HID GLOBAL CORPORATION

SMART CARD READERS, OPERATING ON 13.56 MHZ

Model: OMNIKEY 4121 CL

December 29, 2011 Report No.: SL11110901-HID-024(FCC,IC) rev 1.0 (This report supersedes: SL11110901-HID-024(FCC,IC)

Modifications made to the product : None				
This Test Report is Issued Under the Authority of:				
and.	Buis			
Choon Sian Ooi	Leslie Bai			
Compliance Engineer	Director of Certification			

, RSS-GEN, RSS-210 **Fo: FCC 15.225** NC NC SIEMIC

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 2 of 65

 www.siemic.com

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Country/Region	Accreditation Body	Scope				
USA	FCC, A2LA	EMC , RF/Wireless , Telecom , SAR				
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom , SAR				
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom , Safety				
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom				
Australia	NATA, NIST	EMC, RF, Telecom , Safety				
Korea	KCC/RRA, NIST	EMI, EMS, RF , Telecom, Safety , SAR				
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom				
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom				
Europe	A2LA, NIST	EMC, RF, Telecom , Safety, SAR				

Accreditations for Conformity Assessment

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC , RF , Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC, (RCB 208)	RF , Telecom
HongKong	OFTA (US002)	RF , Telecom

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 3 of 65 www.siemic.com

This page has been left blank intentionally.

Serial# SL1110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 4 of 65 www.siemic.com

<u>CONTENTS</u>

1	EXECUTIVE SUMMARY & EUT INFORMATION	6
2	TECHNICAL DETAILS	7
3	MODIFICATION	8
4	TEST SUMMARY	9
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	.10
ANN	EX A. TEST INSTRUMENT & METHOD	.20
ANN	EX B. TEST SETUP PHOTOGRAPHS	.24
ANN	EX B. I. EUT INTERNAL PHOTOGRAPHS	.25
ANN	EX B. II. EUT EXTERNAL PHOTOGRAPHS	.26
ANN	EX C. SUPPORTING EQUIPMENT DESCRIPTION	.27
ANN	EX D. EUT OPERATING CONDITIONS	.30
ANN	EX E. USER MANUAL, BLOCK & CIRCUIT DIAGRAM	.31
ANN	EX E SIEMIC ACCREDITATION	.32
ANN	EX F. TEST PLOTS	.60

This page has been left blank intentionally.

RF Test Report of HID Global Corporation

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 6 of 65

Executive Summary & EUT information 1

The purpose of this test programmed was to demonstrate compliance of the HID Global Corp., Model: OMNIKEY 4121 CL against the current Stipulated Standards for FCC or IC.

The equipment under test radio operating frequency is 13.56 MHz.

The test has demonstrated that this unit complies with stipulated standards.

EUT Information					
EUT Description	The OMNIKEY 4121 CL is a 13.56 MHz Smart Card Readers that operating at 13.56MHz frequency.				
Model No Serial No	OMNIKEY 4121 CL				
Input Power Classification	[:] Bus Powered				
Per Stipulated Test Standard	: RFID Reader				

SIEMIC, INC. Accessing global markets RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 7 of 65

2 TECHNICAL DETAILS

Purpose	Compliance testing of Smart Card Readers, Operating on 13.56 MHz with stipulated standard
Applicant / Client	HID Global Corporation
Manufacturer	HID Global Corporation 15730 Barranca Parkway Irvine, CA 92618 USA
Laboratory performing the tests	SIEMIC Laboratories
Test report reference number	SL11110901-HID-024(FCC,IC) rev 1.0
Date EUT received	November 16, 2011
Standard applied	47 CFR §15.225: 2010 Canadian Standards RSS-GEN Issue 3, RSS-210 Issue 8
Dates of test (from – to)	11/ 21-11/30, 2011
No of Units:	2
Equipment Category:	DXX
Model :	OMNIKEY 4121 CL
RF Operating Frequency (ies)	13.56 MHz (RFID)
Number of Channels :	1
FCC ID :	JQ6-OK4121CL
IC ID :	2236B-OK4121CL

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 8 of 65

3 MODIFICATION

NONE

Accessing global martets RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 9 of 65

 www.science.com
 December 29, 2011

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

RFID Reader

Test Results Summary

Test Standard		Devel (free	_ /	
47 CFR Part 15.225: 2010	RSS 210 Issue 8	- Description Pass /		
15.203		Antenna Requirement	Pass	
15.207(a)	RSS Gen(7.2.2)	Conducted Emissions Voltage	Pass	
15.225(a)	RSS210(A2.6)	Limit in the band of 13.553 – 13.567 MHz	Pass	
15.225(b)	RSS210(A2.6)	Limit in the band of 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	Pass	
15.225(c)	RSS210(A2.6)	Limit in the band of 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	Pass	
15.225(d), 15.209	RSS210(A2.6)	Limit outside the band of 13.110 – 14.010 MHz	Pass	
15.225(e)	RSS210(A2.6)	Frequency Stability	Pass	
	RSS-210(5.9.1)	Occupied Bandwidth	Pass	
	RSS-310 (3.7)	Very Low Power Devices Operating Below 490 kHz	N/A	

PS: All measurement uncertainties are not taken into consideration for all presented test result.

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 10 of 65

 usure nights acm

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.
- The RFID antenna is integral to the main board permanently to the device which meets the requirement (See Internal Photographs submitted as another Exhibit).

5.2 Conducted Emissions Voltage

Requirement(s): 47 CFR §15.207

Requirement:

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

*Decreases with the logarithm of the frequency.

Procedures:

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant. 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. 3. Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is ±3.5dB. Environmental Conditions 4. Temperature 21°C **Relative Humidity** 48% Atmospheric Pressure 1019mbar Test Date : November 21-30 2011 Tested By : Choon Sian Ooi

Results: Pass

SIEMIC, INC. Accessing global markets RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL1110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 12 of 65

Test Result

120V	, 60Hz, Neutral	Line					
Frequency (MHz)	QP Value (dBμV)	Class B Limit (dB)	Margin (dB)	Avg Value (dBμV)	Class B Limit (dBuV)	Margin (dB)	Line
3.54	45.62	56.00	-10.38	34.25	46.00	-11.75	Neutral
3.71	43.47	56.00	-12.53	32.57	46.00	-13.43	Neutral
3.89	45.40	56.00	-10.60	35.04	46.00	-10.96	Neutral
3.37	38.67	56.00	-17.33	28.00	46.00	-18.00	Neutral
0.35	45.66	59.11	-13.45	40.05	49.11	-9.06	Neutral
1.80	40.89	56.00	-15.11	37.18	46.00	-8.82	Neutral

120V	, 60Hz, Phase I	Line					
Frequency (MHz)	QP Value (dBμV)	Class B Limit (dB)	Margin (dB)	Avg Value (dBμV)	Class B Limit (dBuV)	Margin (dB)	Line
3.89	43.63	56.00	-12.37	33.89	46.00	-12.11	Phase
3.71	44.93	56.00	-11.07	34.48	46.00	-11.52	Phase
3.54	43.10	56.00	-12.90	32.99	46.00	-13.01	Phase
1.91	43.93	56.00	-12.07	42.08	46.00	-3.92	Phase
2.09	42.13	56.00	-13.87	40.67	46.00	-5.33	Phase
1.63	41.26	56.00	-14.74	38.20	46.00	-7.80	Phase

 Serial#
 SL1110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 13 of 65

 www.siemic.com

5.3 Radiated Emission < 30MHz (9kHz - 30MHz, H-Field)

Requirement(s): 47 CFR §15.225 & RSS-210 (A2.6) & RSS-310 (3.7)

Procedures: For < 30MHz, Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set 10 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the centre of the loop. The measuring bandwidth was set to 10 kHz. (Note: During testing the receive antenna was rotated about its axis to maximize the emission from the EUT.)

The limit is converted from microvolt/meter to decibel microvolt/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF (dB) + Cable Loss (dB) – Distance Correction Factor

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Radiated Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a

confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/- 6dB.

4.	Environmental Conditions	Temperature	23°C
		Relative Humidity	48%
		Atmospheric Pressure	1019mbar
	Test Date : Nevember 21 20 2011		

Test Date : November 21-30 2011 Tested By : Choon Sian Ooi

Results: Pass

For test plots please refer to annex F

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 14 of 65

 www.siemic.com

5.4 Radiated Emissions > 30 MHz (30MHz – 1 GHz, E-Field)

Requirement(s): 47 CFR §15.209; 47 CFR §15.225(d) & RSS-210 (A2.6)

Procedures: For > 30MHz, Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set 10 meter away from the measuring antenna. The Log periodic antenna was positioned 1 meter above the ground from the centre of the antenna. The measuring bandwidth was set to 120 kHz. (Note: During testing the receive antenna was raise from 1~4 meters to maximize the emission from the EUT.)

The limit is converted from microvolt/meter to decibel microvolt/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF (dB) + Cable Loss(dB) – Distance Correction Factor

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Radiated Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/- 6dB.

4.	Environmental Conditions	Temperature	23°C
		Relative Humidity	48%
		Atmospheric Pressure	1019mbar
	Test Date: November 21-30 2011		

Results: Pass

For test plots please refer to annex F

Tested By : Choon Sian Ooi

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 15 of 65

Radiated Emission Test Table 30MHz ~ 1000MHz

Frequency (MHz)	Amplitude @ 3m (dBuV/m)	Azimuth (degree)	Antenna Polarity	Antenna Height (cm)	Limit @ 3 meter (dBuV/m)	Margin (dB)
40.68	37.96	256.00	V	247.00	40.00	-2.04
338.98	43.53	191.00	Н	102.00	46.00	-2.47
189.81	41.21	34.00	Н	145.00	43.50	-1.79
30.73	23.76	154.00	V	345.00	40.00	-16.24
311.84	43.23	201.00	Н	103.00	46.00	-2.77
176.26	39.21	35.00	Н	151.00	43.50	-4.29

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 16 of 65

5.5 Frequency Stability

Requirement(s): 47 CFR §15.225(e) & RSS-210 (A2.6)

Procedures: Frequency Stability was measured according to 47 CFR §2.1055. Measurement was taken with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in hertz. A voltmeter was used to monitor when varying the voltage.

23°C 48% 1019mbar

Limit: ±0.01% of 13.56 MHz = 1356 Hz

Environmental Conditions	Temperature Relative Humidity Atmospheric Pressure
Test Date : November 21-30 2011 Tested By : Choon Sian Ooi	

Results: Pass

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within \pm 0.01% of the operating frequency over a temperature variation of -20°C to +50°C at normal supply voltage.

Temperature	Measured Freq.	Freq. Drift	Freq. Deviation	Pass/Fail
(°C)	(MHz)	(Hz)	(Limit: 0.01%)	Fa55/Fall
50	13.5593	50	<0.01	Pass
40	13.55928	30	<0.01	Pass
30	13.55927	20	<0.01	Pass
20		Reference (13.560410	MHz)	
10	13.55924	-10	<0.01	Pass
0	13.55923	-20	<0.01	Pass
-10	13.55921	-40	<0.01	Pass
-20	13.5592	-50	<0.01	Pass

Reference Frequency: 13.55925225 MHz at -20°C and +50°C

Frequency Stability versus Input Voltage: The Frequency tolerance of the carrier signal shall be maintained within ± 0.01%, the frequency of the transmitter was measured at 85% and at 115% of the rated power supply voltage at 20°C environmental temperature.

Measured Voltage ±15% of nominal (AC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Deviation (Limit: 0.01%)	Pass/Fail
102	13.55928	30	<0.01	Pass
138	13.55927	20	<0.01	Pass

Carrier Frequency: 13.55925225 MHz at 20°C at 120VAC

 Serial#
 SL1110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 17 of 65

 www.siemic.com

48%

1019mbar

5.6 Fundamental Field Strength Test Result

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
 <u>Radiated Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, is +/-6dB.
 Environmental Conditions Temperature 23°C

Test Date : November 21-30 2011 Tested By : Choon Sian Ooi

Test Requirement:

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Relative Humidity

Atmospheric Pressure

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 18 of 55

Test Result

Loop Antenna at 0 degree

General Emission Limit @ 3 meter

Frequency (MHz)	Corrected Amplitude Reading (dBuV/m)	Limit (dBuV/m)
13.56	55.71	124

Loop Antenna at 90 degree

Frequency (MHz)	Corrected Amplitude Reading (dBuV/m)	Limit (dBuV/m)
13.56	47.84	124

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 19 of 65

 wave sciencia comp

5.7 Occupied Bandwidth

Requirement(s): RSS-210 (5.9.1)

Procedures: Occupied Bandwidth was measured according to RSS-210 (5.9.1). Measurement was taken with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in hertz.

Environmental Conditions Temperature Relative Humidity Atmospheric Pressure Test Date : November 21-30 2011 23°C 48% 1019mbar

Results: Pass

Tested By : Choon Sian Ooi

For test plots please refer to annex F

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 20 of 65

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Calibration Due
AC Conducted Emissions		
R&S EMI Test Receiver	ESIB40	05/19/2012
R&S LISN	ESH3-Z5	05/18/2012
CHASE LISN	MN2050B	05/18/2012
Sekonic Hygro Hermograph	ST-50	06/04/2012
Radiated Emissions		
Spectrum Analyzer	8564E	05/17/2012
EMI Receiver	ESIB 40	05/19/2012
R&S LISN	ESH3-Z5	05/18/2012
CHASE LISN	MN2050B	05/18/2012
Horn Antenna (1 ~18GHz)	3115	06/02/2012
Biconlog Antenna (30MHz~2GHz)	JB1	06/01/2012
Passive Loop Antenna (10kHz-30MHz)	6512	08/31/2012
3 Meters SAC	3m	10/13/2012
Sekonic Hygro Hermograph	ST-50	06/04/2012
Pre-Amplifier(1 ~ 26GHz)	8449B	05/17/2012
Horn Antenna (18~40GHz)	AH-840	07/23/2013
Microwave Pre-Amp (18~40GHz)	PA-840	11/30/2012

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8
 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 21 of 65

 www.siemic.com

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements made; while for CISPR/EN tests, both Quasipeak and Average measurements made.
- 5. Steps 2 to 4 then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Description of Conducted Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 15 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.

Sample Calculation Example

At 20 MHzlimit = $250 \ \mu V = 47.96 \ dB \ \mu V$ Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = $11.20 \ dB$ Q-P reading obtained directly from EMI Receiver = $40.00 \ dB \ \mu V$
(Calibrated for system losses)Therefore, Q-P margin = 47.96 - 40.00 = 7.96i.e. **7.96 dB below limit**

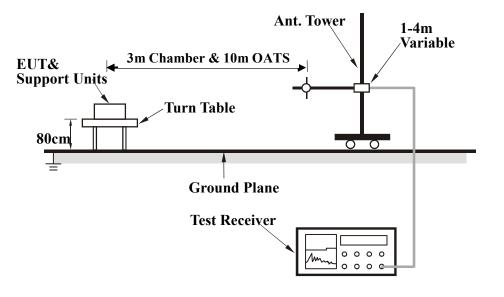
 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 22 of 65

 www.siemic.com

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 100kHz – 1GHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred; clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS) at 10m distance.

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Accessing global markets RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 23 of 65

 www.siemic.com

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.

5. Repeat step 4 until all frequencies need to be measured were complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Description of Radiated Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the scan on four different antenna heights, 2 antenna polarity, and 360 degrees table rotation. For example, the program was set to run 30 MHz to 1 GHz scan; the program will first start from a meter antenna height and divide the 30 MHz to 1 GHz into 10 separate parts of maximum hold sweeps. Each parts of maximum hold sweep, the program will collect the data from 0 degree to 360 degrees table rotation. After the program complete the 1m scan, the antenna continues to rise to 2m and continue the scan. The step will repeated for all specified antenna height and polarity. This program will perform the Quasi Peak measurement after the signal maximization process and pre-scan routine. The final measurement will be base on the pre-scan data reduction result.

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows: Peak = Reading + Corrected Factor

Where:

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 24 of 65 www.siemic.com

Annex B. TEST SETUP PHOTOGRAPHS

Please See Attachment

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 25 of 65 www.siemic.com

Annex B. i. EUT INTERNAL PHOTOGRAPHS

Please see attachment

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

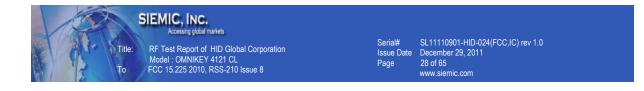
 Issue Date
 December 29, 2011

 Page
 26 of 65

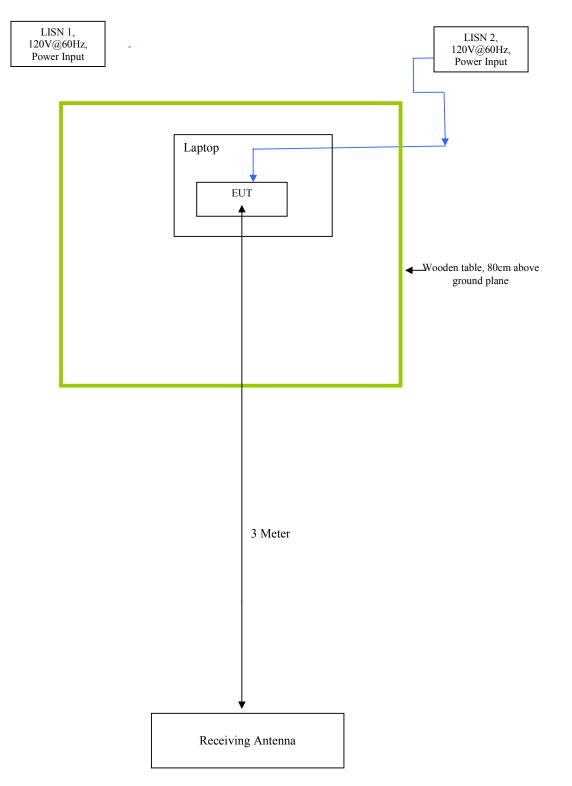
 wwww.siamic.com

Annex B. ii. EUT EXTERNAL PHOTOGRAPHS

Please see attachment

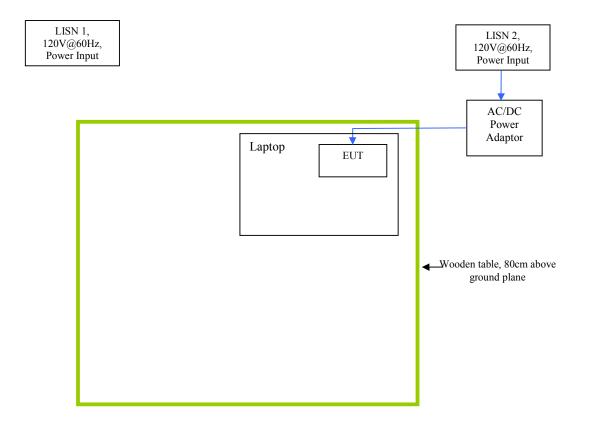

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 27 of 65

Annex C. SUPPORTING EQUIPMENT DESCRIPTION


The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
Laptop/Dell	Vostro 1310	Express Card

NOTE: No special supporting equipment used or needed during testing to achieve compliance.



Block Configuration Diagram for Radiated Emission

Block Configuration Diagram 1 for AC Conducted Emission

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 30 of 65

Annex D. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Description Of Operation
The EUT was connected to laptop for operation.
The EUT was connected to laptop for operation.

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 31 of 65 www.siemic.com

Annex E. USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 32 of 65

Annex E SIEMIC ACCREDITATION

SIEMIC ACCREDITATION DETAILS: A2LA 17025 & ISO Guide 65 : 2742.01 , 2742.2

То

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

ing global markets

SL11110901-HID-024(FCC,IC) rev 1.0 Serial# Issue Date December 29, 2011 Page 33 of 65

The American Association for Laboratory Accreditation

World Class Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SIEMIC LABORATORIES 1 2206 Ringwood Ave. San Jose, CA 95131 Mr. Leslie Bai Phone: 408 526 1188 Email: leslie.bai@siemic.com Mr. Snell Leong Phone: 408 526 1188 Email: snell.leong@siemic.com www.siemic.com

ELECTRICAL

Valid to: September 30, 2012

Certificate Number: 2742.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following EMC, Product Safety, Radio and Telecommunication tests:

Test Description:	Test Method:		
EN & IEC – Emissions & Immunity	IEC/CISPR 11; IEC/CISPR 12; EN 55011; IEC/CISPR 22; EN 55022; IEC/CISPR 20; EN 55020; EN 61000-6-1; EN 61000-6-2; EN 61000-6-3; EN 61000-6-4; EN 61204-3; EN 61326, EN 61326-1; EN 61000-3-2; EN 61000-3-3; EN 50081-1, EN 50081-2; EN 50082-1; IEC 61000-4-2; EN 61000-4-2; IEC 61000-4-3; (limited up to 2.7 GHz and 3V/m); EN 61000-4-3; (limited up to 2.7 GHz and 3V/m); EN 61000-4-4; IEC 61000-4-5; EN 61000-4-5; IEC 61000-4-6; EN 61000-4-6; IEC 61000-4-5; EN 61000-4-8; IEC 61000-4-6; EN 61000-4-6; IEC 61000-4-8; EN 50120-4-11; EN 61000-4-11; IEC/CISPR 24; EN 55024; EN 50412-2-1; EN 50083-2; EN 50090-2-2; EN 50091-2; EN 50130-4; EN 50130-4 +A12; IEC 60601-1-2; EN 12184; EN 55015; EN 61547; CISPR 16-1-4		
Korea – Emissions & Immunity	KCC Notice 2009-27, Nov. 5, 2009; RRA Announce 2009-9, Dec. 21, 2009; KN 22:2007-12; KCC Notice 2009-27, Nov. 5, 2009; RRA Notice 2009-10, Dec. 21, 2009; RRA Notice 2009-10, Dec. 21, 2009; KN 24:2008-5; KN 61000-4-2:2008-5; KN 61000-4-3:2008-5; KN 61000-4-4:2008-5; KN 61000-4-5:2008-5; KN 61000-4-6:2008-5; KN 61000-4-4:2008-5; KN 61000-4-5:2008-5; KN 61000-4-6:2008-5; KN 61000-4-8:2008-5; KN 61000-4-11:2008-5; RL Notice 2008-3; RRL Notice 2008-4; RRL Notice 2005-131; RRL Notice 2007-99; RRL Notice 2007-101; RRL Notice 2008-4; RA Notice No 2008-11(2008.12.16); RRA Notice No 2008-12(2008.12.16); KN 60601-1-2; KCC Notice 2009-27; KN 301 489-1(2008-05); KN 301 489-7(2008-05); KN 16-1-1(2008-05); KN 301 489-24(2008-05); KN 16-1-1(2008-05); KN 16-1-2(2008-05); KN 16-1-3(2008-05); KN 16-1-4(2008-05); KN 16-1-5(2008-05); KN 16-1-3(2008-05); KN 16-1-4(2008-05); KN 16-2-3(2008-05); KN 16-2-4(2008-05); KN 16-2-2(2008-05); KN 16-2-3(2008-05); KN 16-2-4(2008-05);		

(A2LA Certificate No. 2742.01) Revised 01/12/2011

Peter Alaye

Page 1 of 8

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

SIEMIC, INC. Accessing global markets Title: RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 34 of 65

US / FCC - Emissions	SAE J1113-11, SAE J1113-12; SAE J1113-41; SAE J1113-4; SAE J1113-13; FCC Method 47 CFR Part 18, FCC Report and Order ET Docket 98-153 (FCC 02-48); FCC Method 47 CFR Parts15, including Subpart G, using FCC Order 04-425 ANSI C63.4(2009); ANSI C63.10(2009); ANSI C63.4:2003 ANSI C63.4(2003) with FCC Method 47 CFR Part 11; ANSI C63.4(2003) with FCC Method 47 CFR Part 15, Subpart E; ANSI C63.4(2003) with FCC Method 47 CFR Part 15, Subpart E; ANSI C63.4(2003) with FCC Method 47 CFR Part 15, Subpart C; ANSI C63.4(2003) and DA 02-2138; ANSI C63.4(2003) with FCC Method 47 CFR Part 15, Subpart B
Canada – Emissions	ICES-001; ICES-002; ICES-003 Issue 4; ICES-003 Issue 4 (2004); ICES-006 Issue 1
Vietnam – Emission & Immunity	TCN 68-193:2003; TCN 68-196:2001; TCVN 7189:2002
Australia / New Zealand – Emissions and Immunity	AS/NZS 1044; AS/NZS 4251.1; AS/NZS 4251.2; AS/NZS CISPR 22; AS/NZS 3548; AS/NZS 2279.3; AS/NZS 61000-3-3; AS/NZS CISPR 11; AS/NZS CISPR 24; AS/NZS 61000.6.3; AS/NZS 61000.6.4; AS/NZS CISPR 14.1; AS/NZS 61000.3.2
Japan – Emissions	JEITA IT-3001; VCCI-V-3:2010.4 (up to 6 GHz)
China – Emissions	GB9254; GB17625.1
Taiwan – Emissions	CNS 13438 (up to 6 GHz); CNS 13783-1; CNS 13803; CNS 13439
Singapore – Emissions & Immunity	IDA TS EMC; CISPR 22; IEC 61000-4-2; IEC 61000-4-3; IEC 61000-4-4; IEC 61000-4-5; IEC 61000-4-6
FCC – Unlicensed Radio A1 to A4	A1: 47 CFR Parts 11 (Emergency Alert System (EAS)), 15 (Radio Frequency Devices) and 18 (Industrial, Scientific, and Medical Equipment) FCC OST/MP-5(1986); ANSI C63.4(2003); ANSI C63.4(2009); ANSI C63.10(2009)
	A2: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.4(2003); ANSI C63.4(2009); ANSI C63.10(2009)
	A3: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.17:2006; ANSI C63.10(2009); IEEE Std 1528:2003 + Ad1; Std IEEE 1528A:2005
	A4: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.10(2009); IEEE Std 1528:2003 + Ad1; Std IEEE 1528A:2005
FCC – Licensed Radio B1 to B4	B1: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations), 22 (Public Mobile Services), 24 (Personal Communications Services), 25 (Satellite Communications), and 27 (Miscellaneous Wireless Communications Services); ANSL/TIA-603-C (2004), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard; IEEE Std 1528:2003 + Ad1; Std IEEE 1528A:2005
	.01) Revised 01/12/2011 Peter Mlnye Page 2 of

SIEMIC, INC. Accessing global markets Title: RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 35 of 65

 www.riamia.com
 www.riamia.com

FCC – Licensed Radio (continued) B1 to B4	 B2: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations), 22 (Public Mobile Services), 74 (Experimental Radio Auxiliary, Special Broadcast and Other Program Distributional Services), 90 (Private Land Mobile Radio Services), 95 (Personal Radio Services), and 97 (Amateur Radio Services); ANSI/TIA- 603-C (2004), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard B3: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations); 80 (Stations in the Maritime Services) , 87 (Aviation Services); ANSI/TIA-603-C (2004), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard B4: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations); 27 (Broadband Radio Services (BRS) and Educational Broadband Services (EBS)), 74 (Experimental Radio Auxiliary, Special Broadcast and Other Program Distributional Services), and 101 (Fixed Microwave Services); ANSI/TIA-603-C (2004), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard
Canada – Radio	RSS 102; RSS 111; RSS 112; RSS 117; RSS 118; RSS 119; RSS 123; RSS 125; RSS 127; RSS 128; RSS 129; RSS 131; RSS 132; RSS 133; RSS 134; RSS 135; RSS 136; RSS 137; RSS 138; RSS 139; RSS 141; RSS 142; RSS 170; RSS 181; RSS 182; RSS 188; RSS 191; RSS 192; RSS 193; RSS 194; RSS 195; RSS 196; RSS 197; RSS 198; RSS 199; RSS 210; RSS 220; RSS 213; RSS 215; RSS 243; RSS 287; RSS 310; RSS Gen
CE – Radio	EN 301 502; EN 301 511; EN 301 526; EN 301 681; EN 301 721; EN 301 751; EN 301 753; EN 301 783-2; EN 301 796; EN 301 797; EN 301 840-2; EN 301 843-1; EN 301 843-4; EN 301 843-5; EN 301 893; EN 301 908-01; EN 301 908-02; EN 301 908-03; EN 301 908-04; EN 301 908-05; EN 301 908-06; EN 301 908-07; EN 301 908-08; EN 301 908-09; EN 301 908-10; EN 301 908-11; EN 301 929-2; EN 301 907-2; EN 302 018-2; EN 302 054-2; EN 302 064-2; EN 302 066-2; EN 302 077-2; EN 302 186; EN 302 195-2; EN 302 217-3; EN 302 245-2; EN 302 288-2; EN 302 291-2; EN 302 296; EN 302 297; EN 302 326-2; EN 302 326-3; EN 302 340; EN 302 372-2; EN 302 426; EN 302 454-2; EN 302 502; EN 302 510-2;
	EN 302 217-4-2; EN 300 224-1; EN 300 279; EN 300 339; EN 300 385; EN 301 839-2; EN 301 843-6; EN 302 017-2; EN 302 208-2; EN 302 217-2-2; ETS 300 329; ETS 300 445; ETS 300 446; ETS 300 683; ETS 300 826; ETS EN 300 328; ETSI EN 300 086-2; EN 302217-1; EN 302217-2-1; EN 302217-4-1; EN 302288-1; EN 302908-12; EN 302326-1; EN 301929-1; EN 301997-1; EN 300224-2; EN 301839-1; EN 301843-1; EN 301843-2; EN 301843-3; EN 301843-4; EN 301843-5; EN 302017-1; EN 302208-1; EN 300086-1; EN 300113-1; EN 300224-1; EN 300341-1; EN 302291-1; EN 302500-1; EN 300113-1; EN 300224-1; ETSI EN 300 113-2; ETSI EN 300 197; ETSI EN 300 198; ETSI EN 300 219-1; ETSI EN 300 219-2; ETSI EN 300 220-1; ETSI EN 300 290-2; ETSI EN 300 220-3; ETSI EN 300 224-2; ETSI EN 300 328-2; ETSI EN 300 328-1; ETSI EN 300 330-2; 42.01) Revised 01/12/2011

SIEMIC, INC. Accessing global markets Title: RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL To FCC 15.225 2010, RSS-210 Issue 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 36 of 65

CE – Radio (conitnued)	ETSI EN 300 341-2; ETSI EN 300 373-1; ETSI EN 300 373-2; ETSI EN 300 373-3; ETSI EN 300 390-1; ETSI EN 300 390-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 431; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 454-1; ETSI EN 300 454-2; ETSI EN 300 718-2; ETSI EN 301 021; ETSI EN 301 166-1; ETSI EN 301 166-2; ETSI EN 301 178-2; ETSI EN 301 213-1; ETSI EN 301 213-2; ETSI EN 301 213-3; ETSI EN 301 213-4; ETSI EN 301 213-5; ETSI EN 301 357-1; ETSI EN 301 357-2; ETSI EN 301 390; ETSI EN 301 459; ETSI EN 301 489-01(<i>excluding section 9.6</i>); ETSI EN 301 489-02; ETSI EN 301 489-03; ETSI EN 301 489-04; ETSI EN 301 489-05;
	ETSI EN 301 489-05; ETSI EN 301 489-07; ETSI EN 301 489-03; ETSI EN 301 489-06; ETSI EN 301 489-07; ETSI EN 301 489-08; ETSI EN 301 489-09; ETSI EN 301 489-10; ETSI EN 301 489-11; ETSI EN 301 489-12; ETSI EN 301 489-13; ETSI EN 301 489-14; ETSI EN 301 489-15; ETSI EN 301 489-16; ETSI EN 301 489-17; ETSI EN 301 489-18; ETSI EN 301 489-19; ETSI EN 301 489-20; ETSI EN 301 489-22; ETSI EN 301 489-23; ETSI EN 301 489-24; ETSI EN 301 489-25; ETSI EN 301 489-26; ETSI EN 301 489-27; ETSI EN 301 489-28; ETSI EN 301 489-31; ETSI EN 301 489-32; IEC 60945
IDA – Radio	IDA TS 3G-BS; IDA TS 3G-MT; IDA TS AR; IDA TS CT-CTS; IDA TS GMPCS; IDA TS GSM-BS; IDA TS GSM-MT; IDA TS LMR; IDA TS RPG; IDA TS SRD; IDA TS UWB; IDA TS WBA
Vietnam – Radio	TCN 68-242:2006; TCN 68-243:2006; TCN 68-246:2006
Korea – Radio	KCC Notice 2009-13; KCC Notice 2008-26; RRL Notice 2008-2; RRL Notice 2005-105; RRL Notice 2008-17; RRL Notice 2005-127; RRL Notice 2005-24; RRL Notice 2005-25; RRL Notice 2005-179; RRL Notice 2008-10; RRL Notice 2007-49; RRL Notice 2007-20; RRL Notice 2007-11; RRL Notice 2007-80; RRL Notice 2004-68; KCC Notice 2009-36, Dec. 8, 2009; RRL Notice 2009-6, October 15, 2009; KCC Notice 2010-1; KCC Notice 2010-12; KCC Notice 2010-13
Taiwan – Radio	LP0002; PLMN07; PLMN01; PLMN08
Australia - New Zealand – Radio	AS 2772.2; AS/NZS 4281; AS/NZS 4268; AS/NZS 4280.1; AS/NZS 4583; AS/NZS 4280.2; AS/NZS 4281; AS/NZS 4295; AS/NZS 4582; AS/NZS 4769.1; AS/NZS 4769.2; AS/NZS 4770; AS/NZS 4771
Hong Kong – Radio	HKTA 1002; HKTA 1007; HKTA 1008; HKTA 1010; HKTA 1015; HKTA 1016; HKTA 1020; HKTA 1022; HKTA 1026; HKTA 1027; HKTA 1029; HKTA 1030; HKTA 1031; HKTA 1032; HKTA 1033; HKTA 1034; HKTA 1035; HKTA 1036; HKTA 1037; HKTA 1039; HKTA 1041; HKTA 1042; HKTA 1043; HKTA 1044; HKTA 1046; HKTA 1047; HKTA 1048; HKTA 1049; HKTA 1051; HKTA1052; HKTA1053; HKTA 1054; HKTA 1055
(A2LA Certificate No. 2742	.01) Revised 01/12/2011 Peter Mayer Page 4 of

8

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 37 of 65

FCC Telephone Terminal Equipment Scope CI	ANSI/TIA-968-A:03; ANSI/TIA-968-A-1:03; ANSI/TIA-968-A-2:04; ANSI/TIA-968-A-3:05; ANSI/TIA-968-A-4:07; ANSI/TIA-968-A-5:07; TIA-968-B; FCC Rule Part 68; 47 CFR Part 68.316; 47 CFR Part 68.317; ANSI/TIA/EIA-464-C; TIA-810-B; T1.TRQ6 (2002); TCB-31-B (1998); TIA-470.110-C; TIA-810-B; TIA-920
Canada – Telecom	CS-03 Part V Issue 9:2009 Amendment 1; CS-03 Part VIII Issue 9:2009 Amendment 4; CS-03 Part I Issue 9:2006 Amendment 3; CS-03 Part II Issue 9:2004; CS-03 Part III Issue 9:2004; CS-03 Part V Issue 9:2004 ; CS-03 Part VI Issue 9:2004; CS-03 Part VII Issue 9:2006 Amendment 3; CS-03 Part VIII Issue 9:2007 Amendment 3; CS-03 Issue 9:04 + A2(06) + A3(06)
Europe – Telecom	TBR 2: 01-1997; TBR 004 Ed.1.95 + A1 (97); TBR 1; TBR 3; TBR 12:A1 01-1996; TBR 013 ed.1; TBR 024 ed.1; TBR 25; TBR 38 ed.1; ETSI ES 203 021-05; ETSI ES 203 021-2; ETSI ES 021-3; TBR 021; ETSI EG 201 121; ETSI EN 301 437; ETSI TS 101 270-1; ITU-T Recommendation Q.920; ITU-T Recommendation Q.920 – Amendment 1; ITU-T Recommendation Q.921 – Amendment 1; ITU-T Recommendation Q.921 – Amendment 1; ITU-T Recommendation Q.931; ITU-T Recommendation Q.931 – Amendment 1; Erratum 1 (02/2003) ITU-T Recommendation Q.931 (05/1998); ISDN User Network Interface Layer 3 Specification for Basic Call Control; ITU-T Recommendation P.300
Australia – Telecom Australia – Telecom	AS/CA \$003.1:2010; AS/CA \$003.2:2010; AS/CA \$003.3:2010; AS/CA \$004:2010; AS/ACIF \$006:2008; AS/ACIF \$041.1:2009 AS/ACIF \$041.2:2009; AS/ACIF \$041.3:2009; AS/ACIF \$042.1:2008; AS/ACIF \$043.2:2008; AS/ACIF \$043.3:2008; AS/ACIF \$002:05; AS/ACIF \$003:06; AS/ACIF \$004:06; AS/ACIF \$006:01; AS/ACIF \$016:01; AS/ACIF \$031:01; AS/ACIF \$0038:01; AS/ACIF \$040:01; AS/ACIF \$041:05; AS/ACIF \$043.2:06; AS ACIF \$042.1
New Zealand - Telecom	PTC200:2006; PTC200 Issue No.2:97 + A1(980); PTC220; PTC273:2007; TNA 115; TNA 117
Singapore – Telecom	IDA TS ADSL, Issue 1, Rev. 1 (April 2006); IDA TS DLCN, Issue 1 (July 2005); IDA TS ISDN BA, Issue 1 (July 2005); IDA TS ISDN PRA, Issue 1 (July 2005); IDA TS ISDN 3 (Oct. 2000); IDA TS-PSTN, Issue 1 (March 2007); IDA TS ACLIP 07
Hong Kong – Telecom	HKTA 2011; HKTA 2012; HKTA 2013; HKTA 2014; HKTA 2015; HKTA 2017; HKTA 2018; HKTA 2019; HKTA 2022; HKTA 2023; HKTA 2024; HKTA 2026; HKTA 2027; HKTA 2028; HKTA 2029; HKTA 2030; HKTA 2031; HKTA 2032; HKTA 2033
(A2LA Certificate No. 2742	2.01) Revised 01/12/2011 Peter Mayer Page 5 of

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 38 of 65

Vietnam – Telecom	TCN 68-188:2000; TCN 68-193:2003; TCN 68-196:2001; TCN 68-143:2003; TCN 68-192:2003; TCN 68-189:2000; TCN 68-221:2004; TCN 68-222:2004; TCN 68-245:2004; TCN 68-223:2004
Korea – Telecom	RRA Notice 2009-38, Sep. 11, 2009; RRA Notice 2009-7 (including attachments 1, 3, 5, 6); Presidential Decree 21098, RRL Notice 2007-30; RRL Notice 2008-10 (attachments 1, 3, 5, 6); RRL Notice 2009-25; RRL Notice 2008-59
China – Telecom	YD/T 514-1:98; YD/T 1277.1-2003; GB/T 17904.1-1999; GB/T 17904.2-1999; GB/T 17154.1-1997; GB/T 17154.2-1997; YD/T1091-2000; YD/T1006-1999; GB/T 17789-1999
Taiwan – Telecom	PSTN01:03; ADSL01:08; ID0002; IS6100: 93
Japan – Telecom	JATE Blue Book, Green Book; Ministerial Ordinance of the Ministry of Posts and Telecommunications No. 31 of April 1, 1985 (last amended on March 22 2004); Ordinance Concerning Technical Conditions Compliance Approval etc. of Terminal Equipment
South Africa – Telecom	DPT-TE-001; TE-002; TE-003; TE-004; TE-005; TE-006; TE-007; TE-008; TE-009; TE-010; TE-012 (telephone interface); TE-013 (telephone interface); TE-014; TE-015; TE-018; SWS-001; SWS-002; SWS-003; SWS-004; SWS-005; SWS-006; SWS-007; SWS-008; SWS-009; SWS-010
Israel – Telecom	Israel MoC Spe. 23/96
Mexico – Telecom	NOM-151-SCT1-1999; NOM-152-SCT1-1999
Argentina – Telecom	CNC-ST2-44-01
Brazil – Telecom	Resolution 392-2005
International Telecom Union	ITU-T-G.703:01; ITU-T-G.823:93; ITU-T G.824; ITU-T G.825; ITU-T-G.991.2; ITU-T-G.992.1; ITU-T-G.992.3; ITU-T-G.992.5; ITU-T-G.993.1
Product Safety IEC 60950-1; EN 60950-1; UL 60950-1; IEC 60601-1-1; CAN/CSA 22.2 NO. 60950-1-03; SS-EN 60950-1; AS/NZ 60950-1 (voltage surge testing up to 6kV, excluding Annex A and H); CNS 14336, CNS 14408; GB4943; President Notice 20664; RRL Notice 2008-10 (attachment 4); RRA Notice 2009-7 (attachment 4); TCN 68-190:2003; SABS IEC 60950; IEC/EN 61558; IEC/EN 61558-2-7; EN 62115; IEC 60215; EN 60958; EN 60598; IEC 215 (1987) + A1 (1992) + A2 (1994)	
Japan - Radio	ARIB STD-T81; ARIB STD-T66; RCR STD-1; RCR STD-29; ARIB STD-T94 Fascicle 1; ARIB STD-T90; ARIB STD-T89; RCR STD-33 01) Revised 01/12/2011 Page 6 of

 Serial#
 SL1110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 39 of 65

SAR & HAC	IEEE P1528:2003 + Ad1; IEEE 1528A:2005; FCC OET Bulletin 65 Supplement C; FCC OET Bulletin 65; ANSI C95; ANSI C63.19; FCC 47 CFR 20.19; H46-2/99-273E; EN 50360; EN 50361; IEC62209-1; IEC 62209-2; EN 50371; EN 50383; EN 50357; EN 50364; RRL 2008-18; RRL 2008-16; KCC 2009-27; RRL 2004-67; CNS 14958-1; CNS 14959; NZS 2772.1; NZS 6609-2; Resolution N 533
Japan – Notification No. 88 of MIC 2004	
Table No 13	CB Radio
Table No 21	Cordless Telephone
Table Nos 22-1 thru 22-17	Low Power Radio Equipment
Table No 36	Low Power Security System
Table No 43	Low Power Data Communication in the 2.4 GHz Band
Table No 44	Low Power Data Communication in the 2.4 GHz Band
Table No 45	Low Power Data Communication in the 5.2, 5.3, 5.6 GHz Bands
Table No 46	Low Power Data Communication in the 25 and 27 GHz Bands
Table No 47	Base Station for 5 GHz Band Wireless Access System
Table No 47	Base Station for 5 GHz Band Wireless Access System (low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones, low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low power type)
Table No 50	Digital Cordless Telephone
Table No 50	PHS Base Station
Table No 50	PHS Land Mobile Station
Table No 50	PHS Relay Station
Table No 50	PHS Test Station
Table No 64	Mobile Station for Dedicated Short Range Communication Systems
Table No 64	Base Station for Dedicated Short Range Communication Systems
Table No 64	Test Station for Dedicated Short Range Communication Systems
Table No 70	UWB (Ultra Wide Band) Radio System

(A2LA Certificate No. 2742.01) Revised 01/12/2011

Peter Mhye Page 7 of 8

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 40 of 65 www.siemic.com

¹Note: This accreditation covers testing performed at the laboratory listed above and the OATS located at 44366 South Grimmer Blvd., Fremont CA 94538. At this site "Radiated Emissions" are tested at a measurement distance of 10m.

*Limitations for listed standards are indicated by italics and Scope excludes protocol sections of applicable standards.

(A2LA Certificate No. 2742.01) Revised 01/12/2011

Peter Almyen

Page 8 of 8

The American Association for Laboratory Accreditation

"World Class Accreditation"

SCOPE OF ACCREDITATION TO ISO/IEC GUIDE 65:1996

SIEMIC INC. 2206 Ringwood Ave. San Jose, CA 95131 Mr. Snell Leong (Authorized Representative) www.siemic.com

Phone: 408 526 1188

PRODUCT CERTIFICATION CONFORMITY ASSESSMENT BODY (CAB)

Valid to: September 30, 2012

Certificate Number: 2742.02

In recognition of the successful completion of the A2LA Certification Body Accreditation Program evaluation, including the US Federal Communications Commission (FCC), Industry Canada (IC), Singapore (IDA) and Hong Kong (OFTA) requirements for the indicated types of product certifications, accreditation is granted to this organization to perform the following <u>product certification schemes</u>:

Economy

Scope

Federal Communication Commission - (FCC)

Unlicensed Radio Frequency Devices	A1, A2, A3, A4
Licensed Radio Frequency Devices	B1, B2, B3, B4
Telephone Terminal Equipment	С

*Please refer to FCC TCB Program Roles and Responsibilities, released July 22, 2010 detailing scopes, roles and responsibilities. <u>http://fjallfoss.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=44683&switch=P</u>

Industry Canada - (IC)

Radio

Scope 1-Licence-Exempt Radio Frequency Devices; Scope 2-Licensed Personal Mobile Radio Services; Scope 3-Licensed General Mobile & Fixed Radio Services; Scope 4-Licensed Maritime & Aviation Radio Services; Scope 5-Licensed Fixed Microwave Radio Services;

*Please refer to Industry Canada (IC) website at: http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf09888.html

IDA - Singapore

Line Terminal Equipment

All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2009, Annex 2

Radio-Communication Equipment

All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2009, Annex 2

*Please refer to Info-Communication Development Authority (iDA) Singapore website at: http://www.ida.gov.sg/doc/Policies%20and%20Regulation/Policies_and_Regulation_Level2/20060609145118/MRARecSc heme.pdf (A2LA Cert. No. 2742.02) Revised 12/16/2010 Page 1 of 2

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 43 of 65

 wnaw siamic com

OFTA - Hong Kong

Radio Equipment

HKTA 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1015, 1016, 1019, 1020, 1022, 1026, 1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055

*Please refer to the Office of the Telecommunications Authority's website at: http://www.ofta.gov.hk/en/standards/HKTASpec/hkta-10xx.html

Fixed Network Equipment

HKTA 2001, 2005, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2040, 2041, 2102, 2103, 2104, 2108, 2201, 2202, 2203, 2204

*Please refer to the Office of the Telecommunications Authority's website at: http://www.ofta.gov.hk/en/standards/HKTASpec/hkta-2xxx.html

MIC - Japan

Terminal Equipment

Scope A1 - Terminal Equipment for the Purpose of Calls

Radio Equipment

Scope B1 - Unlicensed Station (all classes of equipment)

(A2LA Cert. No. 2742.02) Revised 12/16/2010

Peter Mlnye Page 2 of 2

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8
 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 44 of 65

 wnaw siamic com

SIEMIC ACCREDITATION DETAILS: FCC Test Site Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

June 08, 2011

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue, San Jose, CA 95131

Attention:

Leslie Bai, Director of Certification

Re: Measurement facility located at San Jose Anechoic chamber (3 meters) Date of Renewal: June 08, 2011

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 45 of 65 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Industry of Canada CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

March 4, 2009

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by Industry Canada (IC), under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131 USA
Identification No .:	US0160
Recognized Scope:	CS-03 Part I, II, V, VI, VII and VIII

You may submit test data to IC to verify that the equipment to be imported into Canada satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar at (301) 975-5521 or <u>ramona.saar@nist.gov</u> if you have any questions.

Sincerely,

Parial In Alde

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: CAB Program Manager

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 46 of 65

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Industry of Canada Test Site Registration No. 4842-1

Industry Industrie Canada Canada

May 27, 2010

OUR FILE: 46405-4842 Submission No: 140856

Siemic Inc. 2206 Ringwood Ave San Jose, CA, 95131 USA

Attention: Snell Leong

Dear Sir/Madame:

The Bureau has received your application for the renewal of a 3m alternative test site. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (4842A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- Your primary code is: 4842

- The company number associated to the site(s) located at the above address is: 4842A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Dolainderfill

Dalwinder Gill For: Wireless Laboratory Manager **Certification and Engineering Bureau** 3701 Carling Ave., Building 94 P.O. Box 11490, Station "H" Ottawa, Ontario K2H 8S2 Email: dalwinder gill@ic.gc.ca Tel. No. (613) 998-8363 Fax. No. (613) 990-4752

SL11110901-HID-024(FCC,IC) rev 1.0 Serial# Issue Date December 29, 2011 47 of 65 Page

SIEMIC ACCREDITATION DETAILS: FCC DOC CAB Recognition : US1109

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

August 28, 2008

Siemic Laboratories 2206 Ringwood Ave., San Jose, CA 95131

Attention: Leslie Bai

Re: Accreditation of Siemic Laboratories Designation Number: US1109 Test Firm Registration #: 540430

Dear Sir or Madam:

We have been notified by American Association for Laboratory Accreditation that Siemic Laboratories has been accredited as a Conformity Assessment Body (CAB).

At this time Siemic Laboratories is hereby designated to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification under Parts 15 and 18 of the Commission's Rules.

This designation will expire upon expiration of the accreditation or notification of withdrawal of designation.

Sincerely,

George Tannahill

George Tannahill **Electronics Engineer**

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 48 of 65 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	Siemic, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131
Identification No.:	US0160
Recognized Scope:	EMC: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009),
	AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS
	61000.6.3, AS/NZS 61000.6.4
	Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS
	4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS
	4769.2, AS/NZS 4770, AS/NZS 4771
	Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06,
	AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01,
	AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

Daniel I. alder

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

Serial# SL11110901-HID-024(FCC,IC) rev 1.0 Issue Date December 29, 2011 Page 49 of 65 weare signific com

SIEMIC ACCREDITATION DETAILS: Korea CAB ID: US0160

Radio Research Agency

KOREA COMMUNICATIONS COMMISSION REPUBLIC OF KOREA 1, Wonhyoro-3ga, Yongsan-gu, Seoul, 140-848, Korea

, wonnyoro-3ga, Yongsan-gu, Seoul, 140-848, K

KCC/RRA

Radio Research Agency

Tel: +82 2 710 6610 Fax: +82 2 710 6619 Homepage : www.rra.go.kr

14th Jan, 2011

Radio Research Agency Korea Communications Commission #1, Wonhyoro-3ga, Yongsan-gu Seoul Koren 300 848 (Tel) 82-2-710-6610, (Fax) 82-2-710-6619 Jan 14th, 2011

Mr. David F. Alderman Group Leader, Standards Coordination and Conformity Group National Institute of Standards and Technology 100 Bureau Drive, Stop 2100 Gaithersburg, Maryland 20899-2100, USA

Dear Mr. David F. Alderman:

This is to confirm the recognition by Radio Research Agency of

SIEMIC, Inc. (US0160)

as an accredited Conformity Assessment Body (CAB) under the terms of Phase I of the APEC TEL MRA. The scope for which this laboratory has been recognized is given below.

EMI : KCC Notice 2008-39, RRL Notice 2008-3 and KN22 EMS : KCC Notice 2008-38, RRL Notice 2008-4, KN24, KN 61000 -4-2, -4-3, -4-4, - 4-5, -4-6, -4-8, -4-11 Current Scope Radio : RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-11, RRL Notice 2007-80, RRL Notice 2004-68 Telecom : President Notice 20664, RRL Notice 2007-30, 2008-7(1,3,4,5,6) Updated Scope SAR : RRA Notice 2008-16, RRA Notice 2008-18, KCC Notice 2009-27	Coverage	Standards	Date of Recognition
Updated Scope SAR : RRA Notice 2008-16, RRA Notice 2008-18, KCC Notice 2009-27	Current Scope	EMS : KCC Notice 2008-38, RRL Notice 2008-4, KN24, KN 61000 -4-2, -4-3, -4-4, - 4-5, -4-6, -4-8, -4-11 Radio : RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-11, RRL Notice 2007-80, RRL Notice 2004-68	Jan 14 ¹⁶ , 2011
	Updated Scope	SAR : RRA Notice 2008-16, RRA Notice 2008-18, KCC Notice 2009-27	

This recognition is contingent upon the maintenance of this CAB's accreditation status and is limited to the standards listed above.

If you have any inquiries about this recognition, please contact to Certification Division of Radio Research Agency with above address and telephone numbers.

Best Regards,

K.-Y.M

Ahn, Kun-Young Director Certification Division

Enclosure

cc: Ramona Saar – NIST, JungMin Park - RRA

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 50 of 65

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Geithersburg, Maryland 20899-

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

- BSMI number:

SL2-IN-E-1130R (Must be applied to the test reports)

U.S Identification No:

US0160 CNS 13438

- Scope of Designation: CN
- Authorized signatory: Mr. Leslie Bai

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

Pand & accur

David F. Alderman Group Leader, Standards Coordination and Conformity Group

ce: Jogindar Dhillon

Title

То

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8
 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 51 of 65 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

March 16, 2009

Mr. LeslieBai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the National Communications Commission (NCC) for the requested scope expansion under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase 1** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Physical Location: Identification No.: Current Scope: Additional Scope: SIEMIC, Inc. 2206 Ringwood Avenue, San Jose, CA 95131 US0160 LP0002, PSTN01, ADSL01, ID0002, IS6100 and CNS 14336 PLMN07

You may submit test data to NCC to verify that the equipment to be imported into China satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

Z alda Da

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 52 of 65

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Vietnam CAB ID: US0160

BỘ THÔNG TIN VÀ TRUYỀN THÔNG

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc

Số: 65 /QĐ-BTTTT

Hà Nội, ngày A9 tháng 01 năm 2011

QUYÊT ĐỊNH Về việc Thừa nhận Phòng đo kiểm

BỘ TRƯỞNG BỘ THÔNG TIN VÀ TRUYỀN THÔNG

Căn cứ Nghị định số 187/2007/NĐ-CP ngày 25/12/2007 của Chính phủ quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Bộ Thông tin và Truyền thông;

Căn cứ Quyết định số 172/2003/QĐ-BBCVT ngày 29/10/2003 của Bộ trưởng Bộ Bưu chính, Viễn thông (nay là Bộ Thông tin và Truyền thông) quy định về việc thừa nhận các Phòng đo kiểm đã được các Bên tham gia Thoả thuận thừa nhận lẫn nhau về đánh giá hợp chuẩn thiết bị viễn thông với Việt Nam chỉ định;

Theo đề nghị của Vụ trưởng Vụ Khoa học và Công nghệ,

QUYÉT ĐỊNH:

Điều 1. Thừa nhận phòng đo kiểm:
 SIEMIC, INC. – US0160
 Địa chỉ: 2206 Ringwood Avenue, San Jose, CA 95131 USA

(đã được Viện tiêu chuẩn và công nghệ quốc gia Hoa Kỳ (NIST) chỉ định và đề nghị thừa nhận) đáp ứng đầy đủ các yêu cầu về việc thừa nhận Phòng đo kiểm đã được Bên tham gia Thoả thuận thừa nhận lẫn nhau về đánh giá hợp chuẩn thiết bị viễn thông với Việt Nam chỉ định theo Quyết định số 172/2003/QĐ-BBCVT với phạm vi thừa nhận kèm theo Quyết định này.

Điều 2. Phòng đo kiểm có tên tại Điều 1 có các quyền lợi và nghĩa vụ theo quy định tại Quyết định số 172/2003/QĐ-BBCVT.

Điều 3. Phòng đo kiểm có tên tại Điều 1 và các cơ quan, tổ chức có liên quan chịu trách nhiệm thi hành Quyết định này.

Điều 4. Quyết định này có hiệu lực đến ngày 30/09/2012./.

Noi nhận:

- Như Điều 3;
- Bộ trưởng (để b/c);
- Trung tâm Thông tin (để đăng website);
- Luu: VT, KHCN.

Nguyễn Thành Hưng

Accessing global markets RF Test Report of HID Global Corporation

Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8
 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 53 of 65

 www.microing.com

SIEMIC ACCREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentín V. Rivero JIE CAMARA NACIONA DE LA INDUSTRIA ELECTRONICA, DE TELECOMUNICACIONES E INFORMATICA México D.F. a 16 de octubre de 2006. LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuerdo en idioma ingles y español prellenado de los cuales le pido sea revisado y en su caso corregido, para que si esta de acuerdo poder firmarlo para mandarlo con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho acuerdo. Aprovecho este escrito para mencionarle que nuestro intermediario gestor será la empresa Isatel de México, S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo relacionado a la evaluación de la conformidad y que cuenta con amplia experiencia en la gestoría de la certificación de cumplimiento con Normas Oficiales Mexicanas de producto en México. Me despido de ustad enviândole un cordial saludo y esperando sus comentarios al Acuerdo que nos ocupa. Atentamente: Ing. Fausting Bornez González Gerente-Ferrico del Laboratorio de GANIEH. Cullacán 71 Haddromo Condesa 06100 Máxido, D.F. Tel: 5264-0908 con 12 lineas Fax 5264 0499

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 54 of 65 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Hong Kong OFTA CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

December 8, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Office of the Telecommunications Authority (OFTA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, California 95131 USA
Identification No.:	US0160
Recognized Scope:	Radio: HKTA 1002, 1007, 1008, 1010, 1015, 1016, 1020, 1022, 1026,
	1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1039, 1041,
	1042, 1043, 1044, 1046, 1047, 1048, 1049, 1051
	Telecom: HKTA 2011, 2012, 2013, 2014, 2017, 2018, 2022, 2024, 2026,
	2027, 2028, 2029, 2030, 2031, 2032, 2033

You may submit test data to OFTA to verify that the equipment to be imported into Hong Kong satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David I. alden

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 55 of 65 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia ACMA CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Siemic, Inc. Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131 Identification No .: US0160 Recognized Scope: EMC: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009), AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS 61000.6.3, AS/NZS 61000.6.4 Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771 Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

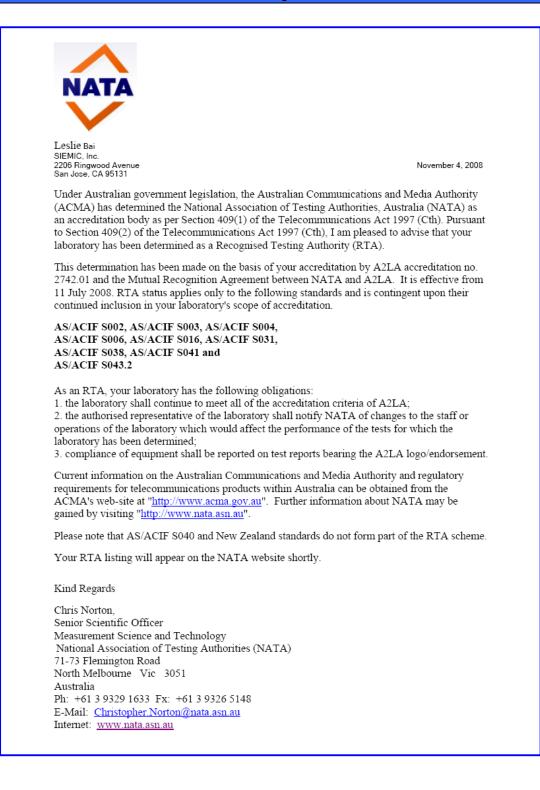
Sincerely,

David F. alder

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST


То

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8
 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 56 of 65 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia NATA Recognition

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 57 65

 wnaw siamic com

SIEMIC ACCREDITATION DETAILS: VCCI Radiated Test Site Registration No. R-3083

То

RF Test Report of HID Global Corporation Model : OMNIKEY 4121 CL FCC 15.225 2010, RSS-210 Issue 8
 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 58 of 65

 wave name name open

SIEMIC ACCREDITATION DETAILS: VCCI Conducted (Main Port) Test Site Registration No. C-3421

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

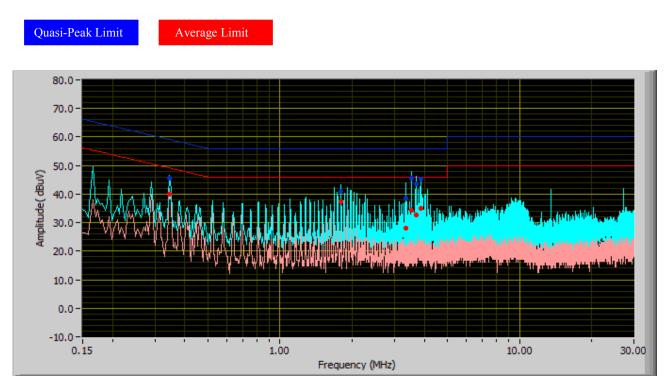
 Issue Date
 December 29, 2011

 Page
 59 of 65

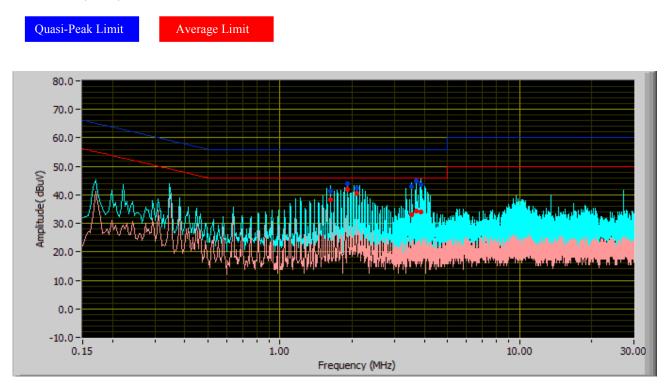
 www simic com

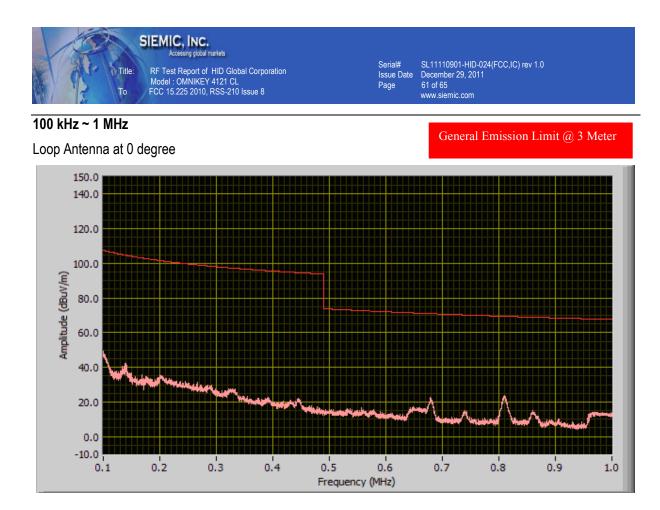
SIEMIC ACCREDITATION DETAILS: VCCI Conducted (Telecom Port) Test Site Registration No. T-1597

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

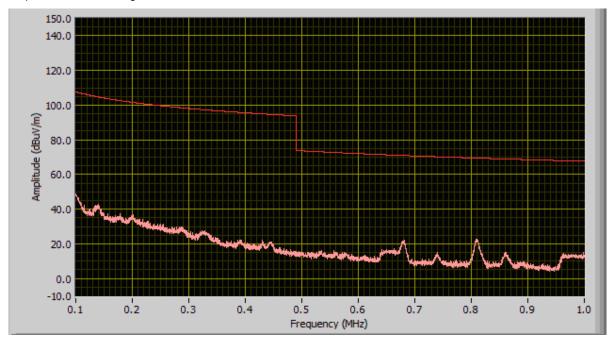

 Issue Date
 December 29, 2011

 Page
 60 of 65


 Work with the initial open


Annex F. Test Plots

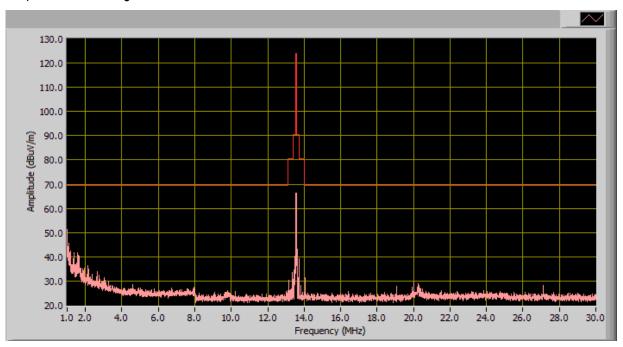
120V, 60Hz, Neutral Line



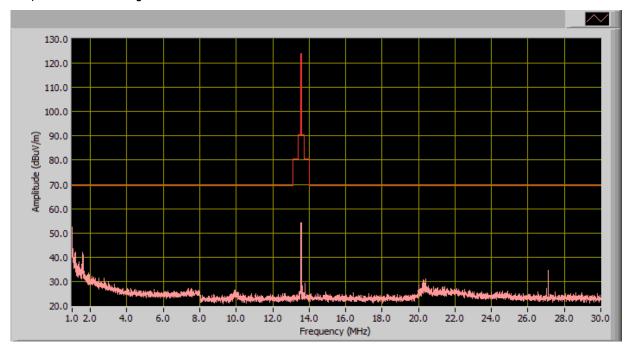
120V, 60Hz, Phase Line

Loop Antenna at 90 degree

 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0


 Issue Date
 December 29, 2011

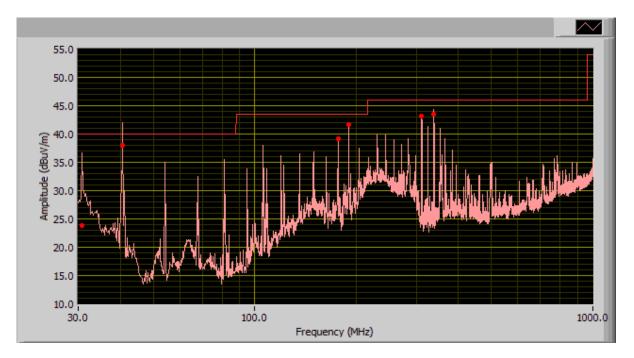
 Page
 62 of 65


1MHz ~ 30MHz

Loop Antenna at 0 degree

General Emission Limit @ 3 meter

Loop Antenna at 90 degree



 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

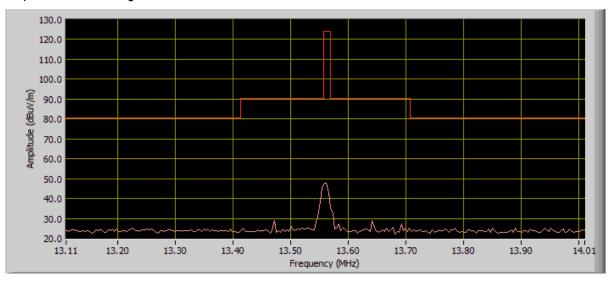
 Page
 63 of 65

General Emission Limit @ 3 meter

30MHz ~ 1000MHz

 Serial#
 SL1110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

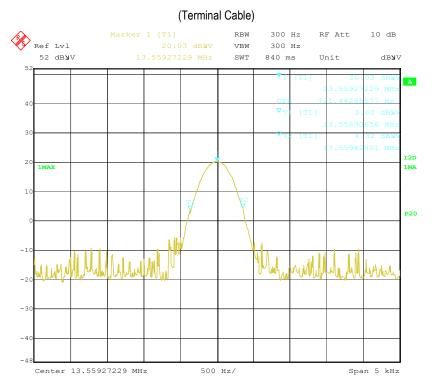

 Page
 64 of 65

14.01

Loop Antenna at 0 degree General Emission Limit @ 3 meter 130.0 120.0 110.0 100.0 90.0 Amplitude (dBuV/m) 80.0 70.0 60.0 50.0 40.0 30.0

A ٧L AAAA 20.0 10.0 13.30 13.40 13.50 13.60 13.70 13.80 13.90 13.20 13,11 Frequency (MHz)

Loop Antenna at 90 degree



 Serial#
 SL11110901-HID-024(FCC,IC) rev 1.0

 Issue Date
 December 29, 2011

 Page
 65 of 65

Plots: 13.56 MHz

