

HID CORPORATION ADDENDUM TEST REPORT TO FC02-024D

FOR THE

6181A BIOCLASS RWKL575

FCC PART 15 SUBPART C SECTIONS 15.107, 15.209, 15.225 & RSS-210

COMPLIANCE

DATE OF ISSUE: JUNE 23, 2004

PREPARED FOR:

HID Corporation 9292 Jeronimo Road Irvine, CA 92618-1905

P.O. No.: 10002477 W.O. No.: 81566 **PREPARED BY:**

Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: June 10 - 14, 2004

Report No.: FC02-024E

This report contains a total of 37 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Summary of Results	4
Conditions for Compliance	4
Approvals	4
FCC 15.31(m) Number of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.35 Analyzer Bandwidth Settings	5
FCC 15.205 Restricted Bands	5
EUT Operating Frequency	5
Temperature and Humidity During Testing	5
Equipment Under Test (EUT) Description	6
Equipment Under Test	6
Peripheral Devices	6
Report of Measurements	7
Table 1: FCC 15.207 - Six Highest Conducted Emission Levels	7
Table 2: FCC 15.225(a) - Fundamental Emission Levels	8
Table 3: FCC 15.209 - Highest Radiated Emission Levels 9kHz - 30MHz	9
Table 4: FCC 15.209 - Six Highest Radiated Emission Levels 30 - 1000MHz.	10
FCC 15.225 Temperature Testing	11
Emissions Mask	12
FCC 20dB & RSS-210 99% Bandwidth	13
EUT Setup	14
Correction Factors	14
Table A: Sample Calculations	14
Test Instrumentation and Analyzer Settings	15
Spectrum Analyzer Detector Functions	15
Peak	15
Quasi-Peak	15
Average	15
EUT Testing	16
Mains Conducted Emissions	16
Radiated Emissions	16
Appendix A: Test Setup Photographs	17
Photograph Showing Mains Conducted Emissions	18
Photograph Showing Radiated Emissions	19
Photograph Showing Radiated Emissions	20
Photograph Showing Temperature Testing	21
Appendix B: Test Equipment List	22
Appendix C: Measurement Data Sheets	23

ADMINISTRATIVE INFORMATION

DATE OF TEST:	June 10 - 14, 2004
DATE OF RECEIPT:	June 10, 2004
PURPOSE OF TEST:	To demonstrate the compliance of the iCLASS R10, 6100A (6091-300); iCLASS RW300, 6111A (6092-300) and iCLASS RW400, 6121A (6093- 300) with the requirements for FCC Part 15 Subpart C Sections 15.207, 15.209 & 15.225 devices. Addendum A is to add a statement regarding the correction factor to the voltage variation tables. Addendum B is to demonstrate the compliance of the Proximity Card Reader, 6094A (6094-300) with the requirements for FCC Part 15 Subpart C Sections 15.207, 15.209 and 15.225 devices. Addendum C is to change the model name to iCLASS Keypad Reader, 613xA (6094-300). Addendum D is to demonstrate with new testing the compliance of the 6181A bioCLASS RWKL575 with the requirements for FCC Part 15 Subpart C Sections 15.209, 15.225, Conducted CISPR 22 Class B and RSS 210 devices. Addendum E is to demonstrate with new testing the compliance of the 6181A bioCLASS RWKL575 to FCC Part 15 Subpart C Sections 15.207, 15.209, 15.225 and RSS-210 after modifications were made to the device.
TEST METHOD:	ANSI C63.4 (2001) & RSS-212
MANUFACTURER:	HID Corporation 9292 Jeronimo Road Irvine, CA 92618-1905
REPRESENTATIVE:	Frank de Vall
TEST LOCATION:	CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

SUMMARY OF RESULTS

As received, the HID Corporation 6181A bioCLASS RWKL575, was found to be fully compliant with the following standards and specifications:

United States

 FCC Part 15 Subpart C Sections 15.207, 15.209 & 15.225

ANSI C63.4 (1992) method FCC Site No. 784962

<u>Canada</u>

RSS-210 using:
 ➢ FCC Part 15 Subpart C Sections 15.207, 15.209 & 15.225
 ➢ ANSI C63.4 (1992) method
 Industry of Canada File No. IC 3082-D

CONDITIONS FOR COMPLIANCE

EUT drain wire is disconnected. Ground strap attached to EUT power supply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

AN CLARK

Randy Clark, EMC Engineer

while Wies

Mike Wilkinson, Lab Manager

FCC 15.31(m) Number of Channels

This device operates on a single channel of 13.56 MHz.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209 Radiated Emissions: 9 kHz – 1000 MHz

FCC SECTION 15.35:							
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

EUT Operating Frequency

The EUT was operating at 13.56 MHz.

Temperature and Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The 6181A bioCLASS RWKL575 reader tested by CKC Laboratories was a production unit. The EUT is a proximity reader/writer with biometric finger print verification.

The EUT was named **Biometric Reader**, **6181 (RWKLB575)** during testing. Since the time of testing, HID Corporation has changed the name of the device to **6181A bioCLASS RWKL575**. Any differences between the names does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets.

The 6181A is the maximum configuration that includes reader with keypad, LCD display, and fingerprint reader. This is the one that was tested because it is worst case. to the following additional models:

6171A bioCLASS RWKL550 (the same as the 6181A with no fingerprint reader) **6190A bioCLASS BIO500** (the fingerprint reader, only)

EQUIPMENT UNDER TEST

bioCLASS

Manuf:HID CorporationModel:6181A (RWKLB575)Serial:002FCC ID:JQ6609XA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

DC Power Supply

Manuf: Topward Electric Instruments Co., Ltd Model: TPS-2000 Serial: 920035 FCC ID: NA

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

Table 1: FCC 15.207 - Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	RECTIO dB	ON FACT Cable dB	TORS HPF dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
13.543410	36.6	0.4		0.4	0.1	37.5	50.0	-12.5	В
13.552410	37.9	0.5		0.4	0.1	38.9	50.0	-11.1	W
13.633500	32.4	0.4		0.4	0.1	33.3	50.0	-16.7	В
13.642500	34.4	.05		0.4	0.1	35.4	50.0	-14.6	W
13.687550	31.6	.05		0.4	0.1	32.6	50.0	-17.4	W
27.114890	30.8	.04		0.5	0.2	31.9	50.0	-18.1	W

Test Method: Spec Limit: ANSI C63.4 (2001) FCC Part 15 Subpart C Section 15.207 NOTES:

B = Black Lead W = White Lead

COMMENTS: EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: 150kHz to 30MHz.

Table 2: FCC 15.225(a) - Fundamental Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
13.560	50.2	8.4		0.8	-19.0	40.4	84.0	-43.6	Н
13.560	46.5	8.4		0.8	-19.0	36.7	84.0	-47.3	V
Test Method: ANSI C63.4 (2001) NOTES: H = Horizontal Polarization									

Spec Limit: Test Distance: FCC Part 15 Subpart C Sections 15.225(a) 10 Meters

V = Vertical Polarization

COMMENTS: EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: Carrier. Temperature: 23°C, humidity: 45%.

Table 3: FCC 15.209 - Highest Radiated Emission Levels 9kHz - 30MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Corr dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
27.122	19.2	4.9	-20.0	1.1		5.2	29.5	-24.3	V
27.126	26.7	4.9	-20.0	1.1		12.7	29.5	-16.8	Н
Test Method:ANSI C63.4 (2001)Spec Limit:FCC Part 15 Subpart C Sections 15.209Test Distance:10 Meters						NOTES:	H = Horiz V = Vertic	ontal Polariza cal Polarizatic	ution on

COMMENTS: EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: 9kHz to 30MHz. Temperature: 23°C, humidity: 45%.

Table 4: FCC 15.209 - Six Highest Radiated Emission Levels 30 - 1000MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	Amp dB	<u>ON FACT</u> Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
67.901	55.2	5.8	-27.2	1.9		35.7	40.0	-4.3	VQ
339.058	50.1	13.9	-26.7	4.4		41.7	46.0	-4.3	V
352.666	50.3	14.3	-26.8	4.5		42.3	46.0	-3.7	VQ
379.786	48.8	14.9	-27.0	4.9		41.6	46.0	-4.4	VQ
867.959	39.9	22.4	-27.6	7.8		42.5	46.0	-3.5	VQ
881.486	39.1	22.6	-27.4	8.0		42.3	46.0	-3.7	VQ

Test Method: Spec Limit: Test Distance: ANSI C63.4 (2001) FCC Part 15 Subpart C Section 15.209 3 Meters NOTES:

Q = Quasi Peak Reading V = Vertical Polarization

COMMENTS: EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: 30 - 1000 MHz. Temperature: 23°C, humidity: 45%.

FCC 15.225 Temperature Testing

Customer:	HID	
WO#:		
Date:	Jun 11 2004	
Test Engineer:	Randy Clark	
Device Model #:	6181A, BioClass	
Operating Voltage:	12	VDC/VAC
Frequency Limit:	0.01	PPM/%
Temperature Vari	ations	
	Channel 1 (MHz)	Dev. (MHz)
Channel Frequency:	13.56	
Temp (C) Voltage		
-30 12		
-20 12	13.56049	0.00049
-10 12	13.56050	0.00050
0 12	13.56050	0.00050
10 12	13.56045	0.00045
20 12	13.56035	0.00035
30 12	13.56039	0.00039
40 12	13.56035	0.00035
50 12	13.56042	0.00042
Voltage Variations	s (±15%)	
20 10.8	3 13.56036	0.00036
20 12	13.56035	0.00035
20 13.8	13.56031	0.00031
Max Deviation (MHz)		0.00050
Max Deviation (%)		0.00369
		PASS

conditions: EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. EUT is placed inside of a temperature chamber. Carrier amplitude readings inside

temperature chamber are calibrated to OATS readings.

EMISSIONS MASK

Emissions Mask

FCC 20dB & RSS-210 99% BANDWIDTH

Bandwidth

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	BLE A: SAMPLE CAL	CULATIONS
	Meter reading	(dBµV)
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
-	Preamplifier Gain	(dB)
=	Corrected Reading	$(dB\mu V/m)$

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were 50 μ H-/+50 ohms. Above 150 kHz, a 0.15 μ F series capacitor was added in-line prior to connecting the analyzer to restore the proper impedance for the range. A 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 500 kHz, and 500 kHz to 30 MHz. All readings within 20 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

APPENDIX A

TEST SETUP PHOTOGRAPHS

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

PHOTOGRAPH SHOWING TEMPERATURE TESTING

Temperature Testing

Page 21 of 37 Report No.: FC02-024E

APPENDIX B

TEST EQUIPMENT LIST

FCC 15.207 Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA	2403A08241	02/26/2003	02/26/2005	00489
Display				
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
8028-50-TS-24-BNC	8379276, 280	06/05/2003	06/05/2005	1248 & 1249

FCC 15.225(a) Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA	2403A08241	02/26/2003	02/26/2005	00489
Display				
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
EMCO Loop Antenna	1074	05/21/2003	05/21/2005	00226

FCC 15.209 9kHz – 30MHz Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA	2403A08241	02/26/2003	02/26/2005	00489
Display				
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
EMCO Loop Antenna	1074	05/21/2003	05/21/2005	00226

FCC 15.209 30 – 1000MHz Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8566B SA	2209A01404	02/26/2003	02/26/2005	00490
HP 8566B SA	2403A08241	02/26/2003	02/26/2005	00489
Display				
HP 85650A QPA	2811A01267	02/26/2003	02/26/2005	00478
Chase CBL6111C	2456	12/13/2002	12/13/2004	01991
Bilog				
HP 8447D Preamp	1937A02604	03/07/2003	03/07/2005	00099

APPENDIX C:

MEASUREMENT DATA SHEETS

Page 23 of 37 Report No.: FC02-024E

Customer:	HID
Specification:	FCC 15.207 - AVE
Work Order #:	81566
Test Type:	Conducted Emissions
Equipment:	Biometric Reader
Manufacturer:	HID
Model:	6181A (RWKLB575)
S/N:	002

Date: 6/10/04 Time: 2:46:00 PM Sequence#: 44 Tested By: Randal Clark 120V 60Hz

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Biometric Reader*	HID	6181A (RWKLB575)	002
Support Devices:			
Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920035
	Instruments Co., Ltd		

Test Conditions / Notes:

EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: 150kHz to 30MHz.

Transducer Legend:

T1=Cable - Internal + cab	T2=LISN Insertion Loss s/n280
T3=HP Filter AN02608	

Measur	rement Data:	Re	ading lis	ted by ma	argin.		Test Lead: Black				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.543M	36.6	+0.4	+0.4	+0.1		+0.0	37.5	50.0	-12.5	Black
2	13.634M	32.4	+0.4	+0.4	+0.1		+0.0	33.3	50.0	-16.7	Black
3	13.498M	30.0	+0.4	+0.4	+0.1		+0.0	30.9	50.0	-19.1	Black
4	13.588M	30.0	+0.4	+0.4	+0.1		+0.0	30.9	50.0	-19.1	Black
5	2.021M	25.9	+0.2	+0.3	+0.1		+0.0	26.5	46.0	-19.5	Black
6	516.509k	25.3	+0.1	+0.3	+0.3		+0.0	26.0	46.0	-20.0	Black
7	13.778M	28.4	+0.4	+0.4	+0.1		+0.0	29.3	50.0	-20.7	Black
8	13.679M	26.8	+0.4	+0.4	+0.1		+0.0	27.7	50.0	-22.3	Black

9	23.138M	25.5	+0.5	+0.4	+0.2	+0.0	26.6	50.0	-23.4	Black
10	26.553M	25.3	+0.5	+0.5	+0.2	+0.0	26.5	50.0	-23.5	Black
11	157.272k	29.6	+0.1	+0.3	+2.0	+0.0	32.0	55.6	-23.6	Black
12	181.997k	28.4	+0.1	+0.3	+0.4	+0.0	29.2	54.4	-25.2	Black

CKC Laboratories Date: 6/10/04 Time: 2:46:00 PM HID WO#: 81566 FCC 15.207 - AVE Test Lead: Black 120V 60Hz Sequence#: 44 HID M/N 6181A (RWKLB575)

Customer:	HID		
Specification:	FCC 15.207 - AVE		
Work Order #:	81566	Date:	6/10/04
Test Type:	Conducted Emissions	Time:	2:49:26 PM
Equipment:	Biometric Reader	Sequence#:	45
Manufacturer:	HID	Tested By:	Randal Clark
Model:	6181A (RWKLB575)		120V 60Hz
S/N:	002		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Biometric Reader*	HID	6181A (RWKLB575)	002
Support Devices:			
Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920035

Test Conditions / Notes:

EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: 150kHz to 30MHz.

Transducer Legend:

T1=Cable - Internal + cab	T2=LISN	Insertion Loss s/n276
T3=HP Filter AN02608		

Instruments Co., Ltd

Measur	rement Data:	Re	Reading listed by margin.					Test Lea	d: White		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.552M	37.9	+0.4	+0.5	+0.1		+0.0	38.9	50.0	-11.1	White
2	13.643M	34.4	+0.4	+0.5	+0.1		+0.0	35.4	50.0	-14.6	White
3	13.688M	31.6	+0.4	+0.5	+0.1		+0.0	32.6	50.0	-17.4	White
4	27.115M	30.8	+0.5	+0.4	+0.2		+0.0	31.9	50.0	-18.1	White
5	13.588M	30.6	+0.4	+0.5	+0.1		+0.0	31.6	50.0	-18.4	White
6	13.498M	30.1	+0.4	+0.5	+0.1		+0.0	31.1	50.0	-18.9	White
7	4.747M	25.5	+0.3	+0.4	+0.1		+0.0	26.3	46.0	-19.7	White
8	13.408M	28.2	+0.4	+0.5	+0.1		+0.0	29.2	50.0	-20.8	White
9	22.751M	27.2	+0.5	+0.4	+0.2		+0.0	28.3	50.0	-21.7	White
10	156.545k	31.0	+0.1	+0.4	+2.1		+0.0	33.6	55.6	-22.0	White

11	11.345M	27.1	+0.3	+0.5	+0.1	+0.0	28.0	50.0	-22.0	White
12	165.271k	31.3	+0.1	+0.4	+1.3	+0.0	33.1	55.2	-22.1	White
13	10.552M	26.7	+0.3	+0.5	+0.1	+0.0	27.6	50.0	-22.4	White
14	11.075M	25.9	+0.3	+0.5	+0.1	+0.0	26.8	50.0	-23.2	White
15	23.373M	25.5	+0.5	+0.4	+0.2	+0.0	26.6	50.0	-23.4	White
16	178.361k	27.5	+0.1	+0.4	+0.4	+0.0	28.4	54.6	-26.2	White

CKC Laboratories Date: 6/10/04 Time: 2:49:26 PM HID WO#: 81566 FCC 15.207 - AVE Test Lead: White 120V 60Hz Sequence#: 45 HID M/N 6181A (RWKLB575)

Customer:	HID
Specification:	FCC 15.225(a) (30 Meters)
Work Order #:	81566
Test Type:	Maximized Emissions
Equipment:	Biometric Reader
Manufacturer:	HID
Model:	6181A (RWKLB575)
S/N:	002

Date: 6/11/04 Time: 14:13:14 Sequence#: 48 Tested By: Randal Clark

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Biometric Reader*	HID	6181A (RWKLB575)	002
Support Devices:			
Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920035
	Instruments Co., Ltd		

Test Conditions / Notes:

EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: Carrier. Temperature: 23°C. Humidity: 45%.

Transducer Legend:

T1=Mag Loop - Site B - AN 00226 - 9kHz-30M T2=Cable - 10 Meter

<i>Measurement Data:</i> Reading listed by margin.						Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	13.560M	50.2	+8.4	+0.8			-19.0	40.4	84.0	-43.6	Horiz
							103				100
2	13.560M	46.5	+8.4	+0.8			-19.0	36.7	84.0	-47.3	Vert
											100

Customer:	HID
Specification:	FCC 15.209
Work Order #:	81566
Test Type:	Maximized Emissions
Equipment:	Biometric Reader
Manufacturer:	HID
Model:	6181A (RWKLB575)
S/N:	002

Date: 6/14/04 Time: 10:11:46 Sequence#: 52 Tested By: Randal Clark

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Biometric Reader*	HID	6181A (RWKLB575)	002
Support Devices:			
Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920035
	Instruments Co., Ltd		

Test Conditions / Notes:

EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: 9kHz to 30MHz. Temperature: 23°C. Humidity: 45%.

Transducer Legend:

T1=Mag Loop - Site B - AN 00226 - 9kHz-30M	T2=Cable - 10 Meter	
T3=15.31 10m 40dB/Dec Correction		

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Test Distance: 10 Meters				
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	27.126M	26.7	+4.9	+1.1	-20.0		+0.0	12.7	29.5	-16.8	Horiz
							365				100
2	27.122M	19.2	+4.9	+1.1	-20.0		+0.0	5.2	29.5	-24.3	Vert
							365				100

Customer:	HID
Specification:	FCC 15.209
Work Order #:	81566
Test Type:	Maximized Emissions
Equipment:	Biometric Reader
Manufacturer:	HID
Model:	6181A (RWKLB575)
S/N:	002

Date: 6/11/04 Time: 16:43:31 Sequence#: 54 Tested By: Randal Clark

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Biometric Reader*	HID	6181A (RWKLB575)	002
Support Devices:			
Function	Manufacturer	Model #	S/N
DC Power Supply	Topward Electric	TPS-2000	920035
	Instruments Co., Ltd		

Test Conditions / Notes:

EUT is a biometric reader with an operating frequency 13.56MHz. 12VDC power is provided via support DC power supply. EUT drain wire is disconnected. Ground strap attached to EUT power supply. Frequency Range Investigated: 30 - 1000 MHz. Temperature: 23°C. Humidity: 45%.

Transducer Legend:

T1=Amp - S/N 604	T2=Bilog Site B
T3=Cable - 10 Meter	

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	867.959M	39.9	-27.6	+22.4	+7.8		+0.0	42.5	46.0	-3.5	Vert
	QP						192				165
^	867.964M	42.6	-27.6	+22.4	+7.8		+0.0	45.2	46.0	-0.8	Vert
							184				164
3	352.666M	50.3	-26.8	+14.3	+4.5		+0.0	42.3	46.0	-3.7	Vert
	QP						155				147
^	352.656M	53.1	-26.8	+14.3	+4.5		+0.0	45.1	46.0	-0.9	Vert
							155				147
5	881.486M	39.1	-27.4	+22.6	+8.0		+0.0	42.3	46.0	-3.7	Vert
	QP						192				165
^	881.496M	44.9	-27.4	+22.6	+8.0		+0.0	48.1	46.0	+2.1	Vert
							192				165
7	67.901M	55.2	-27.2	+5.8	+1.9		+0.0	35.7	40.0	-4.3	Vert
	QP						9				141
^	67.892M	57.1	-27.2	+5.8	+1.9		+0.0	37.6	40.0	-2.4	Vert
							9				141
9	339.058M	50.1	-26.7	+13.9	+4.4		+0.0	41.7	46.0	-4.3	Vert
							164				147
10	379.786M	48.8	-27.0	+14.9	+4.9		+0.0	41.6	46.0	-4.4	Vert
	QP						209				104

^	379.759M	50.8	-27.0	+14.9	+4.9	+0.0	43.6	46.0	-2.4	Vert
12	008 635M	27.0	27.2	+22.0	⊥ 9 1	209	41.6	46.0	4.4	104 Vort
12	908.055IVI	57.9	-27.5	+22.9	+0.1	+0.0 171	41.0	40.0	-4.4	164
13	311.986M	50.8	-26.6	+13.2	+4.2	+0.0	41.6	46.0	-4.4	Vert
	QP					145				153
^	311.981M	52.1	-26.6	+13.2	+4.2	+0.0	42.9	46.0	-3.1	Vert
						152				145
15	54.300M	53.6	-27.3	+7.3	+1.6	+0.0	35.2	40.0	-4.8	Vert
						66				100
16	922.190M	37.0	-27.3	+23.1	+8.2	+0.0	41.0	46.0	-5.0	Vert
1.5	10 (000) (17.5		. 1 5 6		174	41.0	16.0		164
17	406.903M	47.5	-27.2	+15.6	+5.1	+0.0	41.0	46.0	-5.0	Vert
10	225 54014	40.0	267	12.5	+ 4 2	194	41.0	16.0	5.0	114
18	325.548M	49.9	-26.7	+13.5	+4.3	+0.0	41.0	46.0	-5.0	vert
10	106 000M	17.1	27.2	115.6	15.1	134	40.0	16.0	5.1	Vort
19	400.090101	47.4	-27.2	+13.0	<i>⊤</i> 3.1	+0.0 206	40.9	40.0	-3.1	101
20	352 662M	18 7	26.8	±1/1 2	+1.5	200	40.7	46.0	53	Horiz
20	552.002WI	40.7	-20.8	14.5	14.5	123	40.7	40.0	-5.5	100
21	40 785M	48.5	-27.3	+12.0	+1 4	+0.0	34.6	40.0	-5.4	Vert
21	40.705101	40.5	27.5	12.0	1.4	183	54.0	40.0	J.T	100
22	935 766M	36.2	-27.2	+23.3	+8.1	+0.0	40.4	46.0	-5.6	Horiz
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00.2	_,	-0.0	0.1	217		.0.0	0.0	123
23	420.462M	46.8	-27.3	+15.8	+5.1	+0.0	40.4	46.0	-5.6	Vert
						213				127
24	935.762M	36.1	-27.2	+23.3	+8.1	+0.0	40.3	46.0	-5.7	Vert
						189				153
25	922.197M	36.1	-27.3	+23.1	+8.2	+0.0	40.1	46.0	-5.9	Horiz
						219				128
26	895.081M	36.5	-27.3	+22.7	+8.1	+0.0	40.0	46.0	-6.0	Horiz
	QP					219				128
^	895.069M	39.5	-27.3	+22.7	+8.1	+0.0	43.0	46.0	-3.0	Horiz
						219				128
28	420.460M	46.4	-27.3	+15.8	+5.1	+0.0	40.0	46.0	-6.0	Vert
20	005.07014	262	27.2	+ 22.7	+0.1	171	20.0	16.0	()	101
29	895.079M	36.3	-27.3	+22.7	+8.1	+0.0	39.8	46.0	-6.2	Vert
	<u>QP</u>	20.9	27.2	122.7	+0.1	194	12.2	16.0	2.7	1/4 Vort
	893.082IVI	39.0	-27.5	+22.7	±0.1	+0.0	43.5	40.0	-2.1	164
31	506 754M	12.7	27.8	+10.0	+5.0	+0.0	30.8	46.0	-6.2	Vert
51	OP	42.7	-27.0	19.0	13.9	225	39.0	40.0	-0.2	172
^	596 756M	45.2	-27.8	+19.0	+5.9	+0.0	42.3	46.0	-37	Vert
	090.700.11	10.2	27.0	19.0	. 0.19	225	12.5	10.0	5.7	172
33	949.279M	35.6	-27.2	+23.5	+7.8	+0.0	39.7	46.0	-6.3	Vert
						160				153
34	393.296M	46.6	-27.1	+15.2	+5.0	+0.0	39.7	46.0	-6.3	Vert
	QP					131				116
^	393.319M	52.1	-27.1	+15.2	+5.0	+0.0	45.2	46.0	-0.8	Vert
						131				116
36	257.723M	50.2	-26.5	+12.1	+3.7	+0.0	39.5	46.0	-6.5	Vert
						199				161

37	447.548M	45.6	-27.5	+16.4	+5.0	+0.0 164	39.5	46.0	-6.5	Vert 101
38	311.979M	48.6	-26.6	+13.2	+4.2	$^{+0.0}_{-246}$	39.4	46.0	-6.6	Horiz 100
39	81.430M	51.6	-27.2	+6.9	+2.0	+0.0 -1	33.3	40.0	-6.7	Vert 120
40	284.861M	49.1	-26.5	+12.6	+3.9	+0.0 76	39.1	46.0	-6.9	Vert 211
41	867.960M OP	36.5	-27.6	+22.4	+7.8	+0.0 220	39.1	46.0	-7.0	Horiz 128
^	867.933M	39.5	-27.6	+22.4	+7.8	+0.0 220	42.1	46.0	-3.9	Horiz 128
^	867.962M	36.9	-27.6	+22.4	+7.8	+0.0 135	39.5	46.0	-6.5	Horiz 116
44	908.645M QP	35.4	-27.3	+22.9	+8.1	+0.0 219	39.1	46.0	-7.0	Horiz 128
^	908.628M	38.5	-27.3	+22.9	+8.1	+0.0 212	42.2	46.0	-3.8	Horiz 128
46	772.995M	38.7	-27.7	+21.1	+6.9	+0.0 190	39.0	46.0	-7.0	Vert 121
47	949.332M	34.8	-27.2	+23.5	+7.8	+0.0 217	38.9	46.0	-7.1	Horiz 123
48	854.400M QP	36.7	-27.7	+22.2	+7.7	+0.0 178	38.9	46.0	-7.1	Vert 169
^	854.399M	40.0	-27.7	+22.2	+7.7	+0.0 178	42.2	46.0	-3.8	Vert 169
50	447.593M	44.8	-27.5	+16.4	+5.0	+0.0 219	38.7	46.0	-7.3	Vert 100
51	474.672M	44.1	-27.7	+16.9	+5.3	+0.0 123	38.6	46.0	-7.4	Vert 100
52	623.883M	40.9	-27.9	+19.4	+6.1	+0.0 228	38.5	46.0	-7.5	Horiz 113
53	759.479M QP	38.2	-27.7	+21.0	+6.9	+0.0 191	38.4	46.0	-7.6	Vert 120
^	759.481M	40.5	-27.7	+21.0	+6.9	+0.0 191	40.7	46.0	-5.3	Vert 120
55	691.676M QP	39.2	-27.8	+20.2	+6.7	+0.0 151	38.3	46.0	-7.7	Horiz 102
^	691.665M	42.0	-27.8	+20.2	+6.7	+0.0 151	41.1	46.0	-4.9	Horiz 102
57	718.796M QP	38.8	-27.8	+20.5	+6.8	$\begin{array}{c} +0.0\\ 218\end{array}$	38.3	46.0	-7.8	Horiz 100
^	718.777M	41.6	-27.8	+20.5	+6.8	+0.0 217	41.1	46.0	-4.9	Horiz 100
59	854.357M	36.0	-27.7	+22.2	+7.7	+0.0 208	38.2	46.0	-7.8	Horiz 108
60	623.853M	40.6	-27.9	+19.4	+6.1	+0.0 216	38.2	46.0	-7.8	Horiz 100
61	623.872M	40.6	-27.9	+19.4	+6.1	+0.0 231	38.2	46.0	-7.8	Horiz 100
62	366.225M	45.4	-26.9	+14.6	+4.7	+0.0 203	37.8	46.0	-8.2	Vert 116

CKC -M Testing the Future

63 705.240M	38.2	-27.8	+20.4	+6.8	+0.0	37.6	46.0	-8.4	Vert
QP	40.2	27.0	120.4	16.0	18/	20.7	46.0	()	115 Vort
/05.209M	40.3	-27.8	+20.4	+0.8	+0.0 187	39.7	46.0	-0.3	vert 115
65 813.719M	36.5	-27.7	+21.6	+7.2	+0.0	37.6	46.0	-8.4	Horiz
QP					220				100
^ 813.718M	39.5	-27.7	+21.6	+7.2	+0.0	40.6	46.0	-5.4	Horiz
					220				100
67 678.103M	38.7	-27.9	+20.1	+6.6	+0.0	37.5	46.0	-8.5	Horiz
					154				99
68 840.843M	35.6	-27.7	+22.0	+7.6	+0.0	37.5	46.0	-8.5	Vert
QP					199				181
^ 840.806M	38.9	-27.7	+22.0	+7.6	+0.0	40.8	46.0	-5.2	Vert
70 710 70/04	27.0	27.0	120.5		199	27.2	46.0	0.7	181
/0 /18./96M	37.8	-27.8	+20.5	+0.8	+0.0	37.3	46.0	-8./	vert
Qr ^718.700M	11.2	27.8	+20.5	+6.8	+0.0	10.8	46.0	5.2	Vort
/10./90101	41.5	-27.0	120.3	10.0	180	40.8	40.0	-3.2	108
^ 718 801M	40.2	_27.8	+20.5	+6.8	+0.0	39.7	46.0	-63	Vert
/10.001101	40.2	27.0	120.5	0.0	186	57.1	40.0	0.5	106
73 705.211M	37.9	-27.8	+20.4	+6.8	+0.0	37.3	46.0	-8.7	Horiz
OP	0,19	27.0		0.0	217	07.0		0.7	100
^ 705.219M	42.1	-27.8	+20.4	+6.8	+0.0	41.5	46.0	-4.5	Horiz
					217				100
75 786.557M	36.5	-27.7	+21.3	+7.0	+0.0	37.1	46.0	-8.9	Vert
QP					171				121
^ 786.561M	43.0	-27.7	+21.3	+7.0	+0.0	43.6	46.0	-2.4	Vert
					171				121
77 827.256M	35.6	-27.7	+21.8	+7.4	+0.0	37.1	46.0	-8.9	Vert
					206		16.0		195
78 786.569M	36.4	-27.7	+21.3	+7.0	+0.0	37.0	46.0	-9.0	Horiz
70 027 24214	25.5	27.7	101.0	17.4	184	27.0	46.0	0.0	100
/9 827.242M	35.5	-27.7	+21.8	+/.4	+0.0	37.0	46.0	-9.0	HOFIZ
80 773 035M	36.6	27.7	+21.1	+6.0	210	36.0	46.0	0.2	Horiz
OP	30.0	-27.7	121.1	10.9	214	50.9	40.0	-9.2	100
^ 773.019M	40.0	-27.7	+21.1	+6.9	$\frac{214}{+0.0}$	40.3	46.0	-57	Horiz
775.019141	10.0	27.7	. 21.1	.0.9	214	10.5	10.0	0.1	100
82 203.499M	49.1	-26.7	+8.6	+3.3	+0.0	34.3	43.5	-9.2	Vert
QP					120				139
^ 203.458M	51.5	-26.7	+8.6	+3.3	+0.0	36.7	43.5	-6.8	Vert
					120				139
^ 203.478M	47.6	-26.7	+8.6	+3.3	+0.0	32.8	43.5	-10.7	Vert
					174				214
85 515.397M	41.1	-27.8	+17.7	+5.7	+0.0	36.7	46.0	-9.3	Vert
					153				106
86 691.676M	37.5	-27.8	+20.2	+6.7	+0.0	36.6	46.0	-9.4	Vert
QP	40.0	07.0	100.0		191	20.2	46.0	< -	137
^ 691.681M	40.2	-27.8	+20.2	+6.7	+0.0	39.3	46.0	-6.7	Vert
00 007 00014	25.0	777	±21.0	±7.4	191	265	16.0	0.5	139 Vort
00 027.292IVI	35.0	-21.1	⊤∠1.ð	⊤/.4	+0.0	30.3	40.0	-9.3	vert 165
L					137				105

89	800.129M	35.8	-27.7	+21.4	+7.0	+0.0 184	36.5	46.0	-9.5	Horiz 100
90	434.002M	42.7	-27.4	+16.1	+5.0	+0.0 209	36.4	46.0	-9.6	Vert 104
91	732.356M OP	36.5	-27.7	+20.7	+6.9	+0.0 213	36.4	46.0	-9.6	Horiz 100
^	732.349M	39.5	-27.7	+20.7	+6.9	+0.0 213	39.4	46.0	-6.6	Horiz 100
93	637.411M	38.4	-28.0	+19.6	+6.3	+0.0	36.3	46.0	-9.7	Vert 155
94	732.355M OP	36.3	-27.7	+20.7	+6.9	+0.0 185	36.2	46.0	-9.8	Vert 100
^	732.319M	39.8	-27.7	+20.7	+6.9	+0.0 185	39.7	46.0	-6.3	Vert 100
96	610.306M	38.8	-27.8	+19.2	+6.0	+0.0	36.2	46.0	-9.8	Horiz 108
97	54.288M	48.6	-27.3	+7.3	+1.6	+0.0 99	30.2	40.0	-9.8	Horiz 337
98	596.701M	39.1	-27.8	+19.0	+5.9	+0.0 224	36.2	46.0	-9.8	Horiz 107
99	840.838M OP	34.3	-27.7	+22.0	+7.6	+0.0 216	36.2	46.0	-9.8	Horiz 100
^	840.839M	37.6	-27.7	+22.0	+7.6	+0.0	39.5	46.0	-6.5	Horiz 100
101	813.718M OP	35.0	-27.7	+21.6	+7.2	+0.0	36.1	46.0	-9.9	Vert 184
^	813.718M	38.5	-27.7	+21.6	+7.2	+0.0	39.6	46.0	-6.4	Vert 184
103	800.133M	35.3	-27.7	+21.4	+7.0	+0.0 183	36.0	46.0	-10.0	Vert 187
104	583.140M	39.1	-27.8	+18.8	+5.9	+0.0 212	36.0	46.0	-10.0	Vert 172
105	759.477M OP	35.8	-27.7	+21.0	+6.9	+0.0 208	36.0	46.0	-10.1	Horiz 100
^	759.471M	39.1	-27.7	+21.0	+6.9	+0.0 208	39.3	46.0	-6.7	Horiz 100
107	325.541M	44.7	-26.7	+13.5	+4.3	+0.0 233	35.8	46.0	-10.2	Horiz 100
108	678.065M	36.7	-27.9	+20.1	+6.6	+0.0 73	35.5	46.0	-10.5	Vert 139
109	664.505M	37.0	-27.9	+19.9	+6.5	+0.0 236	35.5	46.0	-10.5	Vert 139
110	257.747M	46.1	-26.5	+12.1	+3.7	+0.0 216	35.4	46.0	-10.6	Horiz 100
111	664.564M	36.8	-27.9	+19.9	+6.5	+0.0	35.3	46.0	-10.7	Horiz 99
112	81.446M	47.5	-27.2	+6.9	+2.0	+0.0 252	29.2	40.0	-10.8	Horiz 186
113	393.327M	42.0	-27.1	+15.2	+5.0	+0.0 202	35.1	46.0	-10.9	Horiz 141
114	501.830M	40.0	-27.8	+17.4	+5.5	+0.0 141	35.1	46.0	-10.9	Horiz 100

115	542.493M	38.7	-27.8	+18.2	+5.9	+0.0	35.0	46.0	-11.0	Horiz
116	596.758M	37.9	-27.8	+19.0	+5.9	+0.0	35.0	46.0	-11.0	Horiz
						227				100
117	108.565M	47.1	-27.2	+10.1	+2.4	+0.0	32.4	43.5	-11.1	Horiz
110	270 770M	42.1	27.0	+14.0	+4.0	117	24.0	16.0	11.1	186 Horiz
118	5/9.//9IVI	42.1	-27.0	+14.9	74.9	+0.0	34.9	40.0	-11.1	попz 141
119	501.822M	39.7	-27.8	+17.4	+5.5	+0.0	34.8	46.0	-11.2	Vert
						221				101
120	610.313M	37.3	-27.8	+19.2	+6.0	+0.0	34.7	46.0	-11.3	Vert
	QP 610 200M	12.5	27.0	+10.2	±6.0	2/4	20.0	46.0	6.1	178 Vort
	010.290101	42.3	-27.0	+19.2	+0.0	+0.0 274	39.9	40.0	-0.1	178
122	745.868M	34.7	-27.7	+20.8	+6.9	+0.0	34.7	46.0	-11.3	Vert
	QP					184				100
^	745.859M	39.6	-27.7	+20.8	+6.9	+0.0	39.6	46.0	-6.4	Vert
124	162 765M	16.3	26.0	+0.8	+2.0	184	22.1	13.5	11 /	100 Vort
124	102.705101	40.5	-20.9	19.0	12.9	52	52.1	45.5	-11.4	100
125	352.671M	42.6	-26.8	+14.3	+4.5	+0.0	34.6	46.0	-11.4	Horiz
						244				104
126	474.694M	39.9	-27.7	+16.9	+5.3	+0.0	34.4	46.0	-11.6	Vert
127	176 268M	17.3	26.8	+8 1	+3.0	210	21.0	13.5	11.6	Horiz
127	170.300101	47.5	-20.8	10.4	+ 3.0	231	51.9	45.5	-11.0	1012
128	569.635M	37.5	-27.8	+18.6	+6.0	+0.0	34.3	46.0	-11.7	Vert
	QP					171				178
^	569.621M	43.0	-27.8	+18.6	+6.0	+0.0	39.8	46.0	-6.2	Vert
130	528 953M	38.4	-27.8	+17.9	+5.8	$\frac{1/1}{+0.0}$	34.3	46.0	-117	178 Vert
150	520.55511	50.1	27.0	11.9	. 5.0	223	51.5	10.0	11.7	99
131	271.271M	44.6	-26.5	+12.4	+3.8	+0.0	34.3	46.0	-11.7	Vert
100						195				178
132	989.959M	37.0	-27.0	+24.1	+8.0	+0.0	42.1	54.0	-11.9	Vert
133	67.897M	47.6	-27.2	+5.8	+1.9	+0.0	28.1	40.0	-11.9	Horiz
						259				297
134	189.930M	46.5	-26.7	+8.3	+3.2	+0.0	31.3	43.5	-12.2	Horiz
125	(22.072) (261	27.0	10.4	16.1	234	22.7	46.0	10.2	139
135	623.8/3M OP	36.1	-27.9	+19.4	+6.1	+0.0	33.7	46.0	-12.3	Vert 155
^	623.856M	42.2	-27.9	+19.4	+6.1	+0.0	39.8	46.0	-6.2	Vert
		-				251				155
137	637.412M	35.8	-28.0	+19.6	+6.3	+0.0	33.7	46.0	-12.3	Horiz
120	100.00214	46.0	267	10.2	+2.0	217	21.0	42.5	10.5	99
138	189.903M	46.2	-26.7	+8.3	+3.2	+0.0 190	51.0	43.5	-12.5	vert 100
139	989.996M	36.3	-27.0	+24.1	+8.0	+0.0	41.4	54.0	-12.6	Horiz
						202				116
140	650.987M	35.2	-28.0	$+1\overline{9.7}$	+6.4	+0.0	33.3	46.0	-12.7	Vert
						281				139

141	284.811M	43.3	-26.5	+12.6	+3.9	+0.0 273	33.3	46.0	-12.7	Horiz 100
142	569.570M	36.5	-27.8	+18.6	+6.0	+0.0 229	33.3	46.0	-12.7	Horiz 141
143	461.112M	38.8	-27.6	+16.7	+5.1	+0.0 210	33.0	46.0	-13.0	Vert 100
144	176.378M	45.9	-26.8	+8.4	+3.0	+0.0	30.5	43.5	-13.0	Vert 100
145	257.712M	43.6	-26.5	+12.1	+3.7	+0.0 214	32.9	46.0	-13.1	Vert 101
146	230.596M	45.2	-26.5	+10.7	+3.4	+0.0 213	32.8	46.0	-13.2	Vert 167
147	962.850M	36.1	-27.1	+23.7	+7.9	+0.0 217	40.6	54.0	-13.4	Horiz 116
148	650.982M	34.4	-28.0	+19.7	+6.4	+0.0 211	32.5	46.0	-13.5	Horiz 99
149	230.608M	44.9	-26.5	+10.7	+3.4	+0.0 214	32.5	46.0	-13.5	Vert 101
150	217.061M	45.6	-26.6	+9.7	+3.4	+0.0 139	32.1	46.0	-13.9	Horiz 113
151	962.836M	35.5	-27.1	+23.7	+7.9	+0.0 194	40.0	54.0	-14.0	Vert 162
152	257.741M	42.7	-26.5	+12.1	+3.7	+0.0 197	32.0	46.0	-14.0	Vert 100
153	406.882M	38.3	-27.2	+15.6	+5.1	+0.0 207	31.8	46.0	-14.2	Horiz 145
154	420.426M	38.2	-27.3	+15.8	+5.1	+0.0 155	31.8	46.0	-14.2	Horiz 168
155	447.587M	37.5	-27.5	+16.4	+5.0	+0.0 139	31.4	46.0	-14.6	Horiz 194
156	976.417M	34.5	-27.1	+23.9	+7.9	+0.0 216	39.2	54.0	-14.8	Horiz 116
157	230.621M	43.5	-26.5	+10.7	+3.4	+0.0 239	31.1	46.0	-14.9	Horiz 100
158	244.179M	42.2	-26.5	+11.6	+3.6	+0.0 245	30.9	46.0	-15.1	Horiz 100
159	108.550M	43.0	-27.2	+10.1	+2.4	+0.0 76	28.3	43.5	-15.2	Vert 100
160	583.188M	33.8	-27.8	+18.8	+5.9	+0.0 225	30.7	46.0	-15.3	Horiz 108
161	488.270M	35.8	-27.7	+17.2	+5.4	+0.0 221	30.7	46.0	-15.3	Vert 101
162	339.111M	39.0	-26.7	+13.9	+4.4	+0.0 232	30.6	46.0	-15.4	Horiz 107
163	474.707M	36.0	-27.7	+16.9	+5.3	+0.0 171	30.5	46.0	-15.5	Horiz 159
164	122.116M	41.6	-27.2	+11.0	+2.5	+0.0 11	27.9	43.5	-15.6	Vert 100
165	122.122M	41.1	-27.2	+11.0	+2.5	+0.0 271	27.4	43.5	-16.1	Horiz 186
166	528.934M	34.0	-27.8	+17.9	+5.8	+0.0 221	29.9	46.0	-16.1	Horiz 121

										-
167	217.038M	43.2	-26.6	+9.7	+3.4	+0.0	29.7	46.0	-16.3	Vert
						179				183
168	556.035M	33.0	-27.8	+18.4	+6.0	+0.0	29.6	46.0	-16.4	Horiz
						218				138
169	135.681M	40.3	-27.1	+11.0	+2.6	+0.0	26.8	43.5	-16.7	Vert
						106				100
170	244.167M	40.5	-26.5	+11.6	+3.6	+0.0	29.2	46.0	-16.8	Vert
						197				100
171	135.677M	39.8	-27.1	+11.0	+2.6	+0.0	26.3	43.5	-17.2	Horiz
						133				186
172	515.334M	33.2	-27.8	+17.7	+5.7	+0.0	28.8	46.0	-17.2	Horiz
						205				115
173	488.245M	33.6	-27.7	+17.2	+5.4	+0.0	28.5	46.0	-17.5	Horiz
						201				167
174	976.396M	31.5	-27.1	+23.9	+7.9	+0.0	36.2	54.0	-17.8	Vert
						167				150
175	433.986M	33.8	-27.4	+16.1	+5.0	+0.0	27.5	46.0	-18.5	Horiz
						162				194
176	298.389M	36.9	-26.5	+12.8	+4.1	+0.0	27.3	46.0	-18.7	Vert
						266				211
177	271.265M	37.4	-26.5	+12.4	+3.8	+0.0	27.1	46.0	-18.9	Horiz
						255				100
178	298.426M	36.2	-26.5	+12.8	+4.1	+0.0	26.6	46.0	-19.4	Horiz
						246				100
179	366.219M	33.9	-26.9	+14.6	+4.7	+0.0	26.3	46.0	-19.7	Horiz
						261				114
180	990.009M	36.9	-27.0	+24.1	+0.0	+0.0	34.0	54.0	-20.0	Vert
						174				144