EMC Test Report

Report No.: EMC_SL15120101-HID-031_FCC_IC

Supersede Report No.: None

Issue Date 3/2 Test Result ⊠	1/12/2016 - 03/07/2016 29/2016			
Test Result ⊠				
	Pass 🗆 Fail			
Equipment complied w	ith the specification	[x]		
Equipment did not com	nply with the specification	[]		
This Test Report is Issu	ued Under the Authority of:			
Mix	& sales		BiSn	
N	lichael R. Gates		Bryan Smith	
	Test Engineer		Engineer Reviewe	er

Issued By:
SIEMIC Laboratories
775 Montague Expressway, Milpitas, CA 95035

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	2 of 30

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

7.0010untations for Community 7.00000miont			
Country/Region	Accreditation Body	Scope	
USA	FCC, A2LA	EMC, RF/Wireless, Telecom	
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom	
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety	
Hong Kong	OFTA, NIST	RF/Wireless, Telecom	
Australia	NATA, NIST	EMC, RF, Telecom, Safety	
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety	
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom	
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom	
Europe	A2LA, NIST	EMC, RF, Telecom, Safety	
Israel	MOC, NIST	EMC, RF, Telecom, Safety	

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	3 of 30

CONTENTS

1	F	REPORT REVISION HISTORY	4
2	E	EXECUTIVE SUMMARY	5
3	(CUSTOMER INFORMATION	5
4	7	TEST SITE INFORMATION	5
5	ľ	MODIFICATION	5
6	1	TEST SOFTWARE VERSION	5
7	E	EUT INFORMATION	6
	7.1	EUT Description	6
	7.2	EUT test modes/configuration Description	6
	7.3	EUT Photos - External	7
	7.4	EUT Photos - Internal	8
	7.5	EUT Test Setup Photos	14
8	5	SUPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	15
	8.1	Supporting Equipment	15
	8.2	I/O Ports	15
	8.3	Test Software Description	15
	8.4	System setup block diagram	16
9	1	TEST SUMMARY	17
1()	MEASUREMENT UNCERTAINTY	18
11	l	GUIDELINE FOR INTERFERENCE ALLOWED	19
	11.	1 Conducted Emissions	19
	11.	2 Radiated Emissions (Below 1GHz)	23
	11.3	3 Radiated Spurious Emissions above 1GHz	26
Α	NNE	X A. TEST INSTRUMENT & METHOD	28
Α	NNE	EX B. SIEMIC ACCREDITATION	29

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	4 of 30

Report Revision History

Report No.	Report Version	Description	Issue Date
EMC_SL15120101-HID-031_FCC_IC	Original	Original	3/15/2016

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	5 of 30

2 **Executive Summary**

The purpose of this test program was to demonstrate compliance of following product

<u>Company:</u> HID Global Corporation <u>Product:</u> Color Card Printer <u>Model:</u> X002100, DTC5500LMX

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name	HID Global Corporation
Applicant Address	6533 FLYING CLOUD DR, SUITE 1000, EDEN PRAIRIE, MN 55344 USA
Manufacturer Name	HID Global Corporation
Manufacturer Address	6533 FLYING CLOUD DR, SUITE 1000, EDEN PRAIRIE, MN 55344 USA

4 Test site information

Lab performing tests	SIEMIC Laboratories
Lab Address	775 Montague Expressway, Milpitas, CA 95035
FCC Test Site No.	881796
IC Test Site No.	4842D-2
VCCI Test Site No.	A0133

5 **Modification**

Index	Item	Description	Note
-	-	-	-

6 Test Software Version

Test Item	Vendor	Software	Version
Radiated Emission	EMISoft	EMISoft Vasona	V5.0
Conducted Emission	EMISoft	EMISoft Vasona	V5.0

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	6 of 30

7 EUT Information

7.1 **EUT Description**

Product Name	Color Card Printer
Model No.	X002100, DTC5500LMX
Trade Name	HID
Serial No.	N/a
Input Power	100 - 240Vac 47/63Hz 3.0A
Power Adapter Manu/Model	ABC225-1024L / BEI
Power Adapter SN	N/a
Hardware version	N/a
Software version	FW version 0.1.2.8, & FW version 1.0.1.6
Date of EUT received	12/10/2015
Equipment Class/ Category	Class A / ITE
Clock Frequencies	>108MHz
Port/Connectors	RJ-45x1, USB Type Bx1
Remark	EUT was tested with all modifications
AC Power Cord Type	IEC Type B
DC Power Cable Type	N/a

7.2 EUT test modes/configuration Description

Pre-test mode

Prescan Test Mode		Note
Pre_test_mode_1	Normal Operating mode	-
Pre_test_mode_2	-	-
Pre_test_mode_3	-	-
Pre_test_mode_4	-	-

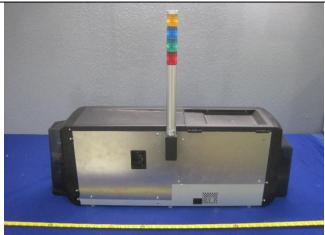
Remark: The EUT was functioning in its normal operating mode, Printing and Laminating ID Cards continually, while maintaining a link with the Laptop.

Final test mode

Final Test Mode		Note
Final_test_mode_1	Normal Operating mode	-
Final_test_mode_2	-	-
Final_test_mode_3	-	-
Final_test_mode_4	-	-

Remark: The EUT was functioning in its normal operating mode, Printing and Laminating ID Cards continually, while maintaining a link with the Laptop.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088



Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	7 of 30

7.3 EUT Photos - External

EUT – Front View

EUT – Rear View

EUT - Left View

EUT – Right View

EUT – Top View

EUT – Bottom View

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	8 of 30

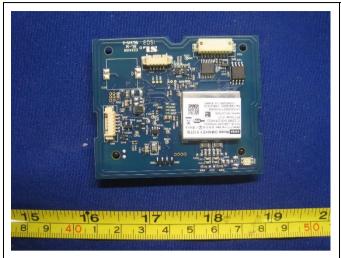
7.4 EUT Photos - Internal

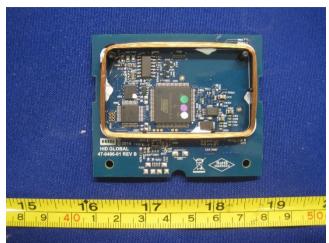
EUT With Enclosure

EUT Without Enclosure

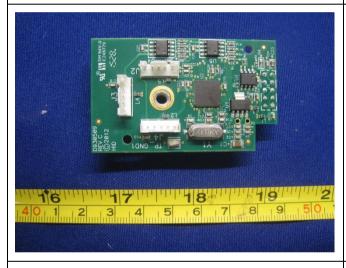
PCBA1 - Top View

PCBA1 - Bottom View



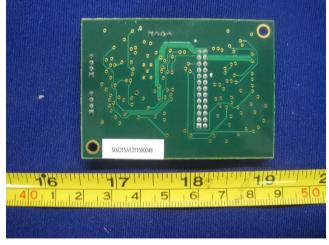

PCBA2 - Top View

PCBA2 - Bottom View


Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	9 of 30

PCBA3 - Top View

PCBA3 - Bottom View

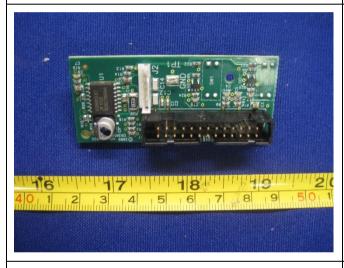


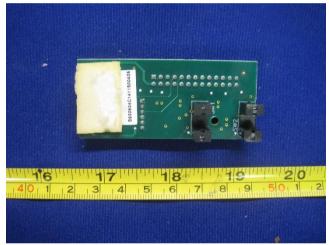
PCBA4 - Top View

PCBA4 - Bottom View

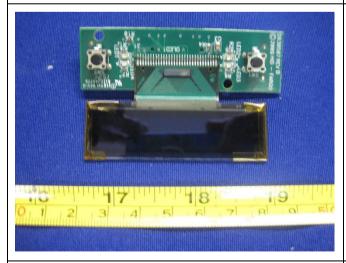
PCBA5 - Top View

PCBA5 – Bottom View


Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	10 of 30

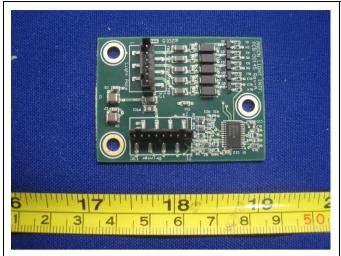


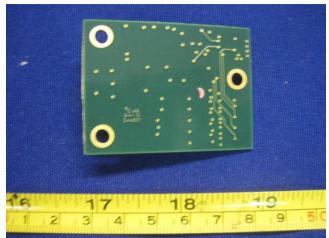
PCBA6 - Top View


PCBA6 - Bottom View

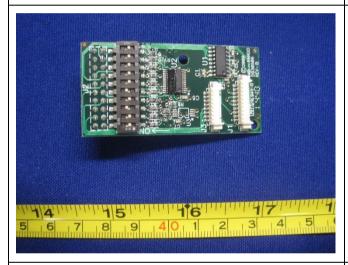
PCBA7 - Top View

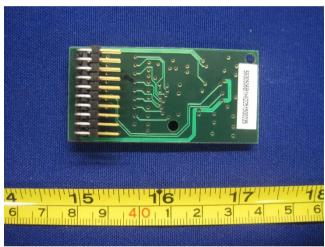
PCBA7 - Bottom View


PCBA8 - Top View

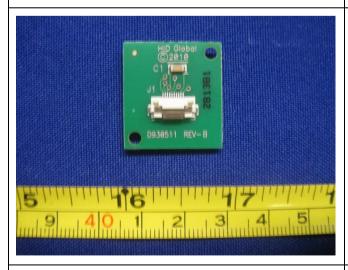

PCBA8 - Bottom View

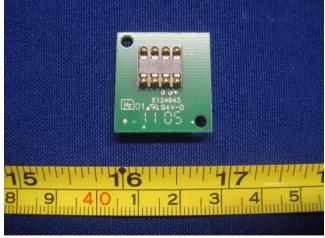
 Test report No.
 EMC_SL15120101-HID-031_FCC_IC


 Page
 11 of 30



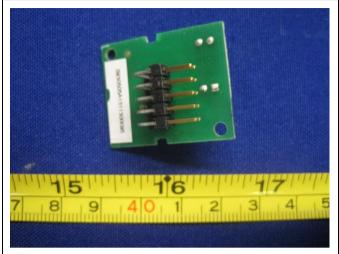
PCBA9 - Top View


PCBA9 - Bottom View



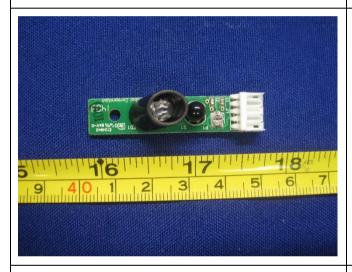
PCBA10 - Top View

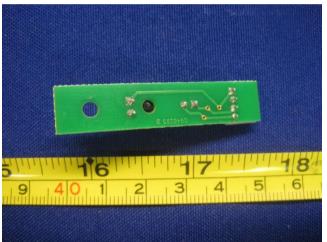
PCBA10 - Bottom View


PCBA11 - Top View

PCBA11 - Bottom View

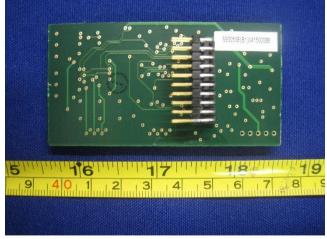
 Test report No.
 EMC_SL15120101-HID-031_FCC_IC


 Page
 12 of 30



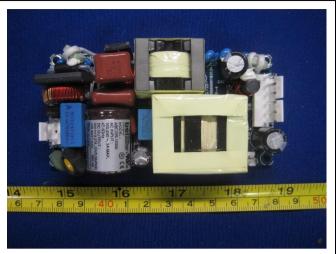
PCBA12 - Top View

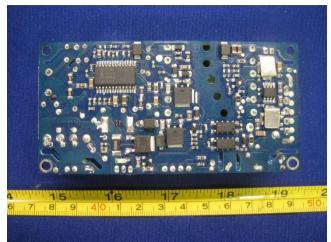
PCBA12 - Bottom View



PCBA13 - Top View

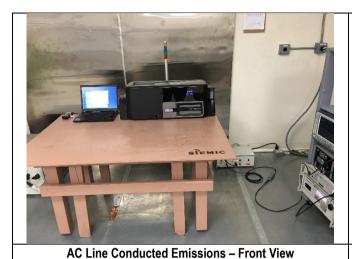
PCBA13 - Bottom View



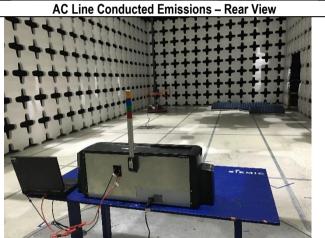

PCBA14 - Top View

PCBA14 – Bottom View

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	13 of 30

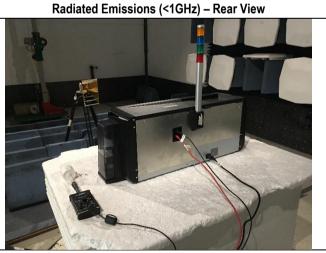

PCBA15 – Top View

PCBA15 - Bottom View



Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	14 of 30

7.5 EUT Test Setup Photos



Radiated Emissions (<1GHz) – Front View

Radiated Emissions (>1GHz) - Front View

Radiated Emissions (>1GHz) - Rear View

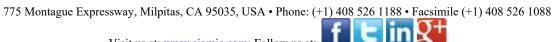
775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	15 of 30

Supporting Equipment/Software and cabling Description 8

Supporting Equipment 8.1

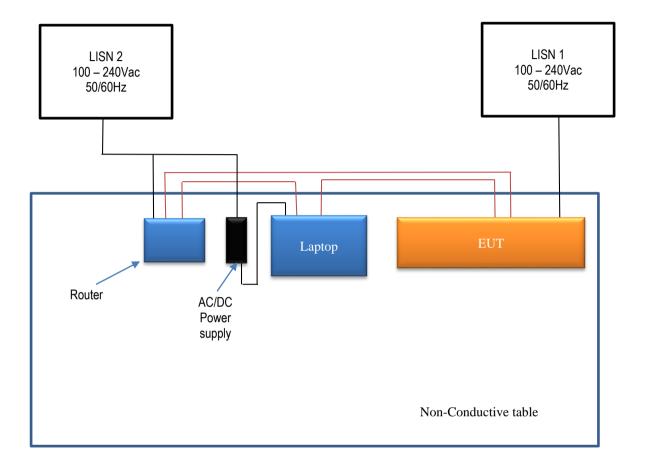
Item	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	N/a	N/a	Lenovo	-
2	Router	DIR-500	N/a	D-Link	Used only for Signal line conducted emissions


8.2 I/O Ports

lta m	Connection Start		Connection Stop		Length / shielding Info		Note
Item	From	I/O Port	То	I/O Port	Length (m)	Shielding	Note
1	EUT	USB	Laptop	USB	1.5	Shielded	-
2	EUT	RJ-45	Laptop	RJ-45	1.5	Unshielded	-
3	EUT	RJ-45	Router	RJ-45	1.5	Unshielded	note1
4	Router	RJ-45	Laptop	RJ-45	1.5	Unshielded	Note1

Note 1: Configuration was only used during signal line conducted emissions

Test Software Description <u>8.3</u>


Test Item	Software	Description
1	HostControl_Lite	Test Software to set the EUT to print

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	16 of 30

8.4 System setup block diagram

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	17 of 30

9 **Test Summary**

Emissions					
Test Item	Test standard	Test Method/Procedure	Pass / Fail		
Conducted Emissions	FCC 15 Subpart B (Class A) ICES 003 Issue 5:2012	ANSI C63.4:2014	⊠ Pass □ Fail □ N/A		
Radiated Spurious Emissions	FCC 15 Subpart B (Class A) ICES 003 Issue 5:2012	ANSI C63.4:2014	⊠ Pass □ Fail □ N/A		

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	18 of 30

10 Measurement Uncertainty

Emissions					
Test Item	Frequency Range	Description	Uncertainty		
AC Conducted Emissions	150KHz – 30MHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2	±3.5dB		
Radiated Spurious Emissions	30MHz – 1GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/- 4.5dB		
Radiated Spurious Emissions	1GHz – 6GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+4.3dB/- 4.1dB		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	19 of 30

11 Guideline for interference allowed

11.1 Conducted Emissions

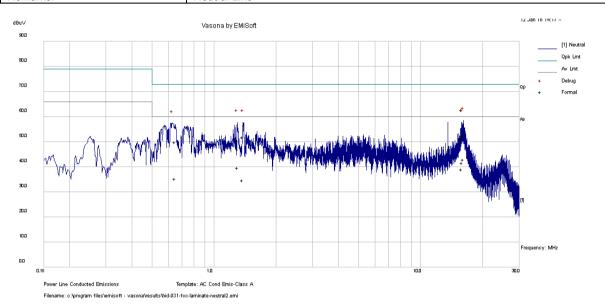
Spec	Item	Requirement Applicable				
§ 15.107 ICES-003	a)	For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits set in following table, as measured using a 50 µH/50 ohms LISN. Limits for Conducted Emissions at the Mains Ports Section Frequency ranges Limit (dBuV) QP Average				
		THO TE TITLE IOWEI III	nit shall apply at the transition	Thoquonoloo.		
Test Setup		Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes				
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50Ω/50μH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. All other supporting equipment was powered separately from another main supply. The EUT was switched on and allowed to warm up to its normal operating condition. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. High peaks, relative to the limit line, were then selected. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. Both Quasi-peak and Average measurements were made. All possible modes of operation were investigated. Only the 6 worst case emissions were measured and reported. All other emissions were relatively insignificant. 			iltered mains. axial cable. er the required easurements surements were		

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	20 of 30

Description of the Conducted Emission Program	This EMC Measurement software, EMI Soft Vasona offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 15 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.		
	At 20 MHz limit = 250 μ V = 47.96 dB μ V		
Sample	Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB		
Calculation	Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$		
Example	(Calibrated for system losses)		
	Therefore, Q-P margin = 47.96 – 40.00 = 7.96 i.e. 7.96 dB below limit		

 Test Data
 \boxtimes Yes
 \square N/A

 Test Plot
 \boxtimes Yes (See below)
 \square N/A

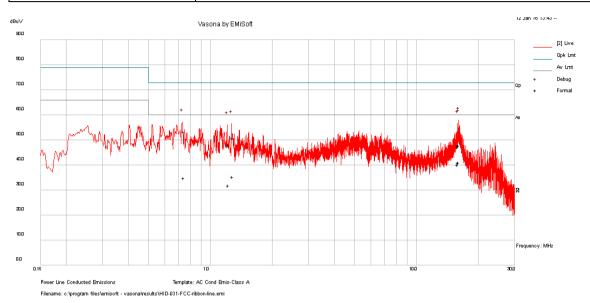


Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	21 of 30

Conducted Emission Test Results per FCC 15 Subpart B (Class A) and ICES 003 Issue 5: 2012

Test specification:	Conducted Emissions			
Environmental Conditions:	Temp(°C):	20.8		
	Humidity (%):	38		⊠ Pass
	Atmospheric(mbar):	Atmospheric(mbar): 1019		
Mains Power:	120Vac, 60Hz		Result:	□ - -::
Tested by:	Osvaldo Casorla			☐ Fail
Test Date:	12-Jan-16			
Remarks:	Neutral Line			

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail
16.08	41.92	10.06	0.62	52.61	Quasi Peak	Neutral	73.00	-20.39	Pass
1.37	41.30	10.02	0.56	51.88	Quasi Peak	Neutral	73.00	-21.12	Pass
15.77	40.48	10.06	0.62	51.16	Quasi Peak	Neutral	73.00	-21.84	Pass
15.84	41.62	10.06	0.62	52.30	Quasi Peak	Neutral	73.00	-20.70	Pass
1.30	39.83	10.02	0.57	50.42	Quasi Peak	Neutral	73.00	-22.58	Pass
0.65	39.39	10.01	0.63	50.03	Quasi Peak	Neutral	73.00	-22.97	Pass
16.08	32.27	10.06	0.62	42.96	Average	Neutral	60.00	-17.05	Pass
1.37	24.18	10.02	0.56	34.76	Average	Neutral	60.00	-25.24	Pass
15.77	28.33	10.06	0.62	39.01	Average	Neutral	60.00	-21.00	Pass
15.84	30.98	10.06	0.62	41.66	Average	Neutral	60.00	-18.34	Pass
1.30	29.19	10.02	0.57	39.77	Average	Neutral	60.00	-20.23	Pass
0.65	24.65	10.01	0.63	35.29	Average	Neutral	60.00	-24.71	Pass


775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	22 of 30

Test specification:	Conducted Emissions	Conducted Emissions				
Environmental Conditions:	Temp(°C):	20.8				
	Humidity (%):	38		⊠ Doos		
	Atmospheric(mbar):	1019	Dogultu	⊠ Pass		
Mains Power:	120Vac, 60Hz		Result:	□ Foil		
Tested by:	Osvaldo Casorla			☐ Fail		
Test Date:	12-Jan-16					
Remarks:	Phase Line					

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	Factors (dB)	Level (dBuV)	Measurement Type	Line/ Neutral	Limit (dBuV)	Margin (dB)	Pass /Fail
16.01	37.25	10.06	0.62	47.93	Quasi Peak	Live	73.00	-25.07	Pass
0.74	42.80	10.01	0.61	53.42	Quasi Peak	Live	73.00	-19.58	Pass
16.04	37.09	10.06	0.62	47.77	Quasi Peak	Live	73.00	-25.23	Pass
1.28	40.18	10.02	0.57	50.77	Quasi Peak	Live	73.00	-22.23	Pass
15.86	36.36	10.06	0.62	47.04	Quasi Peak	Live	73.00	-25.96	Pass
1.22	37.71	10.02	0.57	48.30	Quasi Peak	Live	73.00	-24.70	Pass
16.01	30.40	10.06	0.62	41.09	Average	Live	60.00	-18.91	Pass
0.74	24.31	10.01	0.61	34.93	Average	Live	60.00	-25.07	Pass
16.04	30.38	10.06	0.62	41.06	Average	Live	60.00	-18.94	Pass
1.28	24.71	10.02	0.57	35.30	Average	Live	60.00	-24.70	Pass
15.86	29.57	10.06	0.62	40.25	Average	Live	60.00	-19.75	Pass
1.22	21.29	10.02	0.57	31.87	Average	Live	60.00	-28.13	Pass

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	23 of 30

11.2 Radiated Emissions (Below 1GHz)

Requirement(s):

Spec	Item	Requirement		Applicable				
§ 15.109	a)	The field strength of radiated emissions fr determined at a distance of 10 meters, shate the strength of the strength of radiated emissions from the strength of the strength						
ICES-003		88 – 216	150					
.0_0 000		216 960	210					
		Above 960	300					
		7,0000,000	000					
Test Setup		Radio Absorbing Material Fut Ground Plan	Antenna 1-4m	ectrum Analyzer				
Procedure	2 3 3 4 5 5	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen. The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission. A Quasi-peak measurement was then made for that frequency point. Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were measured. The frequency range covered was from 30MHz to 1GHz using the broadband antenna. 						
Description of the Radiated Emissions Program	interfe EMI te measu final m and 36 will firs hold si degree continu perforr							

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	24 of 30

Sample Calculation

Example

At 300 MHz $\lim_{n \to \infty} 1 = 200 \, \mu \text{V/m} = 46.00 \, \text{dB}_{\mu} \text{V/m}$

Log-periodic antenna factor & cable loss at 300 MHz = 18.50 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}_{\mu}\text{V/m}$

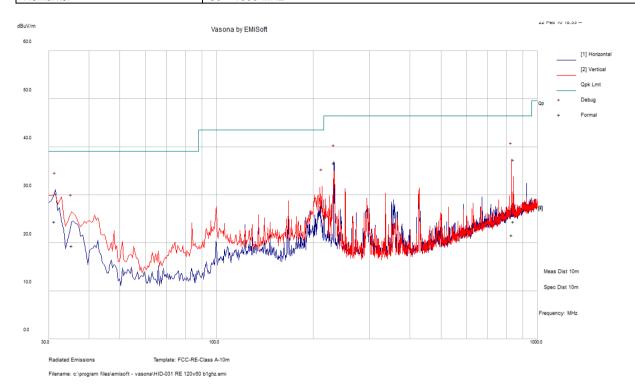
(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 46.00 - 40.00 = 6.00

i.e. 6 dB below limit

Test Data ⊠ Yes (See below) □ N/A

Test Plot ⊠ Yes (See below) □ N/A



Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	25 of 30

Radiated Emission Test Results (Below 1GHz)

Test specification:	Radiated Emissions	Radiated Emissions					
Environmental Conditions: Mains Power:	Temp(°C):	Temp(°C): 20.8					
	Humidity (%):	38		⊠ Pass			
	Atmospheric(mbar):	Atmospheric(mbar): 1019					
Mains Power:	120Vac, 60Hz		Result:	☐ Fail			
Tested by:	Osvaldo Casorla			⊔ Fall			
Test Date:	22-Feb-16						
Remarks:	30 – 1000 MHz						

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol (V/H)	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
31.28	39.14	0.81	-15.57	24.38	Quasi Max	Н	312.00	277.00	39.08	-14.70	Pass
829.95	33.04	5.19	-16.65	21.58	Quasi Max	V	200.00	16.00	46.44	-24.86	Pass
232.16	61.08	2.62	-27.12	36.57	Quasi Max	Η	348.00	259.00	46.44	-9.87	Pass
213.01	53.01	2.48	-27.86	27.63	Quasi Max	V	149.00	15.00	43.52	-15.89	Pass
35.39	37.60	0.87	-19.10	19.37	Quasi Max	V	375.00	331.00	39.08	-19.71	Pass
839.94	35.96	5.13	-16.70	24.39	Quasi Max	V	104.00	187.00	46.44	-22.05	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

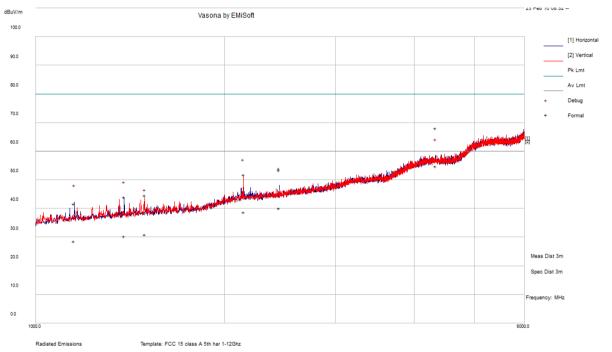
Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	26 of 30

11.3 Radiated Spurious Emissions above 1GHz

Requirement(s):

Spec	Item	Requirement			Applicable
§ 15.109 ICES-003	a)	The field strength of radiated of determined at a distance of 3 r Frequency range (GHz) Above 1			
Test Setup		Semi Anechoic Chamber Radio Absorbing Material 3m Antenna Spectrum Analyzer			
Procedure	233	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen. The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission. A Peak and Average measurement was then made for that frequency point. Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were measured. The frequency range covered was from 1GHz to 6GHz (for FCC tests, until the 5th harmonic for operating frequencies ≥ 1000MHz) using a horn antenna. 			

Test Data ⊠ Yes (See below) □ N/A


Test Plot ⊠ Yes (See below) □ N/A

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	27 of 30

Radiated Emission Test Results (Above 1GHz)

Test specification:	Radiated Emissions	Radiated Emissions		
Environmental Conditions:	Temp(°C):	20.8		
	Humidity (%):	Humidity (%): 38		⊠ Pass
	Atmospheric(mbar):	Atmospheric(mbar): 1019		△
Mains Power:	120Vac, 60Hz Result:		☐ Fail	
Tested by:	Osvaldo Casorla		⊔ Fall	
Test Date:	22-Feb-16			
Remarks:	1000 - 6000MHz			

Filename: o:\program files\emisoft - vasona\hid-031 foo a1ghz.emi

Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Level (dBuV/m)	Measurement Type	Pol (V/H)	Hgt (cm)	Azt (Deg)	Limit (dBuV/m)	Margin (dB)	Pass /Fail
1150.82	36.76	6.59	-14.81	28.54	Average Max	Η	167.00	205.00	60.00	-31.46	Pass
1150.82	49.87	6.59	-14.81	41.65	Peak Max	Η	167.00	205.00	80.00	-38.35	Pass
1384.44	50.76	7.11	-13.88	43.98	Peak Max	Н	111.00	148.00	80.00	-36.02	Pass
1384.44	37.07	7.11	-13.88	30.30	Average Max	Η	111.00	148.00	60.00	-29.70	Pass
1491.31	50.55	7.56	-13.49	44.62	Peak Max	V	170.00	105.00	80.00	-35.38	Pass
1491.31	36.85	7.56	-13.49	30.92	Average Max	٧	170.00	105.00	60.00	-29.08	Pass
2143.89	37.80	9.14	-8.23	38.71	Average Max	V	129.00	324.00	60.00	-21.29	Pass
2143.89	50.96	9.14	-8.23	51.87	Peak Max	V	129.00	324.00	80.00	-28.13	Pass
2439.32	51.01	9.61	-7.17	53.45	Peak Max	٧	132.00	47.00	80.00	-26.55	Pass
2439.32	37.70	9.61	-7.17	40.14	Average Max	٧	132.00	47.00	60.00	-19.86	Pass
4329.55	52.69	13.78	1.51	67.98	Peak Max	V	174.00	136.00	80.00	-12.02	Pass
4329.55	39.48	13.78	1.51	54.77	Average Max	٧	174.00	136.00	60.00	-5.23	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	28 of 30

Annex A. TEST INSTRUMENT & METHOD

Instrument	Model	Serial #	Cal Cycle	Cal Due	In use
Conducted Emissions					
EMI Test Receiver	ESIB 40	100179	1 Year	06/03/2016	\boxtimes
V-LISN (150 kHz – 30 MHz)	NNLK 8129	8129-190	1 Year	08/21/2016	\boxtimes
LISN (9 kHz – 30 MHz)	MN2050B	1018	1 Year	08/07/2016	\boxtimes
TLISN	ISN T800	30814	1 Year	09/23/2016	
Radiated Emissions					
EMI Test Receiver (9 kHz – 6 GHz)	ESL6	100178	1 Year	05/27/2016	\boxtimes
Antenna - Biconlog (30 MHz – 2 GHz)	JB1	A030702	1 Year	08/15/2016	\boxtimes
DoubleRidged Waveguide Horn Antenna (1-18 GHz)	3115	10SL0059	1 Year	08/25/2016	\boxtimes
Horn Antenna (18-40 GHz)	AH-840	101013	1 Year	08/28/2016	
RF Pre-Amplifier	LPA-6-30	11140711	1 Year	02/19/2017	\boxtimes
Microwave Preamplifier (18-40 GHz)	PA-840	181251	1 Year	02/19/2016	
2.4 GHz Notch Filter	BRM50702	116	1 Year	02/24/2016	
5GHz Notch Filter	BRM50716	072	1 Year	09/11/2016	
10 Meters SAC	10M	N/A	1 Year	05/06/2016	\boxtimes

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	29 of 30

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)		Please see the documents for the detailed scope
ISO Guide 65 (A2LA)		Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation		FCC Declaration of Conformity Accreditation
FCC Site Registration	7	3 meter site
FCC Site Registration	1	10 meter site
IC Site Registration	1	3 meter site
IC Site Registration	1	10 meter site
	7	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB	7	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	国际	Phase I, Phase II
Vietnam MIC CAB Accreditation	D	Please see the document for the detailed scope
	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA	7	(Phase I) Conformity Assessment Body for Radio and Telecom
	7	Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB		Telecom: CS-03 Part I, II, V, VI, VII, VIII

Test report No.	EMC_SL15120101-HID-031_FCC_IC
Page	30 of 30

Japan Recognized Certification Body Designation		Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Korea CAB Accreditation		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition		LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	72	CNS 13438
Japan VCCI		R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measurement
		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
Australia CAB Recognition	7	Radio communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	B	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2