

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C (15.247) FHSS Specifications and Industry Canada RSS 210 Issue 5 for an Intentional Radiator on the Trimble Navigation Model: SNB900

FCC ID: UPN:	JUP-48480-SNB900 1756A-48480
GRANTEE:	Trimble Navigation 645 North Mary Avenue Sunnyvale, CA 94088-3642
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086
REPORT DATE:	July 2, 2004

FINAL TEST DATE:

June 28, 2004

AUTHORIZED SIGNATORY:

Mark Briggs

Vice President of Engineering

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
OBJECTIVE	3
SUMMARY OF RESULTS	4
MEASUREMENT UNCERTAINTIES	5
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	6
OTHER EUT DETAILS	6
ENCLOSURE	6
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION ANTENNA REQUIREMENTS	
TEST SITE	
GENERAL INFORMATION	
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION.	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	. 11
FILTERS/ATTENUATORS	. 11
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	.11
INSTRUMENT CALIBRATION	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS	
RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS	. 15
FCC AC POWER PORT CONDUCTED EMISSIONS LIMITS	. 16
RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS	. 16
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	. 17
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets	2

SCOPE

An electromagnetic emissions test has been performed on the Trimble Navigation model SNB900 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licence-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Trimble Navigation model SNB900 and therefore apply only to the tested sample. The sample was selected and prepared by Terence Choy of Trimble Navigation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units that are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247	6.2.2(o)(a)	20dB Bandwidth	392 kHz	The channel spacing	Complies
15.247	6.2.2(o)(a)	Channel Separation	510 kHz	shall be greater than the 20dB bandwidth	Complies
15.247	6.2.2(o)(a)	Number of Channels	50	50 hopping frequencies: average time of occupancy <0.4 second	Complies
15.247	6.2.2(o)(a)	Channel Dwell Time	400ms per 20s (refer to operational description)	within a 20 second period.	Complies
15.247	6.2.2(o)(a)	Channel Utilization	All channels are used equally	Refer to Theory of Operations for detailed description of the hopping algorithm	Complies
15.247 (b) (3)	6.2.2(o)(a)	Output Power	29.2 dBm (0.832 Watts) EIRP = 2.63 W	Maximum permitted is 1Watt, with EIRP limited to 4 Watts for a 50- channel system.	Complies
15.247(c)	6.2.2(o)(e1)	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	All spurious emissions < -20dBc.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions 30MHz – 25GHz	63.1 dBuV/m 2746.1MHz (-10.9dB) (Peak)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
		Receiver Spurious Emissions 30MHz – 12GHz	N/A	>20dB margin for all receiver-spurious emissions	Complies
15.207		AC Conducted Emissions	47.0 dBuV @ 0.208MHz (-6.3dB)		Complies
	6.6	AC Conducted Emissions	37.6dBuV @ 0.5206 MHz (-10.4dB)		Complies
15.247 (b) (5)		RF Exposure Requirements	FCC /IC limits of power density not exceeded provided antenna is located a minimum of 21 cm from persons	Refer to MPE calculation for 21cm derivation. Refer to User's Guide for installation instructions requiring a 21cm separation	Complies
15.203		RF Connector	RF connector is a reverse TNC that connects to a reverse TNC to reverse-gender N.	Integral antenna or specialized connector required	Complies

EIRP calculated using antenna gain of 5dBi for the highest EIRP point-to-multipoint system.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Trimble Navigation model SNB900 is a radio modem that uses frequency hopping spread spectrum in the 900MHz unlicensed band. The device also incorporates a pre-approved Bluetooth module. During test, the EUT was located on an 80cm high table with all local support equipment. The antenna was mounted on a mount and base. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 0.7 Amps.

The sample was received on June 28, 2004 and tested on June 28, 2004.

Manufacturer	Model	Description	Serial Number		
Trimble	SNB900	GPS Receiver/ Transmitter			
Trimble	SNB900	0 dBi antenna	ENG-FCC		
Trimble	SNB900	5 dBi antenna	ENG-FCC		

The EUT consisted of the following component(s	;):
--	-----

OTHER EUT DETAILS

The EUT receives its supply power from an AC adapter via the lemo connector port.

ENCLOSURE

The EUT enclosure is primarily constructed of metal with black rubber protective bumpers on both ends. It measures approximately 13cm long, 13cm wide and 5cm thick.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

TTI C 11 '	• ,	1 1 1			1. 1 1
The following	equipment wa	s used as local	support equit	nment for Ra	diated Emissions:
The following	equipinent wa	o abea ab ioeai	Support equip		unada Limbolomo.

	011				
	Manufacturer	Model	Description	Serial Number	FCC ID
7	Tripod Data Systems	Ranger	Hand Held Computer	15488	DoC
	FRIWO	SDA5518	AC Adapter	-	-
	Trimble		10/100ethernet extender hub	-	-
Γ.	AtWork Computers		handheld computer	-	-
	X TEND-T/T	X TEND-T/T	extender	-	-

The following equipment was used as local support equipment for Conducted Emissions:

Manufacturer	Model	Description	Serial Number	FCC ID
Versa	PC-470-1552	Laptop PC	4X004117	A3DP52S
FRIWO	SDA5518	AC Adapter	-	DOC
D-Link	DE-805TP	10/100ethernet extender hub	AC68100022	DOC

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during Radiated emissions testing was as follows:

Port		Connected To	Cable(s)			
	1011		Description	Shielded or Unshielded	Length(m)	
	serial	handheld computer	2 wire	Shielded	2	
	DC In	AC adapter	2 wire	Shielded	2	
	serial	ethernet hub	DB9	Shielded	2	
	RF I/O	antenna	coax	Shielded	1	

*The DC output of the AC adapter connects first to the computer and then to the EUT

The I/O cal	oling configur	ation during Co	nducted emissions	testing was as follows:

Port	Connected To	Cable(s)			
TOIT	Connected To	Description	Shielded or Unshielded	Length(m)	
serial	Laptop PC / AC-DC adapter	2 wire	Shielded	2	
ethernet	ethernet hub	DB9	Shielded	2	
RF I/O	antenna	coax	Shielded	1	

*The DC output of the AC adapter connects to the EUT via a special input connector on the laptop end of the serial cable.

EUT OPERATION

For digital device emissions the EUT was operating in a Receive-only mode. For transmitterrelated tests the EUT was continuously transmitting a modulated signal at the specified channel.

ANTENNA REQUIREMENTS

The antenna port uses a reverse polarity TNC connector, meeting the requirements of FCC 15.203. During the certification test and normal usage, the EUT connects via a 5m cable (reverse polarity TNC to reverse gender N) to either a 5dBi or 0dBi whip antenna.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 28, 2004at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a)and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Number Of Channels	Output Power	
902 - 928	>=50	1 W (30 dBm)	
902 - 928	< 50	0.25 W (24 dBm)	
2400 - 2483.5	>= 75	1 W (30 dBm)	
2400 - 2483.5	>= 75	0.125 W (21 dBm)	
5725 - 5850	>=75	1 W (30 dBm)	

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level.

FCC AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.207.

Frequency Average		Quasi Peak
(MHz) Limit		Limit
(dBuV)		(dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency		
Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- $R_r = Receiver Reading in dBuV/m$
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 1,000) MHz, 25-Jun-04			
Engineer: Juan Martinez Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz			213	03-Dec-04
EMCO	Log Periodic Antenna, 0.2-2 GHz	ESVP 3148	1321	25-Mar-05
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497	29-May-05
Radiated Emissions, 30 - 6,500 Engineer: Juan Martinez	J MHZ, 25-JUN-04			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	29-Oct-04
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	787	10-Dec-04
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12-Jan-05
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	956	11-Mar-05
Transmitter Spurious Emissio Engineer: Yu Chien Ho	ns, Bandwidth, Output Power, 28-Jun-04			
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz) Sunnyvale	84125C	1149	02-Jun-05
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404	17-Nov-04
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	11-Sep-04
Rohde & Schwarz	Peak Power Sensor 100uW - 2 Watts	NRV-Z32	1423	18-Mar-05
Conducted Emissions - AC Po Engineer: Adam LaCourse	wer Ports, 29-Jun-04			
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	274	21-Jan-05
Solar Electronics	Support Equipment LISN, 0.150-30.0 MHz	8012-50-R-24-BNC	305	08-Apr-05
Fischer Custom Comm.	LISN, Freq. 0.9 -30 MHz,16 Amp	FCC-LISN-50/250-16-2	1079	01-Jul-04
	d Spurious Emissions), 07-Jul-04			
Engineer: David Bare				
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	Peak Power Sensor 100uW - 2 Watts	NRV-Z32	1423	18-Mar-05
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1534	18-Mar-05

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T55873 26 Pages

Elliott EMC Test Data Job Number: J55805 Client: Trimble Navigation Model: SNB900 T-Log Number: T55873 Account Manager: Contact: Dennis Connor Emissions Spec: EN55022 / FCC Class: В Immunity Spec: Environment: -**EMC** Test Data For The **Trimble Navigation** Model **SNB900** Date of Last Test: 9/24/2004

Elliott

EMC Test Data

Client:	Trimble Navigation	Job Number:	J55805
Model:	SNB900	T-Log Number:	T55873
		Account Manager:	
Contact:	Dennis Connor		
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	Enter immunity spec on cover	Environment:	-

EUT INFORMATION

General Description

The EUT is a 900MHz frequency hopping transmitter / receiver radio with an incorporated Bluetooth module. During test, the
EUT was located on an 80cm high table with all local support equipment. The antenna was mounted on a mount and base.
The electrical rating of the EUT is 120/240 V, 50/60 Hz, 0.7 Amps.

Equipment Under Test

Model	Description	Serial Number	FCC ID		
SNB900	GPS Receiver/		-		
	Transmitter				
SNB900	0 dBi antenna	ENG-FCC	-		
SNB900	5 dBi antenna	ENG-FCC	-		
	SNB900 SNB900	SNB900 GPS Receiver/ Transmitter SNB900 0 dBi antenna	SNB900 GPS Receiver/ Transmitter SNB900 0 dBi antenna ENG-FCC		

Other EUT Details

The EUT receives its supply power from an AC adapter via the lemo connector port. The antenna port uses a reverse polarity TNC connector, meeting the requirements of FCC 15.203. During the certification test and normal usage, the EUT connects via a 5m cable (reverse polarity TNC to reverse polarity N) to an antenna. The antenna comes with either a 0dBi or 5 dBi tip.

EUT Enclosure

The EUT enclosure is primarily constructed of metal with black rubber protective bumpers on both ends. It measures approximately 13cm long, 13cm wide and 5cm thick.

Modification History

Mod. #	Test	Date	Modification
1	Power	7/7/2004	The power amp gain was re-tuned to lower the total output power.

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliott

EMC Test Data

Client:	Trimble Navigation	Job Number:	J55805
Model:	SNB900	T-Log Number:	T55873
		Account Manager:	
Contact:	Dennis Connor		
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	Enter immunity spec on cover	Environment:	-

Test Configuration #1

L	ocal Support Equipment		
-		-	

Manufacturer	Model	Description	Serial Number	FCC ID
FRIWO	SDA5518	AC Adapter	-	-
Trimble	-	Multiport Adapter	-	-
Trimble	-	Antenna	-	-

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
D-Link	DE-805TP	10/100ethernet extender	AC68100022	DoC
		hub		
	P		45.400	

Tripod Data SystemsRangerHandheld data collector15488DoCThe handheld computer was not powered on for the testing and used to provide an electrical termination to the RS232 interface.

Interface Cabling and Ports

Port	Connected To		Cable(s)	
FUIL		Description	Shielded or Unshielded	Length(m)
serial	handheld computer	2 wire	Shielded	2
DC In	AC adapter	2 wire	Shielded	2
10/100 Base-T	ethernet hub	Cat 5	Unshielded	2
RF I/O	antenna	соах	Shielded	1

The DC output of the AC adapter connects first to the computer and then to the EUT

EUT Operation During Emissions

For digital device emissions the EUT was operating in a Receive-only mode. For transmitter-related tests the EUT was continuously transmitting a modulated signal at the specified channel. For all tests the Bluetooth transceiver was operating in receive mode.

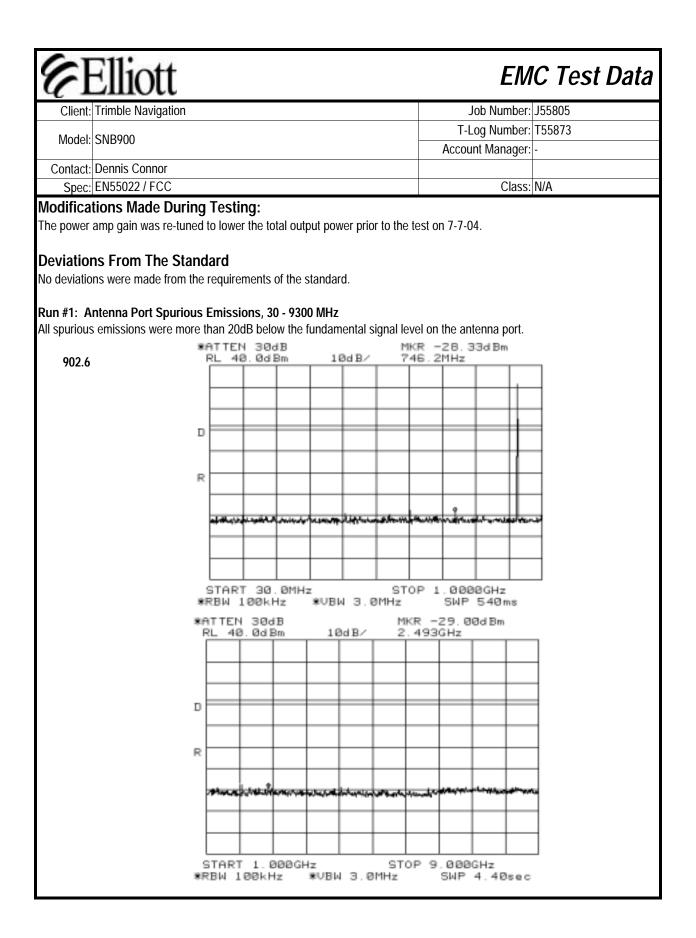
Client:	Trimble Navigation		Job Number:	J55805	
Model:	SNB900		T-Log Number:	T55873	
			Account Manager:		
	Dennis Connor				
Emissions Spec:	EN55022 / FCC Enter immunity spec on a		Class: Environment:	B -	
	Tes	t Configuration	#2		
	Lo	ocal Support Equipmen	ıt		
Manufacturer	Model	Description	Serial Number	F	FCC ID
Versa	PC-470-1552	Laptop PC	4X004117		3DP52S
FRIWO	SDA5518	AC Adapter	-		DOC
D-Link	DE-805TP	10/100ethernet extender hub	AC68100022		DOC
		note Support Equipme			
Manufacturer None	Model	mote Support Equipme Description	Serial Number	F	CC ID
	Model	Description	Serial Number ts Cable(s)		
None	Model	Description	Serial Number		
None Port serial Ethernet	Model Inte Connected To Laptop PC / AC-DC	Description	Serial Number ts Cable(s) Shielded or Unshield Shielded Shielded		Length(n
None Port serial Ethernet RF I/O	Model Inte Connected To Laptop PC / AC-DC adapter ethernet hub antenna	Description Description Description 2 wire	Serial Number ts Cable(s) Shielded or Unshield Shielded Shielded Shielded	led	Length(n 2 2 1

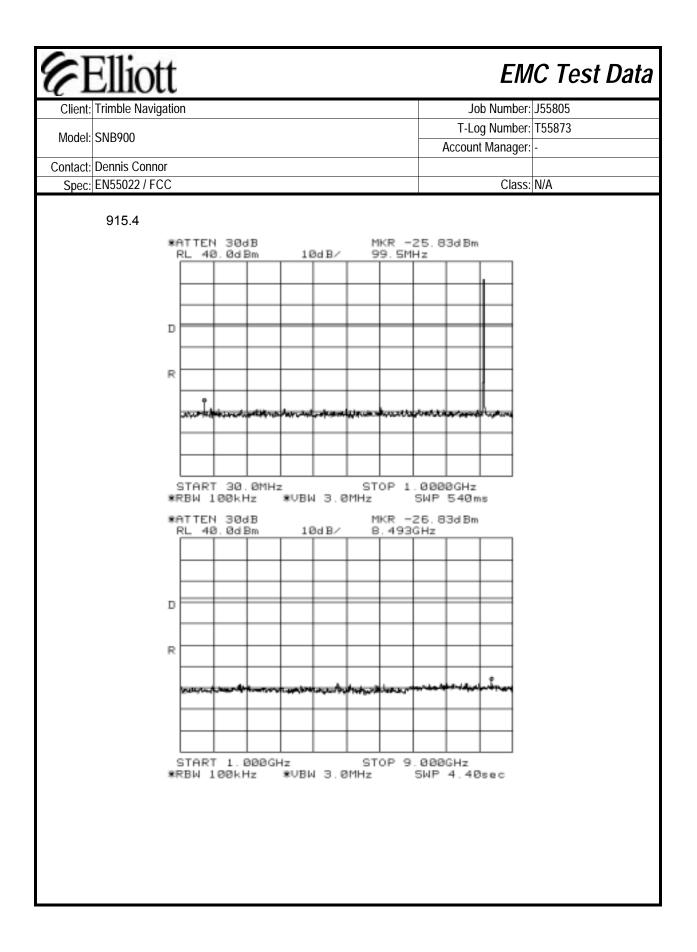
Client: Trimble Navigation Model: SNB900 Contact: Dennis Connor Spec: EN55022 / FCC Radiatec Test Specifics		T-L	lob Number: .og Number: nt Manager:	T55873
Contact: Dennis Connor Spec: EN55022 / FCC Radiatec			0	
Contact: Dennis Connor Spec: EN55022 / FCC Radiatec		Accou	nt Manager:	
Spec: EN55022 / FCC Radiatec				-
Radiated	I Enviroita			
			Class:	В
lest Specifics	I EMISSIO	ns		
Objective: The objective of this test session is to p specification listed above.	erform final quali	fication testi	ng of the EU	JT with respect to the
Date of Test: 6/25/2004	Config. Used:	1		
Test Engineer: Juan Martinez	Config Change:			
Test Location: SVOATS #2	EUT Voltage:	230V/50Hz	<u>'</u>	
Unless otherwise specified, the measurement antenna was 1000 MHz and 3m from the EUT for the frequency range 1 Note, preliminary testing indicates that the emissions were measurement antenna. Maximized testing indicated that the of the measurement antenna, <u>and</u> manipulation of the EUT	- 6.5 GHz. e maximized by or he emissions wer	rientation of re maximize	the EUT and	d elevation of the
Note, for testing above 1 GHz, the FCC specifies the limit a peak reading of any emission above 1 GHz, can not exceed	•			the FCC states that
Ambient Conditions: Temperature:	21 °C			
Rel. Humidity:	40 %			
Summary of Results				
Run # Test Performed	Limit	Result	Ma	argin
Emissions	EN55022 B	Pass	-1.8dB @ 1	160.000MHz
3 RE, 1000 - 6500 MHz, Maximized Emissions	FCC B	Pass	-24.8dB @	₽ 1096 MHz

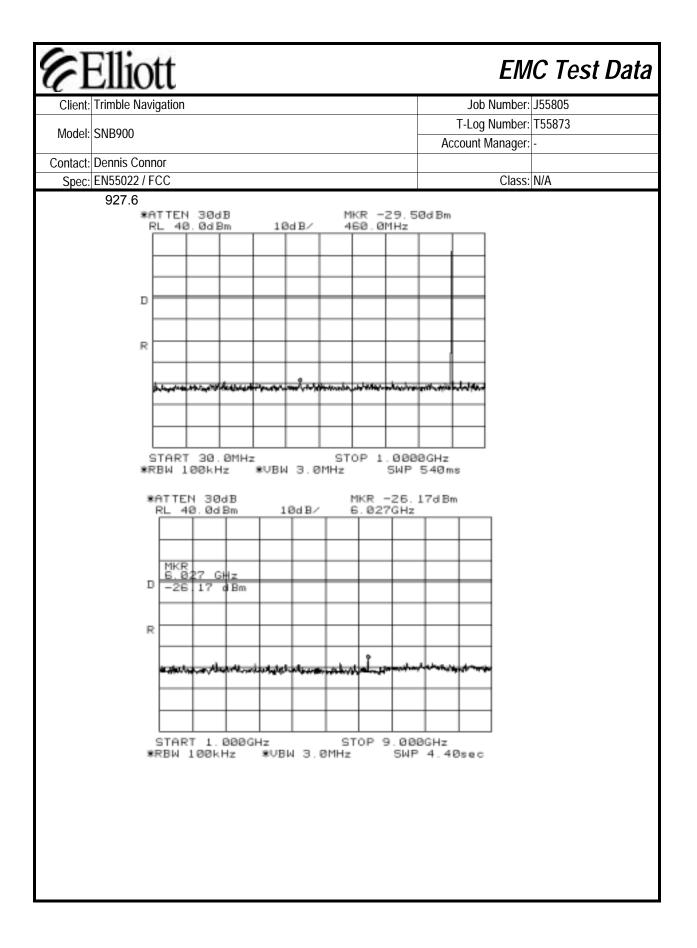
Deviations From The Standard

No deviations were made from the requirements of the standard.

Ellic Trimble Na							EM	C Test Dat
	avigation	1				-	Job Number:	J55805
SNB900						T-L	_og Number:	T55873
SIND 900						Accou	int Manager:	-
Dennis Co	onnor							
EN55022	/ FCC						Class:	В
reliminary	Radiate	d Emissio	ns, 30-1000) MHz				
Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments	
dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
28.2	V	30.0	-1.8	QP	124	1.0		
26.4	h	30.0	-3.6	QP	250	3.2		
16.0	V	30.0	-14.0	QP	261	1.0		
22.8	h	37.0	-14.2	QP	0	1.5		
15.2	V	30.0	-14.8	QP	173	1.0		
21.8	h	37.0	-15.2	QP	360	1.5		
21.1	V	37.0	-15.9	QP	0	1.0		
12.5	h	30.0	-17.5	QP	0	1.8		
19.3	h	37.0	-17.7	QP	360	3.3		
18.2	V	37.0	-18.8	QP	10	1.0		
	V		-20.1		360			
16.5	V	37.0	-20.5	QP	360	1.0		
12.5	V	37.0	-24.5	QP	1	1.0		
12.2	h	37.0	-24.8	QP	340	1.5		
10.9	h	37.0	-26.1	QP	10	1.5		
10.2	V	37.0	-26.8	QP	2	1.0		
		IS From Ru		Detector	Azimuth	Heiaht	Comments	
Level	Pol	EN55	022 B	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
Level dBµV/m	Pol v/h	EN55 Limit	022 B Margin	Pk/QP/Avg	degrees	meters	Comments	
Level dBµV/m 28.2	Pol v/h v	EN55 Limit 30.0	022 B Margin -1.8	Pk/QP/Avg QP	degrees 124	meters 1.0	Comments	
Level dBµV/m 28.2 26.4	Pol v/h v h	EN55 Limit 30.0 30.0	022 B Margin -1.8 -3.6	Pk/QP/Avg QP QP	degrees 124 250	meters 1.0 3.2	Comments	
Level dBµV/m 28.2 26.4 16.0	Pol v/h v h v	EN55 Limit 30.0 30.0 30.0	022 B Margin -1.8 -3.6 -14.0	Pk/QP/Avg QP QP QP	degrees 124 250 261	meters 1.0 3.2 1.0	Comments	
Level dBµV/m 28.2 26.4	Pol v/h v h	EN55 Limit 30.0 30.0	022 B Margin -1.8 -3.6	Pk/QP/Avg QP QP	degrees 124 250	meters 1.0 3.2	Comments	
	Level dBμV/m 28.2 26.4 16.0 22.8 15.2 21.8 21.1 12.5 19.3 18.2 16.9 16.5 12.5 12.2	Level Pol dBμV/m v/h 28.2 v 26.4 h 16.0 v 22.8 h 15.2 v 21.8 h 21.1 v 12.5 h 19.3 h 18.2 v 16.5 v 12.5 k 12.5 h 10.9 h	reliminary Radiated Emission Level Pol EN55 dBμV/m v/h Limit 28.2 v 30.0 26.4 h 30.0 16.0 v 30.0 22.8 h 37.0 15.2 v 30.0 21.8 h 37.0 12.5 h 30.0 19.3 h 37.0 18.2 v 37.0 16.9 v 37.0 16.5 v 37.0 12.5 h 37.0 16.9 v 37.0 10.9 h 37.0	Teliminary Radiated Emissions, 30-1000 Level Pol EN55022 B dBμV/m v/h Limit Margin 28.2 v 30.0 -1.8 26.4 h 30.0 -3.6 16.0 v 30.0 -14.0 22.8 h 37.0 -14.2 15.2 v 30.0 -14.8 21.8 h 37.0 -15.2 21.1 v 37.0 -15.2 21.1 v 37.0 -15.9 12.5 h 30.0 -17.5 19.3 h 37.0 -15.9 12.5 h 30.0 -17.7 18.2 v 37.0 -18.8 16.9 v 37.0 -20.1 16.5 v 37.0 -20.5 12.5 v 37.0 -24.5 12.2 h 37.0 -24.8 10.9 h 37.0 -26.1	Peliminary Radiated Emissions, 30-1000 MHz Level Pol EN55022 B Detector dBµV/m v/h Limit Margin Pk/QP/Avg 28.2 v 30.0 -1.8 QP 26.4 h 30.0 -3.6 QP 16.0 v 30.0 -14.0 QP 22.8 h 37.0 -14.2 QP 15.2 v 30.0 -14.8 QP 21.8 h 37.0 -15.2 QP 21.1 v 37.0 -15.9 QP 12.5 h 30.0 -17.5 QP 12.5 h 37.0 -15.9 QP 18.2 v 37.0 -17.5 QP 18.2 v 37.0 -20.1 QP 16.9 v 37.0 -20.5 QP 16.5 v 37.0 -24.5 QP 12.5 h 37.0 -24	reliminary Radiated Emissions, 30-1000 MHz Level Pol EN55022 B Detector Azimuth dBµV/m v/h Limit Margin Pk/QP/Avg degrees 28.2 v 30.0 -1.8 QP 124 26.4 h 30.0 -3.6 QP 250 16.0 v 30.0 -14.0 QP 261 22.8 h 37.0 -14.2 QP 0 15.2 v 30.0 -14.8 QP 173 21.8 h 37.0 -15.2 QP 0 15.2 v 30.0 -17.5 QP 0 15.2 h 37.0 -15.9 QP 0 12.5 h 30.0 -17.5 QP 0 12.5 h 37.0 -18.8 QP 10 14.9 v 37.0 -20.1 QP 360 15.9 v	reliminary Radiated Emissions, 30-1000 MHz Level Pol EN55022 B Detector Azimuth Height dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 28.2 v 30.0 -1.8 QP 124 1.0 26.4 h 30.0 -3.6 QP 250 3.2 16.0 v 30.0 -14.0 QP 261 1.0 22.8 h 37.0 -14.2 QP 0 1.5 15.2 v 30.0 -14.8 QP 173 1.0 21.8 h 37.0 -15.2 QP 360 1.5 21.1 v 37.0 -15.9 QP 0 1.0 12.5 h 30.0 -17.5 QP 0 1.8 19.3 h 37.0 -18.8 QP 10 1.0 16.9 v 37.0 -20.1	Pol EN55022 B Detector Azimuth Height Comments dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 28.2 v 30.0 -1.8 QP 124 1.0 26.4 h 30.0 -3.6 QP 250 3.2 16.0 v 30.0 -14.0 QP 261 1.0 22.8 h 37.0 -14.2 QP 0 1.5 15.2 v 30.0 -14.8 QP 173 1.0 21.8 h 37.0 -15.2 QP 360 1.5 21.1 v 37.0 -15.9 QP 0 1.8 19.3 h 37.0 -17.7 QP 360 3.3 18.2 v 37.0 -20.5 QP 360 1.0

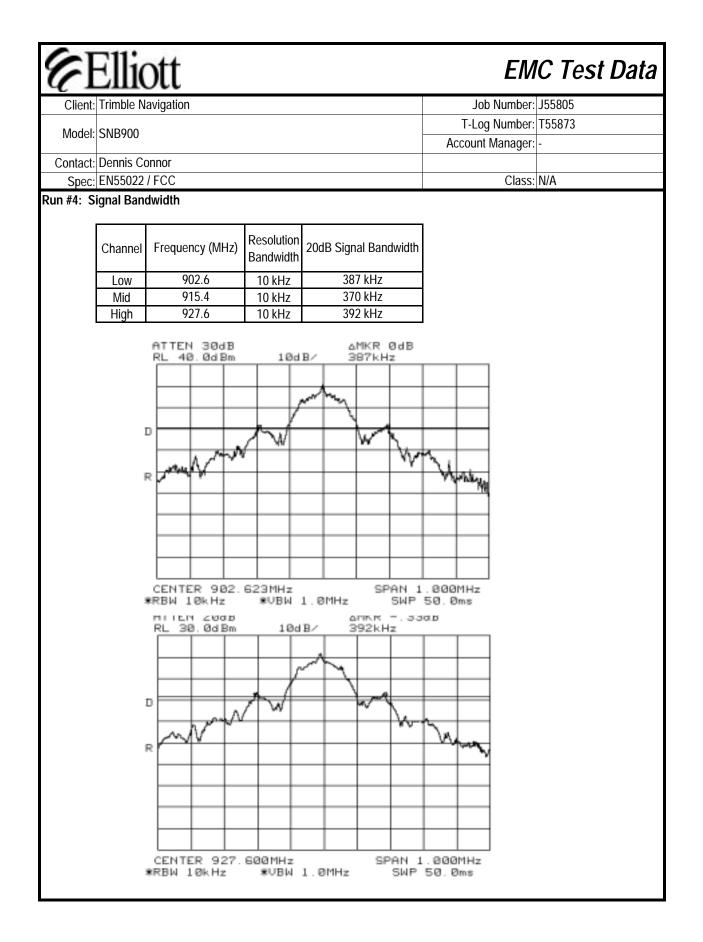

E F	Ellic	ott						EM	C Test Data
	Trimble Na		1				J	ob Number:	J55805
		0					T-L	og Number:	T55873
Model:	SNB900					-		nt Manager:	
Contact:	Dennis Co	nnor						Ŭ	
	EN55022/							Class:	В
Run #3: M	aximized r	eadings	s, 1000 - 65 er FCC requi			,			
Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1096.000	44.5	٧	74.0	-29.5	Pk	360	1.0		
1096.000	27.4	۷	54.0	-26.6	Avg	360	1.0		
2471.000	39.1	V	74.0	-34.9	Pk	0	1.0		
2471.000	25.7	V	54.0	-28.3	Avg	0	1.0		
1096.000	45.5	h	74.0	-28.5	Pk	360	1.0		
1096.000	29.2	h h	54.0	-24.8	Avg	360	1.0		
2471.000 2471.000	38.1 24.5	h	74.0 54.0	-35.9 -29.5	Pk Avg	0 0	1.0 1.0		
2471.000	24.3	11	54.0	-27.J	лу	U	1.0		

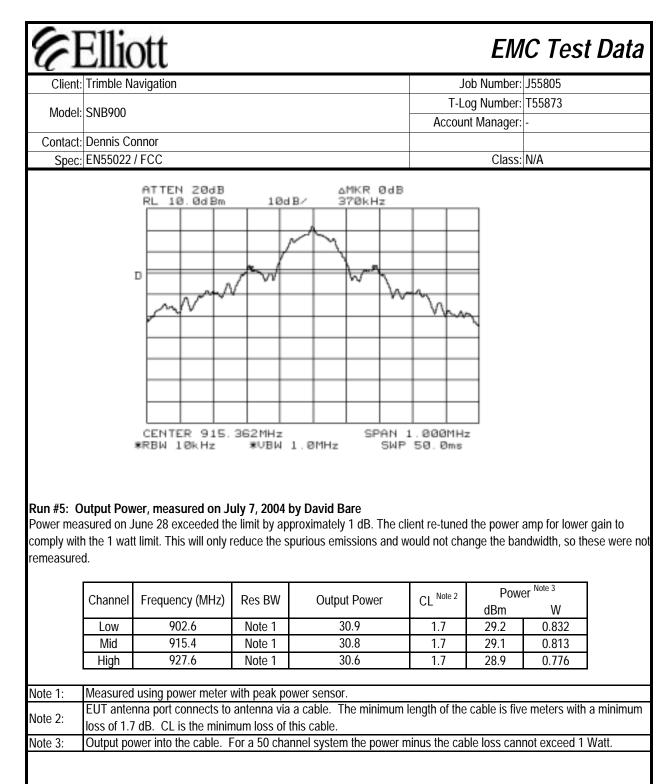

-							
6	Ellic	ott				EM	C Test D
Client:	Trimble Na	vigation			J	ob Number:	J55805
Madalı	SNB900				T-L	og Number:	T55873
woder:	2INBA00				Accou	nt Manager:	-
	Dennis Cor						
Spec:	EN55022 /	FCC				Class:	В
		Cor	nducted E	missions - P	ower P	orts	
Test Spe	cifics						
•	Objective: 1	The objective of pecification list		is to perform final qual	ification testi	ng of the EL	IT with respect to th
Da	te of Test: 6	6/29/2004		Config. Used	l: 2		
Test	Engineer: A	Adam LaCourse	e	Config Change			
Test	t Location: S	SVOATS #3		EUT Voltage	e: 230V/50Hz		
General	Test Con	figuration					
		5					
			located on a woo support equipment	oden table, 40 cm from nt.	a vertical cou	upling plane	and 80cm from the
Ambient	Conditio	ns:	Temperature:	20 °C			
			Rel. Humidity:	60 %			
Summar	y of Resu	llts					
Rur	n #	Test Pe	rformed	Limit	Result	Ма	argin
1		Test Pe CE, AC Powe		Limit EN55022 B	Result Pass	-4.4dB @	0.384MHz
		CE, AC Powe				-4.4dB @	U U


E	Elli	ott					EM	C Test Data
	Trimble N						Job Number:	J55805
		5					T-Log Number:	T55873
Model:	SNB900					_	Account Manager:	
Contact:	Dennis C	onnor						
Spec:	EN55022	/ FCC					Class:	В
Run #1: AC P	ower Port (Conducted	Emissions, 0	.15 - 30MHz, 2	30V/50Hz			
Frequency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.3838	43.8	Line1	48.2	-4.4	AV			
0.4796	41.1	Line1	46.3	-5.2	AV			
0.5275	40.7	Line1	46	-5.3	AV			
0.3838	42.8	Neutral	48.2	-5.4	AV			
0.3838	42.8	Neutral	48.2	-5.4	AV	ļ		
0.4797	40.5	Neutral	46.3	-5.8	AV			
0.192	47.7	Neutral	53.8	-6.2	PK			
0.5278	39.2	Neutral	46	-6.8	AV			
0.2078	46.3	Line1	53.2	-6.9	AV			
0.2085	46.2	Neutral	53.2	-7	AV			
0.5756	37.4	Line1	46	-8.6	AV			
0.6236	37.2	Line1	46	-8.8	AV			
0.5233	37	Line1	46	-9	AV			
0.6237	37	Neutral	46	-9	AV			
0.2078	53.8	Line1	63.2	-9.4	QP			
0.5756	36.6	Neutral	46	-9.4	AV			
0.4172	47.4	Line1	57.4	-10	QP			
0.6715	35.9	Neutral	46	-10.1	AV			
0.2085	53	Neutral	63.2	-10.2	QP			
0.312	49.4	Line1	59.8	-10.5	QP			
0.3838	47.6	Line1	58.2	-10.5	QP			
0.3126	49.3	Neutral	59.8	-10.6	QP			
0.3120	49.3	Neutral	53.8	-10.8	AV	<u> </u>		
0.192								
0.3838	46.5 46.5	Neutral Neutral	58.2 58.2	-11.7 -11.7	QP QP			
0.3838	40.5 35.3	Line1	47.4	-11.7	AV	<u> </u>		
0.4772	44	Line1	56.3	-12.1	QP	1		
0.4213	45	Neutral	57.3	-12.3	QP	1		
0.312	36.9	Line1	49.8	-13	AV			
0.5275	42.9	Line1	56	-13.1	QP			
0.3126	36.6	Neutral	49.8	-13.3	AV			
0.7194	32.7	Neutral	46	-13.3	AV			
0.4797	42.8	Neutral	56.3	-13.5	QP			
0.4213	33.7	Neutral	47.3	-13.6	AV	 		
0.5278 0.6236	41.9 41	Neutral	<u>56</u> 56	-14.1 -15	QP QP			
0.6236	41	Line1 Line1	56	-15 -15.1	QP QP			
0.5233	40.6	Line1	56	-15.4	QP	1		
0.6237	40.6	Neutral	56	-15.4	QP			
0.5756	40	Neutral	56	-16	QP			

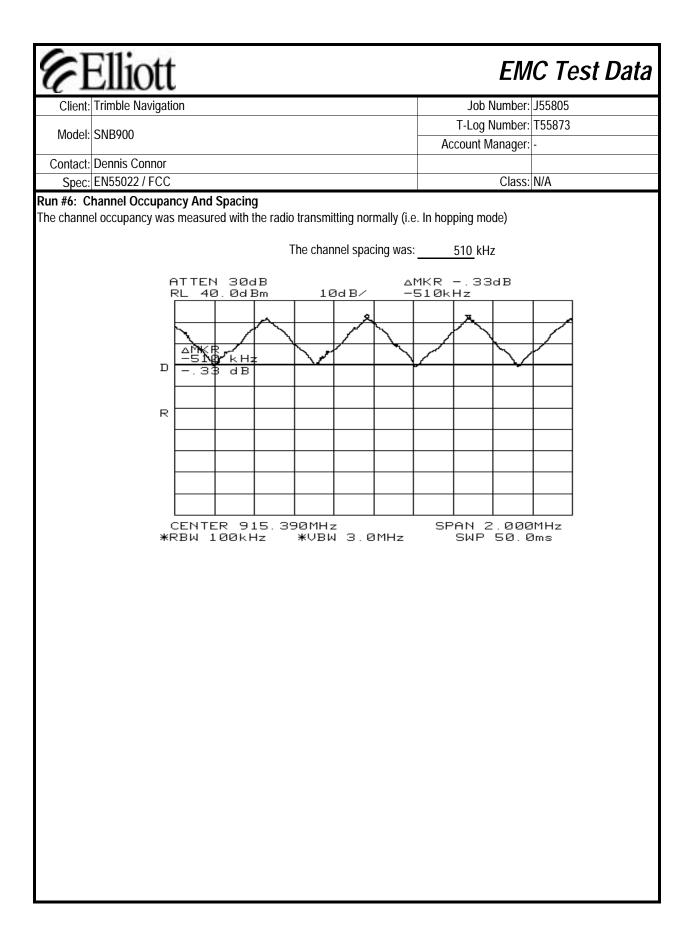
6I	Ellio	ott					EM	C Test Data
	Trimble N						Job Number:	J55805
		0					T-Log Number:	T55873
Model:	SNB900						Account Manager:	
Contact:	Dennis C	onnor					5	
	EN55022						Class:	В
			ucted Emi	issions, 0.1	5 - 30MHz,	120V/60Hz		
Frequency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.2083	47	Line 1	53.3	-6.3	Average			
0.2083	46.7	Neutral	53.3	-6.6	Average			
0.3835	38.9	Line 1	48.2	-9.3	Average			
0.2083	53.5	Line 1	63.3	-9.8	QP			
0.2083	52.3	Neutral	63.3	-11.0	QP			
0.3835	47.2	Line 1	58.2	-11.0	QP			
0.3124	45.6	Line 1	59.9	-14.3	QP			
0.3122	44.3	Neutral	5 9 .9	-15.6	QP			
0.3124	32.2	Line 1	49.9	-17.7	Average			
0.1516	48	Neutral	65.9	-17.9	QP			
0.5206	37.6	Line 1	56.0	-18.4	QP			
0.5276	37.5	Neutral	56.0	-18.5	QP			
0.5276	27.1	Neutral	46.0	-18.9	Average			
0.4165	38.3	Neutral	57.5	-19.2	QP			
0.4164	38.2	Neutral	57.5	-19.3	QP			
0.3122	30.4	Neutral	49.9	-19.5	Average			
0.4165	37.9	Neutral	57.5	-19.6	QP			
0.5206	25	Line 1	46.0	-21.0	Average			
0.4165	25.4	Neutral	47.5	-22.1	Average			
0.4164	25	Neutral	47.5	-22.5	Average			
0.4165	24.6	Neutral	47.5	-22.9	Average			
0.1516	27.7	Neutral	55.9	-28.2	Average			
Frequency	Level	AC	D'	210	Detector	Comments		
MHz		Line	Limit	1	QP/Ave	COUNTINGUES		
0.5206	dBμV 37.6	Line 1		Margin	QP/Ave QP			
0.5206	37.6 37.5	Neutral	48.0 48.0	-10.4 -10.5	QP QP			
0.3270	57.5	meditai	40.0	-10.5	Ur	I		

	ott			EM	IC Test
Client: Trimble N	Javigation			Job Number:	J55805
	•		T-L	og Number:	T55873
Model: SNB900			Accou	int Manager:	-
Contact: Dennis C	Connor				
Spec: EN55022	P/FCC			Class:	N/A
	Radi	iated Emissio	ns		
est Specifics					
Objective	The objective of this test session specification listed above.	n is to perform final qualil	fication test	ing of the EU	JT with respec
Date of Test	6/28/2004	Config. Used:	2		
Test Engineer		Config Change:	No		
Test Location	SVOATS #4	EUT Voltage:	120V/60H	Z	
General Test Co he EUT and all loca	nfiguration I support equipment were located	d on the turntable for radi	ated spurio	us emissions	s testing.
or radiated emissio	ns testing the measurement anter	nna was located 3 meters	s from the E	EUT.	
pectrum analyzer of	conducted emissions from the El power meter via a suitable atten v for the external attenuators used	uator to prevent overload			
pectrum analyzer of re corrected to allow	r power meter via a suitable atten	uator to prevent overload d.	ling the me	asurement s	ystem. All me
pectrum analyzer of e corrected to allow nless stated otherw	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such t	uator to prevent overload d. that it constantly hopped	ling the me	asurement s	ystem. All me
ectrum analyzer of e corrected to allow nless stated otherw	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such t ions: Temperature:	uator to prevent overload d. that it constantly hopped 25.6 °C	ling the me	asurement s	ystem. All me
pectrum analyzer of re corrected to allow Inless stated otherw Ambient Condition Summary of Res	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such t fons: Temperature: Rel. Humidity: Sults	uator to prevent overload d. that it constantly hopped 25.6 °C 55 %	ling the me	asurement s ne low, cente	ystem. All me
bectrum analyzer of re corrected to allow nless stated otherw mbient Condition	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such t ions: Temperature: Rel. Humidity: sults Test Performed	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % Limit	ling the me	asurement s ne low, cente	ystem. All me
pectrum analyzer of re corrected to allow nless stated otherw mbient Condition Summary of Res	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to ions: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 -	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % Limit FCC Part 15.209 /	ling the me on either th	asurement s	ystem. All me
concertain analyzer of re corrected to allow nless stated otherw ambient Condition fummary of Res Run # 1	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to tons: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 - 9280 MHz	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % <u>Limit</u> FCC Part 15.209 / 15.247(c)	ling the me on either th Result Pass	asurement s ne low, cente De All emissio	ystem. All me r or high chan etails ons > -20dBc
ectrum analyzer of e corrected to allow nless stated otherw mbient Condition ummary of Resonant Run #	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to tons: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 - 9280 MHz Radiated Spurious Emissions,	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 /	ling the me on either th Result	asurement s ne low, cente De All emissio	ystem. All me r or high chan etails
ectrum analyzer of e corrected to allow nless stated otherw mbient Condition ummary of Res Run # 1 2	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to tons: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 - 9280 MHz	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % <u>Limit</u> FCC Part 15.209 / 15.247(c)	ing the me on either th Result Pass Pass	asurement s ne low, cente All emissic -10.9dB @	ystem. All me r or high chan etails ons > -20dBc 2746.1MHz
ectrum analyzer of e corrected to allow eless stated otherw mbient Condition ummary of Res Run # 1	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to ions: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 - 9280 MHz Radiated Spurious Emissions, 30 - 9280 MHz - Long Whip Radiated Spurious Emissions, 30 - 9280 MHz - Short Whip	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	ling the me on either th Result Pass	asurement s ne low, cente All emissic -10.9dB @	ystem. All me r or high chan etails ons > -20dBc
ectrum analyzer of e corrected to allow e corrected to allow mbient Condition ummary of Res Run # 1 2 3 4	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to tons: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 - 9280 MHz Radiated Spurious Emissions, 30 - 9280 MHz - Long Whip Radiated Spurious Emissions, 30 - 9280 MHz - Short Whip 20dB Bandwidth	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) 15.247(c) 15.247(a)	ing the me on either th Result Pass Pass Pass Pass	asurement s ne low, cente All emissic -10.9dB @ -18.6dB @ 392	ystem. All me r or high chan etails ons > -20dBc 2 2746.1MHz 2 2708.0MHz 2 kHz
ectrum analyzer of e corrected to allow nless stated otherw mbient Conditi ummary of Res Run # 1 2 3	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to ions: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 - 9280 MHz Radiated Spurious Emissions, 30 - 9280 MHz - Long Whip Radiated Spurious Emissions, 30 - 9280 MHz - Short Whip	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	ing the me on either th Pass Pass Pass	asurement s ne low, cente All emissic -10.9dB @ -18.6dB @ 392 0.8	ystem. All me r or high chan ons > -20dBc 2746.1MHz 2708.0MHz 2 kHz 32 W
pectrum analyzer or re corrected to allow Inless stated otherw Ambient Conditi Summary of Res Run # 1 2 3 4	r power meter via a suitable atten v for the external attenuators used vise the EUT was operating such to tons: Temperature: Rel. Humidity: Sults Test Performed Antenna Port Emissions, 30 - 9280 MHz Radiated Spurious Emissions, 30 - 9280 MHz - Long Whip Radiated Spurious Emissions, 30 - 9280 MHz - Short Whip 20dB Bandwidth	uator to prevent overload d. that it constantly hopped 25.6 °C 55 % <u>Limit</u> FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) 15.247(c) 15.247(a)	ing the me on either th Result Pass Pass Pass Pass	asurement s ne low, cente All emissic -10.9dB @ -18.6dB @ 392 0.8 Channel s 510kHz occupar	ystem. All me r or high chan etails ons > -20dBc 2 2746.1MHz 2 2708.0MHz 2 kHz

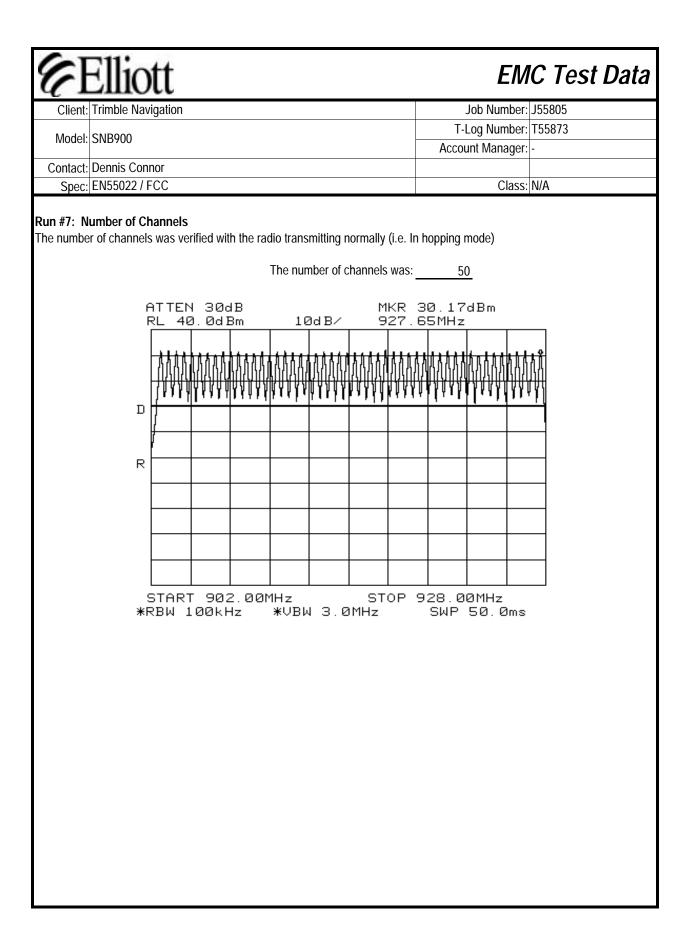


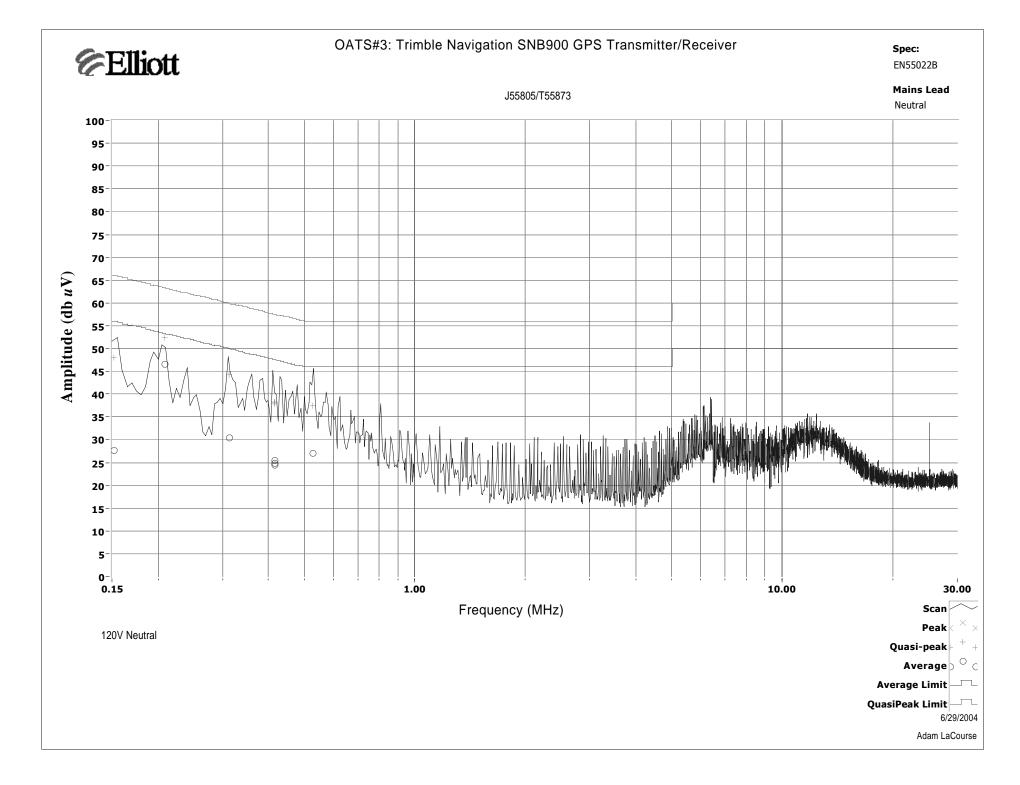


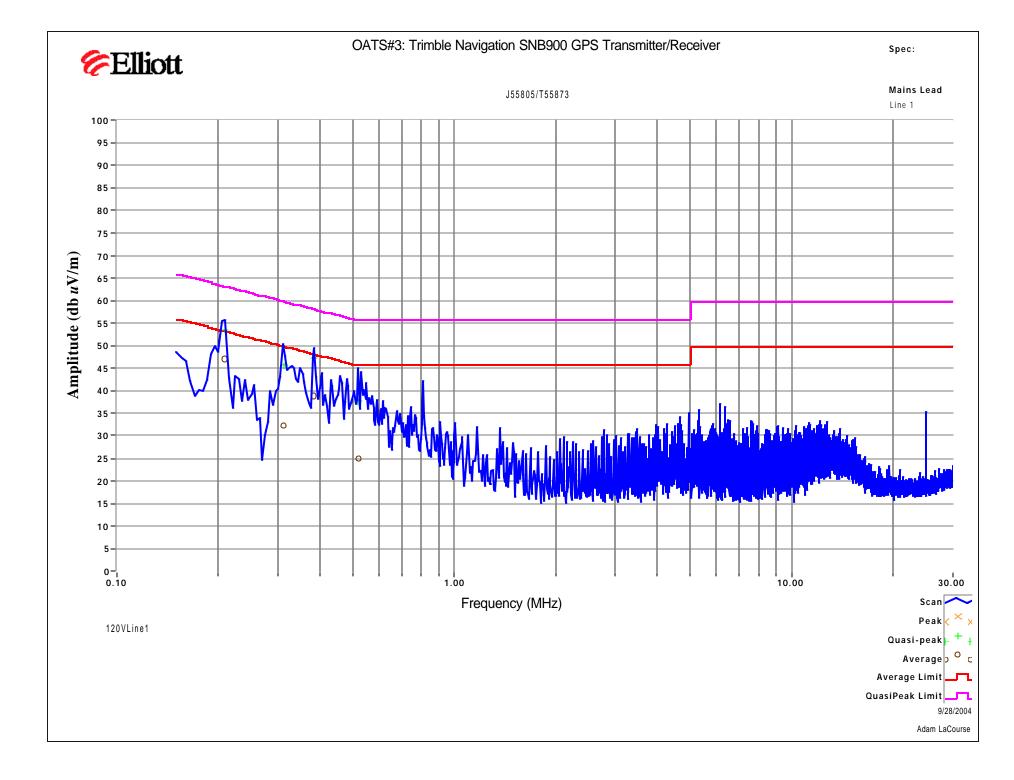
Client	Ellic Trimble N		1					lob Number:	J55805
Madal	CNDOOO						T-L	og Number:	T55873
Model	SNB900						Accou	nt Manager:	-
Contact	Dennis Co	onnor							
Spec:	EN55022	/ FCC						Class:	N/A
Run #2a:	Radiated S	Spurious	s Emission	s, 30 - 9300	MHz. Low	Channel @ 9	902.6 MHz,	High Gain \	Whip Antenna
					Н	V			
			@ 3m in 10			132.6			
Limi	t for emissi	ons outs	ide of restri	cted bands:	112.6	dBµV/m			
requency	Level	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	Commonto	
2707.863	34.7	V	54.0	-19.3	AVG	251	1.1	Low Chann	el
2707.863	33.1	Н	54.0	-20.9	AVG	80	1.0	Low Chann	el
2707.863	43.4	V	74.0	-30.6	PK	251	1.1	Low Chann	el
2707.863	42.5	Н	74.0	-31.5	PK	80	1.0	Low Chann	el
1805.233	60.1	V	112.6	-52.5	PK	1	1.1	Low Chann	el
1805.236	54.4	Н	112.6	-58.2	PK	318	1.2	Low Chann	۵
ote 1:	For emiss VB=10Hz fundamen	ions in re (average tal and n	estricted bar e) or VB=1N neasuremer	nds, the limi 1Hz (peak). nts wre mad	t of 15.209 v For all other e with RB=V	vas used - me r emissions, t /B=100kHz.	easurement	s were made	e with RB=1MHz and elow the level of the
lote 1: lote 2:	For emiss VB=10Hz fundamen No emissi	ions in re (average tal and n ons obse	estricted bar e) or VB=1N neasuremer erved in the	nds, the limi 1Hz (peak). 1ts wre mad 960MHz res	t of 15.209 v For all other e with RB=V stricted banc	vas used - me r emissions, t /B=100kHz. I.	easurement he limit was	is were made s set 20dB be	e with RB=1MHz and elow the level of the
lote 1: lote 2:	For emiss VB=10Hz fundamen No emissi	ions in re (average tal and n ons obse	estricted bar e) or VB=1N neasuremer erved in the	nds, the limi 1Hz (peak). 1ts wre mad 960MHz res	t of 15.209 v For all other e with RB=V stricted banc	vas used - me r emissions, t /B=100kHz. J. J.	easurement he limit was	is were made s set 20dB be	e with RB=1MHz and
Note 1: Note 2: Run #2b:	For emiss VB=10Hz fundamen No emissi Radiated S	ions in re (average tal and n ons obse Spurious	estricted bar e) or VB=1M neasuremer erved in the s Emission	nds, the limi 1Hz (peak). 1ts wre mad 960MHz res s, 30 - 9300	t of 15.209 v For all other e with RB=V stricted banc	vas used - me r emissions, t /B=100kHz. J. Jle Channel (V	easurement he limit was	is were made s set 20dB be	e with RB=1MHz and elow the level of the
lote 1: lote 2: Run #2b: Fundame	For emiss VB=10Hz fundamen No emissi Radiated S	ions in re (average tal and n ons obse Spurious on level	estricted bar e) or VB=1N neasuremer erved in the s Emission @ 3m in 10	nds, the limi 1Hz (peak). 1ts wre mad 960MHz res 6, 30 - 9300 0kHz RBW:	t of 15.209 v For all other e with RB=V stricted band MHz. Midc	vas used - me r emissions, t /B=100kHz. 1. dle Channel e V 131.2	easurement he limit was	is were made s set 20dB be	e with RB=1MHz and elow the level of the
lote 1: lote 2: Run #2b: Fundame	For emiss VB=10Hz fundamen No emissi Radiated S	ions in re (average tal and n ons obse Spurious on level	estricted bar e) or VB=1N neasuremer erved in the s Emission @ 3m in 10	nds, the limi 1Hz (peak). 1ts wre mad 960MHz res s, 30 - 9300	t of 15.209 v For all other e with RB=V stricted band MHz. Midc	vas used - me r emissions, t /B=100kHz. J. Jle Channel (V	easurement he limit was	is were made s set 20dB be	e with RB=1MHz and elow the level of the
lote 1: lote 2: Run #2b: Fundame Limi	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi	ions in re (average tal and n ons obse Spurious on level ons outs	estricted bar e) or VB=1M neasuremer erved in the s Emission s Emission a 3m in 10 ide of restri	nds, the limi 1Hz (peak). 1ts wre mad 960MHz res 6, 30 - 9300 0kHz RBW:	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2	vas used - me r emissions, t /B=100kHz. J. Jle Channel o V 131.2 dBµV/m	easurement he limit was @ 915.4 Mł	is were made s set 20dB be Hz, High Gai	e with RB=1MHz and elow the level of the
lote 1: lote 2: Run #2b: Fundame Limi	For emiss VB=10Hz fundamen No emissi Radiated S	ions in re (average tal and n ons obse Spurious on level	estricted bar e) or VB=1M neasuremer erved in the s Emission s Emission a 3m in 10 ide of restri	nds, the limi 1Hz (peak). nts wre mad 960MHz res s, 30 - 9300 s, 30 - 9300 0kHz RBW: cted bands:	t of 15.209 v For all other e with RB=V stricted band MHz. Midc	vas used - me r emissions, t /B=100kHz. J. Jle Channel of V 131.2 dBµV/m Azimuth	easurement he limit was	is were made s set 20dB be	e with RB=1MHz and elow the level of the
lote 1: lote 2: Run #2b: Fundame Limi Frequency MHz	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi	ions in re (average tal and n ons obse Spurious ons obse Spurious On level ons outs Pol	estricted bar e) or VB=1M neasuremer erved in the s Emission @ 3m in 10 ide of restric 15.209	nds, the limi 1Hz (peak). nts wre mad 960MHz res 5, 30 - 9300 0kHz RBW: cted bands: / 15.247	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector	vas used - me r emissions, t /B=100kHz. J. Jle Channel o V 131.2 dBµV/m	easurement he limit was @ 915.4 Mi Height	is were made s set 20dB be Hz, High Gai	e with RB=1MHz and elow the level of the n Whip Antenna
lote 1: lote 2: Run #2b: Fundame Limi Frequency MHz 2746.078	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi Level dBµV/m	ions in re (average tal and n ons obse Spurious on level ons outs Pol v/h	estricted bar e) or VB=1M neasuremer erved in the s Emission a Sm in 10 ide of restric 15.209 Limit	nds, the limi 1Hz (peak). nts wre mad 960MHz res 5, 30 - 9300 0kHz RBW: cted bands: / 15.247 Margin	t of 15.209 w For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector Pk/QP/Avg	vas used - me r emissions, t /B=100kHz. J. dle Channel o V 131.2 dBµV/m Azimuth degrees	easurement he limit was @ 915.4 MI Height meters	s were made s set 20dB be Hz, High Gai	e with RB=1MHz and elow the level of the n Whip Antenna mbient
lote 1: lote 2: Run #2b: Fundame Limi Frequency MHz 2746.078 2746.078	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi Level dBµV/m 63.1	ions in re (average tal and n ons obse Spurious on level ons outs Pol V/h H	estricted bar e) or VB=1M neasuremer erved in the s Emission @ 3m in 10 ide of restric 15.209 Limit 74.0	nds, the limi IHz (peak). nts wre mad 960MHz res s, 30 - 9300 okHz RBW: cted bands: / 15.247 Margin -10.9	t of 15.209 v For all other e with RB=V stricted bance MHz. Midc H 111.2 Detector Pk/QP/Avg PK	vas used - me r emissions, t /B=100kHz. 1. dle Channel of V 131.2 dBµV/m Azimuth degrees 86	easurement he limit was @ 915.4 MI Height meters 1.1	ts were made s set 20dB be Hz, High Gai	e with RB=1MHz and elow the level of the n Whip Antenna mbient
lote 1: lote 2: Fundame Limi requency MHz 2746.078 2745.010	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi Level dBµV/m 63.1 32.7	ions in re (average tal and n ons obse Spurious on level ons outs Pol V/h H H	estricted bar e) or VB=1M neasuremer erved in the s Emission (@ 3m in 10) ide of restrive 15.209 Limit 74.0 54.0	nds, the limi IHz (peak). nts wre mad 960MHz res s, 30 - 9300 0kHz RBW: cted bands: / 15.247 Margin -10.9 -21.3	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector Pk/QP/Avg PK AVG	vas used - me r emissions, t /B=100kHz. J. Jle Channel of V 131.2 dBµV/m Azimuth degrees 86 86	easurement he limit was @ 915.4 MI Height meters 1.1 1.1	Comments EUT plus an Center char	e with RB=1MHz and elow the level of the n Whip Antenna mbient nnel
lote 1: lote 2: Run #2b: Fundame Limi requency MHz 2746.078 2746.078 2745.010 2745.010	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi t for emissi Level dBµV/m 63.1 32.7 31.4 40.1 58.5	ions in re (average tal and n ons obse Spurious on level ions outs Pol v/h H H V V V	estricted bar e) or VB=1M neasuremer erved in the erved in the s Emission a min 10 ide of restrict 15.209 Limit 74.0 54.0 54.0	nds, the limi IHz (peak). nts wre mad 960MHz res s, 30 - 9300 0kHz RBW: cted bands: / 15.247 Margin -10.9 -21.3 -22.6	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector Pk/QP/Avg PK AVG AVG	vas used - me r emissions, t /B=100kHz. dle Channel of V 131.2 dBµV/m Azimuth degrees 86 86 -1 -1 -1 0	easurement he limit was @ 915.4 MI Meight meters 1.1 1.1 1.0	Comments EUT plus an Center chan Center chan	e with RB=1MHz and elow the level of the n Whip Antenna mbient nnel nnel nnel
lote 1: lote 2: Run #2b: Fundame Limi Frequency MHz 2746.078 2746.078 2745.010 2745.010 1830.720	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi Level dBµV/m 63.1 32.7 31.4 40.1	ions in re (average tal and n ons obse Spurious on level ions outs Pol V/h H H V V	estricted bar e) or VB=1M neasuremer erved in the erved in the s Emission a S Emission (@ 3m in 10) (ide of restrict 15.209 Limit 74.0 54.0 54.0 74.0	nds, the limi IHz (peak). nts wre mad 960MHz res s, 30 - 9300 0kHz RBW: cted bands: / 15.247 Margin -10.9 -21.3 -22.6 -33.9	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector Pk/QP/Avg PK AVG AVG PK	vas used - me r emissions, t /B=100kHz. J. Jle Channel of V 131.2 dBµV/m Azimuth degrees 86 86 -1 -1	easurement he limit was @ 915.4 MI Height meters 1.1 1.0 1.0 1.0	Comments EUT plus an Center chan Center chan Center chan	e with RB=1MHz and elow the level of the n Whip Antenna mbient nnel nnel nnel nnel
Note 1: Note 2: Run #2b: Fundame Limi Frequency MHz 2746.078 2745.010 2745.010 1830.720	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi Level dBµV/m 63.1 32.7 31.4 40.1 58.5 54.5	ions in re (average tal and n ons obse Spurious on level ons outs Pol v/h H H V V V V V	estricted bar e) or VB=1M neasuremer erved in the s Emission @ 3m in 10 ide of restrict 15.209 Limit 74.0 54.0 54.0 54.0 74.0 111.2 111.2	nds, the limi IHz (peak). nts wre mad 960MHz res s, 30 - 9300 0kHz RBW: cted bands: / 15.247 Margin -10.9 -21.3 -22.6 -33.9 -52.7 -56.7	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector Pk/QP/Avg PK AVG AVG PK PK PK PK	vas used - me r emissions, t /B=100kHz. J. Jle Channel of V 131.2 dBµV/m Azimuth degrees 86 86 86 -1 -1 0 87	easurement he limit was @ 915.4 MH 	Comments EUT plus an Center chan Center chan Center chan Center chan Center chan Center chan Center chan	e with RB=1MHz and elow the level of the n Whip Antenna mbient nnel nnel nnel nnel nnel
Note 1: Note 2: Run #2b: Fundame Limi Frequency MHz 2746.078 2746.078 2745.010 2745.010 1830.720 1830.701	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi dBµV/m 63.1 32.7 31.4 40.1 58.5 54.5 For emiss	ions in re (average tal and n ons obse Spurious on level ons outs Pol V/h H H V V V V V H ions in re	estricted bar e) or VB=1M neasuremer erved in the estricted bar @ 3m in 10 ide of restriction 15.209 Limit 74.0 54.0 54.0 74.0 111.2 111.2	nds, the limi 1Hz (peak). nts wre mad 960MHz res s, 30 - 9300 0kHz RBW: cted bands: / 15.247 Margin -10.9 -21.3 -22.6 -33.9 -52.7 -56.7 nds, the limi	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector Pk/QP/Avg PK AVG AVG AVG PK PK PK PK	vas used - me r emissions, t /B=100kHz. J. Jle Channel o V 131.2 dBµV/m Azimuth degrees 86 86 -1 -1 -1 0 87 vas used - me	easurement he limit was @ 915.4 MI Height meters 1.1 1.1 1.0 1.0 1.0 1.2 easurement	S were made s set 20dB be Hz, High Gai EUT plus an Center chan Center chan Center chan Center chan Center chan Center chan Center chan	e with RB=1MHz and elow the level of the n Whip Antenna mbient nnel nnel nnel nnel nnel nnel nnel
Note 1: Note 2: Run #2b: Fundame Limi	For emiss VB=10Hz fundamen No emissi Radiated S ntal emissi t for emissi Level dBµV/m 63.1 32.7 31.4 40.1 58.5 54.5 For emiss VB=10Hz	ions in re (average tal and n ons obse Spurious on level ions outs Pol V/h H H V V V V H ions in re (average	estricted bar e) or VB=1M neasuremer erved in the evved in the evved in the estricted bar estricted bar e) or VB=1M	nds, the limi 1Hz (peak). <u>nts wre mad</u> 960MHz res s , 30 - 9300 0kHz RBW: cted bands: / 15.247 Margin -10.9 -21.3 -22.6 -33.9 -52.7 -56.7 nds, the limi 1Hz (peak).	t of 15.209 v For all other e with RB=V stricted banc MHz. Midc H 111.2 Detector Pk/QP/Avg PK AVG AVG AVG PK PK PK PK	vas used - me r emissions, t /B=100kHz. J. Jle Channel of V 131.2 dBµV/m Azimuth degrees 86 86 -1 -1 0 87 vas used - me r emissions, t	easurement he limit was @ 915.4 MI Height meters 1.1 1.1 1.0 1.0 1.0 1.2 easurement	S were made s set 20dB be Hz, High Gai EUT plus an Center chan Center chan Center chan Center chan Center chan Center chan Center chan	e with RB=1MHz and elow the level of the n Whip Antenna mbient nnel nnel nnel nnel nnel

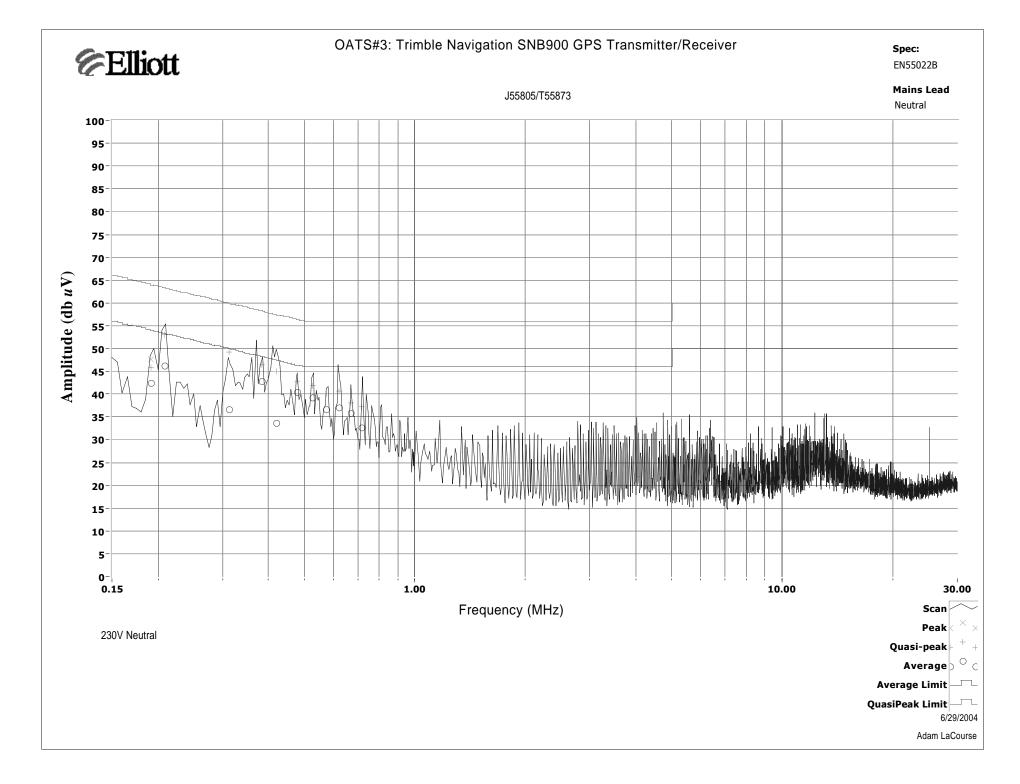

Elliott EMC Test Data												
Client:	Trimble N	avigatior	1		Job Number: J55805							
Madal					T-Log Number: T55873							
Model:	SNB900				Account Manager: -							
	Contact: Dennis Connor											
Spec:	EN55022	/ FCC			Class: N/A							
Run #2c: Radiated Spurious Emissions, 30 - 9300 MHz. High Channel @ 927.6 MHz, High Gain Whip Antenna												
	_				V							
			@ 3m in 100			131.7						
Limi	t for emiss	ions outs	ide of restric	:ted bands:	111.7	dBµV/m						
Frequency	Level Pol 15.209 / 15.247				Detector	Azimuth	Height	Comments				
MHz	dBµV/m	v/h	Limit		Pk/QP/Avg	degrees	meters					
2782.773	34.6	V	54.0	-19.4	AVG	250	1.0	High Channel				
2782.773	53.6	V	74.0	-20.4	PK	250	1.0	High Channel				
2782.765	30.9	Н	54.0	-23.1	AVG	259	1.0	High Channel				
2782.765	44.9	Н	74.0	-29.1	PK	259	1.0	High Channel				
1855.200	57.2	V	111.7	-54.5	Pk	359	1.0	High Channel				
1855.188	54.5	Н	111.7	-57.2	Pk	255	1.0	High Channel				
								s were made with RB=1MHz and				
Note 1:		-					he limit was	s set 20dB below the level of the				
	fundamental and measurements wre made with RB=VB=100kHz.											
Note 2:	No emissi	ons obse	erved in the	960MHz res	stricted band							
Run #3a: Radiated Spurious Emissions, 30 - 9300 MHz. Low Channel @ 902.6 MHz, Low Gain Whip Antenna												
Fundamo	ntal omissi	on loval	@ 3m in 10(Н	V						
			ide of restric		100.44	129.44						
LIIII				Jieu Dalius.	109.44	dBµV/m						
Frequency	Level	vel Pol 15.209 / 15.247		15.247	Detector	Azimuth	Height	Comments				
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
2707.955	35.4	V	54.0	-18.6	AVG	0	1.6	Low Channel				
2707.955	45.8	V	74.0	-28.2	PK	0	1.6	Low Channel				
1805.256	52.0	V	109.4	-57.4	PK	10	1.5	Low Channel				
For emissions in restricted bands, the limit of 15.209 was used - measurements were made with RB=1MHz and VB=10Hz (average) or VB=1MHz (peak). For all other emissions, the limit was set 20dB below the level of the fundamental and measurements wre made with RB=VB=100kHz. Note 2: No significant signals observed above 3GHz												

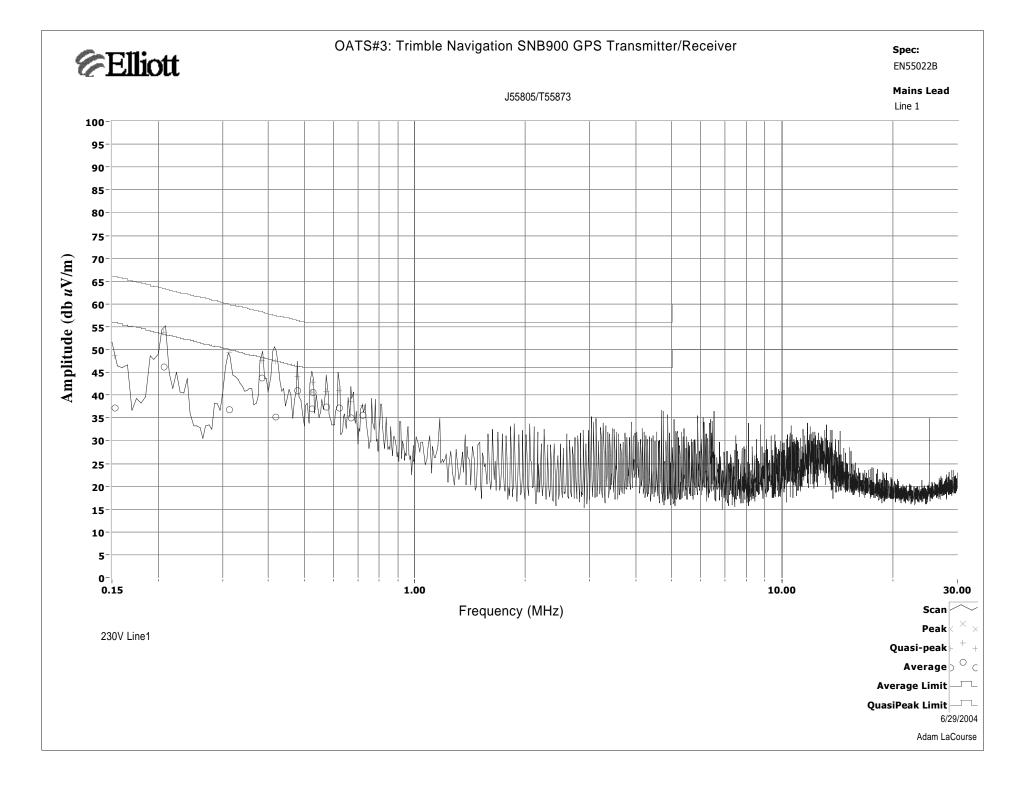
Elliott EMC Test Data Job Number: J55805 Client: Trimble Navigation T-Log Number: T55873 Model: SNB900 Account Manager: Contact: Dennis Connor Spec: EN55022 / FCC Class: N/A Run #3b: Radiated Spurious Emissions, 30 - 9300 MHz. Middle Channel @ 915.4 MHz, Low Gain Whip Antenna Н ٧ Fundamental emission level @ 3m in 100kHz RBW: 127.45 Limit for emissions outside of restricted bands: 107.45 dBuV/m Pol 15.209 / 15.247 Frequency Level Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2746.205 V 54.0 -24.2 AVG 29.8 133 1.7 Center channel ٧ 1830.741 54.8 87.5 -32.6 PΚ 9 1.0 Center channel 2746.205 40.2 V 74.0 -33.8 ΡK 133 1.7 Center channel For emissions in restricted bands, the limit of 15.209 was used - measurements were made with RB=1MHz and VB=10Hz (average) or VB=1MHz (peak). For all other emissions, the limit was set 20dB below the level of the Note 1: fundamental and measurements wre made with RB=VB=100kHz. No significant signals observed above 3GHz. All signals were higher in amplitude for vertical polarization. Note 2: Run #3c: Radiated Spurious Emissions, 30 - 9300 MHz. High Channel @ 927.6 MHz, Low Gain Whip Antenna Н V Fundamental emission level @ 3m in 100kHz RBW: 129.45 Limit for emissions outside of restricted bands: 109.45 dBµV/m 15.209 / 15.247 Frequency Pol Azimuth Height Comments Level Detector Pk/QP/Avg MHz dBµV/m v/h Limit Margin degrees meters High Channel 2783.575 ٧ 54.0 AVG 251 31.6 -22.4 1.0 2783.575 49.0 V 74.0 -25.0 PK 251 1.0 High Channel 1855.201 48.7 V 89.5 ΡK -40.8 86 1.0 **High Channel** For emissions in restricted bands, the limit of 15.209 was used - measurements were made with RB=1MHz and Note 1: VB=10Hz (average) or VB=1MHz (peak). For all other emissions, the limit was set 20dB below the level of the fundamental and measurements wre made with RB=VB=100kHz. No significant signals observed above 3GHz. No signals observed in 960-1280MHz restricted band. Note 2:






With a 5dBi antenna the EIRP is 34.2dBm (2.63 Watts).




E E	llio	tt									EN	ЛС	Test Data	
Client: Trin											Job Numbe	r: J55	805	
Model: SNF	Model: SNB900									T-Log Number:			873	
											unt Manage	r: -		
Contact: Dennis Connor Spec: EN55022 / FCC										Class				
			oncuro	6.000UD	ancy of l	acc the	on 40	Ome	por 20c	nor cha		s: N/A	rational description).	
The plots below	show the	e transm	it time p	er chanı				chanr	nel being	g used 5	times in a			
	ATTEN 40dB △MKR RL 42.0dBm 5dB/ 44.3									R 4.00dB 33ms				
		_∆MKF 44.3	2 83 m:	s		, Ma								
	D	4.00	dB	Ţ			\top							
							+							
	R			$\left \right $		$\left \right $	+				$\left \right $			
							_							
				<u>سا</u>		~ [
	CENTER 915.364334MHz SPAN ØHz									I				
		явы з			¥VBν			Ηz			200ms			
		ATTEN RL 42						31.33dBm LØØsec						
		MKR					+			1				
	D	10.1 31.3		sec Bm			+					-+		
	S						_					-+		
	_											\square		
	R													
							+					-		
							+					╶╢		
	CENTER 915.364334MHz SPAN ØHz *RBW 30kHz *VBW 3.0MHz *SWP 60.0sec													

