

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

MOTORIZED SHADES DRIVE

MODEL NUMBER: QSFC-J-EDU-R2

FCC ID: JPZ0095 IC: 2851A-JPZ0095

REPORT NUMBER: 10052927-DC

ISSUE DATE: 2013-09-13

Prepared for LUTRON ELECTRONICS CO INC 7200 SUTER RD COOPERSBURG , PA 18036 USA

Prepared by UL LLC 1285 WALT WHITMAN RD. MELVILLE, NY 11747, U.S.A. TEL: (631) 271-6200 FAX: (877) 854-3577

R

NVLAP LAB CODE 100255-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	2013- 09-13	Initial Issue	B. DeLisi

UL LLC. FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 2 of 38

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS 4
2.	TES	ST METHODOLOGY
3.	FAC	CILITIES AND ACCREDITATION
4.	CAL	_IBRATION AND UNCERTAINTY
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	SAMPLE CALCULATION
4	1.3.	MEASUREMENT UNCERTAINTY
5.	EQI	JIPMENT UNDER TEST 6
5	5.1.	DESCRIPTION OF EUT
5	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS
5	5.3.	SOFTWARE AND FIRMWARE
5	5.4.	WORST-CASE CONFIGURATION AND MODE
5	5.5.	MODIFICATIONS
5	5.6.	DESCRIPTION OF TEST SETUP
6.	TES	ST AND MEASUREMENT EQUIPMENT 9
7.	AN	FENNA PORT TEST RESULTS11
7	.1.	20 dB AND 99% BW11
7	.2.	DUTY CYCLE
7	7.3.	TRANSMISSION TIME
8.	RA	DIATED EMISSION TEST RESULTS21
8	8.1.	TX RADIATED SPURIOUS EMISSION21
8	8.2.	RX RADIATED SPURIOUS EMISSION
9.	SET	TUP PHOTOS

Page 3 of 38

Pass

Pass

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	LUTRON ELECTRONICS CO INC 7200 SUTER RD COOPERSBURG , PA 18036 USA				
EUT DESCRIPTION:	Motorized Shade Drive				
MODEL:	QSFC-J-EDU-R2				
SERIAL NUMBER:	Non-serialized production unit				
DATE TESTED:	2013-08-29 through 2013-09-06				
APPLICABLE STANDARDS					
ST	ANDARD	TEST RESULTS			
FCC PART	15 SUBPART C	Pass			

INDUSTRY CANADA RSS-210 Issue 8, Annex 1

INDUSTRY CANADA RSS-GEN Issue 3

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation, as described by the referenced documents. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL By:

Tested By:

Bob DeLisi WiSE Principal Engineer UL LLC

Joseph Danisi WiSE Project Lead UL LLC

Page 4 of 38

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/1002550.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.3 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.00 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 38

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a motor shade drive with wireless control capability that is powered by an external battery pack.

The model tested, QSFC-J-EDU-R2 represents SYC-J-EDU-R2. Electrically there is no difference between the two units. The model difference distinguishes types of other devices that work with the unit.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral monopole antenna constructed of a wire..

5.3. SOFTWARE AND FIRMWARE

RF_Godwit_1.68_FCC1_TXPow0x85 - Transmit

RF_Godwit_1.68_FCC2_TXPow0x85 - Receive

RF_Godwit_2.91_FCC4_TXPow0x85 – Transmit on Button Press

5.4. WORST-CASE CONFIGURATION AND MODE

Testing was conducted on the lowest and highest channels for all radiated tests. All other tests were conducted on a single channel. The antenna was oriented 90° from the motor housing for worst case emissions.

5.5. MODIFICATIONS

No modifications were made during testing.

Page 6 of 38

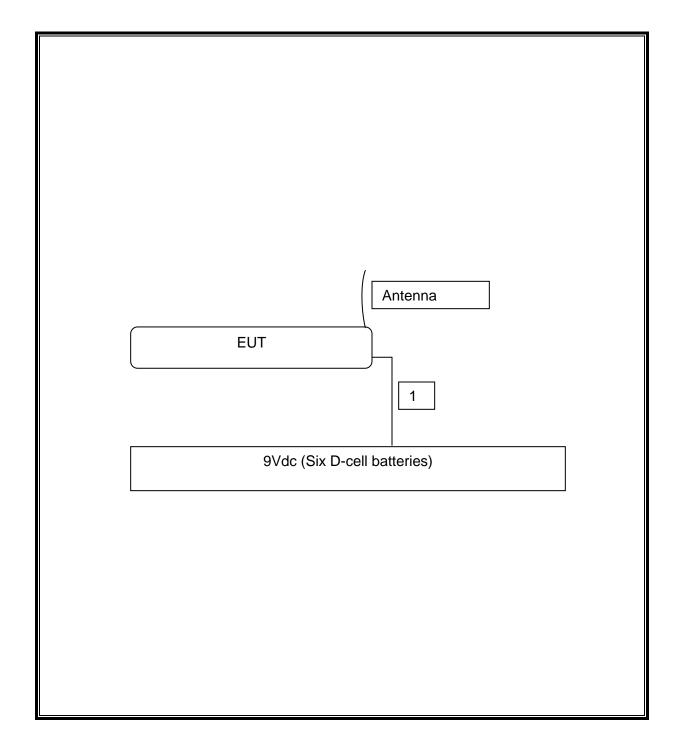
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Not Applicable

I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	DC	1	plug-in	Unshielded		Cable between battery pack and motor		


TEST SETUP

The EUT was tested as a stand-alone device connected to a Battery pack.

UL LLC. FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 7 of 38

SETUP DIAGRAM FOR TESTS

Page 8 of 38

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Radiated Emissions						
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date	
30-1000MHz						
	Rohde &					
EMI Receiver	Schwarz	ESCI7	75141	2013-01-30	2014-01-31	
Bicon Antenna	Schaffner	VBA6106A	54	2013-04-03	2014-04-03	
Log-P Antenna	Schaffner	UPA6109	44067	2013-07-09	2014-07-09	
Bias Tee	Miteq	AM-1523-7687	44392	N/A	N/A	
Bias Tee	Miteq	AM-1523-7687	44393	N/A	N/A	
Preamp	Miteq	AM-3A-000110- 7687	44391	N/A	N/A	
Preamp	Miteq	AM-3A-000110- 7687	44394	N/A	N/A	
Switch Driver	HP	11713A	ME7A-627	N/A	N/A	
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A	
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A	
RF Switch Box	UL	1	44398	N/A	N/A	
Measurement Software	UL	Version 9.5	44740	N/A	N/A	
Multimeter	Fluke	87V	64386	2013-01-28	2014-01-31	
Temp/Humidity/Pressure Meter	Cole Palmer	99760-00	4268	2012-12-22	2014-12-22	
Above 1GHz (Band Optimized Sy	stem)	·	·			
Spectrum Analyzer	Agilent	E4446A	72823	2013-01-30	2014-01-31	
Horn Antenna (1-2 GHz)	ETS	3161-01 (26°)**	51442	2008-03-28	See * below	
Horn Antenna (2-4 GHz)	ETS	3161-02 (22°)**	48107	2007-09-27	See * below	
Horn Antenna (4-8 GHz)	ETS	3161-03 (22°)**	48106	2007-09-27	See * below	
Signal Path Controller	HP	11713A	50250	N/A	N/A	
Gain Controller	HP	11713A	50251	N/A	N/A	
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A	
System Controller	UL	BOMS2	50252	N/A	N/A	
Measurement Software	UL	Version 9.5	44740	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22	
Multimeter	Fluke	87V	79648	2013-01-30	2014-01-31	

* - Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

** - Number in parentheses denotes antenna beam width.

Page 9 of 38

Bench Tests							
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date		
Conducted Emissions – GP 1							
	Rohde &						
EMI Receiver	Schwarz	ESIB26	ME5B-081	2013-01-28	2014-01-31		
Dipole Antenna	EMCO	3121C	3359	2012-12-27	2013-12-27		
Multimeter	Fluke	83V	43443	2013-01-28	2014-01-31		

Page 10 of 38

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BW

<u>LIMITS</u>

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.4

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 10 KHz. The VBW is set to 100 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

UL LLC. FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

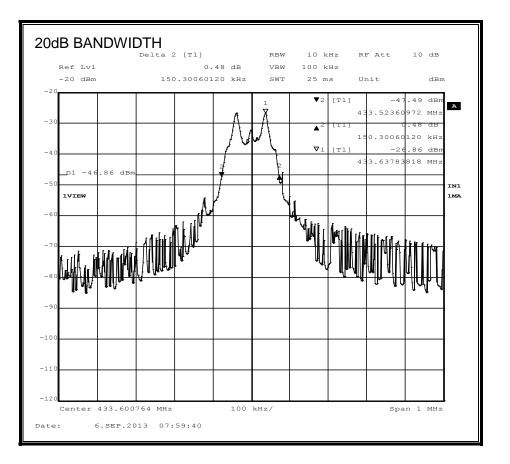
Page 11 of 38

RESULTS

No non-compliance noted:

20dB Bandwidth

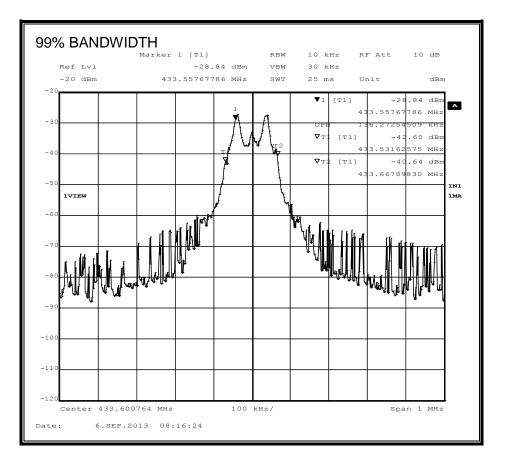
Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
433.6	150.3	1084	-933.7


99% Bandwidth

Frequency	99% Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
433.6	136.3	1084	-947.7

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 12 of 38


20dB BANDWIDTH

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 13 of 38

99% BANDWIDTH

Page 14 of 38

7.2. DUTY CYCLE

<u>LIMITS</u>

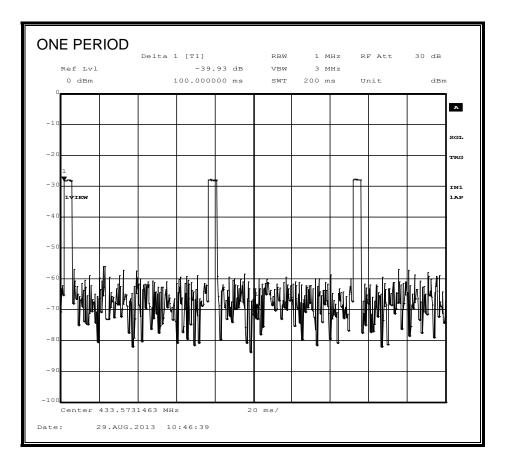
FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

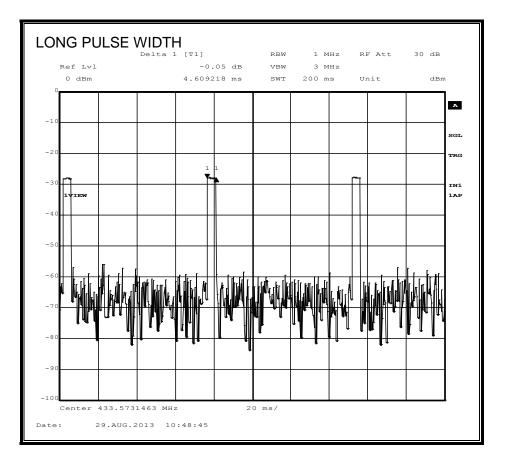
The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1 MHz and the VBW is set to 1 MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION


Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

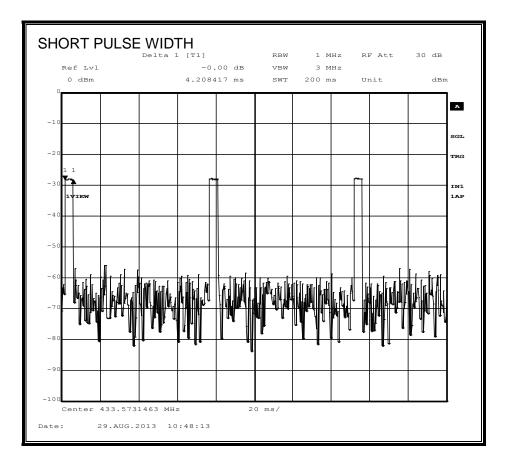
<u>RESULTS</u>

No non-compliance noted:


One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)

ONE PERIOD

Page 16 of 38


LONG PULSE WIDTH

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 17 of 38

SHORT PULSE WIDTH

Page 18 of 38

7.3. TRANSMISSION TIME

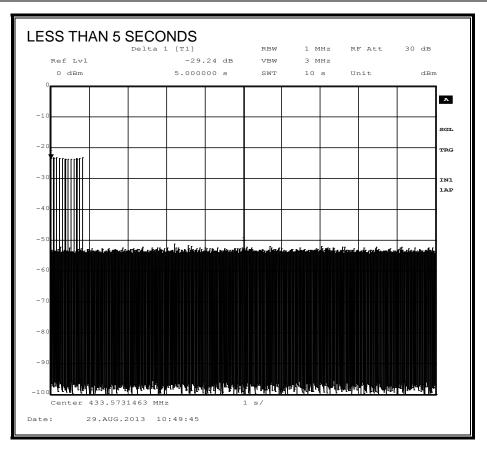
LIMITS

FCC §15.231 (a) (2)

IC A1.1.1 (b)

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1 MHz and the VBW is set to 1 MHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 19 of 38

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 20 of 38

8. RADIATED EMISSION TEST RESULTS

8.1. TX RADIATED SPURIOUS EMISSION

LIMITS

FCC §15.231 (b) IC A1.1.2 In addition to the pr

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of
Frequency	Fundamental Frequency	Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 ¹	125 to 375 ¹
174 - 260	3,750	375
260 - 470	3,750 to 12,500 ¹	375 to 1,250 ¹
Above 470	12,500	1,250

1 Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 – 13.41	322 - 335.4		

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 21 of 38

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490 0.490-1.705 1.705-30.0 30 88 88 216 216 960 Above 960	2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500	300 30 30 3 3 3 3 3 3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 22 of 38

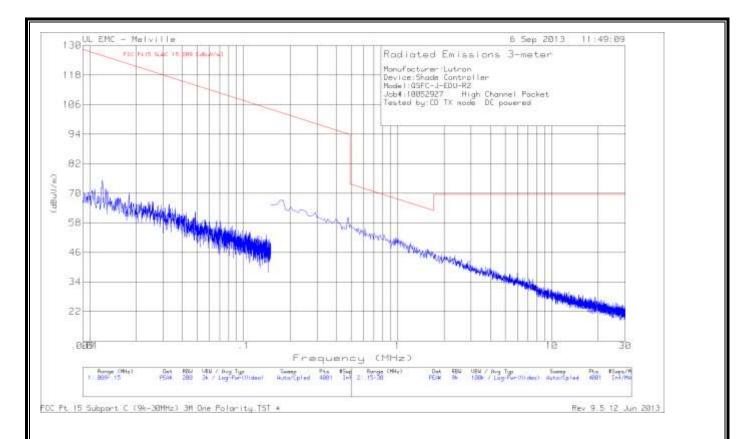
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

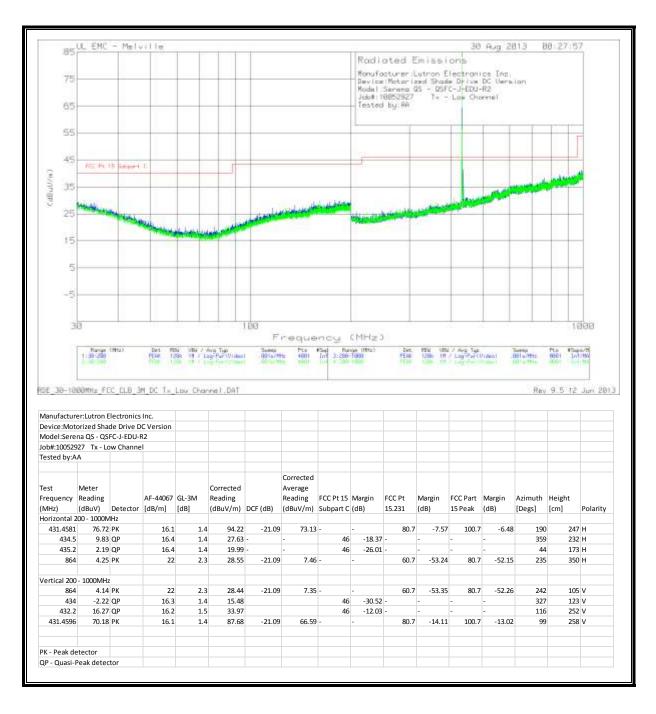

RESULTS

No non-compliance noted:

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 23 of 38

TX SPURIOUS EMISSION (9kHz - 30 MHz) - Worst Case



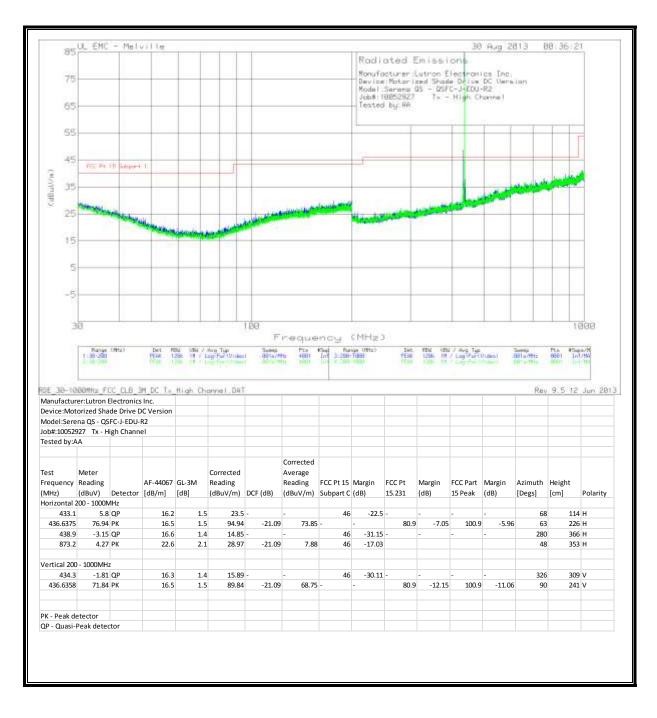
Frequency (MHz)	Meter Reading	Det	AF-5A288 [dB/m]	GL-3M [dB]	Corrected Reading	FCC Pt15 SubC 15.209 [dBuV/m]	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
((dBuV)				(dBuV/m)	[4547]]		(2.020)	(0)	
.012102	46.45	PK	28.6	.2	75.25	125.93	-50.68	0-360	100	V
.017989	44.47	PK	25.4	.2	70.07	122.49	-52.42	0-360	100	V
.048586	43.3	PK	19	.3	62.6	113.86	-51.26	0-360	100	V
.17239	50.47	PK	16.3	.3	67.07	102.87	-35.8	0-360	100	V
.47835	43.69	PK	16.2	.3	60.19	94.01	-33.82	0-360	100	V
13.79145	8.87	PK	16.7	.5	26.07	69.5	-43.43	0-360	100	V

PK - Peak detector

Page 24 of 38

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 – 1000 MHz) – Low Channel

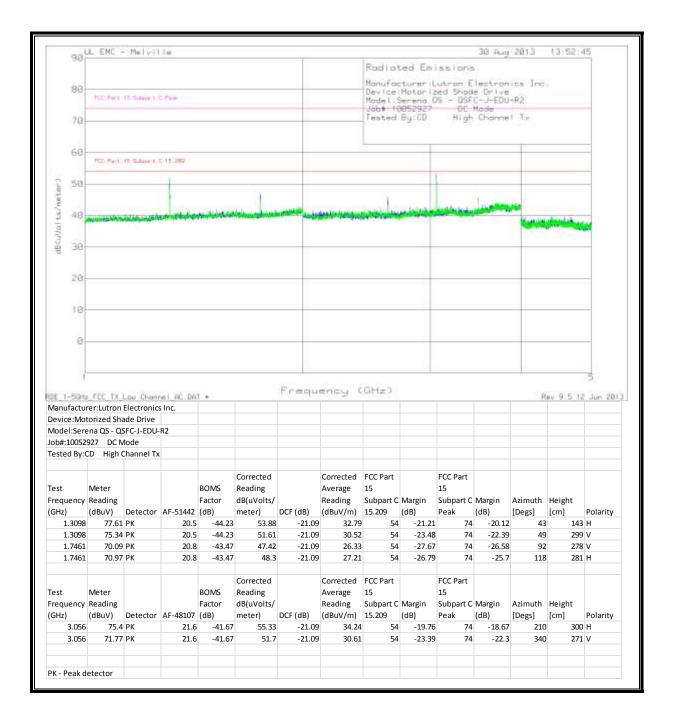
UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.


Page 25 of 38

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz - Low Channel

3.0202			21.5		52.1	-21.09				74			264	
st equency Hz) 3.0202		Detector	AF-48107 21.5	Factor (dB)	Reading dB(uVolts/ meter) 55.17	-21.09		15.209	Margin (dB)	FCC Part 15 Subpart C Peak 74	(dB)	Azimuth [Degs] 221	Height [cm] 228	Polarity H
					Corrected									
1.7265	65.79	РК	20.8	-43.82	42.77	-21.09	21.68	54	-32.32	74	-31.23	133	113	н
1.2944			20.5		57.83	-21.09				74			285	
st equency Hz) 1.2944		Detector	AF-51442 20.5	Factor (dB)	Corrected Reading dB(uVolts/ meter) 62.69	DCF (dB) -21.09	Reading (dBuV/m)	15.209	Margin (dB)	FCC Part 15 Subpart C Peak 74	(dB)	Azimuth [Degs] 295	-	Polarity
1 E_1-594	E_FCC_TX	Law Chanr	el_AC.Dr	য় •		Frequ	іепсу (GHzD				Rev	9.5 12	5 Juni 201
0									-					
10									-					
20									_					
30														
40 30	LANG-A DEAL	And the second	line	-	A MILLION / MILLION	ni Alexandria	and the second	datandir	Acres 100	al terreter	and the second	N. Harrison		
58														
60	FGC Parts	15 Schere C.	1 202					-						
78								Job# 198 Teated B		DC Ho Low Ch		¥		
88	TOC Park	11. Sayar L	Page					Device:P Model:Se	lotorize erena (05	d Shode - QSFC-	J-EDU-R			
.90								Rodiate	ed Emle	saiona				
98	aller in Char	- Melvil	1.44							-24	0 Aug 2	M12 1	1=13:17	

Page 26 of 38


FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 – 1000 MHz) – High Channel

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 27 of 38

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz – High Channel

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 28 of 38

8.2. RX RADIATED SPURIOUS EMISSION

LIMITS

IC RSS-Gen Issue 2, section 7.2.3.2

All spurious emissions shall comply with the limits shown below:

Limits for radiated disturbance of Class	B ITE at measuring distance of 3 m
Frequency range	Quasi-peak limits
(MHz)	(dBµV/m)
30 to 88	40
88 to 216	43.5
216 to 960	46
Above 960 MHz	54
Note: The lower limit shall apply at the transition	frequency.

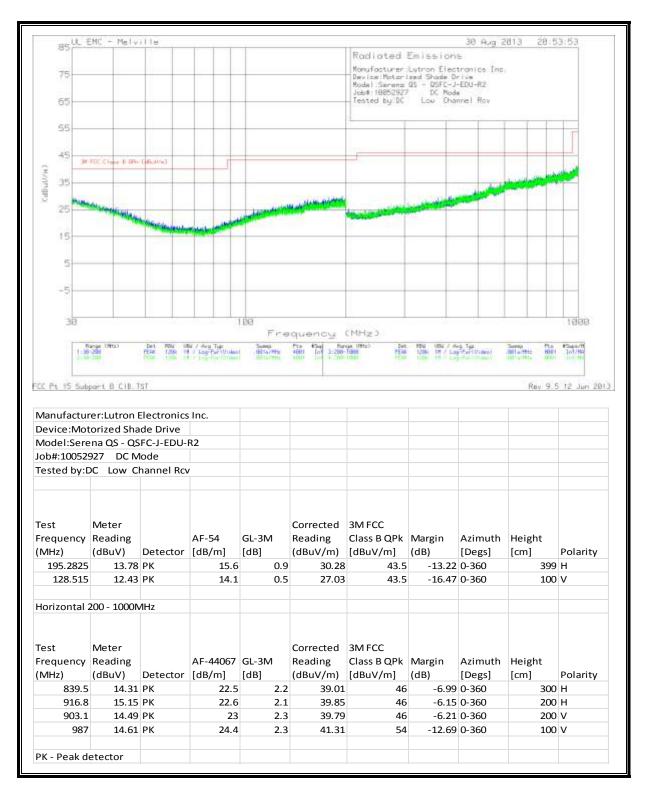
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to receive in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 5th harmonic is investigated with the transmitter set to the middle channel.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

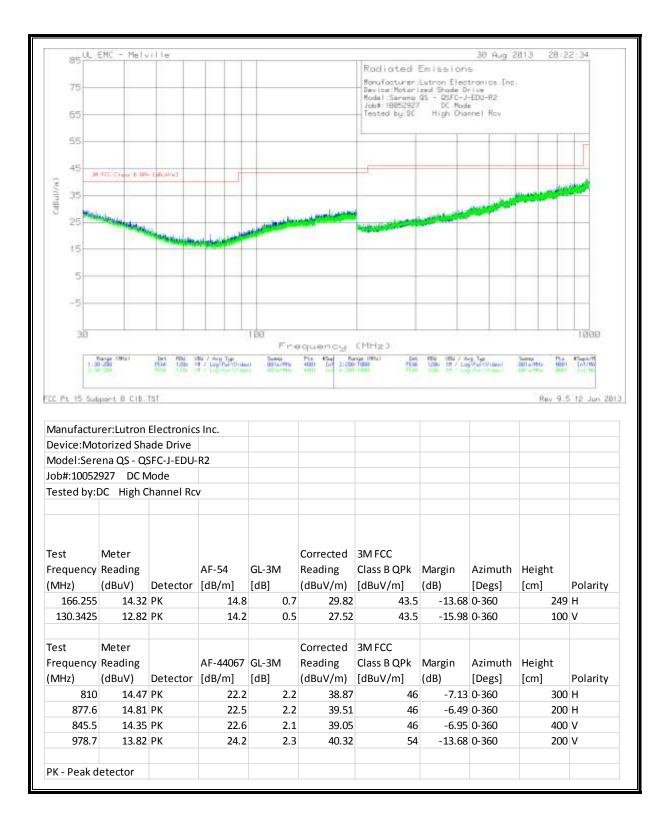
<u>RESULTS</u>

No non-compliance noted:

Page 29 of 38

RECEIVER SPURIOUS EMISSION (30MHz - 1GHz) – Low Channel

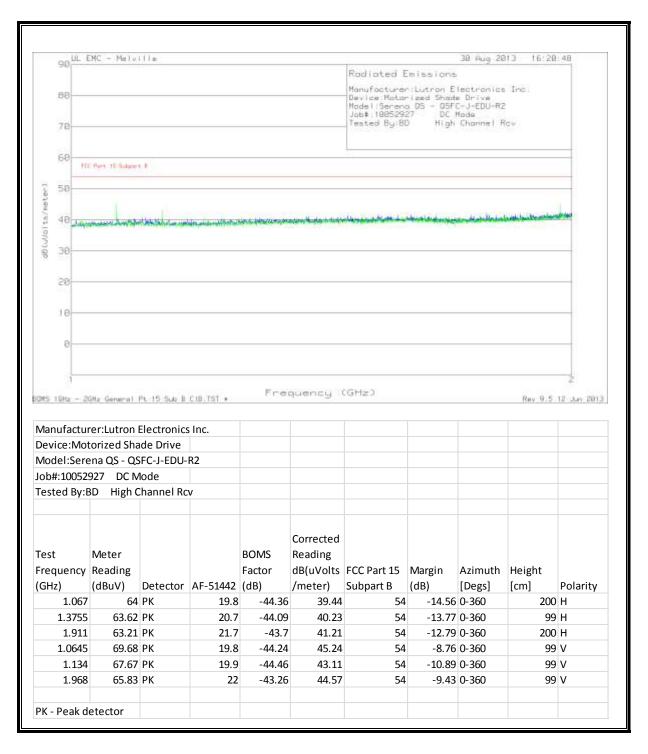
Page 30 of 38


RECEIVER SPURIOUS EMISSION ABOVE 1GHz – Low Channel

State Rediated Emissions Manufacturer:Lutron Electronics Inc. Beller Difference D5 - D5FC-J-EDU-R2 Jate: 18852927 DC Made Tested By:B0 Low Channel Row 68 Manufacturer:Lutronics Inc. 69 Manufacturer:Lutronics Inc. 60 Manufacturer:Lutronics Inc. 60 Manufacturer:Lutronics Inc. 61 Manufacturer:Lutronics Inc. 62 Manufacturer:Lutronics Inc. 63 Manufacturer:Lutronics Inc. 64	15:28:31
BB Manufacturer:Lutron Electronics Inc. BB Manufacturer:Lutron Electronics Inc. Ba Madel Series 0.575 - 0.575 - 0.500-R2 Jab : 18952927 - 0.5 Made Dir Madel Frende By 180 - Low Chornel Row 68 Machine By 180 - Low Chornel Row 69 Machine By 180 - Low Chornel Row 60 Machine By 180 - Low Chornel Row 60 Machine By 180 - Low Chornel Row 60 Machine By 180 - Low Chornel Row 61 Machine By 180 - Low Chornel Row 62 Machine By 180 - Low Chornel Row 63 Machine By 180 - Low Chornel Row 64 Machine By 180 - Low Chornel Row 65 Machine By 180 - Low Chornel Row 66 Machine By 180 - Low Chornel Row 67 Machine By 180 - Low Chornel Row 68 Machine By 180	
Model: Series (DS - DSFC-J-EDU-R2) Jabit: 18852927 DC Mada FCC Purs (E Subert I)	
Tested By:80 Low Chome I Rov 68 F00 Pert IS Subject II 58	
60 FC: Part 15 Subject 1 50 FC: Part 15 Subject 1	
FCCPust 15 Subject 1	
FCCPust 15 Subject 1	
B	
B	
E de Barrisson (105Htel)	
E de Barrisson (105Htel)	
1 1Bfz - 26ffz General Pt 15 Sub B CIB.TST + Frequency (CGHz) Rev	
184z - 26Hz General Pt 15 Sub & CIB.TST + Frequency (GHz) Rev	
rice:Motorized Shade Drive	(ay 9.5 12 Jun 2)
del:Serena QS - QSFC-J-EDU-R2	
#:10052927 DC Mode	
ted By:BD Low Channel Rcv	
t Meter quency Reading(z) dBuV) Detector AF-51442 (dB) meter) Subpart B (dB) [Degs] [cm]	
1.067 64.18 PK 19.8 -44.36 39.62 54 -14.38 0-360	-
1.2715 63.57 PK 20.3 -44.15 39.72 54 -14.28 0-360	99 H
1.955 62.93 PK 21.9 -43.41 41.42 54 -12.58 0-360	99 H 99 H
1.0665 64.02 PK 19.8 -44.35 39.47 54 -14.53 0-360	99 H
	99 H 200 H

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 31 of 38

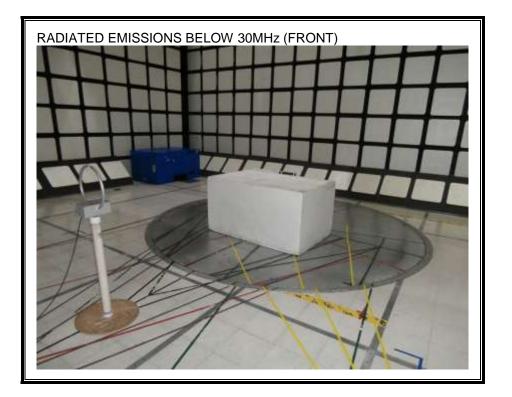

RECEIVER SPURIOUS EMISSION (30MHz - 1GHz) – High Channel

UL LLC. FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 32 of 38

RECEIVER SPURIOUS EMISSION ABOVE 1GHz – High Channel

Page 33 of 38

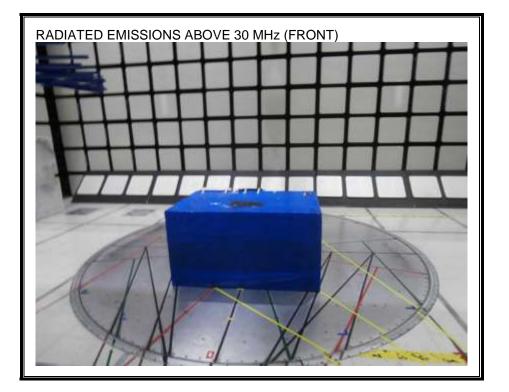

9. SETUP PHOTOS

ANTENNA PORT

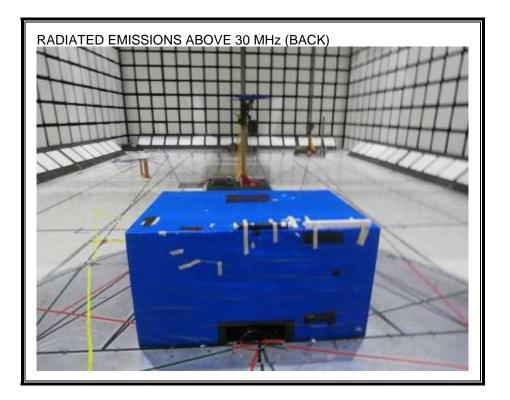
Page 34 of 38

RADIATED EMISSION BELOW 30 MHz

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.


Page 35 of 38

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.


Page 36 of 38

RADIATED EMISSION ABOVE 30 MHz

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 37 of 38

END OF REPORT

UL LLC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of UL LLC.

Page 38 of 38