

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

Wireless In-Wall Dimmer Switch

MODEL NUMBER: GT-RF2

FCC ID: JPZ0110 IC: 2851A-JPZ0110

REPORT NUMBER: 10657820

ISSUE DATE: January 28, 2015

Prepared for

LUTRON ELECTRONICS CO INC. 7200 SUTER RD COOPERSBURG PA, 18036, USA

> Prepared by UL LLC 333 Pfingsten Rd. Northbrook, IL 60062 TEL: (847) 272-8800

Revision History

Rev.	Issue Date	Revisions	Revised By
	20150128	Initial Issue	BM

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. T	EST METHODOLOGY	5
3. F	ACILITIES AND ACCREDITATION	5
4. C	ALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	5
5. E	QUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5.3.	SOFTWARE AND FIRMWARE	6
5.4.	WORST-CASE CONFIGURATION AND MODE	6
5.5.	MODIFICATIONS	6
5.6.	DESCRIPTION OF TEST SETUP	7
6. T	EST AND MEASUREMENT EQUIPMENT	9
7. A	NTENNA PORT TEST RESULTS	10
7.1.	20 dB AND 99% BW	10
7.2.	DUTY CYCLE	14
7.3.	TRANSMISSION TIME	17
8. R	ADIATED EMISSION TEST RESULTS	18
8.1.	TX RADIATED SPURIOUS EMISSION	18
8.2.	RX & DIGITAL EMISSION	24
9. A	C MAINS LINE CONDUCTED EMISSIONS	25
10.	SETUP PHOTOS	28

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: LUTRON ELECTRONICS CO INC.

7200 SUTER RD

COOPERSBURG, PA, 18036, USA

EUT DESCRIPTION: Wireless In-Wall Dimmer Switch

MODEL: GT-RF2

SERIAL NUMBER: Non-Serialized

DATE TESTED: January 26, 2015 – January 27, 2015

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART C Pass

INDUSTRY CANADA RSS-210 Issue 8, Annex 1 Pass

INDUSTRY CANADA RSS-GEN Issue 4 Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC By: Michael Ferrer

Tested By: Bart Mucha

AMhulu

UL LLC

UL LLC

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 333 Pfingsten Road, Northbrook, IL 60062 USA.

UL NBK is accredited by NVLAP, Laboratory Code 100414-0. The full scope of accreditation can be viewed at http://ts.nist.gov/Standards/scopes/1004140.htm

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test	Range	Equipment	Uncertainty k=2
Radiated Emissions	30-200MHz	Bicon 3m Horz	3.30dB
Radiated Emissions	30-130MHz	Bicon 3m Vert	4.84dB
Radiated Emissions	130-200MHz	Bicon 3m Vert	4.94dB
Radiated Emissions	200-1000MHz	LogP 3m Horz	3.46dB
Radiated Emissions	200-1000MHz	LogP 3m Vert	4.98dB
Radiated Emissions	1-6GHz	Horn	5.02dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a wireless dimmer switch intended for lighting applications. It contains a periodic transceiver that operates on single pre-set channel between 431MHz and 437MHz.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral antenna that is not user accessible or configurable.

5.3. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was RadioRa2 (image ID = "0795744").

The software used during testing was e81cd2d.

5.4. WORST-CASE CONFIGURATION AND MODE

Testing was conducted for Radiated and Conducted emissions on the lowest and highest channels.

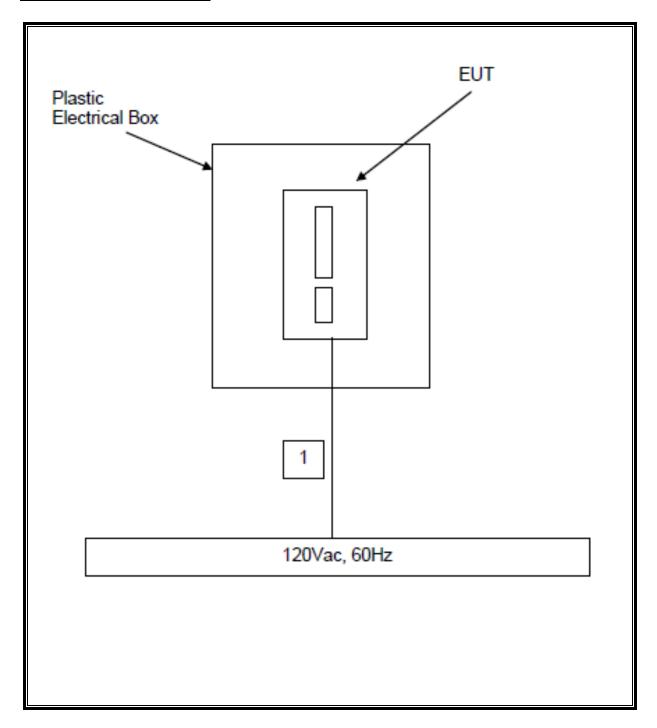
5.5. MODIFICATIONS

No modifications were made during testing.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

None


I/O CABLES

	I/O Cable List					
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks
No		ports	Туре		Length (m)	
1	AC Mains	1	Hardwire	Unshielded	> 3m	None
2	AC Output	1	Hardwire	Unshielded	> 3m	Left Unterminated

TEST SETUP

The EUT was tested in a plastic electrical box as a stand-alone device.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Conducted Emissions

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESR	EMC4377	April 1, 2014	April 1, 2015
Transient Limiter	Electro-Metrics	EM7600-2	EMC4224	N/A	N/A
HighPass Filter	Solar Electronics	2803-150	885551	N/A	N/A
Attenuator	HP	8494B	2831A00838	N/A	N/A
LISN - L1	Solar	8602-50-TS-50-N	EMC4052	Jan 09, 2015	Jan 10, 2016
LISN - L2	Solar	8602-50-TS-50-N	EMC4064	Jan 09, 2015	Jan 10, 2016

Radiated Emissions including Duty Cycle Measurements & Bandwidth Measurements

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	EMC4328	20141230	20151231
Bicon Antenna	Chase	VBA6106A	EMC4078	20140401	20150401
Log-P Antenna	Chase	UPA6109	EMC4313	20141119	20151130
EMI Test Receiver	Rohde & Schwarz	ESU	EMC4323	20141227	20151231
Antenna Array	UL	BOMS	EMC4276	20141201	20151231
Spectrum Analyzer	Agilent	N9030A (PXA)	EMC4360	20141227	20151231

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BW

LIMITS

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC RSS-210, A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.10

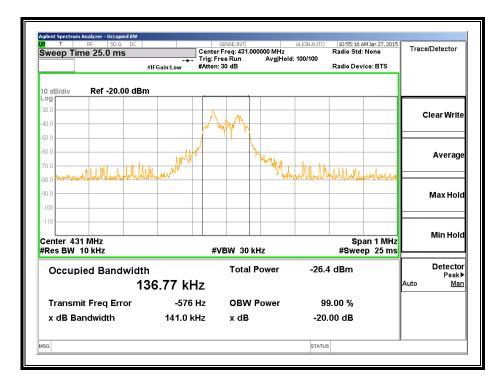
The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 10 KHz. The VBW is set to 30 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

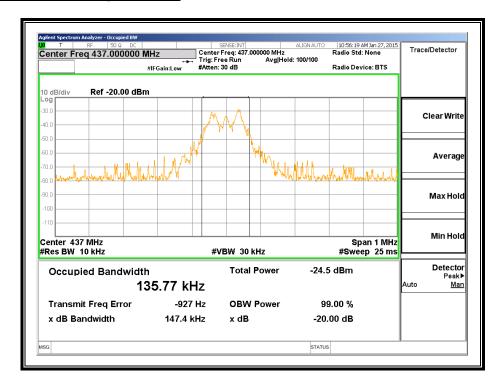
99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

No non-compliance noted:

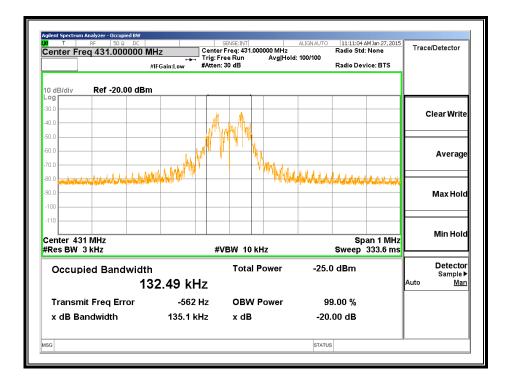

20dB Bandwidth

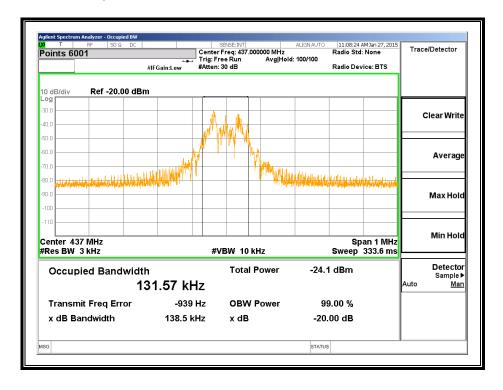
Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
431	141.0	1077.5	-936.5
437	147.4	1092.5	-945.1


99% Bandwidth

Frequency	99% Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
431	132.49	1077.5	-945.01
437	131.57	1092.5	-960.93

20dB BANDWIDTH Low Channel


20dB BANDWIDTH High Channel


TEL: (847) 272-8800

This report shall not be reproduced except in full, without the written approval of UL LLC

99% BANDWIDTH Low Channel

99% BANDWIDTH High Channel

Page 13 of 29

7.2. DUTY CYCLE

LIMITS

FCC §15.35 (c)

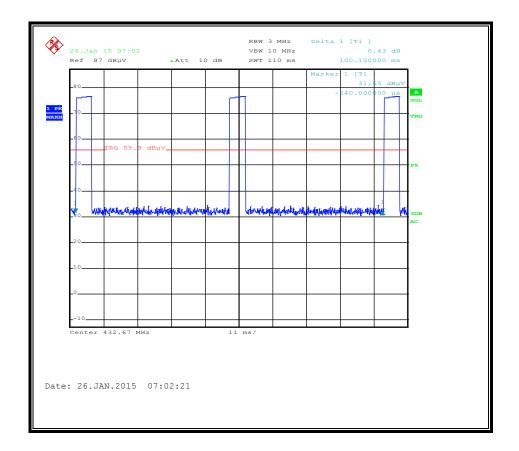
The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

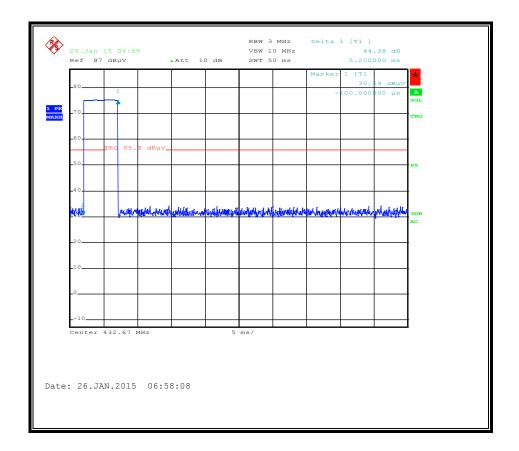
The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1000 kHz and the VBW is set to 1000 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T


RESULTS

No non-compliance noted:


One	Pulse	# of	Duty	20*Log
Period	Width	Pulses	Cycle	Duty Cycle
(ms)	(ms)			(dB)

UL LLC FORM NO: CCSUP4701I 333 Pfingsten Rd., Northbrook, IL 60062, USA TEL: (847) 272-8800

Period

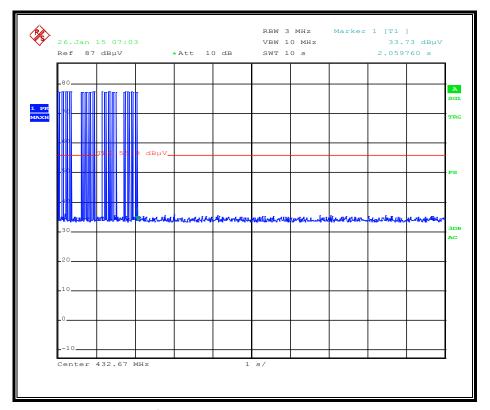
PULSE WIDTH

7.3. TRANSMISSION TIME

LIMITS

FCC §15.231 (a) (2)

IC RSS-210 A1.1.1 (b)


A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 3000 kHz and the VBW is set to 10000 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

The device stops transmitting after 2.06s.

8. RADIATED EMISSION TEST RESULTS

8.1. TX RADIATED SPURIOUS EMISSION

LIMITS

FCC §15.231 (b) IC RSS-210 A1.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental Frequency (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 ¹	125 to 375 ¹
174 - 260	3,750	375
260 - 470	3,750 to 12,500 ¹	375 to 1,250 ¹
Above 470	12,500	1,250

¹ Linear interpolation

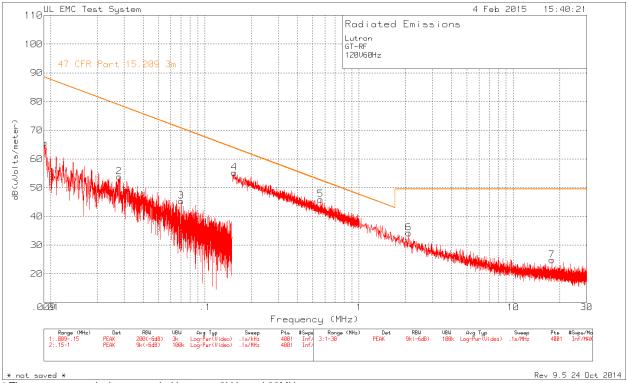
§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 – 13.41	322 - 335.4		

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

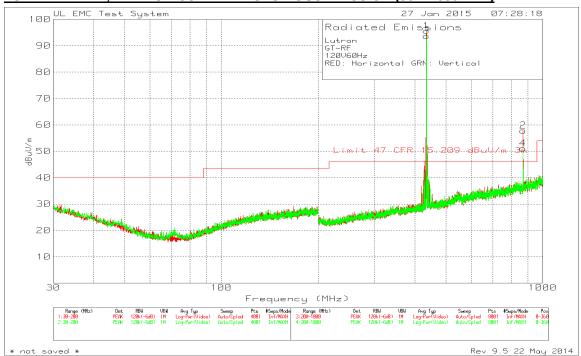
§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.


RESULTS

Emissions 9kHz - 30MHz

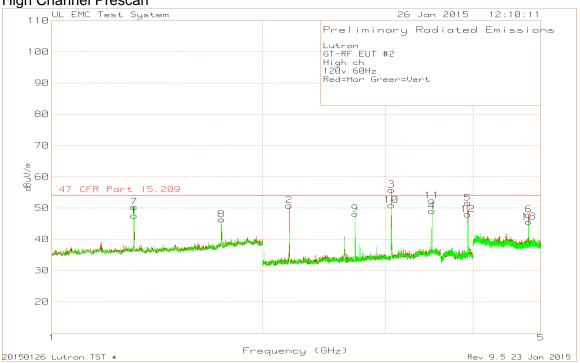
^{*} There were no emissions recorded between 9kHz and 30MHz

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)

Test	Meter		Antenna	Path	Peak				Average					
Frequency	Reading		Factor	Factor	Level	Peak Limit	Peak	Duty Cycle	level	Average	Margin	Azimuth	Height	
(MHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	dBuV/m	Margin dB	Factor dB	dBuV/m	Limit dBuV/m	dB	[Degs]	[cm]	Polarity
431.0402	70.49	PK	17	8.5	95.99	100.72	-4.73	-19.65	76.34	80.72	-4.38	7	213	Н
431.0353	68.98	PK	17	8.5	94.48	100.72	-6.24	-19.65	74.83	80.72	-5.89	139	102	V
436.9607	68.57	PK	17.2	8.5	94.27	100.93	-6.66	-19.65	74.62	80.93	-6.31	351	218	Н
437.0371	71.05	PK	17.2	8.5	96.75	100.93	-4.18	-19.65	77.1	80.93	-3.83	138	117	V
861.9335	13.83	PK	23.3	10.2	47.33	66.02	-18.69	-19.65	27.68	46.02	-18.34	40	379	Н
862.0764	18.09	PK	23.3	10.2	51.59	66.02	-14.43	-19.65	31.94	46.02	-14.08	328	141	V
874.032	21.66	PK	23	10.2	54.86	66.02	-11.16	-19.65	35.21	46.02	-10.81	303	104	Н
873.9212	16.89	PK	23	10.2	50.09	66.02	-15.93	-19.65	30.44	46.02	-15.58	143	203	V
PK - Peak de	tector													

TEL: (847) 272-8800

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz


| Company | Comp

Frequency (GHz)

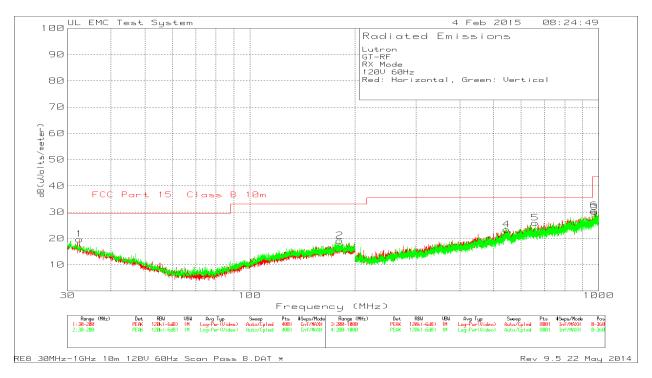
Rev 9.5 23 Jan 2015

20150126 Lutron.TST *

Radiated Emissions above 1GHz Data

					L .			Duty		Limit 47				
Test	Meter		Antenna		Peak	Peak	Peak	Cycle		CFR Part	Av erage			
	Reading		Factor		Level	Limit	Margin	Factor	Level	15.209	Margin	Azimuth	_	
(GHz)	(dBuV)	Detector	dB	dB	dBuV/m	dBuv/m	dB	dB	dBuV/m	dBuV/m	dB	[Degs]	[cm]	Polarity
Low Channel														
1.293	82.38	Pk	25.2	-55.71	51.87	74	-22.13	-19.65	32.22	54	-21.78	0-360	100	Н
2.155	80.7	Pk	21.6	-52.47	49.83	74	-24.17	-19.65	30.18	54	-23.82	0-360	150	Н
3.017	84.83	Pk	22.5	-50.85	56.48	74	-17.52	-19.65	36.83	54	-17.17	0-360	150	Н
3.879	79.07	Pk	23.9	-51.2	51.77	74	-22.23	-19.65	32.12	54	-21.88	0-360	99	Н
4.741	74.33	Pk	27.7	-51.27	50.76	74	-23.24	-19.65	31.11	54	-22.89	0-360	100	Н
1.015	80.67	Pk	24.1	-56.51	48.26	74	-25.74	-19.65	28.61	54	-25.39	0-360	150	V
1.293	83.4	Pk	25.2	-55.71	52.89	74	-21.11	-19.65	33.24	54	-20.76	0-360	150	V
3.017	80.15	Pk	22.5	-50.85	51.8	74	-22.2	-19.65	32.15	54	-21.85	0-360	100	V
3.448	78.06	Pk	23.5	-51.07	50.49	74	-23.51	-19.65	30.84	54	-23.16	0-360	150	V
3.879	76.69	Pk	23.9	-51.2	49.39	74	-24.61	-19.65	29.74	54	-24.26	0-360	150	V
High Channe	el													
1.311	77.85	Pk	25.2	-55.54	47.51	74	-26.49	-19.65	27.86	54	-26.14	0-360	150	Н
2.185	81.42	Pk	21.7	-52.28	50.84	74	-23.16	-19.65	31.19	54	-22.81	0-360	150	Н
3.059	83.89	Pk	22.6	-50.67	55.82	74	-18.18	-19.65	36.17	54	-17.83	0-360	150	Н
3.497	75.6	Pk	23.5	-50.12	48.98	74	-25.02	-19.65	29.33	54	-24.67	0-360	100	Н
3.934	78.63	Pk	24	-51.03	51.6	74	-22.4	-19.65	31.95	54	-22.05	0-360	100	Н
4.808	70.75	Pk	27.7	-50.58	47.87	74	-26.13	-19.65	28.22	54	-25.78	0-360	150	Н
1.311	80.69	Pk	25.2	-55.54	50.35	74	-23.65	-19.65	30.7	54	-23.3	0-360	150	V
1.748	73.84	Pk	26.5	-53.99	46.35	74	-27.65	-19.65	26.7	54	-27.3	0-360	150	٧
2.715	77.43	Pk	22.1	-51.37	48.16	74	-25.84	-19.65	28.51	54	-25.49	0-360	100	٧
3.059	78.95	Pk	22.6	-50.67	50.88	74	-23.12	-19.65	31.23	54	-22.77	0-360	100	٧
3.497	78.97	Pk	23.5	-50.12	52.35	74	-21.65	-19.65	32.7	54	-21.3	0-360	100	٧
3.933	75.01	Pk	24	-51.05	47.96	74	-26.04	-19.65	28.31	54	-25.69	0-360	150	٧
4.808	68.45	Pk	27.7	-50.58	45.57	74	-28.43	-19.65	25.92	54	-28.08	0-360	150	٧
Pk - Peak D	etector													

8.2. RX & DIGITAL EMISSION


LIMITS

§15.109 Radiated emission limits.

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/meter)
30-88	100
88-216	150
216-960	200
Above 960	500

* Digital radiated emissions measurements were conducted at a distance of 10m. The limits were extrapolated to the measurement distance.

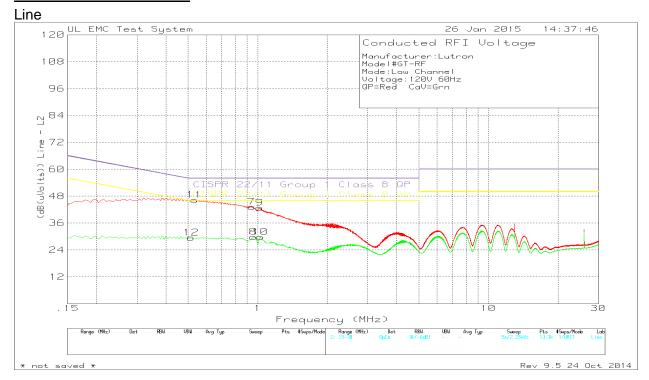
^{*} There were no emissions recorded from the EUT. There was also no emissions recorded above 1GHz.

9. AC MAINS LINE CONDUCTED EMISSIONS

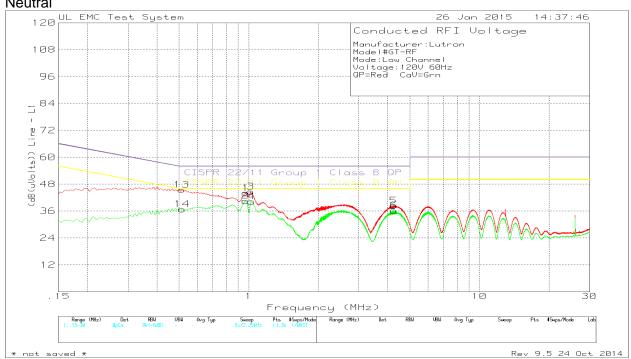
LIMITS

§15.207 (a) IC RSS-GEN, Section 7.2.2

Frequency of emission	Conducted Limit (dBµV)							
(MHz)	Quasi-peak	Average						
0.15 to 0.50	66 to 56*	56 to 46*						
0.50 to 5	56	46						
5 to 30	60	50						
* Decreases with the logarithm of the frequency.								


TEST PROCEDURE

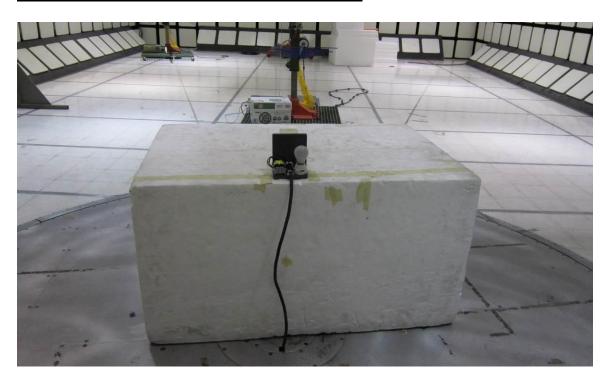
ANSI C63.10


RESULTS

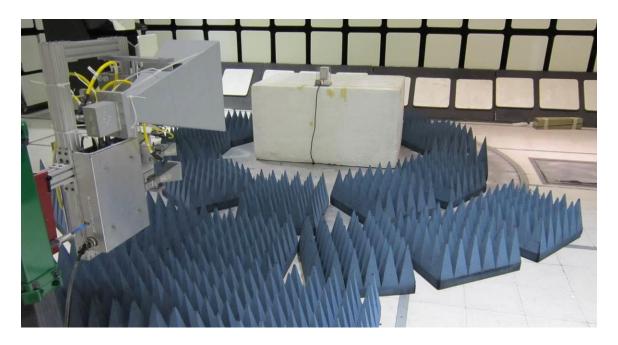
No non-compliance noted:

Conducted Emissions Scan

Neutral



Conducted Emissions Data


Manufacturer:Lutron										
Model#GT-RF										
Voltage:120V 60Hz										
QP=Red CaV=Grn										
Trace Markers										
							Limit 47		Limit QP	
							CFR Part		47 CFR	
	Test	Meter		LISN	Path		15.207	QP	Part	AV
Marker	Frequency	Reading		Factor	Factor	Lev el	AV	Margin	15.207	Margin
No.	(MHz)	(dBuV)	Detector	dB	dB	dBuV	dBuV	dB	AV dBuV	dB
Line										
1	0.97125	33.27	Qp	0.1	10.6	43.97	56	-12.03	-	-
2	0.969	29.86	Ca	0.1	10.6	40.56	-	-	46	-5.44
3	1.02075	33.87	Qp	0.1	10.6	44.57	56	-11.43	-	-
4	1.02525	29.55	Са	0.1	10.6	40.25	-	-	46	-5.75
5	4.245	27.57	Qp	0.1	10.7	38.37	56	-17.63	-	-
6	4.26075	25.38	Са	0.1	10.7	36.18	-	-	46	-9.82
13	0.51225	34.77	Qp	0.1	10.6	45.47	56	-10.53	-	-
14	0.5145	26.09	Са	0.1	10.6	36.79	-	-	46	-9.21
Neutral										
7	0.942	32.44	Qp	0.1	10.7	43.24	56	-12.76	-	-
8	0.95775	19	Са	0.1	10.7	29.8	-	-	46	-16.2
9	1.02075	32.04	Qp	0.1	10.7	42.84	56	-13.16	-	-
10	1.02525	18.97	Са	0.1	10.7	29.77	-	-	46	-16.23
11	0.5325	35.49	Qp	0.1	10.7	46.29	56	-9.71	-	-
12	0.5145	18.67	Са	0.1	10.7	29.47	-	-	46	-16.53
Qp - Qua	si-Peak dete									
Ca - CIS	PR Av erage									

10. SETUP PHOTOS

RADIATED EMISSION CONFIGURATION BELOW 1GHz

RADIATED EMISSION CONFIGURATION ABOVE 1GHz

FORM NO: CCSUP4701I TEL: (847) 272-8800

Northbrook, IL 60062, USA TEL: (847) 272-880

Conducted Emissions

END OF REPORT