

CERTIFICATION TEST REPORT

FOR THE

AMP1000 PORTAL READER, 6042A (6042-300)

FCC PART 15 SUBPART C 15.207/15.209

COMPLIANCE

DATE OF ISSUE: MAY 26, 2000

PREPARED FOR: PREPARED BY:

HID Corporation Joyce Walker

9292 Jeronimo Road CKC Laboratories, Inc. Irvine, CA 92618-1905 5473A Clouds Rest Mariposa, CA 95338

P.O. No: 3552 W.O. No: 74176 Date of test: May 1-3, 2000

Report No: FC00-045

DOCUMENTATION CONTROL: APPROVED BY:

Tracy Phillips Dennis Ward

Tracy Phillips Dennis War

Documentation Control Supervisor
CKC Laboratories, Inc.
Director of Laboratories
CKC Laboratories, Inc.

This report contains a total of 28 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page 1 of 28 Report No: FC00-045

Dennis Ward

TABLE OF CONTENTS

Administrative Information	3
Summary Of Results	4
Equipment Under Test (EUT) Description	4
Measurement Uncertainty	4
EUT Operating Frequency	4
Peripheral Devices	4
Report Of Measurements	5
Table 1: Six Highest Radiated Emission Levels - 9kHz-30MHz	5
Table 2: Six Highest Radiated Emission Levels - 30MHz-1000MHz	6
Table 3: Six Highest Conducted Emission Levels	7
Fundamental	8
Table A: List Of Test Equipment	9
EUT Setup	10
Test Instrumentation And Analyzer Settings	10
Table B: Analyzer Bandwidth Settings Per Frequency Range	10
Spectrum Analyzer Detector Functions	11
Peak	11
Quasi-Peak	11
Average	11
Test Methods	12
Radiated Emissions Testing	12
Conducted Emissions Testing	13
Sample Calculations	13
Appendix A: Information About The Equipment Under Test	14
I/O Ports	
Crystal Oscillators	15
Printed Circuit Boards	15
Cable Information	16
Photograph Showing Radiated Emissions	17
Photograph Showing Conducted Emissions	
Appendix B: Measurement Data Sheets	

Page 2 of 28 Report No: FC00-045 CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies:

DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong).

CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-

Korea; TUV Rheinland-Russia; Radio Communications Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST: May 1-3, 2000

PURPOSE OF TEST:To demonstrate the compliance of the

AMP1000 Portal Reader, 6042A (6042-300) with the requirements for FCC Part 15

Subpart C 15.207/15.209 devices.

MANUFACTURER: HID Corporation

9292 Jeronimo Road

Irvine, CA 92618-1905

REPRESENTATIVE: Frank de Vall

TEST LOCATION: CKC Laboratories, Inc.

5473A Clouds Rest Mariposa, CA 95338

TEST PERSONNEL: Dustin Oaks

TEST METHOD: ANSI C63.4 1992

FREQUENCY RANGE TESTED: 9 kHz - 1000 MHz

EQUIPMENT UNDER TEST: AMP1000 Portal Reader

Manuf: HID Corporation Model: 6042A (6042-300)

Serial: 4591-1011 FCC ID: JQ66042AA

> Page 3 of 28 Report No: FC00-045

SUMMARY OF RESULTS

The HID Corporation AMP1000 Portal Reader, 6042A (6042-300), was tested in accordance with ANSI C63.4 1992 for compliance with FCC Part 15 Subpart C 15.207/15.209.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15 Subpart C 15.207/15.209. The results in this report apply only to the items tested, as identified herein.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The Portal is a Doorway sized Access and Asset control reader.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ±4dB measurement uncertainty.

EUT OPERATING FREQUENCY

The EUT was operating at 125 kHz.

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 4 of 28 Report No: FC00-045

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the AMP1000 Portal Reader, 6042A (6042-300). All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

Table 1: Six Highest Radiated Emission Levels - 9kHz-30MHz									
FREQUENCY	METER READING	COR Mag	RECTIC Cable	ON FACT FCC 15.31	ORS Filter	CORRECTED READING	SPEC LIMIT	MARGIN	NOTES
MHz	$dB\mu V$	dB	dB	dB	dB	$dB\mu V/m \\$	$dB\mu V/m \\$	dB	
0.372	53.7	11.0	0.0	-60.0	0.7	5.4	16.2	-10.8	N
0.500	32.8	10.8	0.0	-20.0	0.4	24.0	33.6	-9.6	N
0.624	37.7	10.9	0.0	-20.0	0.4	29.0	31.7	-2.7	NQ
0.750	30.9	11.0	0.0	-20.0	0.3	22.2	30.1	-7.9	N
0.875	29.5	11.0	0.0	-20.0	0.3	20.8	28.7	-7.9	N
1.000	28.6	10.9	0.1	-20.0	0.3	19.9	27.6	-7.7	N

Test Method: ANSI C63.4 1992 NOTES: $N = No \ Polarization$ Spec Limit: FCC Part 15.209 $Q = Quasi \ Peak \ Reading$

Test Distance: 10 Meters

COMMENTS: EUT is operating in normal operating mode, no tag in the field.

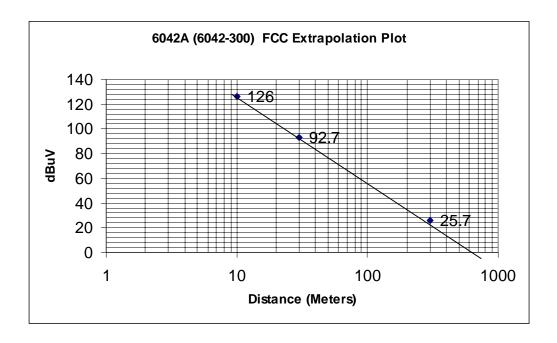
Page 5 of 28 Report No: FC00-045

Table 2: Six Highest Radiated Emission Levels - 30MHz-1000MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RRECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
84.985	37.9	8.3	-25.1	1.2	10.0	32.3	40.0	-7.7	V
320.082	29.1	20.3	-24.9	3.4	10.0	37.9	46.0	-8.1	Н
368.088	32.8	18.0	-25.2	3.6	10.0	39.2	46.0	-6.8	V
384.097	35.8	17.3	-25.3	3.7	10.0	41.5	46.0	-4.5	HQ
400.083	34.0	16.6	-25.5	3.8	10.0	38.9	46.0	-7.1	V
432.086	39.1	17.0	-25.6	4.1	10.0	44.6	46.0	-1.4	VQ

Test Method: ANSI C63.4 1992 NOTES: H = Horizontal PolarizationSpec Limit: FCC Part 15.209 V = Vertical PolarizationTest Distance: 10 Meters Q = Quasi Peak Reading

COMMENTS: EUT is operating in normal operating mode, no tag in the field. Transmitter antenna current was at 1 amp peak-to-peak current level.

Page 6 of 28 Report No: FC00-045


Table 3: Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR LISN dB	RECTION DE LA COMPANION DE LA	ON FACT Cable dB	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
6.249000	41.0	0.7		0.30		42.0	48.0	-48.0	В
8.441919	38.1	3.4		0.30		41.8	48.0	-48.0	W
8.701491	36.8	4.4		0.40		41.6	48.0	-48.0	В
9.384575	36.0	4.0		0.40		40.4	48.0	-48.0	В
9.521191	36.4	3.4		0.50		40.3	48.0	-48.0	W
10.958710	38.0	1.4		0.50		39.9	48.0	-48.0	W

Test Method: ANSI C63.4 1992 NOTES: W= White Lead Spec Limit: FCC Part 15.207 B = Black Lead

COMMENTS: EUT is operating in normal operating mode, no tag in the field. Transmitter antenna current was at 1 amp peak-to-peak current level.

Page 7 of 28 Report No: FC00-045

FUNDAMENTAL FREQUENCY = 124.947 kHz

10 meter reading = 126.0 dBuV/m30 meter reading = 92.7 dBuV/m

Extropolated Reading ≈ 23 dBuV/m @ 300 meters

Corrected	Spec	
Reading	<u>Limit</u>	Margin
23dBuV/m	25.7dBuV/m	-2.7dB

Page 8 of 28 Report No: FC00-045

TABLE A
LIST OF TEST EQUIPMENT

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer (RF Section)	2209A01404	07/07/1999	07/07/2000	490
Spectrum Analyzer (Display)	2403A08241	07/07/1999	07/07/2000	489
QP Adapter	2811A01267	07/07/1999	07/07/2000	478
PreAmp	1937A02604	04/03/1999	04/03/2001	99
Bicon Antenna	156	05/20/1999	05/20/2000	225
Log Antenna	154	05/20/1999	05/20/2000	1330
Magnetic Loop Antenna	1074	06/16/1999	06/16/2000	226
3/10 meter cable		10/18/1999	10/18/2000	0

Page 9 of 28 Report No: FC00-045

EUT SETUP

The equipment under test (EUT) and was set up in a manner that represented its normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Tables 1 & 2 for radiated emissions and Table 3 for conducted characteristics. Additionally, a complete description of all the ports and I/O cables is included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was rolled out on a conducting, flush mounted turntable which was continuous with the ground plane. This configuration was used because the unit was a floor standing stationary device.

During conducted emissions testing, the EUT, as a floor standing unit, was located on top of insulating materail laid over the ground plane. The metal plane was grounded to the earth through various ground rods. Power to the EUT was provided via 3 meters of unshielded power cable from the LISN, which was grounded to the ground plane. All other objects were kept a minimum of 1 meter away from the EUT during the conducted test.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the AMP1000 Portal Reader, 6042A (6042-300). For measurements below 30 MHz the magnetic loop antenna was used. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. All antennas were located at a distance of 10 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISN's.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dBµV, and a vertical scale of 10 dB per division.

TABLE B : ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	450 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 MHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				

Page 10 of 28 Report No: FC00-045

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1, 2 and 3 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the AMP1000 Portal Reader, 6042A (6042-300).

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

When the frequencies are below 30 MHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 11 of 28 Report No: FC00-045

TEST METHODS

The radiated and conducted emissions data of the AMP1000 Portal Reader, 6042A (6042-300), was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15, Subpart C 15.207/15.209 emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode with the I/O cables and line cords facing the antenna. The magnetic loop antenna was used to scan below 30 MHz. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks which were at or near the limit were recorded. The frequency range of 100 - 300 MHz was scanned with the biconical antenna in the same manner, and the peaks recorded. Lastly, a scan of the FM band from 88 -110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned with its I/O and power cables facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the cables. Maximizing of the cables was achieved by monitoring the spectrum analyzer on a closed circuit television monitor while the EUT cables were being moved and rearranged on the EUT table for maximum emissions. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Page 12 of 28 Report No: FC00-045

Conducted Emissions Testing

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the emissions readings in Tables 1, 2 and 3. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV)

- + Antenna Factor (dB)
- + Cable Loss (dB)
- Distance Correction (dB)
- Pre-amplifier Gain (dB)
- = Corrected Reading ($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

#	Freq MHz	Rdng dBuV	Cable	Amp	Bicon	Mag	Log	Dist Table	Corr dBuV/m	Spec	Margin	Polar
	LISN	FCC	Filter									
		15.31										

means reading number

Freq MHz is the frequency in MHz of the obtained reading.

Rdng dBuV is the reading obtained on the spectrum analyzer in dBµV.

Amp is short for the preamplifier factor or gain in dB.

Bicon is the biconical antenna factor in dB.

Log is the log periodic antenna factor in dB.

Mag is the magnetic loop antenna factor in dB.

Cable is the cable loss in dB of the coaxial cable on the OATS.

Dist is the distance factor (in dB). It is used when testing at a different test distance than the one stated in the spec.

Corr dBµV/m is the corrected reading which is now in dBµV/m (field strength).

Spec is the specification limit (dB) stated in the regulations.

Margin is the closeness to the specified limit in dB; + is over and - is under the limit.

Polar is the Polarity of the antenna with respect to earth.

LISN is the line impedance stabilization network factor in dB.

FCC 15.31 is the average correction called in FCC Part 15.31.

Filter is the band stop filter for 125kHz testing.

Page 13 of 28 Report No: FC00-045

APPENDIX A INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 14 of 28 Report No: FC00-045

INFORMATION ABOUT THE EQUIPMENT UNDER TEST						
Test Software/Firmware:	1) DSP – AP96 2) HIT – CPN2					
CRT was displaying:	None					
Power Supply Manufacturer:	International Power, Condor					
Power Supply Part Number:	40V- (IP)IHB48.5, 12V – (IP)IHCC15-3,					
	(Condor)5V HC%-6/OVP-A+					
AC Line Filter Manufacturer:	Corcomm					
AC Line Filter Part Number:	3VQ1					
Line voltage used during testing:	120VAC 60Hz					

I/O PORTS						
Type	#					
One of the following will be						
used:						
Cable – RS232	3 wire					
Cable – Wiegand	3 wire					
Cable – RS485	3 wire					

CRYSTAL OSCILLATORS					
Type	Freq In MHz				
SMT, fundamental, series	20				
SMT, fundamental, series	96				

PRINTED CIRCUIT	PRINTED CIRCUIT BOARDS							
Function	Model & Rev	Clocks, MHz	Layers	Location				
DSP Controller	6042-301-01 Rev B	20, 96	8	Top				
Exciter Controller	6042-303-01 Rev C	None	4	Top				
Digital Receivers	6042-302-01 Rev C	None	4	Top				
Exciter	6042-310-01 Rev 1	None	4	Top				
Exciter Tuner	6042-310-01 Rev 1	None	2	Top				
Receiver Cancellation	6042-306-01 Rev 3	None	2	Top, on				
Filter CCA				receiver				
Receiver Cancellation	6042-307-01 Rev 3	None	2	Top, on				
Circuit				receiver				
FSK Reader	6042-363-01 Rev 1	4	4	Primary panel				
				assembly				
LCD Module	6042-361-01 Rev 1	None	Unknown	Primary panel				
				assembly				
Sensor Splitter	6042-308-01 Rev 1	None	2	Primary panel				
				assembly				
Sensor I/O	6042-309-01 Rev 1	None	2	Primary panel				
				assembly				

Page 15 of 28 Report No: FC00-045

CABLE INFORMATION

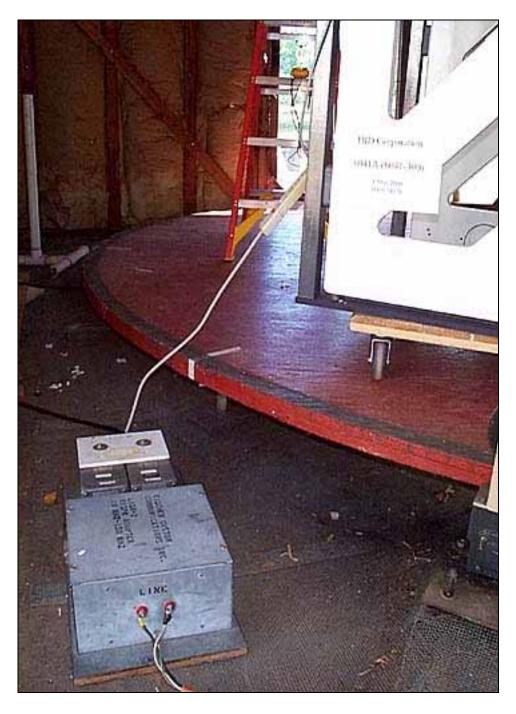
Cable #:	1	Cable(s) of this type:	
Cable Type:	Multiconductor	Shield Type:	Foil
Construction:	Shielded	Length In Meters:	Up to 15 meters
Connected To End (1):	DATA 2 Port,	Connected To End (2):	RS232 Comm Port
	DSP Controller		
Connector At End (1):	DB9	Connector At End (2):	DB9 or DB25
Shield Grounded At (1):	Chassis	Shield Grounded At (2):	
Part Number:	Alpha 1292C	Number of Conductors:	2 conductors and 1
			drain
Notes and/or description:	RS232 Interface		

Cable #:	2	Cable(s) of this type:	
Cable Type:	Multiconductor	Shield Type:	Foil
Construction:	Shielded	Length In Meters:	Up to 300 meters
Connected To End (1):	DATA 2 Port,	Connected To End (2):	RS485 Comm Port
	DSP Controller		
Connector At End (1):	DB9	Connector At End (2):	DB9 or DB25
Shield Grounded At (1):	Chassis	Shield Grounded At (2):	
Part Number:	Alpha 1292C	Number of Conductors:	2 conductors and 1
			drain
Notes and/or description:	RS485 Interface		

Cable #:	3	Cable(s) of this type:	
Cable Type:	Multiconductor	Shield Type:	Foil
Construction:	Shielded	Length In Meters:	Up to 150 meters
Connected To End (1):	DATA 2 Port,	Connected To End (2):	Wiegand Comm
	DSP Controller		Port
Connector At End (1):	DB9	Connector At End (2):	DB9 or DB25
Shield Grounded At (1):	Chassis	Shield Grounded At (2):	
Part Number:	Alpha 1292C	Number of Conductors:	2 conductors and 1
			drain
Notes and/or description:	Wiegand Interface		

Note: Only one of the above 3 interface cables will be required, depending on the interface desired by the user.

Page 16 of 28 Report No: FC00-045


PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Side View

Page 17 of 28 Report No: FC00-045

PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

Conducted Emissions - Side View

Page 18 of 28 Report No: FC00-045

APPENDIX B

MEASUREMENT DATA SHEETS

Page 19 of 28 Report No: FC00-045

Customer: **HID**

Specification: FCC 15 C PARA 15.209

 Work Order #:
 74176
 Date:
 05/02/2000

 Test Type:
 Spurious Emissions
 Time:
 08:25:28

Equipment: AMP100 Portal Reader Sequence#: 5

Manufacturer: HID Tested By: Dustin Oaks

Model: 6042A (6042-300) S/N: 4591-1011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
AMP100 Portal Reader*	HID	6042A (6042-300)	4591-1011

Support Devices:

Function Manufacturer Model # S/N

Test Conditions / Notes:

EUT is operating in normal operating mode, no tag in the field.

Measu	rement Data:	R	eading lis	sted by m	argin.		Te	est Distance	e: 10 Meter	rs	
			Mag	Cable	FCC	Filter					
	г	D 1			15.31		D: .	C	C		D 1
#	Freq	Rdng	αr	αL	αL	JD.	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	623.600k	37.7	+10.9	+0.0	-20.0	+0.4	+0.0	29.0	31.7	-2.7	None
	QP										
^	624.000k	40.5	+10.9	+0.0	-20.0	+0.4	+0.0	31.8	31.7	+0.1	None
3	1.000M	28.6	+10.9	+0.1	-20.0	+0.3	+0.0	19.9	27.6	-7.7	None
4	875.110k	29.5	+11.0	+0.0	-20.0	+0.3	+0.0	20.8	28.7	-7.9	None
5	750.200k	30.9	+11.0	+0.0	-20.0	+0.3	+0.0	22.2	30.1	-7.9	None
6	499.710k	32.8	+10.8	+0.0	-20.0	+0.4	+0.0	24.0	33.6	-9.6	None
7	372.460k	53.7	+11.0	+0.0	-60.0	+0.7	+0.0	5.4	16.2	-10.8	None
8	248.610k	54.9	+10.8	+0.0	-60.0	+1.2	+0.0	6.9	19.7	-12.8	None

Page 20 of 28 Report No: FC00-045

Customer: **HID**

Specification: FCC 15.209

Work Order #: 74176 Date: 05/02/2000

Test Type: Spurious Emissions Time: 14:53:41

Equipment: AMP100 Portal Reader Sequence#: 11

Manufacturer: HID Tested By: Dustin Oaks

Model: 6042A (6042-300)

S/N: 4591-1011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
AMP100 Portal Reader*	HID	6042A (6042-300)	4591-1011

Support Devices:

Function Manufacturer Model # S/N

Test Conditions / Notes:

EUT is operating in normal operating mode, no tag in the field. Transmitter antenna current was at 1 amp peak-to-peak current level.

Measu	Measurement Data: Reading listed by marg				argin.	Test Distance: 10 Meters					
			Amp	Bicon	Log	Cable					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	432.086M	39.1	-25.6	+0.0	+17.0	+4.1	+10.0	44.6	46.0	-1.5	Vert
-	QP										
^	432.064M	40.5	-25.6	+0.0	+17.0	+4.1	+10.0	46.0	46.0	+0.0	Vert
3	384.097M	35.8	-25.3	+0.0	+17.3	+3.7	+10.0	41.5	46.0	-4.5	Horiz
	QP										
٨	384.076M	37.3	-25.3	+0.0	+17.3	+3.7	+10.0	43.0	46.0	-3.0	Horiz
5	384.072M	33.9	-25.3	+0.0	+17.3	+3.7	+10.0	39.6	46.0	-6.4	Vert
6	368.088M	32.8	-25.2	+0.0	+18.0	+3.6	+10.0	39.2	46.0	-6.8	Vert
7	400.083M	34.0	-25.5	+0.0	+16.6	+3.8	+10.0	38.9	46.0	-7.1	Vert
8	84.985M	37.9	-25.1	+8.3	+0.0	+1.2	+10.0	32.3	40.0	-7.7	Vert
9	320.082M	29.1	-24.9	+0.0	+20.3	+3.4	+10.0	37.9	46.0	-8.1	Horiz
10	368.094M	31.4	-25.2	+0.0	+18.0	+3.6	+10.0	37.8	46.0	-8.2	Horiz
	QP										
^	368.087M	34.3	-25.2	+0.0	+18.0	+3.6	+10.0	40.7	46.0	-5.3	Horiz
12	352.094M QP	29.2	-25.0	+0.0	+18.7	+3.5	+10.0	36.4	46.0	-9.6	Horiz
٨	352.073M	32.9	-25.0	+0.0	+18.7	+3.5	+10.0	40.1	46.0	-5.9	Horiz
14	528.095M QP	28.2	-25.9	+0.0	+18.4	+4.8	+10.0	35.5	46.0	-10.5	Vert

Page 21 of 28 Report No: FC00-045

٨	528.078M	32.3	-25.9	+0.0	+18.4	+4.8	+10.0	39.6	46.0	-6.4	Vert
16	144.092M	32.8	-24.9	+13.1	+0.0	+1.9	+10.0	32.9	43.5	-10.6	Vert
17	192.045M	27.5	-24.7	+17.8	+0.0	+2.3	+10.0	32.9	43.5	-10.6	Vert
	400.093M)P	30.1	-25.5	+0.0	+16.6	+3.8	+10.0	35.0	46.0	-11.0	Horiz
	400.074M	33.5	-25.5	+0.0	+16.6	+3.8	+10.0	38.4	46.0	-7.6	Horiz
	336.086M OP	26.9	-24.9	+0.0	+19.5	+3.4	+10.0	34.9	46.0	-11.1	Horiz
^	336.081M	30.9	-24.9	+0.0	+19.5	+3.4	+10.0	38.9	46.0	-7.1	Horiz
22	224.103M	28.3	-24.7	+17.1	+0.0	+2.5	+10.0	33.2	46.0	-12.8	Vert
	299.120M OP	22.2	-24.8	+22.3	+0.0	+3.3	+10.0	33.0	46.0	-13.0	Horiz
^	299.153M	28.8	-24.8	+22.3	+0.0	+3.3	+10.0	39.6	46.0	-6.4	Horiz
25	188.664M)P	25.1	-24.7	+17.5	+0.0	+2.3	+10.0	30.2	43.5	-13.3	Vert
^	188.661M	30.6	-24.7	+17.5	+0.0	+2.3	+10.0	35.7	43.5	-7.8	Vert
27	226.980M	27.6	-24.7	+17.0	+0.0	+2.5	+10.0	32.4	46.0	-13.6	Vert
28	188.493M OP	24.4	-24.7	+17.5	+0.0	+2.3	+10.0	29.5	43.5	-14.0	Horiz
	188.481M	30.3	-24.7	+17.5	+0.0	+2.3	+10.0	35.4	43.5	-8.1	Horiz
	187.662M)P	23.6	-24.7	+17.4	+0.0	+2.3	+10.0	28.6	43.5	-14.9	Horiz
	187.700M	30.1	-24.7	+17.4	+0.0	+2.3	+10.0	35.1	43.5	-8.4	Horiz
	192.105M)P	23.0	-24.7	+17.8	+0.0	+2.3	+10.0	28.4	43.5	-15.1	Horiz
^	192.056M	29.9	-24.7	+17.8	+0.0	+2.3	+10.0	35.3	43.5	-8.2	Horiz
L											

Customer: **HID**

Specification: FCC 15.207

Work Order #: 74176 Date: 05/03/2000
Test Type: Conducted Emissions Time: 09:13:11
Equipment: AMP100 Portal Reader Sequence#: 14

Manufacturer: HID Tested By: Dustin Oaks

Model: 6042A (6042-300)

S/N: 4591-1011

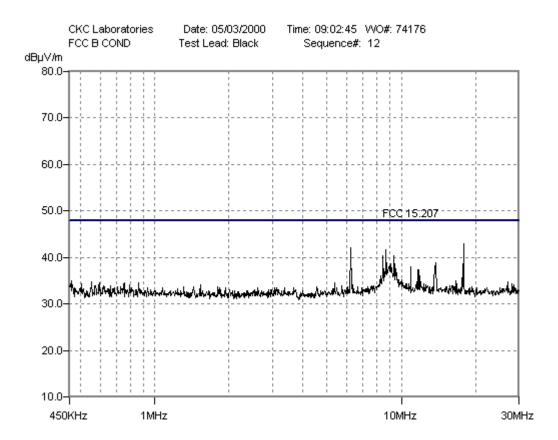
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
AMP100 Portal Reader*	HID	6042A (6042-300)	4591-1011	

Support Devices:

Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:


EUT is operating in normal operating mode, no tag in the field. Transmitter antenna current was at 1 amp peak-to-peak current level.

Measu	Measurement Data: Reading listed by margin.						Test Lead: Black				
			LISN		Cable						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	17.872M	41.8	+0.5		+0.6		+0.0	42.9	48.0	-5.1	Black
	Ambient										
2	6.249M	41.0	+0.7		+0.3		+0.0	42.0	48.0	-6.0	Black
3	8.701M	36.8	+4.4		+0.4		+0.0	41.6	48.0	-6.4	Black
4	9.385M	36.0	+4.0		+0.4		+0.0	40.4	48.0	-7.6	Black
5	8.442M	36.7	+3.4		+0.3		+0.0	40.4	48.0	-7.6	Black
6	13.810M	37.4	+1.0		+0.5		+0.0	38.9	48.0	-9.1	Black
7	9.098M	33.2	+5.1		+0.4		+0.0	38.7	48.0	-9.3	Black
8	17.755M	37.6	+0.5		+0.6		+0.0	38.7	48.0	-9.3	Black
9	13.693M	36.7	+1.0		+0.5		+0.0	38.2	48.0	-9.8	Black
10	9.016M	32.4	+5.4		+0.4		+0.0	38.2	48.0	-9.8	Black
11	8.961M	32.3	+5.4		+0.4		+0.0	38.1	48.0	-9.9	Black

Page 23 of 28 Report No: FC00-045

12	10.959M	36.1	+1.4	+0.5	+0.0	38.0	48.0	-10.0	Black
13	9.521M	33.6	+3.4	+0.5	+0.0	37.5	48.0	-10.5	Black
14	11.720M	35.6	+1.3	+0.5	+0.0	37.4	48.0	-10.6	Black
15	8.620M	32.5	+4.1	+0.4	+0.0	37.0	48.0	-11.0	Black

Page 24 of 28 Report No: FC00-045

Customer: **HID**

Specification: FCC 15.207

Work Order #:74176Date:05/03/2000Test Type:Conducted EmissionsTime:09:20:35Equipment:AMP100 Portal ReaderSequence#:15

Manufacturer: HID Tested By: Skip Doyle

Model: 6042A (6042-300)

S/N: 4591-1011

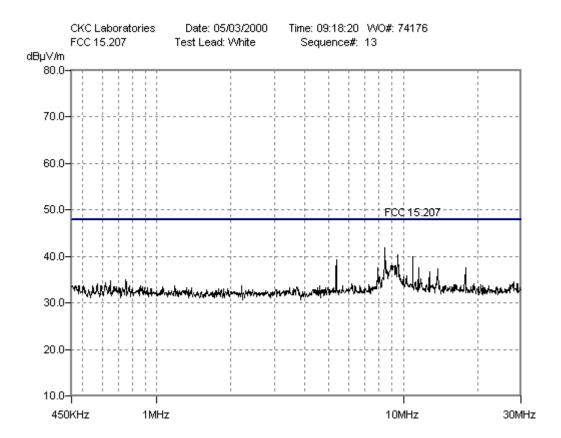
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
AMP100 Portal Reader*	HID	6042A (6042-300)	4591-1011	

Support Devices:

Function Manufacturer Model # S/N

Test Conditions / Notes:


EUT is operating in normal operating mode, no tag in the field. Transmitter antenna current was at 1 amp peak-to-peak current level.

Measurement Data: Reading listed by margin.					Test Lead: White						
			LISN		Cable						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	8.442M	38.1	+3.4		+0.3		+0.0	41.8	48.0	-6.2	White
2	9.521M	36.4	+3.4		+0.5		+0.0	40.3	48.0	-7.7	White
3	10.959M	38.0	+1.4		+0.5		+0.0	39.9	48.0	-8.1	White
4	5.354M	38.2	+0.7		+0.3		+0.0	39.2	48.0	-8.8	White
5	9.221M	33.1	+4.6		+0.4		+0.0	38.1	48.0	-9.9	White
6	9.385M	33.6	+4.0		+0.4		+0.0	38.0	48.0	-10.0	White
7	8.934M	32.3	+5.3		+0.4		+0.0	38.0	48.0	-10.0	White
8	17.872M	36.5	+0.5		+0.6		+0.0	37.6	48.0	-10.4	White
9	11.545M	35.8	+1.3	_	+0.5	_	+0.0	37.6	48.0	-10.4	White
10	7.895M	35.7	+1.5		+0.3		+0.0	37.5	48.0	-10.5	White
11	13.771M	35.9	+1.0		+0.5		+0.0	37.4	48.0	-10.6	White

Page 26 of 28 Report No: FC00-045

12	8.510M	33.2	+3.6	+0.4	+0.0	37.2	48.0	-10.8	White
13	8.599M	32.7	+4.0	+0.4	+0.0	37.1	48.0	-10.9	White
14	8.701M	32.0	+4.4	+0.4	+0.0	36.8	48.0	-11.2	White
15	12.814M	35.1	+1.1	+0.5	+0.0	36.7	48.0	-11.3	White

Page 27 of 28 Report No: FC00-045

