

RF Test Report

As per

RSS-137 Issue 2:2009 & FCC Part 90 Subpart M

Location and Monitoring Service (LMS) Operation in the 902 -928 MHz Band

on the

MRFM-S Plus Model: 802870

Issued by: TÜV SÜD Canada Inc.

11 Gordon Collins Dr, Gormley, ON, L0H 1G0

Canada

Ph: (905) 883-7255

Prepared by

Min Xie,

Sr. EMC/RF Engineer

Reviewed by

Scott Drysdale, Reginal Manager,

EMC

Testing produced for

See Appendix A for full client & EUT details.

Registration # 6844A-3

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Notes, Justifications, or Deviations Sample Calculation(s)	6
Applicable Standards, Specifications and Methods	8
Document Revision Status	9
Definitions and Acronyms	10
Testing Facility	11
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	13
Output Power and Antenna Heights Emission Mask Transmitter Spurious Radiated Emissions	34
Appendix A – EUT Summary	66

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Report Scope

This report addresses the EMC verification testing and test results of the Kapsch TrafficCom Canada Inc.'s **MRFM-S Plus, Model: 802870** and is herein referred to as EUT (Equipment Under Test). The EUT was tested for compliance against the following standards:

RSS-137 Issue 2:2009

FCC Part 90 Subpart M

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by any government, accreditation agency, or TÜV SÜD Canada Inc.

Opinions or interpretations expressed in this report, if any, are outside the scope of TÜV SÜD Canada Inc. accreditations. Any opinions expressed do not necessarily reflect the opinions of TÜV SÜD Canada Inc., unless otherwise stated.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Summary

The results contained in this report relate only to the item(s) tested.

EUT:	MRFM-S Plus Model: 802870
FCC Certification #, FCC ID:	JQU802870
ISED Canada Certification #, IC:	2665A-802870
EUT passed all tests performed	Yes
Tests conducted by	Min Xie
Reviewed by	Scott Drysdale

For testing dates, see "Testing Environmental Conditions and Dates".

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Test Results Summary

Standard/Method	Description	Limit	Result
FCC 90.205 RSS-137 Clause 6.4	Output Power	30 W	Pass
FCC 90.210 (K) RSS-137 Clause 6.5.3	Spurious antenna port conducted emissions	Attenuation By: $55 + 10 \log_{10}(P_{max})$ dB.	Pass
FCC 90.210 RSS-137 Clause 6.5.3	Spurious radiated emissions	Attenuation By: $55 + 10 \log_{10}(P_{max})$ dB.	Pass
Overall Result			Pass

All tests were performed by Min Xie.

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Notes, Justifications, or Deviations

The following notes, justifications for tests not performed or deviations from the above listed specifications apply:

The report is an update based on Class II Permissive Change procedure. Refer to the original test report, TÜV SÜD Canada Report # 7169006929R-000, for full testing and test results.

As per the C2PC letter, discrete components of the amplifier were changed. This change does not affect the output power and operation frequency of the EUT. No changes were made to communication protocols. The following tests were deemed sufficient to show continued compliance of the EUT against the Scope of this report:

- 1. Output power
- 2. Antenna port conducted emission mask and spurious emission
- 3. Radiated spurious emission

The EUT supports the following 5 protocols: KTDM, ATA, SeGo, 6B, and 6C

- 1. Kapsch Time Division Multiplex (TDM), hereafter referred to as the "KTDM" protocol
- 2. Super eGo® (SeGo)
- 3. ISO-18000-6C a.k.a. EPC Class 1 Gen 2, hereafter referred to as the "6C" protocol
- 4. ISO-10374 a.k.a. American Association of Railroads (AAR) S-918, a.k.a. American Trucking Association (ATA), hereafter referred to as the "ATA" protocol
- 5. ISO-18000-6B, hereafter referred to as the "6B" protocol

The EUT only transmits a CW signal in ATA mode and the other five protocols uses Shaped ON-OFF Keying to transmit information. According to FCC 90.207, the EUT have two types of emission:

- 1. NON for ATA
- 2. K1D for the other five protocols

For FCC 90.214, the EUT operates in the 902-928 MHz band, and this requirement is not applicable.

For FCC 90.213, the EUT is a fixed non-multilateration transmitter with an authorized bandwidth that is more than 40 kHz from the band edge and therefore is not subject to frequency tolerance restrictions.

For the requirements of FCC 90.210 (K) and FCC 2.1053 Measurements required: Field strength of spurious radiation. Spurious radiated emissions of the EUT was performed at 3 meters. The limit specified in FCC 90.210 (K) is: On any frequency outside the licensee's

Page 6 of 69	Report Issued: 2/17/2023	Report File #: 7169012329R-000

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

sub-band edges, the peak power of any emission shall be attenuated by $55 + 10 \log(P)$ where P is the highest emission (Watts) of the transmitter. For all intents and purposes, the limit is -25 dBm ERP. The 3 meter field strength limit for the EUT is given below:

 $E(dB\mu V/m) = EIRP(dBm) + 95.2$

Where EIRP = ERP + 2.15

 $E(dB\mu V/m) = ERP (dBm) + 97.35$

 $E(dB\mu V/m) = -25 dBm + 97.35 = 72.35 dBuV$

This limit is applicable to all emission at 3 meter measurement distance.

Sample Calculation(s)

Radiated Emission Test

Margin = Limit – (Received Signal + Antenna Factor + Cable Loss – Pre-Amp Gain)

 $Margin = 50.5dB\mu V/m - (50dB\mu V + 10dB/m + 2.5dB - 20dB)$

Margin = 8.0 dB (pass)

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Applicable Standards, Specifications and Methods

ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10:2013	American national standard for testing unlicensed wireless devices
ANSI C63.26:2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
CFR 47 FCC Part 2 Subpart J	Code of Federal Regulations – Equipment Authorization Procedure
CFR 47 FCC Part 90	Code of Federal Regulations – Private Land Mobile Radio Services
FCC KDB 412172	D01 Determining ERP and EIRP v01
RSS 137 Issue 2:2009	Spectrum Management and Telecommunications. Radio Standards Specification, Location and Monitoring Service in the Band 902-928 MHz.
RSS-GEN Issue 5 2018	General Requirements and Information for the Certification of Radio Apparatus
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Document Revision Status

Revision	Date	Description	Initials
000	2023-02-17	Initial Release	MX
-	1	-	-

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiliary Equipment. A digital accessory that feeds data into or receives data from another device (host) that in turn, controls its operation.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility. The ability of an equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment.

EMI – Electro-Magnetic Immunity. The ability to maintain a specified performance when the equipment is subjected to disturbance (unwanted) signals of specified levels.

EUT – Equipment Under Test. A device or system being evaluated for compliance that is representative of a product to be marketed.

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line Impedance Stabilization Network

NCR – No Calibration Required

RF – Radio Frequency

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Testing Facility

Testing for EMC on the EUT was carried out at TÜV SÜD Canada testing lab near Toronto, Ontario. The testing lab has calibrated 3m semi-anechoic chambers which allow measurements on a EUT that has a maximum width or length of up to 2m and a height of up to 3m. The testing lab also has a calibrated 10m Open Area Test Site (OATS). The chambers are equipped with a turntable that is capable of testing devices up to 5000lb in weight and are equipped with a mast that controls the polarization and height of the antenna. Control of the mast occurs in the control room adjoining the shielded chamber. This facility is capable of testing products that are rated for single phase or 3-phase AC input and DC capability is also available. Radiated emission measurements are performed using a BiLog antenna and a Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN and using the vertical ground plane if applicable.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, CA6844), Innovation, Science and Economic Development Canada (ISED, 6844A-3) and Voluntary Control Council for Interference (VCCI, R-14023, G-20072, C-14498, and T-20060). This chamber was calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at TÜV SÜD Canada. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at TÜV SÜD Canada. TÜV SÜD Canada Inc. is accredited to ISO 17025 by A2LA with Testing Certificate #2955.02. The laboratory's current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or biennial basis as listed for each respective test.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Testing Environmental Conditions and Dates

Following environmental conditions were recorded in the facility during time of testing

Date	Test	Initials	Temperature (°C)	Humidity (%)	Pressure (kPa)
2023-01-05	Radiated Emissions	MX	22.8	27.9	101.1
2023-01-05/06	Antenna Conducted Emissions	MX	22.8/22.6	27.9/26.1	101.1/101.5

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Detailed Test Results Section

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Output Power and Antenna Heights

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified.

Limits

The limits are defined in FCC Part 90.205 (l) and RSS 137 Clause 6.4 as per the following paragraph:

902-928 MHz. LMS systems operating pursuant to subpart M of this part in the 902-927.25 MHz band will be authorized a maximum of 30 watts ERP. LMS equipment operating in the 927.25-928 MHz band will be authorized a maximum of 300 watts ERP. ERP must be measured as peak envelope power. Antenna heights will be as specified in §90.353(h).

Results

The EUT passed.

The EUT supports the following 5 protocols: KTDM, ATA, SeGo, 6B, and 6C. Each protocol has its own frequency channels and frequency ranges. Where a protocol has more than one channel, the Low, middle, and high channels were measured. The table below gives the results for each protocol.

The ATA, 6B, and 6C protocols operate in both sub-bands allocated for non-multilateral LMS transmitters. Output power for both sub-bands were measured.

Antenna selection varies by application. RF cable loss and fixed attenuations (added inline or manually set inside the unit under control of a commanding reader) is used to compensate for antenna gain so that the ERP is 30 watts or less. See page Tuning Procedure for further details.

Guidance for antenna height requirement and restrictions on setting module power to meet ERP are given in User Manual.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Table(s)

ATA – 902 – 904 MHz Sub-Band						
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Low Channel	902.5	36.18	4.15			
Mid Channel	903.0	36.01	3.99			
High Channel	903.5	36.17	4.14			
	ATA – 909.75 – 921	.75 MHz Sub-Band				
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Low Channel	910.0	36.48	4.45			
Mid Channel	915.0	36.27	4.24			
High Channel	921.5	36.53	4.50			
	KT	DM				
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Channel	915.75	36.45	4.42			
	SeC	GO				
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Low Channel	911.0	36.35	4.32			
Mid Channel	915.0	36.29	4.26			
High Channel	920.0	36.36	4.33			
	6B - 902 - 904 I	MHz Sub-Band				
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Channel	903.0	36.01	4.00			
	6B - 909.75 to 921.	75 MHz Sub-Band				
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Low Channel	910.5	36.14	4.11			
Mid Channel	915.0	36.32	4.29			
High Channel	920.5	36.22	4.19			
	6C - 902 - 904 I	MHz Sub-Band				
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Channel	903	35.93	3.92			
	6C – 909.75 to 921.	75 MHz Sub-Band				
Channel	Frequency (MHz)	Power (dBm)	Power (W)			
Low Channel	910.5	36.29	4.26			
Mid Channel	915.0	36.32	4.29			
High Channel	920.5	36.33	4.30			

Page 15 of 69 Report Issued: 2/17/2023	Report File #: 7169012329R-000
--	--------------------------------

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Graph(s)

The graphs below show the Peak Power during the operation of the device. Measurements were performed using a spectrum analyzer with a Peak detector of 1 MHz RBW / 3 MHz VBW. This measurement is a peak measurement. Max hold is performed for a duration of not less than 1 minute.

ATA – 902 – 904 MHz Sub-Band Low Channel

Date: 5.JAN.2023 15:13:21

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

ATA – 902 – 904 MHz Sub-Band Mid Channel

Date: 5.JAN.2023 15:15:37

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

ATA – 902 – 904 MHz Sub-Band High Channel

Date: 5.JAN.2023 15:17:44

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

ATA – 909.75 – 921.75 MHz Sub-Band Low Channel

Date: 5.JAN.2023 15:19:03

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

ATA – 909.75 – 921.75 MHz Sub-Band Mid Channel

Date: 5.JAN.2023 15:20:21

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

ATA – 909.75 – 921.75 MHz Sub-Band High Channel

Date: 5.JAN.2023 15:22:30

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

KTDM *RBW 3 MHz Marker 1 [T1] *VBW 10 MHz 36.45 dBm 50.8 dBm Att 55 dB SWT 10 ms 915.566000000 MHz 50 Offset 1 PK MAXH LVL 3DB Center 915.75 MHz 1 MHz/ Span 10 MHz

Date: 5.JAN.2023 15:32:18

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

SeGO – 909.75 – 921.75 MHz Sub-Band Low Channel

Date: 5.JAN.2023 15:34:54

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

SeGO – 909.75 – 921.75 MHz Sub-Band Mid Channel

Date: 5.JAN.2023 15:35:50

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

SeGO – 909.75 – 921.75 MHz Sub-Band High Channel

Date: 5.JAN.2023 15:37:01

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

6B - 902 - 904 MHz Sub-Band

Date: 5.JAN.2023 15:42:32

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

6B – 909.75 – 921.75 MHz Sub-Band Low Channel

Date: 5.JAN.2023 15:41:17

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

6B – 909.75 – 921.75 MHz Sub-Band Mid Channel

Date: 5.JAN.2023 15:43:35

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

6B – 909.75 – 921.75 MHz Sub-Band High Channel

Date: 5.JAN.2023 15:44:34

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

6C – 909.75 – 921.75 MHz Sub-Band Low Channel

Date: 5.JAN.2023 15:48:03

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

6C – 909.75 – 921.75 MHz Sub-Band Mid Channel

Date: 5.JAN.2023 15:49:04

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

6C – 909.75 – 921.75 MHz Sub-Band High Channel

Date: 5.JAN.2023 15:50:15

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESU 40	Rohde & Schwarz	Feb. 11, 2022	Feb. 11, 2024	GEMC 233
20dB Attenuator (100W)	6N100W-20F	Inmet	NCR	NCR	GEMC 352

Note: GEMC 287 is part of GEMC 8's calibration.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Emission Mask

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

Limits

The Limit is as specified in FCC Part 90.210 (K) and RSS-137 Clause 6.5.3

Emission Mask K—(1) Wideband multilateration transmitters. For transmitters authorized under subpart M to provide forward or reverse links in a multilateration system in the subbands 904-909.75 MHz, 921.75-927.25 MHz and 919.75-921.75 MHz, and which transmit an emission occupying more than 50 kHz bandwidth: in any 100 kHz band, the center frequency of which is removed from the center of authorized sub-band(s) by more than 50 percent of the authorized bandwidth, the power of emissions shall be attenuated below the transmitter output power, as specified by the following equation, but in no case less than 31 dB:

A=16+0.4 (D-50)+10 log B (attenuation greater than 66 dB is not required) Where:

A = attenuation (in decibels) below the maximum permitted output power level D = displacement of the center frequency of the measurement bandwidth from the center frequency of the authorized sub-band, expressed as a percentage of the authorized bandwidth B

B = authorized bandwidth in megahertz.

(2) Narrowband forward link transmitters. For LMS multilateration narrowband forward link transmitters operating in the 927.25-928 MHz frequency band the power of any emission shall be attenuated below the transmitter output power (P) in accordance with following schedule:

On any frequency outside the authorized sub-band and removed from the edge of the authorized sub-band by a displacement frequency (f_d in kHz): at least 116 log ((f_d +10)/6.1) dB or 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

(3) Other transmitters. For all other transmitters authorized under subpart M that operate in the 902-928 MHz band, the peak power of any emission shall be attenuated below the power of the highest emission contained within the licensee's sub-band in accordance with the following schedule:

Page 34 of 69	Report Issued: 2/17/2023	Report File #: 7169012329R-000
-		

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

- (i) On any frequency within the authorized bandwidth: Zero dB.
- (ii) On any frequency outside the licensee's sub-band edges: $55 + 10 \log(P) dB$, where (P) is the highest emission (watts) of the transmitter inside the licensee's sub-band.
- (4) In the 902-928 MHz band, the resolution bandwidth of the instrumentation used to measure the emission power shall be 100 kHz, except that, in regard to paragraph (2) of this section, a minimum spectrum analyzer resolution bandwidth of 300 Hz shall be used for measurement center frequencies with 1 MHz of the edge of the authorized subband. The video filter bandwidth shall not be less than the resolution bandwidth.
- (5) Emission power shall be measured in peak values.
- (6) The LMS sub-band edges for non-multilateration systems for which emissions must be attenuated are 902.00, 904.00, 909.5 and 921.75 MHz.

Note: The EUT is a non- multilateration LMS transmitter. Emission limit (3) applies to the EUT. A $55 + 10 \log(P)$ dB attenuation (or -25 dBm absolute emission level) was applied all frequency from the outside authorized band.

Test procedure is as per ANSI C63.26 Clause 5.7.

Results

The EUT passed; it meets attenuation requirement at the antenna port.

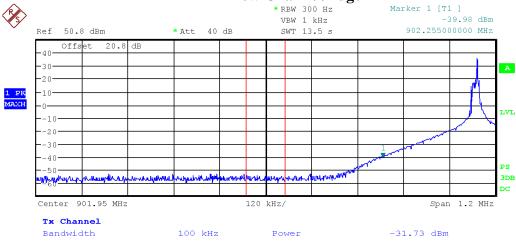
The worst case is presented as a graph for the spectrum. Band edge requirements were shown for the lower band edge at 902 and 909.5 MHz in the low band where applicable. Band edge requirements were also shown for the higher band edge at 904 and 921.75 MHz in the high band where applicable.

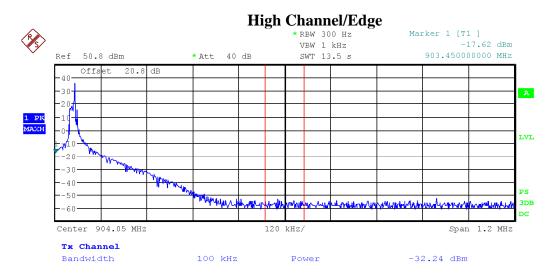
Note: All measurements were made with an attenuator as appropriate to the measurement. The insertion loss were adjusted with Reference Level Offset function in the spectrum analyzer.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

ATA – 902 – 904 MHz Sub-Band					
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)	(dBm)	(dBm)	(dB)	
Low Channel	902	-31.73	-25.0	-6.7	Pass
High Channel	904	-32.24	-25.0	-7.2	Pass
	ATA – 9	09.75 – 921.75	MHz Sub-Band	d	
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)	(dBm)	(dBm)	(dB)	
Low Channel	909.75	-29.10	-25.0	-4.1	Pass
High Channel	921.75	-26.23	-25.0	-1.2	Pass
		KTDM			
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)	(dBm)	(dBm)	(dB)	
Channel	909.75	-33.49	-25.0	-8.5	Pass
Channel	921.75	-32.64	-25.0	-7.6	Pass
		SeGO			
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)	(dBm)	(dBm)	(dB)	
Low Channel	909.75	-28.80	-25.0	-3.8	Pass
High Channel	921.75	-29.30	-25.0	-4.3	Pass
	6B -	- 902 – 904 MH	z Sub-Band		
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)	(dBm)	(dBm)	(dB)	
Channel	902	-28.97	-25.0	-4.0	Pass
Channel	904	-29.02	-25.0	-4.0	Pass
	6B - 90	9.75 to 921.75 N	MHz Sub-Band		
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)	(dBm)	(dBm)	(dB)	
Low Channel	909.75	-28.73	-25.0	-3.7	Pass
High Channel	921.75	-28.42	-25.0	-3.4	Pass
	6C -	- 902 – 904 MH	z Sub-Band		
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)				
Channel	902	-29.05	-25.0	-4.1	Pass
Channel	904	-29.16	-25.0	-4.2	Pass
	6C - 90	9.75 to 921.75 I	MHz Sub-Band		
Channel	Frequency	Band Edge	Limit	Margin	Verdict
	(MHz)	(dBm)	(dBm)	(dB)	
Low Channel	909.75	-28.99	-25.0	-4.0	Pass
High Channel	921.75	-28.77	-25.0	-3.8	Pass

Page 36 of 69 Report Issued: 2/17/2023	Report File #: 7169012329R-000
--	--------------------------------

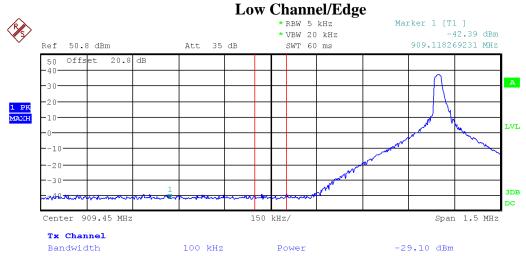

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada


Graph(s)

The graphs shown below shows the integrated band power or peak power of the device during the out-of-band emission measurement. For integrated band power, the center frequency of the spectrum analyzer is center at one-half of the measurement bandwidth away from the band edge and integration is performed over the full required measurement bandwidth.

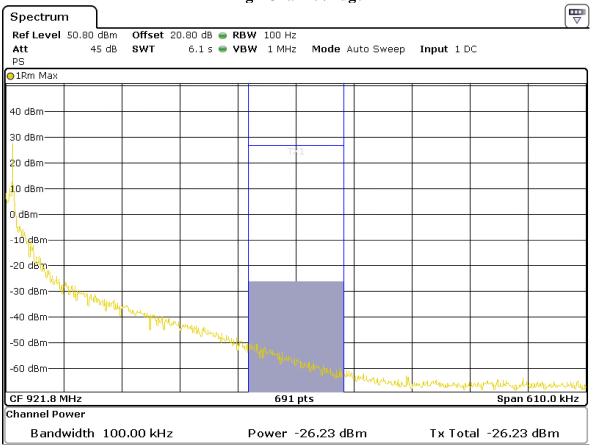
ATA Protocol

Band Edge 902 MHz – 904 MHz Sub-Band Low Channel/Edge



Page 37 of 69 Report Issued: 2/17/2023	Report File #: 7169012329R-000
--	--------------------------------

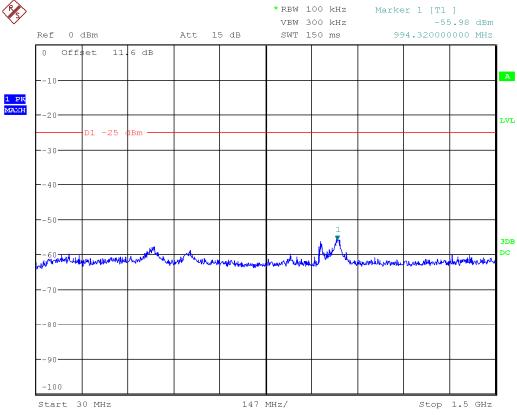
Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada


Band Edge 909.75 MHz – 921.75 MHz Sub-Band

Date: 5.JAN.2023 16:36:45

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

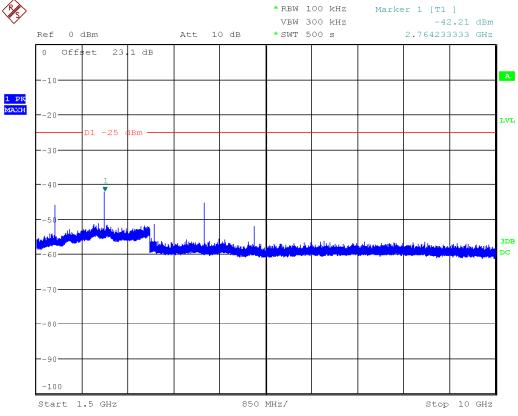
High Channel/Edge



Date: 6.JAN.2023 10:51:32

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

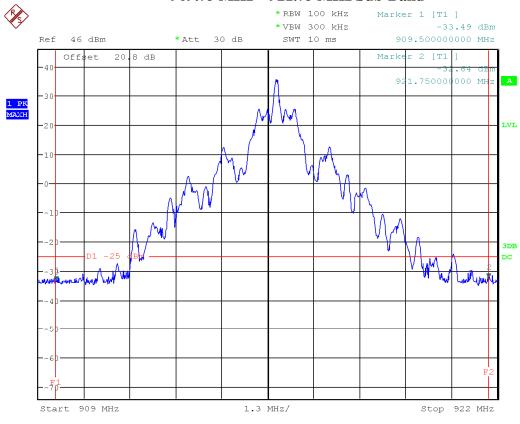
Spurious emissions 30 MHz - 1.5 GHz



Date: 6.JAN.2023 12:00:47

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

1.5 GHz – 10 GHz

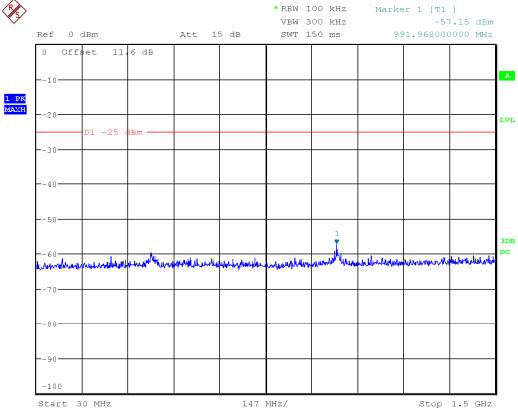


Date: 6.JAN.2023 15:11:43

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

KTDM Protocol

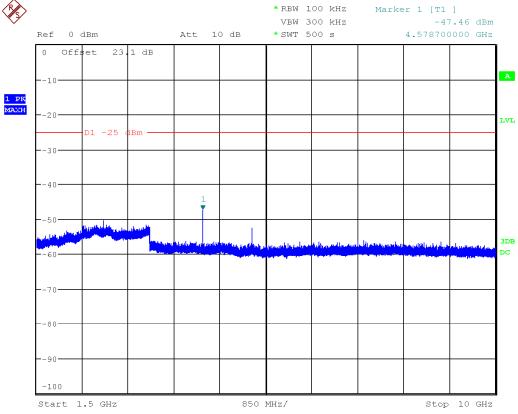
Band Edge 909.75 MHz – 921.75 MHz Sub-Band



Date: 5.JAN.2023 17:24:41

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

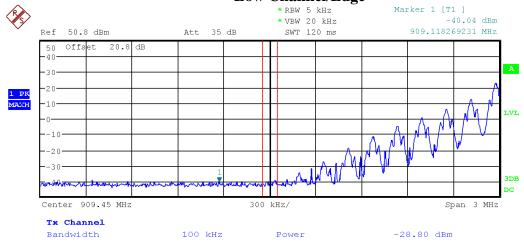
Spurious emissions 30 MHz - 1.5 GHz

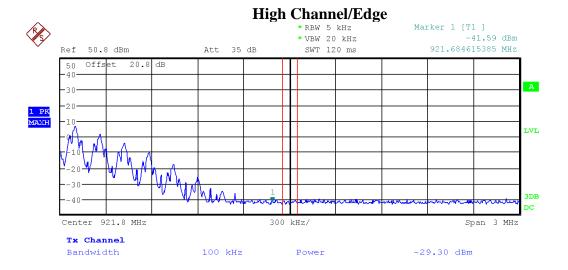


Date: 6.JAN.2023 12:04:44

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

1.5 GHz – 10 GHz

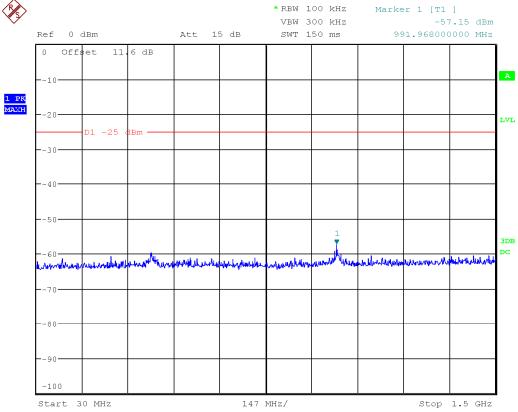



Date: 6.JAN.2023 15:01:26

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

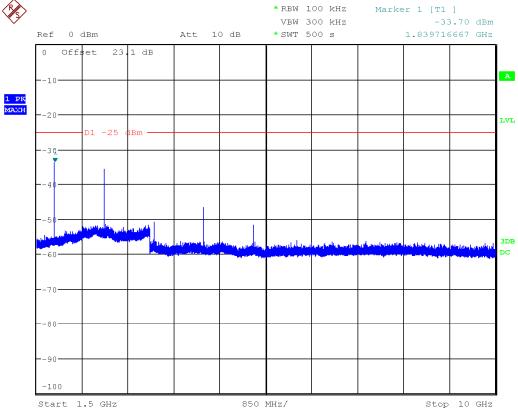
SeGO Protocol

Band Edge 909.75 MHz – 921.75 MHz Sub-Band Low Channel/Edge



Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

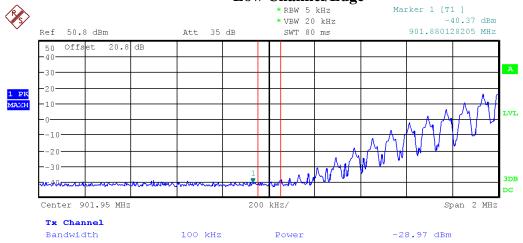
Spurious emissions 30 MHz - 1.5 GHz

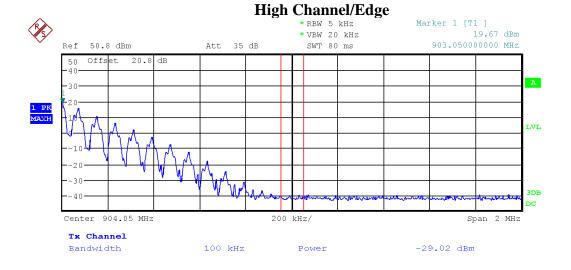


Date: 6.JAN.2023 12:07:28

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

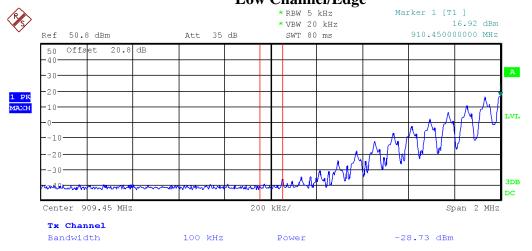
1.5 GHz – 10 GHz

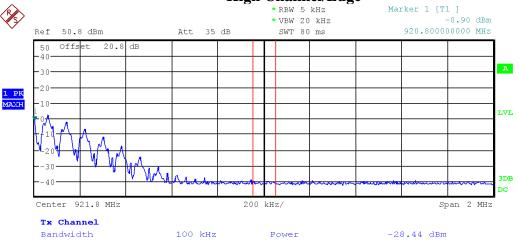



Date: 6.JAN.2023 14:48:41

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

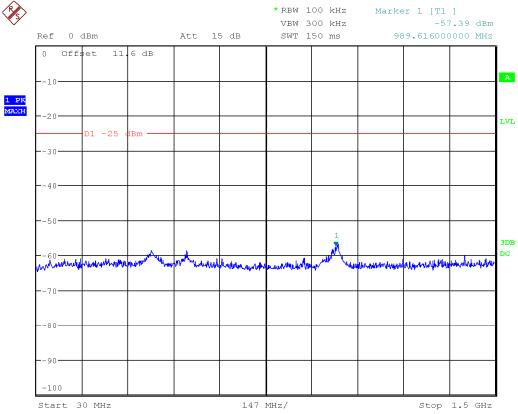
6B Protocol


Band Edge 902 MHz – 904 MHz Sub-Band Low Channel/Edge



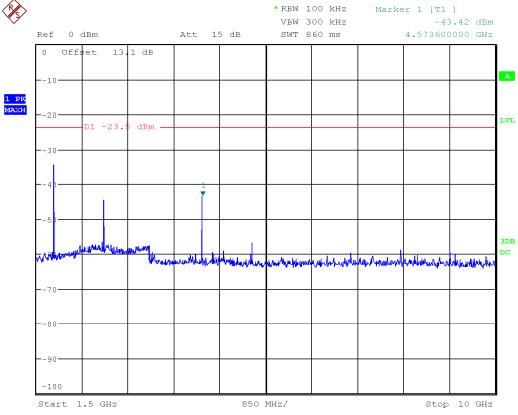
Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Band Edge 909.75 MHz - 921.75 MHz Sub-Band Low Channel/Edge



Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

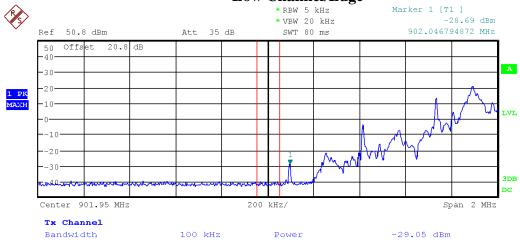
Spurious emissions 30 MHz - 1.5 GHz

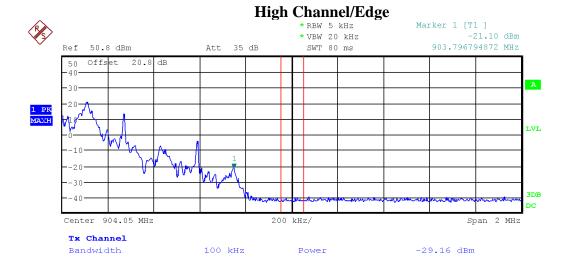


Date: 6.JAN.2023 12:09:42

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

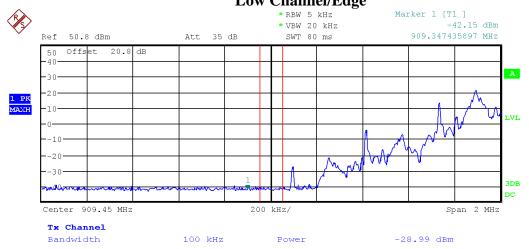
1.5 GHz – 10 GHz

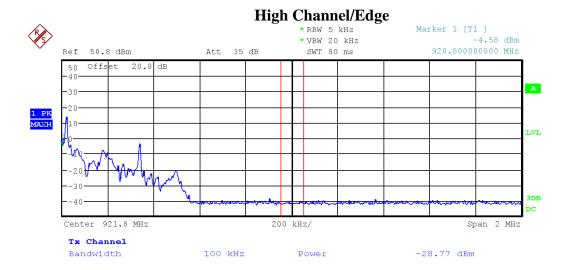



Date: 6.JAN.2023 12:19:15

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

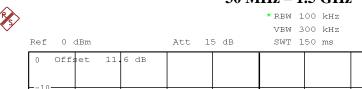
6C Protocol

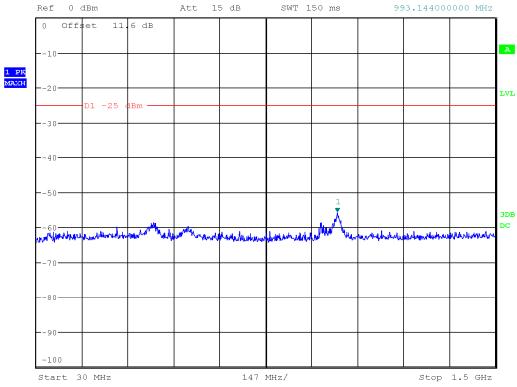

Band Edge 902 MHz – 904 MHz Sub-Band Low Channel/Edge



Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Band Edge 909.75 MHz – 921.75 MHz Sub-Band Low Channel/Edge

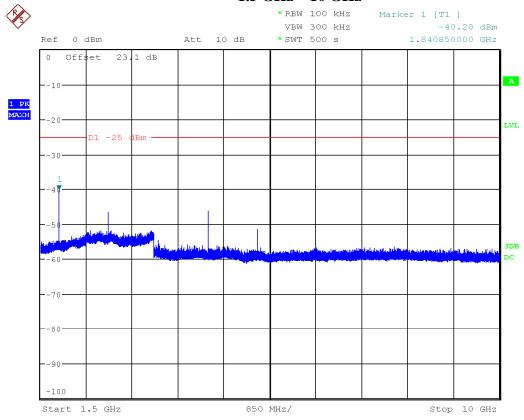



Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Spurious emissions 30 MHz - 1.5 GHz

Marker 1 [T1]

-55.80 dBm



Date: 6.JAN.2023 12:12:31

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

1.5 GHz - 10 GHz

Date: 6.JAN.2023 14:26:31

See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration Date	Next Calibration Date	Asset #
Spectrum Analyzer	ESR 26	Rohde & Schwarz	Mar. 31, 2022	Mar. 31, 2024	GEMC 341
Spectrum Analyzer	ESU 40	Rohde & Schwarz	Feb. 11, 2022	Feb. 11, 2024	GEMC 233
20dB Attenuator (100W)	6N100W-20F	Inmet	NCR	NCR	GEMC 352
10dB Attenuator	6N10W-10	Inmet	NCR	NCR	GEMC 350
Band Reject Filter	BRC50722	Micro-Tronics	NCR	NCR	GEMC 186
1.5GHz-18GHz High Pass Filter	5HC1500/1800 0-3-PP	Trilithic Inc	NCR	NCR	GEMC 327

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Transmitter Spurious Radiated Emissions

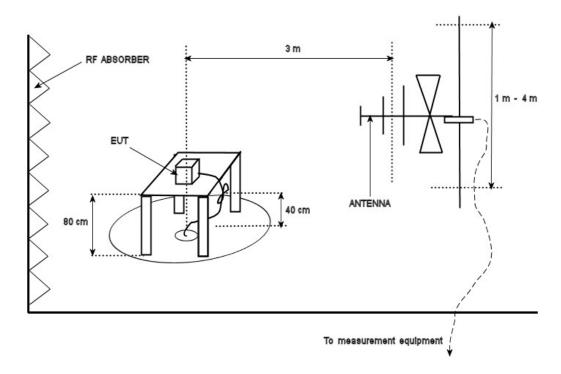
Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit(s) and Method

The method is as defined in FCC 2.1053 and the limits are as defined in FCC Part 90.210(K).

- (3) Other transmitters. For all other transmitters authorized under subpart M that operate in the 902-928 MHz band, the peak power of any emission shall be attenuated below the power of the highest emission contained within the licensee's sub-band in accordance with the following schedule:
 - (i) On any frequency within the authorized bandwidth: Zero dB.
- (ii) On any frequency outside the licensee's sub-band edges: 55 + 10 log(P) dB, where (P) is the highest emission (watts) of the transmitter inside the licensee's sub-band.


Spurious radiated emissions of the EUT was performed at 3 meters. The limit specified in FCC 90.210 (K) is $55 + 10 \log(P)$ dBc. For all intensive purpose, the limit is -25 dBm. The field strength limit for the EUT is give in the below:

```
\begin{split} E(dB\mu V/m) &= EIRP(dBm) + 95.2 \\ Where \ EIRP &= ERP + 2.15 \\ E(dB\mu V/m) &= ERP \ (dBm) + 97.35 \\ E(dB\mu V/m) &= -25 \ dBm + 97.35 = 72.35 \ dBuV \end{split}
```

This limit is applicable all emission at 3 meter measurement distance. The Limit is with 100 kHz measurement bandwidth and using a Peak detector.

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

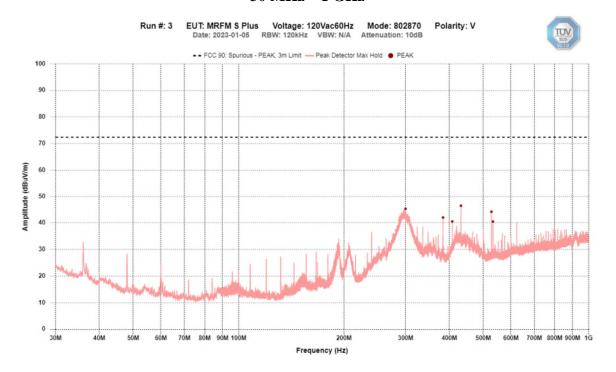
Typical Radiated Emissions Setup

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a 95% confidence level.

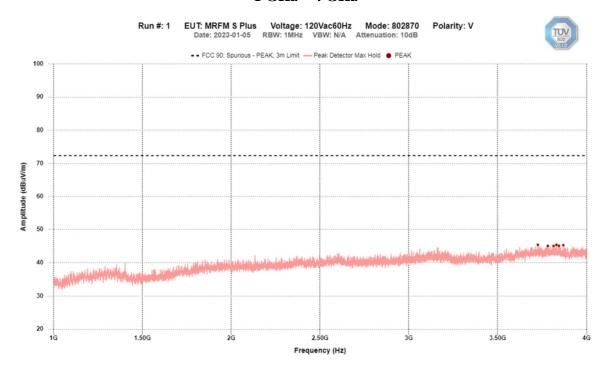
Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater than the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

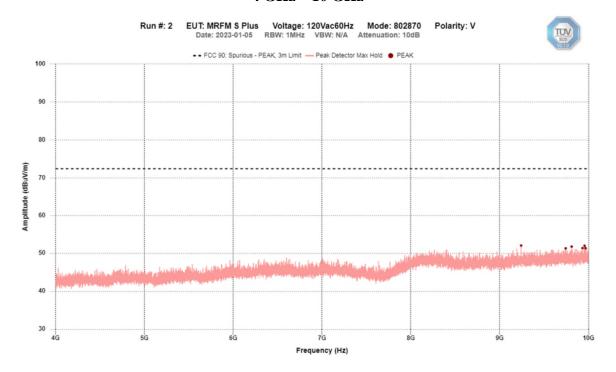

The device was scanned to the 10th harmonic (a minimum of a 10 GHz).

The measured radiation includes the emissions from the reader being used to control the EUT.

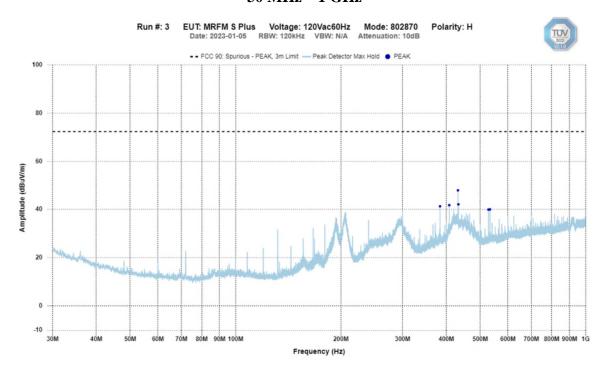
Page 58 of 69	Report Issued: 2/17/2023	Report File #: 7169012329R-000


Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

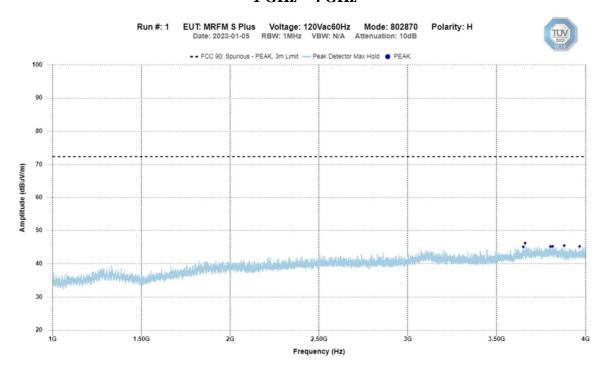
Vertical – Peak Emission Graph 30 MHz – 1 GHz


Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

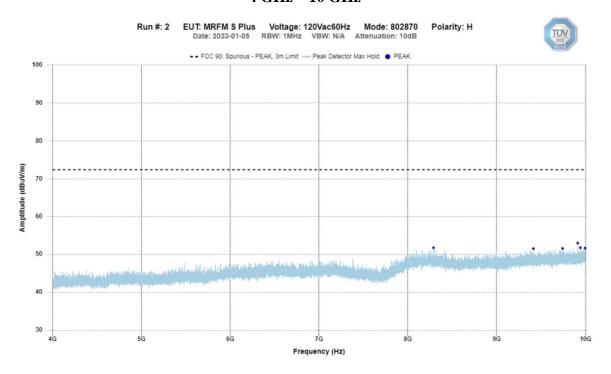
Vertical – Peak Emission Graph 1 GHz – 4 GHz


Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Vertical – Peak Emission Graph 4 GHz – 10 GHz


Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Horizontal – Peak Emission Graph 30 MHz – 1 GHz


Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Horizontal – Peak Emission Graph 1 GHz – 4 GHz

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Horizontal – Peak Emission Graph 4 GHz – 10 GHz

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Results

Pass.

The EUT meets the Transmitter Spurious Radiated Emissions requirements.

All scan were perform with a measurement bandwidth greater than the required bandwidth. No peak emissions were above the limit.

Test Equipment List

Equipment	Model No.	Manufacturer	Last Calibration / Verification Date	Next Calibration / Verification Date	Asset #
Spectrum Analyzer	ESU 40	Rohde & Schwarz	Feb. 11, 2022	Feb. 11, 2024	GEMC 233
BiLog Antenna	3142-C	ETS-Lindgren	Dec. 7, 2022	Dec. 7, 2024	GEMC 8
Horn Antenna 1 – 18 GHz	3117	ETS-Lindgren	Mar. 11, 2022	Mar. 11, 2024	GEMC 340
Band Reject Filter	BRC50722	Micro-Tronics	NCR	NCR	GEMC 186
0.98 GHz High pass filter	8IH40- 980/T3750	K & L Microwave	NCR	NCR	GEMC 4256
4GHZ-12GHz High Pass filter	11SH10- 4000/T12000- 0/0	K & L Microwave	NCR	NCR	GEMC 119
Attenuator 6 dB	612-6-1	Meca Electronics, Inc	NCR	NCR	GEMC 287
Pre-Amp 9 kHz – 1 GHz	CPA9230	Chase	Sept. 16, 2022	Sept 16, 2024	GEMC 301
Pre-Amp 1 – 26.5 GHz	HP 8449B	HP	Mar. 11, 2022	Mar. 11, 2024	GEMC 189
RF Cable <1GHz	LMR-400	LexTec	NCR	NCR	GEMC 274
RF Cable <1GHz	Sucoflex 104A	Huber+Suhner	NCR	NCR	GEMC 271
RF Cable >1GHz	EMC2	MegaPhase	NCR	NCR	GEMC 369
Emissions Software	V2.1.0	TUV SUD Canada, Inc.	NCR	NCR	GEMC 361

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Appendix A – EUT Summary

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

For further details for filing purposes, refer to filing package.

General EUT Description

	Client Details
Organization / Address	Kapsch TrafficCom Canada Inc.
	6020 Ambler Drive,
	Mississauga, ON, Canada
	L4W 2P1
Contact	Alastair Malarky, Chief Engineer
Phone	905-624-3020, x 1203
Email	alastair.malarky@kapsch.net
EUT (Equip	oment Under Test) Details
EUT Name (for report title)	Multi-Protocol Reader RF Module-Smart Plus
EUT Model / SN (if known)	Model #: 802870
EUT revision	New product
Software version	N/A
EUT is powered using	DC
Input voltage range(s) (V)	15 VDC and 5 VDC
Frequency range(s) (Hz)	N/A
Nominal power consumption (W)	30W
Number of power supplies in EUT	None
Transmits RF energy? (describe)	Yes
Basic EUT functionality description	See separate document CONF 802870 - Exhibit
High level block diagram of EUT	12 - Operating Description
(attachment)	See separate document CONF 802870 - Exibit
(detachment)	04 - Block Diagram
Modes of operation	See separate document CONF 802870 - Exhibit
·	12 - Operating Description
Step by step instructions for	
setup and operation	
Customer to setup EUT on site?	Yes
Frequency of all clocks present in	48 MHz used for FPGA, 40 MHz reference for
EUT	Synthesizer, 8 MHz for microcontroller, 3-4 MHz
	for power supplies

Page 67 of 69	Report Issued: 2/17/2023	Report File #: 7169012329R-000

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

Available connectors on EUT	See separate document CONF 802870 - Exhibit 12 - Operating Description
Peripherals required to exercise EUT Ex. Signal generator	Kapsch Reader
Dimensions of product	L 242mm W 50mm H 172mm

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B-EUT and Test Setup Photos'.

Technical Specifications

Operation Band: 902 – 928 MHz

Modulation: On-Off Keying

Emission Designator ATA Protocol: N0N

6B, 6C, SeGO, KTDM: K1D

Operation Frequency:

Protocol	ATA	SeGO	6B	6C	KTDM
TX	CW only	Manchester	Manchester	Pulse	Manchester
modulation		80 kbps	Bi Phase	Interval	500 kbps
symbol rate			40 kbps	Encoded	
				160 kbps	
TX	902.5 MHz	911.0 MHz	903 MHz	903 MHz	915.75
frequency	to 903.5	to 920.0	910.5 MHz	910.5 MHz	MHz
range	MHz	MHz	to 920.5	to 920.5	
permitted	910 MHz		MHz	MHz	
	to 921.5				
	MHz				

EUT Configurations

Please see Appendix B for a picture of the unit running in normal conditions.

• Unit was installed in a Reader Electronics for all testing.

Page 68 of 69	Report Issued: 2/17/2023	Report File #: 7169012329R-000

Client	Kapsch TrafficCom Canada Inc	
Product	MRFM-S Plus	TÜV
Standard(s)	RSS 137 Issue 2:2009 FCC Part 90 Subpart M	Canada

- During Transmitter spurious radiated emissions, RF output was dissipated in a 50 Ω load.
- Cables and earthing are connected as per manufacturer's specification.

Operational Setup

These devices are required to be attached to the EUT for its normal operation.

• The EUT transmits continuously