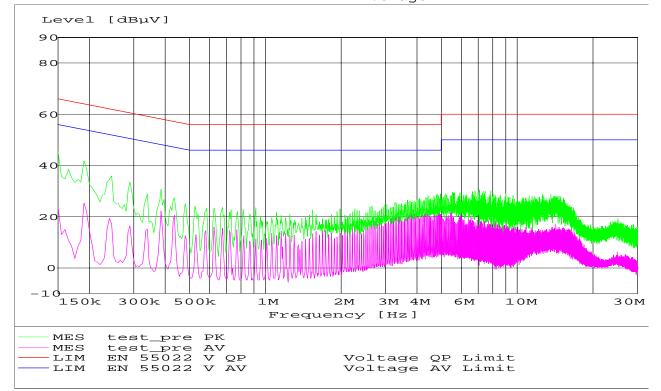
ANALYZER SETTINGS: RBW = 10KHz

testing was performed with the EUT transmitting in the PCS band (1880MHz) and the EUT transmitting in Bluetooth mode(2402MHz).

VBW = 10KHz

Test Report #:	EMC_1098_2005_BLUETOC	OTH
Date of Report:	2005-12-05	Page 79 of 81

6.3.2 RESULTS

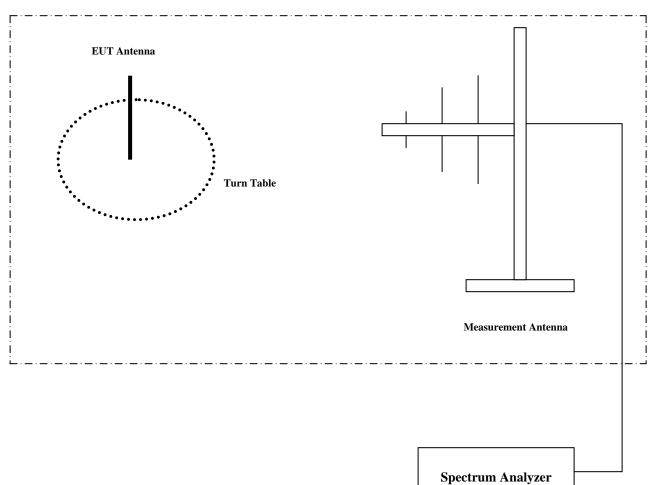

Measured with AC/DC power adapter FRIWO model#:SDA5518 *LISN*

411 Dixon Landing Road, CA 95035

EUT / Description:	Bluetooth Module
Manufacturer:	Trimble Navigation
Test mode:	PCS 1900 channel-661; Bluetooth TX@2402MHz
Test Engineer:	mark
Phase:	L & N
Comment:	110 volt
Start of Test:	11/28/2005 / 4:37:50PM

SCAN TABLE: "EN 55022 Voltage"

Short Desc	ription:		ΕN	55022 Vol	tage		
Start	Stop	Step		Detector	Meas.	IF	
Transducer							
Frequency	Frequency	Width			Time	Bandw.	
150.0 kHz	30.0 MHz	5.0 kHz		MaxPeak	10.0 ms	9 kHz	None
				Average			



6.4 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Туре	Manufacturer	Serial No.
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	826880/010
03	Biconilog Antenna	3141	EMCO	0005-1186
04	Horn Antenna (700M-18GHz)	SAS-200/571	AH Systems	325
05	Horn Antenna (18-26.5GHz)	3160-09	EMCO	1240
06	2-3GHz Band reject filter	BRM50701	Microtronics	6
07	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02
08	Pre-Amplifier	TS-ANA	Rohde & Schwarz	
09	Pre-Amplifier	JS4-00102600	Miteq	00616

6.5 BLOCK DIAGRAMS Radiated Testing

ANECHOIC CHAMBER