DASY5 Validation Report for Head TSL Date: 16.03.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d029 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) # DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.547 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.7780 SAR(1 g) = 9.43 mW/g; SAR(10 g) = 4.99 mW/g Maximum value of SAR (measured) = 11.585 mW/g 0 dB = 11.580 mW/g = 21.27 dB mW/g # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d029_Mar12 Page 6 of 8 # **DASY5 Validation Report for Body TSL** Date: 16.03.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d029 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.198 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.1680 SAR(1 g) = 9.85 mW/g; SAR(10 g) = 5.22 mW/g Maximum value of SAR (measured) = 12.378 mW/g 0 dB = 12.380 mW/g = 21.85 dB mW/g Certificate No: D1900V2-5d029_Mar12 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d029_Mar12 Page 8 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Digital EMC (Dymstec) Accreditation No.: SCS 108 #### Certificate No: D2450V2-726_Mar12 Client CALIBRATION CERTIFICATE D2450V2 - SN: 726 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz March 15, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) Primary Standards 05-Oct-11 (No. 217-01451) Oct-12 GB37480704 Power meter EPM-442A 05-Oct-11 (No. 217-01451) Oct-12 US37292783 Power sensor HP 8481A Apr-12 Reference 20 dB Attenuator SN: 5086 (20g) 29-Mar-11 (No. 217-01368) SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Type-N mismatch combination Dec-12 30-Dec-11 (No. ES3-3205_Dec11) Reference Probe ES3DV3 SN: 3205 Jul-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) DAE4 Scheduled Check Check Date (in house) Secondary Standards ID# 18-Oct-02 (in house check Oct-11) In house check: Oct-13 MY41092317 Power sensor HP 8481A In house check: Oct-13 100005 04-Aug-99 (in house check Oct-11) RF generator R&S SMT-06 18-Oct-01 (in house check Oct-11) In house check: Oct-12 US37390585 S4206 Network Analyzer HP 8753E Signature Function Name Claudio Leubler Laboratory Technician Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: March 16, 2012 Certificate No: D2450V2-726_Mar12 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 # **Additional Documentation:** d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-726_Mar12 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.0 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.08 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 mW /g ± 16.5 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.6 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.2 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------------| | SAR measured | 250 mW input power | 5.89 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.5 mW / g \pm 16.5 % (k=2) | Certificate No: D2450V2-726_Mar12 Page 3 of 8 ### **Appendix** # Antenna Parameters with Head TSL | Impedance, transformed to feed point | $54.0~\Omega + 3.3~j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 26.0 dB | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | $50.0 \Omega + 5.0 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 26.0 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.163 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 09, 2003 | Certificate No: D2450V2-726_Mar12 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 15.03.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 726 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.265 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.6110 SAR(1 g) = 13 mW/g; SAR(10 g) = 6.08 mW/g Maximum value of SAR (measured) = 16.522 mW/g 0 dB = 16.520 mW/g = 24.36 dB mW/g # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-726_Mar12 Page 6 of 8 # **DASY5 Validation Report for Body TSL** Date: 15.03.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 726 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) # DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.171 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 25.7330 SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.89 mW/g Maximum value of SAR (measured) = 16.544 mW/g 0 dB = 16.540 mW/g = 24.37 dB mW/g Certificate No: D2450V2-726_Mar12 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: D2450V2-726_Mar12 Page 8 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client D Digital EMC (Dymstec) Certificate No: D5GHzV2-1103_Mar13 Accreditation No.: SCS 108 # CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1103 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: March 15, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | SN: 3503 | 28-Dec-12 (No. EX3-3503_Dec12) | Dec-13 | | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | ID# | Check Date (in house) | Scheduled Check | | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | Name | Function | Signature | | Israe El-Naouq | Laboratory Technician | Mora El-Ducerce | | Katja Pokovic | Technical Manager | sel les | | | GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Israe EI-Naouq | GB37480704 01-Nov-12 (No. 217-01640) US37292783 01-Nov-12 (No. 217-01640) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) SN: 5047.3 / 06327 27-Mar-12 (No. 217-01533) SN: 3503 28-Dec-12 (No. EX3-3503_Dec12) SN: 601 27-Jun-12 (No. DAE4-601_Jun12) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-11) 100005 04-Aug-99 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-12) Name Function Israe El-Naouq Laboratory Technician | Issued: March 15, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1103_Mar13 Page 1 of 16 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1103_Mar13 Page 2 of 16 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.5 | |------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (4 | | # SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1103_Mar13 Page 3 of 16 # Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.62 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 1888 | | # SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.5 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 4.80 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.63 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.45 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1103_Mar13 Page 4 of 16 # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 4.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.6 ± 6 % | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (**** | | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1103_Mar13 Page 5 of 16 # Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.0 ± 6 % | 5.42 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.53 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.9 ± 6 % | 5.55 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.66 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1103_Mar13 Page 6 of 16 # Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 5.80 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.1 W/kg ± 19.5 % (k=2) | ### Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 5.94 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 81.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1103_Mar13 Page 7 of 16 # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.1 ± 6 % | 6.21 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 119/19/21 | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1103_Mar13 Page 8 of 16 # Appendix #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 51.5 Ω - 5.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.9 dB | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 49.1 Ω - 0.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 40.0 dB | | # Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 51.5Ω - $0.5 j\Omega$ | | |--------------------------------------|-------------------------------|--| | Return Loss | - 36.1 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $54.5 \Omega + 0.0 j\Omega$ | 9011 | |--------------------------------------|-----------------------------|------| | Return Loss | - 27.3 dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 53.5 Ω - 0.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.4 dB | | # Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 51.5 Ω - 4.3 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 27.0 dB | | | | | # Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | $49.9 \Omega + 0.3 j\Omega$ | | | | | | |--------------------------------------|-----------------------------|--|--|--|--|--| | Return Loss | - 49.3 dB | | | | | | # Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 50.9 Ω - 0.4 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 40.3 dB | | | | | # Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 56.1 Ω + 1.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.4 dB | | Certificate No: D5GHzV2-1103_Mar13 Page 9 of 16 # Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | $53.3 \Omega + 1.3 j\Omega$ | | | | | |--------------------------------------|-----------------------------|--|--|--|--| | Return Loss | - 29.4 dB | | | | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.207 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | | | | |-----------------|--------------------|--|--|--|--|--| | Manufactured on | September 24, 2010 | | | | | | Certificate No: D5GHzV2-1103_Mar13 Page 10 of 16 ### DASY5 Validation Report for Head TSL Date: 15.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1103 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.52$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.62$ S/m; $\epsilon_r = 34.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.8$ S/m; $\epsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.91$ S/m; $\epsilon_r = 33.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 33.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028) #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.803 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.5 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz 2/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.616 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.5 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.650 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 34.3 W/kg SAR(1 g) = 8.63 W/kg; SAR(10 g) = 2.45 W/kg Maximum value of SAR (measured) = 20.9 W/kg Certificate No: D5GHzV2-1103_Mar13 Page 11 of 16 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.075 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 34.3 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.43 W/kg Maximum value of SAR (measured) = 20.7 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.323 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 34.1 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 20.1 W/kg # Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1103_Mar13 Page 13 of 16 ## **DASY5 Validation Report for Body TSL** Date: 12.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1103 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\epsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.55$ S/m; $\epsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.8$ S/m; $\epsilon_r = 46.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ S/m; $\epsilon_r = 46.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028) #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.522 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 17.7 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.944 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.396 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 35.1 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.6 W/kg Certificate No: D5GHzV2-1103_Mar13 Page 14 of 16 # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.239 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 36.4 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 20.1 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.007 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 35.6 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 18.9 W/kg # Impedance Measurement Plot for Body TSL Certificate No: D5GHzV2-1103_Mar13 # **Attachment 3. – SAR SYSTEM VALIDATION** #### **SAR System Validation** Per FCC KDB 865664 D02v01r01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01v01r01. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media. A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included. **Table Attachment 3.1 SAR System Validation Summary** | SAR | Freq. | | Probe | Probe | Probe CAL.
Point | | PERM. | COND. | CW Validation | | | MOD. Validation | | | |--------|-------|------------|-------|--------|---------------------|------|--------|-------|------------------|--------------------|-------------------|-----------------|----------------|------| | System | [MHz] | Date | SN | Type | | | (ɛr) | (σ) | Sensi-
tivity | Probe
Linearity | Probe
Isortopy | MOD.
Type | Duty
Factor | PAR | | E | 835 | 2013-09-23 | 3930 | EX3DV4 | 835 | Head | 41.011 | 0.877 | PASS | PASS | PASS | GMSK | PASS | N/A | | E | 1900 | 2013-09-24 | 3930 | EX3DV4 | 1900 | Head | 39.293 | 1.395 | PASS | PASS | PASS | GMSK | PASS | N/A | | E | 2450 | 2013-09-25 | 3930 | EX3DV4 | 2450 | Head | 39.026 | 1.766 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5200 | 2013-09-26 | 3930 | EX3DV4 | 5200 | Head | 35.336 | 4.501 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5300 | 2013-09-26 | 3930 | EX3DV4 | 5300 | Head | 35.167 | 4.615 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5500 | 2013-09-26 | 3930 | EX3DV4 | 5500 | Head | 34.838 | 4.846 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5600 | 2013-09-26 | 3930 | EX3DV4 | 5600 | Head | 34.662 | 4.964 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5800 | 2013-09-26 | 3930 | EX3DV4 | 5800 | Head | 34.305 | 5.195 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 835 | 2013-09-23 | 3930 | EX3DV4 | 835 | Body | 54.028 | 0.987 | PASS | PASS | PASS | GMSK | PASS | N/A | | E | 1900 | 2013-09-24 | 3930 | EX3DV4 | 1900 | Body | 54.724 | 1.518 | PASS | PASS | PASS | GMSK | PASS | N/A | | E | 2450 | 2013-09-25 | 3930 | EX3DV4 | 2450 | Body | 54.232 | 2.001 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5200 | 2013-09-27 | 3930 | EX3DV4 | 5200 | Body | 48.382 | 5.219 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5300 | 2013-09-27 | 3930 | EX3DV4 | 5300 | Body | 48.210 | 5.342 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5500 | 2013-09-27 | 3930 | EX3DV4 | 5500 | Body | 47.854 | 5.589 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5600 | 2013-09-27 | 3930 | EX3DV4 | 5600 | Body | 47.663 | 5.726 | PASS | PASS | PASS | OFDM | N/A | PASS | | E | 5800 | 2013-09-27 | 3930 | EX3DV4 | 5800 | Body | 47.326 | 6.005 | PASS | PASS | PASS | OFDM | N/A | PASS |