FCC ID: JOYKYL22

Report No.: DRTFCC1310-1002

Total 135pages

SAR TEST REPORT

	Test item	:	Mobile Phone				
	Model No.	:	KYL22				
	Order No.	:	DEMC1309-028	348			
	Date of receipt	:	2013-09-10				
	Test duration	:	2013-09-28 ~ 2013-10-11				
	Date of issue	:	2013-10-18				
	Use of report	:	FCC Original G	ant			
Applicant	: KYOCERA (Corpo	ration				
	2-1-1 Kagah	ara, 1	rsuzuki-ku, Yokol	nama-Shi, Kai	nagawa 224-8502, Japan		
Test laboratory	: Digital EMC	Co., I	Ltd.				
	683-3, Yuba	ng-Do	ong, Cheoin-Gu,	Yongin-Si, Gy	eonggi-Do, 449-080, Korea		
	Test rule part	:	47CFR §2.109	3			
	Test environmen	t :	See appended	test report			
	Test result	:	□ Pass	☐ Fai	Ī		
					le supplied by applicant and		
the use of th			r than its purpose. T written approval of D		all not be reproduced except in full, LTD.		
Tested by:		\\/itma	accod by:		Reviewed by:		
rested by.	1	VVILLIE	essed by:		Neviewed by.		
1	1/				M		
1	m						
Engineer	-	Engir	neer		Technical Director		
NoKyun, Im		N/A	1001		Harvey Sung		

Table of Contents

1. DESCRIPTION OF DEVICE	5
1.1 Guidance Applied 1.2 Device Overview 1.3 Nominal and Maximum Output Power Specifications 1.4 DUT Antenna Locations & SAR Test Configurations 1.5 Near Field Communications (NFC) Antenna 1.6 SAR Test Exclusions Applied	
1.7 Power Reduction for SAR	
2. INTROCUCTION	
3. DESCRIPTION OF TEST EQUIPMENT	13
3.1 SAR MEASUREMENT SETUP 3.2 EX3DV4 Probe Specification 3.3 Probe Calibration Process 3.3.1 E-Probe Calibration	14 15 15
3.4 Data Extrapolation	17 18 18
4. TEST SYSTEM SPECIFICATIONS	
5. SAR MEASUREMENT PROCEDURE	22
5.1 Measurement Procedure	
6. DEFINITION OF REFERENCE POINTS	
6.1 Ear Reference Point	23
7.1 Device Holder	
9. FCC MEASUREMENT PROCEDURES	28
9.1 Measured and Reported SAR	28 28
9.3.2 Head SAR Measurements for Handsets	28
9.3.3 Body SAR Measurements	29
9.3.4 SAR Measurements for Handsets with Rel 5 HSDPA	29
9.3.4 SAR Measurements for Handsets with Rel 6 HSUPA	29
9.4 SAR Testing with 802.11 Transmitters	30
9.4.2 Frequency Channel Configurations	30

Table of Contents

10. RF CONDUCTED POWERS	31
10.1 GSM Conducted Powers	
10.2 WCDMA Conducted Powers	
10.3 WLAN Conducted Powers	
10.4 Bluetooth Conducted Powers	
11.1 Tissue Verification	
11.2 Test System Verification	
12. SAR TEST RESULTS	42
12.1 Head SAR Results	
12.2 Standalone Body-Worn SAR Results	
12.3 Standalone Wireless router SAR Results	
12.4 SAR Test Notes	
13. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	51
13.1 Introduction	51
13.2 Simultaneous Transmission Procedures	51
13.3 Simultaneous Transmission Capabilities	
13.4 Head SAR Simultaneous Transmission Analysis	
13.5 Body-Worn Simultaneous Transmission Analysis	
13.6 Hotspot SAR Simultaneous Transmission Analysis	
13.7 Simultaneous Transmission Conclusion	
14. SAR MEASUREMENT VARIABILITY	
14.1 Measurement Variability	
14.2 Measurement Uncertainty	
15. IEEE P1528 -MEASUREMENT UNCERTAINTIES	62
16.CONCLUSION	78
17. REFERENCES	79
Attachment 1. – Probe Calibration Data	81
Attachment 2. – Dipole Calibration Data	93
Attachment 3 - SAR SYSTEM VALIDATION	134

Test Report Version

Report No.: DRTFCC1310-1002

Test Report No.	Date	Description
DRTFCC1310-1002	Oct. 18, 2013	Final version for approval

1. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

General Information:

Equipment type	Mobile Phone
FCC ID	JOYKYL22
Equipment model name	KYL22
Equipment add model name	N/A
Equipment serial no.	Identical prototype
Mode(s) of Operation	GSM 850, PCS 1900, WCDMA 850, WCDMA 1900, 2.4 G W-LAN(802.11b/g/n HT20) 5G W-LAN(802.11a/n HT20, HT40/802.11ac VHT20, VHT40, VHT80)
TX Frequency Range	824.2 ~ 848.8 MHz(Cellular Band) / 1850.2 ~ 1909.8 MHz(PCS Band) 826.4 ~ 846.6 MHz(WCDMA FDD V) / 1852.4 ~ 1907.6 MHz(WCDMA FDD II) 2412 ~ 2462 MHz(2.4 G W-LAN) / 5180 ~ 5700 MHz (5 G W-LAN)
RX Frequency Range	869.2 ~ 893.8 MHz(Cellular Band) / 1930.2 ~ 1989.8 MHz(PCS Band) 871.4 ~ 891.6 MHz(WCDMA FDD V) / 1932.4 ~ 1987.6 MHz(WCDMA FDD II) 2412 ~ 2462 MHz(2.4 G W-LAN) / 5180 ~ 5700 MHz (5 G W-LAN)

		Measured	Reported SAR			
Equipment Class	Band	Conducted Power	1g SAR (W/kg)			
Class		[dBm]	Head	Body-worn	Hotspot	
PCE	GSM 850	33.0	0.15	0.61	-	
PCE	GPRS 850	29.4	0.31	1.14	1.14	
PCE	PCS 1900	30.0	<0.10	0.44	-	
PCE	GPRS 1900	26.0	0.12	1.23	1.23	
PCE	WCDMA 850	22.50	0.16	0.46	0.46	
PCE	WCDMA 1900	22.49	0.14	1.09	1.09	
DTS	2.4 GHz W-LAN	16.93	0.47	0.24	0.24	
NII	5.2 GHz W-LAN	12.26	<0.10	<0.10	-	
NII	5.3 GHz W-LAN	12.79	0.13	0.12	-	
NII	5.5 GHz W-LAN	14.04	0.29	0.25	-	
DSS/DTS	Bluetooth 7.553 N/A					
Simultaneous SAI	R per KDB 690783 D01v0	01r02	0.71	1.48	1.47	
FCC Equipment Class	Licensed Portable Tra	ansmitter Held t	o Ear (PCE)			
Date(s) of Tests	2013-09-28 ~ 2013-10	0-11				
Antenna Type	Internal Type Antenna	3				
Functions	 GSM/GPRS(GPRS Class: 12) / EDGE(RX Only) supported * DTM not supported BT(2.4GHz) / W-LAN(2.4GHz 802.11b/g/n(HT20)) / W-LAN(5 GHz 802.11a/n HT20, HT40, 802.11ac VHT20, VHT40, VHT80) supported * No simultaneous transmission between BT & WLAN * 5.8 GHz W-LAN(DTS Band) is not supported for this device. Simultaneous transmission between GSM, WCDMA voice & WLAN / GPRS, WCDMA & WLAN VoIP supported. Mobile Hotspot supported. WIFI Direct Go is supported for 2.4 GHz WLAN Only. 					

1.1 Guidance Applied

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G and Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05r01 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r01 (Handset SAR)
- April 2013 TCB Workshop Notes (IEEE 802.11ac)

1.2 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS 850	Voice/Data	824.2 ~ 848.8 MHz
GSM/GPRS 1900	Voice/Data	1850.2 ~ 1909.8 MHz
WCDMA 850	Voice/Data	826.4 ~ 846.6 MHz
WCDMA1900	Voice/Data	1852.4 ~ 1907.6 MHz
2.4 GHz WLAN	Data	2412 ~ 2462 MHz
5.2 GHz WLAN	Data	5180 ~ 5240 MHz
5.3 GHz WLAN	Data	5260 ~ 5320 MHz
5.5 GHz WLAN	Data	5500 ~ 5700 MHz
Bluetooth	Data	2402 ~ 2480 MHz
NFC	Data	13.56 MHz

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r01.

Band & Mode		Voice [dBm]	Burst Average GMSK [dBm]			
		1 TX Slot	1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot
GSM/GPRS 850	Maximum	33.0	33.0	32.0	30.0	29.5
	Nominal	32.0	32.0	31.0	29.0	28.5
GSM/GPRS 1900	Maximum	30.0	30.0	28.7	27.2	26.0
	Nominal	29.0	29.0	27.7	26.2	25.0


Band & Mode		Modulated Average [dBm]				
		3GPP RMC	3GPP HSDPA	3GPP HSUPA		
WCDMA 850	Maximum	22.5	22.5	22.5		
WCDIVIA 850	Nominal	21.5	21.5	21.5		
WCDMA 1900	Maximum	22.5	22.5	22.5		
	Nominal	21.5	21.5	21.5		

Band & Mod	Modulated Average [dBm]	
IEEE 802.11b (2.4 GHz)	Maximum	17.0
TEEE 802.110 (2.4 GHZ)	Nominal	15.5
IEEE 902 11a (2.4 CHz)	Maximum	13.5
IEEE 802.11g (2.4 GHz)	Nominal	12.0
IEEE 902 11n (2.4 CHz)	Maximum	13.5
IEEE 802.11n (2.4 GHz)	Nominal	12.0
IEEE 902 440 (5 CHz)	Maximum	14.5
IEEE 802.11a (5 GHz)	Nominal	13.0
IEEE 902 112 /5 CH2 20 MH2 DW/	Maximum	14.0
IEEE 802.11n (5 GHz 20 MHz BW)	Nominal	12.5
IEEE 902 115 /5 CH2 40 MH2 DW/	Maximum	11.5
IEEE 802.11n (5 GHz 40 MHz BW)	Nominal	10.0
IEEE 902 1100 /5 CHz 20 MHz DM/)	Maximum	13.8
IEEE 802.11ac (5 GHz 20 MHz BW)	Nominal	12.3
IEEE 202 44 co /E CH = 40 MH = DM/	Maximum	11.2
IEEE 802.11ac (5 GHz 40 MHz BW)	Nominal	9.7
IEEE 002 11 co /E OLI- 00 MI I- DIM/	Maximum	11.6
IEEE 802.11ac (5 GHz 80 MHz BW)	Nominal	10.1
Divistanth	Maximum	8.0
Bluetooth	Nominal	6.5
Divistanth I C	Maximum	1.5
Bluetooth LE	Nominal	0.0

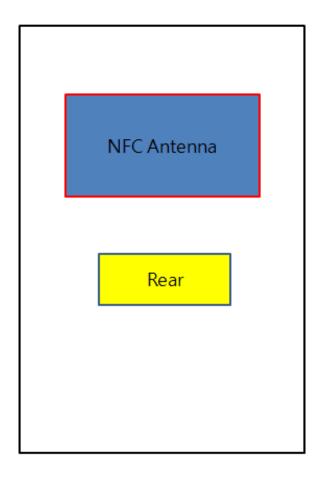
1.4 DUT Antenna Locations & SAR Test Configurations

DUT Antenna Locations (Rear Side View):

Note: Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC Filing.

SAR Test Configurations:

Mada	Mobile Hotspot Sides for SAR Testing						
Mode	Тор	Bottom	Front	Rear	Right	Left	
GSM 850	Х	0	0	0	Ο	0	
PCS 1900	Х	0	0	0	0	0	
WCDMA 850	Х	0	0	0	0	0	
WCDMA 1900	Х	0	0	0	0	0	
2.4G W-LAN(802.11b/g/n)	0	Х	0	0	0	0	


Table 1.1 Mobile Hotspot Sides for SAR Testing

Note:

- Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01r01 guidance, page 2. The antenna document shows the distances between the transmit antennas and the edges of the device. When the wireless router mode is enabled, all 5 GHz bands are disabled. Therefore 5 GHz WIFI Wireless Router SAR is not considered in this section.
- 5 GHz WIFI Direct GO is not supported in the 5 GHz band for this device. WIFI Direct GO is supported in the 2.4 GHz band only. The manufacturer expects 2.4 GHz WIFI Direct GO may be used in a similar manner to wireless router usage. Therefore, 2.4 GHz WIFI Direct GO was evaluated for SAR similarly to wireless router SAR procedures in FCC KDB Publication 941225.

1.5 Near Field Communications (NFC) Antenna

NFC Antenna Locations (Rear Side View):

This DUT has NFC operations. The NFC antenna is integrated into the back cover. Therefore, all SAR tests performed with the device already incorporate the NFC antenna.

1.6 SAR Test Exclusions Applied

(A) WIFI & BT

Since Wireless Router operations are not allowed by the chipset firmware using 5 GHz WIFI, only 2.4 GHz WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v01r01.

Per FCC KDB 447498 D01v05r01, the SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of **Bluetooth** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth SAR was not required**; $[(6/10)^* \sqrt{2.480}] = 1.0 < 3.0$.

Based on the maximum conducted power of **Bluetooth LE** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth LE SAR was not required**; $[(1/10)^* \sqrt{2.480}] = 0.2 < 3.0$.

Based on the maximum conducted power of **2.4 GHz WIFI** (rounded to the nearest mW) and the antenna to user separation distance, **2.4 GHz WIFI SAR was required**; $[(50/10)^* \sqrt{2.437}] = 7.8 > 3.0$.

Based on the maximum conducted power of **5 GHz WIFI** (rounded to the nearest mW) and the antenna to user separation distance, **5 GHz WIFI SAR was required**; $[(28/10)^* \sqrt{5.700}] = 6.7 > 3.0$.

Per KDB Publication 447498 D01v05r01, the maximum power of the channel was rounded to the nearest mW before calculation.

This device supports 20 MHz and 40 MHz Bandwidths for IEEE 802.11n for 5 GHz WIFI only. IEEE 802.11n was not evaluated for SAR since the average output power of 20 MHz and 40 MHz bandwidths was not more than 0.25 dB higher than the average output power of IEEE 802.11a.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) No new 5 GHz channels

Per April 2013 TCB workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.

(B) Licensed Transmitter(s)

GSM/GPRS DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS Data. And this device is only supported for EDGE Rx.

WCDMA 850 and WCDMA 1900 support HSDPA and HSUPA.

1.7 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.8 Device Serial Numbers

Band & Mode	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS 850	FCC #1	FCC #1	FCC #1
GSM/GPRS 1900	FCC #1	FCC #1	FCC #1
WCDMA 850	FCC #1	FCC #1	FCC #1
WCDMA 1900	FCC #1	FCC #1	FCC #1
2.4 GHz WLAN	FCC #1	FCC #1	FCC #1
5 GHz WLAN	FCC #1	FCC #1	FCC #1

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95*.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU)absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3.40 GHz desktop computer with Windows NT system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

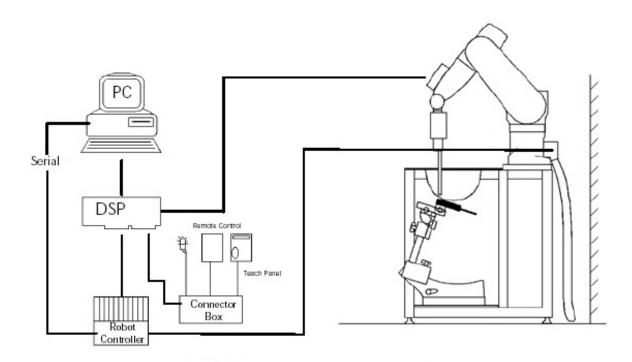


Figure 3.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

3.2 EX3DV4 Probe Specification

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at Frequencies of

450 MHz, 600 MHz, 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz, 2300 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5500 MHz, 5600 MHz, 5800 MHz

Frequency 10 MHz to 6 GHz

Linearity ± 0.2 dB (30 MHz to 6 GHz)

Dynamic $5 \mu W/g \text{ to } > 100 \text{ mW/g}$

Range Linearity: ±0.2dB

Dimensions Overall length: 330 mm

Tip length 20 mm

Body diameter 12 mm

Tip diameter 2.5 mm

Distance from probe tip to sensor center 1.0 mm

Application SAR Dosimetry Testing

Compliance tests of mobile phones

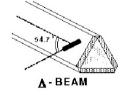


Figure 3.2 Triangular Probe Configurations

Figure 3.3 Probe Thick-Film Technique

DAE System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 Probe Calibration Process

3.3.1 E-Probe Calibration

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

 $SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$

where: where:

 Δt = exposure time (30 seconds),

 σ = simulated tissue conductivity,

C = heat capacity of tissue (brain or muscle),

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

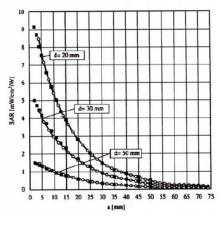


Figure 3.4 E-Field and Temperature Measurements at 900MHz

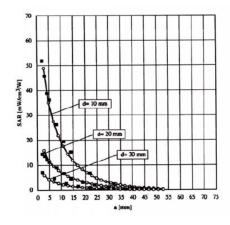


Figure 3.5 E-Field and Temperature Measurements at 1800MHz

3.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
 with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 C_{i} = crest factor of exciting field (DASY parameter)
 C_{i} = crest factor of exciting field (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{prov} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

3.5 SAM Twin PHANTOM

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6)

Figure 3.6 SAM Twin Phantom

SAM Twin Phantom Specification:

Construction

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching

three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as

Twin SAM V4.0, but has reinforced top structure.

Shell Thickness $2 \pm 0.2 \text{ mm}$

Filling Volume Approx. 25 liters
Dimensions Length: 1000 mm

Width: 500 mm

Height: adjustable feet

Specific Anthropomorphic Mannequin (SAM) Specifications:

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected alongthemid-sagittal plane into right and left halves (see Fig. 3.7). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 3.7 Sam Twin Phantom shell

3.6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.8 Mounting Device

3.7 Brain & Muscle Simulation Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.9 Simulated Tissue

Table 3.1 Composition of the Tissue Equivalent Matter

Ingredients				Frequen	cy (MHz)			
(% by weight)	835		19	00	24	50	5200 ~ 5800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00
Salt (NaCl)	1.480	0.940	0.310	0.290	0.160	0.060	-	-
Sugar	57.90	48.21	-	-	-	-	-	-
HEC	0.250	-	-	-	-	-	-	-
Bactericide	0.180	0.100	-	-	-	-	-	-
Triton X-100	-	-	-	-	19.97	-	17.24	-
DGBE	-	-	44.45	29.48	7.990	26.54	-	-
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	-
Polysorbate (Tween) 80	-	-	-	-	-	-	-	20.00
Target for Dielectric Constant	41.5	55.2	40.0	53.3	39.2	52.7	-	-
Target for Conductivity (S/m)	0.90	0.97	1.40	1.52	1.80	1.95	-	-

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

3.8 SAR TEST EQUIPMENT

Table 3.2 Test Equipment Calibration

	Туре	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
\boxtimes	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
\boxtimes	Robot	SCHMID	TX90XL	N/A	N/A	F13/5P9GA1/A/01
	Robot Controller	SCHMID	C58C	N/A	N/A	F13/5P9GA1/C/01
	Joystick	SCHMID	N/A	N/A	N/A	S-12450905
	Intel Core i7-3770 3.40 GHz Windows 7 Professional	N/A	N/A	N/A	N/A	N/A
\boxtimes	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
\boxtimes	Mounting Device	SCHMID	SD000H01HA	N/A	N/A	N/A
\boxtimes	Twin SAM Phantom	SCHMID	QD000P40CD	N/A	N/A	1782
	Twin SAM Phantom	SCHMID	QD000P40CD	N/A	N/A	1783
	Head/Body Equivalent	N/A	N/A	2013-01-01	2014-01-01	N/A
	Matter(835MHz) Head/Body Equivalent	N/A	N/A	2013-01-01	2014-01-01	N/A
	Matter(1900MHz) Head/Body Equivalent			2010 01 01	20110101	
	Matter(2450MHz) Head/Body Equivalent	N/A	N/A	2013-01-01	2014-01-01	N/A
\boxtimes	Matter(5000MHz)	N/A	N/A	2013-01-01	2014-01-01	N/A
\boxtimes	DataAcquisition Electronics	SCHMID	DAE4V1	2013-09-10	2014-09-10	1391
\boxtimes	Dosimetric E-Field Probe	SCHMID	EX3DV4	2013-09-10	2014-09-10	3930
	Dummy Probe	N/A	N/A	N/A	N/A	N/A
\boxtimes	835MHz System Validation Dipole	SCHMID	D835V2	2012-03-14	2014-03-14	464
\boxtimes	1900MHz System Validation Dipole	SCHMID	D1900V2	2012-03-16	2014-03-16	5d029
\boxtimes	2450MHz System Validation Dipole	SCHMID	D2450V2	2012-03-15	2014-03-15	726
	5000MHz System Validation Dipole	SCHMID	D5GHzV2	2013-03-15	2015-03-15	1103
	Network Analyzer	Agilent	E5071C	2012-11-02	2013-11-02	MY46106970
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	2013-02-28	2014-02-28	101251
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	2013-09-12	2014-09-12	1020
\boxtimes	High Power RF Amplifier	EMPOWER	BBS3Q8CCJ	2012-11-02	2013-11-02	1005
\boxtimes	Power Meter	HP	EPM-442A	2013-02-28	2014-02-28	GB37170267
\boxtimes	Power Meter	Anritsu	ML2495A	2013-03-06	2014-03-06	1306007
\boxtimes	Wide Bandwidth Power Sensor	Anritsu	MA2490A	2013-03-06	2014-03-06	1249001
\boxtimes	Power Sensor	HP	8481A	2013-02-28	2014-02-28	3318A96566
\boxtimes	Power Sensor	HP	8481A	2013-02-14	2014-02-14	3318A96030
\boxtimes	Dual Directional Coupler	Agilent	778D-012	2013-01-08	2014-01-08	50228
\boxtimes	Directional Coupler	HP	773D	2013-06-27	2014-06-27	2389A00640
\boxtimes	Low Pass Filter 1,5GHz	Micro LAB	LA-15N	2013-01-08	2014-01-08	N/A
\boxtimes	Low Pass Filter 3,0GHz	Micro LAB	LA-30N	2013-09-12	2014-09-12	N/A
\boxtimes	Low Pass Filter 6,0GHz	Micro LAB	LA-60N	2013-03-12	2014-03-12	03942
\boxtimes	Attenuators(3 dB)	Agilent	8491B	2013-06-27	2014-06-27	MY39260700
\boxtimes	Attenuators(10 dB)	WEINSCHEL	23-10-34	2013-01-08	2014-01-08	BP4387
	Step Attenuator	HP	8494A	2013-09-12	2014-09-12	3308A33341
\boxtimes	Dielectric Probe kit	SCHMID	DAK-3.5	2012-12-11	2013-12-11	1092
\boxtimes	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	2013-02-28	2014-02-28	GB43461134
\boxtimes	MXA Signal Analyzer	Agilent	N9020A	2013-09-16	2014-09-16	MY50410163

NOTE: The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Validation measurement is performed by Digital EMC before each test. The brain and muscle simulating material are calibrated by Digital EMC using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

3.8.1 Extended Dipole Calibrations

Referring to FCC KDB 865664 D01v01r01 SAR measurement 100 MHz to 6 GHz v01, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. The Justification data of dipole D835V2, SN: 464 / D1900V2, SN: 5d029 / D2450V2, SN: 726 can be found in Table 3.3.

Justification Procedure of Dipole Calibration:

- 1. Setup a Network Analyzer (Agilent E5071C) and set the start frequency and stop frequency to Network Analyzer according to the dipole frequency, at least +/- 200 MHz around the calibration point.
- 2. Using calibration kit to perform Network Analyzer Open, Short and Load calibration.
- 3. Connect the dipole with the calibrated Network Analyzer.
- 4. Set the Network Analyzer frequency by the dipole calibration frequency. Monitor the return-loss and impedance results with Log Magnitude format and Smith Chart, respectively.
- 5. Record the result and compare with the prior calibration.

Referring to FCC KDB 865664 D01v01r01 SAR measurement 100 MHz to 6 GHz v01, if dipoles are verified <u>in return loss</u> (< -20 dB, within 20 % of prior calibration), and in impedance (with 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Table 3.3 Justification of the extended calibration Result

	D835V2 – Serial No. 464													
			835 MH	z Head			835 MHz Body							
Date of Measurement	Return- Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return- Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
2012-03-14 (Calibration)	-32.137		51.215		-2.1855		-25.168		46.469		-3.9863			
2013-03-14 (Measured)	-32.864	-2.26	51.758	-0.543	-2.2259	0.040	-25.295	-0.50	46.591	-0.122	-3.8298	-0.1565		
D1900V2 – Serial No. 5d029														
1900 MHz Head							1900 MHz Body							
Date of Measurement	Return- Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return- Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
2012-03-16 (Calibration)	-30.838		52.887		-0.61914		-25.415		45.633		-2.6895			
2013-03-16 (Measured)	-30.585	0.82	52.599	0.288	-0.94326	0.324	-25.672	-1.01	45.569	0.064	-2.6244	-0.0651		
					D2450V2 - S	erial No.	726							
			2450 MI	Hz Head					2450 M	Hz Body				
Date of Measurement	Return- Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return- Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
2012-03-15 (Calibration)	-26.011		54.014		3.3145		-26.035		50.006		4.9922			
2013-03-15 (Measured)	-26.244	-0.90	54.099	-0.085	3.4914	-0.177	-26.060	-0.10	50.305	-0.299	4.9089	0.0833		

4. TEST SYSTEM SPECIFICATIONS

Automated TEST SYSTEM SPECIFICATIONS:

<u>Positioner</u>

Robot Stäubli Unimation Corp. Robot Model: TX90XL

Repeatability 0.02 mm

No. of axis 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor Intel Core i5-3770

Clock Speed 3.40 GHz

Operating System Windows 7 Professional DASY5 PC-Board

Data Converter

Features Signal, multiplexer, A/D converter. & control logic

Software DASY5

Connecting Lines Optical downlink for data and status info

Optical uplink for commands and clock

PC Interface Card

Function 24 bit (64 MHz) DSP for real time processing

Link to DAE 4

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probes

Model EX3DV4 S/N: 3930

Construction Triangular core fiber optic detection system

Frequency 10 MHz to 6 GHz

Linearity \pm 0.2 dB (30 MHz to 6 GHz)

Phantom

Phantom SAM Twin Phantom (V5.0)

Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$

Figure 2.2 DASY5 Test System

5. SAR MEASUREMENT PROCEDURE

5.1 Measurement Procedure

The evaluation was performed using the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664D01v01(See Table 5.1).
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations / drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

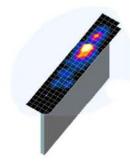


Figure 5.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r01 (See Table 5.1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mmaway from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan	
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)	
	, died faled	7250117	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*		
≤2GHz	≤ 15	≤8	≤5	≤4	≤1.5*∆z _{zoom} (n-1)	≥ 30	
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30	
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28	
4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25	
5-6 GHz	≤ 10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22	

Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r01

6. DEFINITION OF REFERENCE POINTS

6.1 Ear Reference Point

Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.5. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

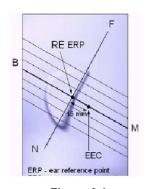


Figure 6.1 Close-up side view of ERP

6.2 Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 6.2 Front, back and side view SAM Twin Phantom

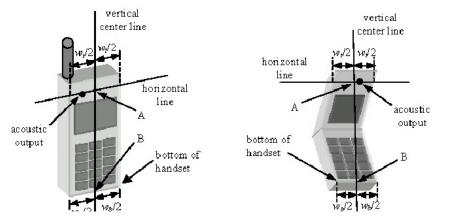


Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

7. TEST CONFIGURATION POSITIONS FOR HANDSETS

7.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

7.2 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 7.2)

7.3 Positioning for Ear / 15 ° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7.3).

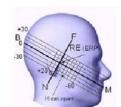


Figure 7.3 Front, Side and Top View of Ear/15°Position

7.4 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.7). Per FCC KDB Publication 648474 D04v01r01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05r01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for

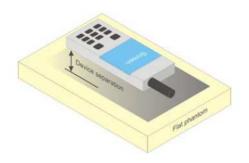


Figure 6.7 Sample Body-Worn Diagram

hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

7.5 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v05r01 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v05r01, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

7.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v01r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes.

Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r01 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

8. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-200

	HUMAN EXPOSURE LIMITS						
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)					
SPATIAL PEAK SAR * (Brain)	1.60	8.00					
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40					
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0					

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

9. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

9.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05r01, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

9.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v02r02 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

9.3 SAR Measurement Conditions for WCDMA(UMTS)

9.3.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

9.3.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 2.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

9.3.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

9.3.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK=5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

	Sub- Test	β_c	β_d	β _d (SF)	β_c/β_d	β _{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)				
Ī	1	2/15	15/15	64	2/15	4/15	0.0	0.0				
	2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0				
	3	15/15	8/15	64	15/8	30/15	1.5	0.5				
	4	15/15	4/15	64	15/4	30/15	1.5	0.5				
i	Note 1:	15/15 4/15 64 15/4 30/15 1.5 0.5 Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$. For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector										
	Note 2:	For the HS-I	OPCCH pov	ver mask requ	uirement test in cla	ause 5.2C, 5.	7A, and the Erro	or Vector				
		Magnitude (EVM) with	HS-DPCCH	test in clause 5.13	.1A, and HS	DPA EVM with	phase				
		discontinuity	in clause 5	.13.1AA, Δ _A	$_{CK}$ and $\Delta_{NACK} = 8$ ($(A_{hs} = 30/15)$	with $\beta_{hs} = 30/1$	$5 * \beta_c$, and				
		$\Delta_{\text{CQI}} = 7 (A_{\text{h}}$	$v_{s} = 24/15) v_{s}$	with $\beta_{hs} = 24/$	15 * β _c .							
	Note 3:	CM = 1 for	$B_c/\beta_d = 12/15$	$\beta_{hs}/\beta_{c}=24/1$	5. For all other co	mbinations o	of DPDCH, DPC	CH and HS-				
		DPCCH the	MPR is base	ed on the rela	tive CM differenc	e. This is app	plicable for only	UEs that				

Figure 9.1 Table C.10.1.4 of TS 234.121-1

9.3.4 SAR Measurements for Handsets with Rel 6 HSUPA

support HSDPA in release 6 and later releases.

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub- test	βε	β_d	β _d (SF)	β _e /β _d	β _{ls} ⁽¹⁾	βες	β _{cd}	β _{ed} (SF)	β _{cd} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed3} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15(4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{ke} = \beta_{ke}/\beta_{c} = 30/15 \Leftrightarrow \beta_{ke} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for β₀/β₀ =12/15, β₁₈/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c=10/15$ and $\beta_d=15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c=14/15$ and $\beta_d=15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{sd} can not be set directly; it is set by Absolute Grant Value.

9.4 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n /ac transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

9.4.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.4.2 Frequency Channel Configurations

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing. 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was 0.25 dB or higher than the 802.11a mode. 802.11ac SAR was evaluated for highest 802.11a configuration in each 5 GHz band and each exposure condition. 802.11ac modes were additionally evaluated for SAR if the output power for the respective mode was more than 0.25 dB higher than powers of 802.11a modes.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

10. RF CONDUCTED POWERS

10.1 GSM Conducted Powers

			Maximum Burs	t-Averaged Outp	ut Power (dBm)						
		Voice		GPRS/EDGE (GMSK) Data							
Band	Channel	GSM CS 1 Slot	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot					
	128	33.0	33.0	31.9	30.0	29.4					
GSM 850	190	33.0	33.0	31.9	30.0	29.4					
	251	33.0	32.9	31.8	29.9	29.5					
	512	30.0	30.0	28.7	27.2	26.0					
PCS 1900	661	30.0	30.0	28.7	27.1	26.0					
	810	29.9	29.8	28.7	27.1	25.9					
			Calculated Maximum Frame-Averaged Output Power (dBm)								
		Voice		GPRS/EDGE	(GMSK) Data						
Band	Channel	GSM CS 1 Slot	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot					
	128	23.97	23.97	25.88	25.74	26.39					
GSM 850	190	23.97	23.97	25.88	25.74	26.39					
	251	23.97	23.87	25.78	25.64	26.49					
	512	20.97	20.97	22.68	22.94	22.99					
PCS 1900	661	20.97	20.97	22.68	22.84	22.89					
	810	20.87	20.77	22.68	22.84	22.99					

Table 10.1 The power was measured by E5515C

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. The bolded GPRS modes were selected according to the highest frame-averaged output power table according to KDB 941225 D03v01.
- 3. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 4. This device does not support EDGE. (EDGE RX only)

GSM Class: B
GPRS Multislot class: 12 (max 4 TX Uplink slots)
DTM Multislot Class: N/A

Figure 10.1 Power Measurement Setup

10.2 WCDMA Conducted Powers

3GPP Release	Mode	3GPP 34.121	Cellul	ar Band	(dBm)	PCS	Band (d	IBm)	3GPP
Version	Wode	Subtest	4132	4183	4233	9262	9400	9538	MPR (dB)
99	WCDMA	12.2 kbps RMC	22.47	22.50	22.46	22.45	22.49	22.41	-
99		12.2 kbps AMR	22.46	22.48	22.41	22.41	22.48	22.39	-
5		Subtest 1	22.43	22.45	22.39	22.41	22.46	22.38	0
5	HSDPA	Subtest 2	22.43	22.44	22.38	22.40	22.40	22.35	0
5	ПЭПРА	Subtest 3	21.94	21.95	21.93	21.99	21.94	21.91	0.5
5		Subtest 4	21.91	21.95	21.92	21.97	21.93	21.89	0.5
6		Subtest 1	22.41	22.43	22.37	22.39	22.42	22.33	0
6		Subtest 2	20.42	20.43	20.39	20.49	20.45	20.39	2
6	HSUPA	Subtest 3	21.48	21.45	21.41	21.45	21.46	21.39	1
6		Subtest 4	20.41	20.41	20.38	20.45	20.43	20.39	2
6		Subtest 5	22.40	22.41	22.39	22.38	22.40	22.31	0

Table 10.2 The power was measured by E5515C

WCDMA SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02r02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

This device does not support DC-HSDPA.

Figure 10.2 Power Measurement Setup

10.3 WLAN Conducted Powers

	Гиса		802.11b (2.4 GHz) Conducted Power (dBm)							
Mode	Freq.	Channel		ate (Mbps)						
(MHz)			1 2 5.5		5.5	11				
	2412		16.77	16.76	16.72	16.71				
802.11b	2437	6	<u>16.93</u>	16.87	16.85	16.80				
-	2462	11	16.65	16.57	16.56	16.59				

Table 10.3 IEEE 802.11b Average RF Power

	Freq. Channel	802.11g (2.4 GHz) Conducted Power (dBm)										
Mode		Channel		Data Rate (Mbps)								
	(MHz)		6	9	12	18	24	36	48	54		
802.11g	2412	1	13.12	12.97	12.97	12.95	12.92	12.89	12.83	12.80		
	2437	6	13.35	13.23	13.22	13.16	13.11	13.07	12.96	13.01		
	2462	11	13.07	13.00	12.96	12.96	12.94	12.89	12.90	12.80		

Table 10.4 IEEE 802.11g Average RF Power

	F		802.11n HT20 (2.4 GHz) Conducted Power (dBm)											
Mode	Freq.	Channel				Data Rat	e (Mbps)							
	(MHz)		6.5	13	19.5	26	39	52	58.5	65				
	2412	1	12.98	12.96	12.89	12.91	12.86	12.89	12.83	12.87				
802.11n (HT-20)	2437	6	13.26	13.25	13.22	13.15	13.13	13.17	12.99	12.96				
(111-20)	2462	11	12.71	12.66	12.67	12.54	12.51	12.50	12.41	12.40				

Table 10.5 IEEE 802.11n Average RF Power

		_			802	2.11a (5 C	GHz) Con	ducted P	ower (dB	m)	
Mode	Mode	Freq.	Channel				Data Rat	e (Mbps)			
		(MHz)		6	9	12	18	24	36	48	54
		5180	36	12.24	12.21	12.20	12.18	12.05	12.03	12.03	12.00
	500	5200	40	<u>12.26</u>	12.21	12.19	12.14	12.11	12.10	12.10	12.05
	5.2 G	5220	44	12.19	12.16	11.96	12.01	11.98	11.89	11.81	11.80
		5240	48	12.20	12.17	12.13	12.06	12.00	11.98	11.95	11.91
		5260	52	<u>12.79</u>	12.77	12.72	12.68	12.68	12.63	12.56	12.54
	500	5280	56	12.44	12.36	12.23	12.19	12.21	12.13	12.02	11.98
	5.3 G	5300	60	12.64	12.62	12.60	12.56	12.54	12.47	12.41	12.37
000 44 -		5320	64	12.45	12.42	12.40	12.32	12.29	12.20	12.12	12.07
802.11a		5500	100	13.92	13.86	13.83	13.77	13.70	13.64	13.60	13.57
		5520	104	13.88	13.81	13.76	13.61	13.61	13.49	13.41	13.45
		5540	108	13.85	13.79	13.70	13.58	13.51	13.40	13.38	13.35
	5.5.0	5560	112	13.75	13.69	13.66	13.53	13.53	13.38	13.35	13.33
	5.5 G	5580	116	14.03	13.96	13.89	13.84	13.82	13.71	13.65	13.64
		5660	132	13.69	13.65	13.61	13.54	13.58	13.61	13.54	13.48
	ļ	5680	136	13.61	13.59	13.58	13.43	13.45	13.43	13.39	13.38
		5700	140	<u>14.04</u>	13.96	13.92	13.85	13.83	13.72	13.68	13.64

Table 10.6 IEEE 802.11a Average RF Power

		F			802.1	1n HT20	(5 GHz) C	onducte	d Power	(dBm)	
Mode	Mode	Freq.	Channel				Data Rat	e (Mbps)			
		(MHz)		6.5	13	19.5	26	39	52	58.5	65
		5180	36	12.23	12.18	12.10	12.09	12.05	12.01	11.98	11.88
	500	5200	40	11.96	11.94	11.86	11.81	11.82	11.80	11.72	11.69
	5.2 G	5220	44	11.91	11.88	11.76	11.75	11.73	11.75	11.68	11.65
		5240	48	12.20	12.11	12.09	12.11	12.10	12.06	12.08	12.01
		5260	52	12.27	12.25	12.23	12.22	12.21	12.15	12.05	11.99
	5.3 G	5280	56	12.21	12.18	12.15	12.15	12.10	12.09	12.01	11.90
		5300	60	12.49	12.45	12.40	12.36	12.30	12.22	12.16	12.11
802.11n		5320	64	12.37	12.33	12.27	12.28	12.27	12.19	12.10	12.01
(HT-20)		5500	100	13.86	13.83	13.76	13.66	13.62	13.54	13.46	13.46
		5520	104	13.68	13.65	13.61	13.57	13.55	13.40	13.38	13.24
		5540	108	13.65	13.61	13.58	13.51	13.50	13.39	13.31	13.21
	5.5.0	5560	112	13.66	13.61	13.59	13.50	13.42	13.41	13.28	13.18
	5.5 G	5580	116	13.94	13.92	13.88	13.81	13.81	13.75	13.67	13.64
	-	5660	132	13.51	13.50	13.38	13.39	13.33	13.29	13.23	13.19
		5680	136	13.49	13.45	13.46	13.41	13.41	13.35	13.30	13.11
		5700	140	13.97	13.94	13.87	13.78	13.74	13.70	13.61	13.63

Table 10.7 IEEE 802.11n Average RF Power - 20 MHz Bandwidth

		F-v-a-			802.1	1n HT40 ((5 GHz) C	onducte	d Power	(dBm)	
Mode	Mode	Freq.	Channel				Data Rat	e (Mbps)			
		(MHz)		13.5	27	40.5	54	81	108	121.5	135
	500	5190	38	10.89	10.82	10.79	10.76	10.67	10.57	10.49	10.40
	5.2 G	5230	46	10.97	10.89	10.83	10.77	10.74	10.68	10.60	10.53
000.44	5.3 G	5270	54	11.15	11.05	11.03	10.96	10.94	10.87	10.78	10.72
802.11n		5310	62	11.21	11.20	11.10	11.08	11.01	10.96	10.86	10.81
(HT-40)	5.5 G	5510	102	11.06	11.00	10.92	10.86	10.82	10.83	10.76	10.70
		5550	110	11.13	11.06	11.02	11.04	10.96	10.87	10.81	10.73
		5670	134	11.16	11.06	11.04	10.95	10.89	10.87	10.82	10.78

Table 10.8 IEEE 802.11n Average RF Power - 40 MHz Bandwidth

		_		802.11ac VHT20 (5 GHz) Conducted Power (dBm)
Mode	Mode	Freq.	Channel	Data Rate (Mbps)
		(MHz)		78
		5180	36	11.75
	500	5200	40	11.51
	5.2 G	5220	44	11.49
		5240	48	11.77
		5260	52	11.81
	500	5280	56	11.89
	5.3 G	5300	60	12.04
802.11ac		5320	64	11.91
(VHT-20)		5500	100	13.39
		5520	104	13.15
		5540	108	13.10
		5560	112	13.08
	5.5 G	5580	116	13.50
		5660	132	13.12
		5680	136	13.01
		5700	140	13.49

Table 10.9 IEEE 802.11ac Average RF Power - 20 MHz Bandwidth

		-		802.11ac VHT40 (5 GHz) Conducted Power (dBm)						
Mode	Mode	Freq.	Channel	Data Ra	te (Mbps)					
		(MHz)		162	180					
	500	5190	38	10.35	10.31					
	5.2 G	5.2 G 5230		10.50	10.45					
000 4400	500	5270	54	10.70	10.68					
802.11ac	5.3 G	5310	62	10.79	10.73					
(VHT-40)		5510	102	10.66	10.64					
	5.5 G	5550	110	10.68	10.65					
	0.0 0	5670	134	10.70	10.68					

Table 10.10 IEEE 802.11n Average RF Power - 40 MHz Bandwidth

		Freg.				802.11ac	VHT80	(5 GHz)	Conduc	ted Pow	er (dBm)				
								Data Rate (Mbps)							
		(MHz)		29.3	58.5	87.8	117	175.5	234	263.3	292.5	351	390		
000 44	5.2 G	5210	42	11.29	11.28	11.23	11.21	11.14	11.12	11.03	11.01	10.91	10.82		
802.11ac	5.3 G	5290	58	<u>11.57</u>	11.47	11.40	11.34	11.27	11.21	11.23	11.21	11.14	11.10		
(VHT-80)	5.5 G	5530	106	11.57	11.55	11.52	11.47	11.40	11.32	11.32	11.28	11.29	11.20		

Table 10.11 IEEE 802.11n Average RF Power - 80 MHz Bandwidth

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 / April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes(including 802.11n 20 MHz and 40 MHz) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The average output powers for 802.11ac 20MHz (VHT20) and 802.11ac 40 MHz (VHT40) modes are equivalent to the 802.11n 20 MHz (HT20) and 802.11n 40 MHz (HT40). Therefore, no additional measurements were required for the lower bandwidth for 802.11ac.
- The underlined data rate and channel above were tested for SAR.

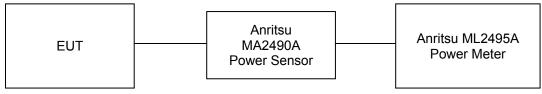


Figure 10.3 Power Measurement Setup for Bandwidths < 50 MHz

Figure 10.4 Power Measurement Setup for Bandwidths > 50 MHz

10.4 Bluetooth Conducted Powers

Channel	Frequency	•	Power bps)	Output (2MI		Output power (3Mbps)		
	(MHz)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	
Low	2402	7.396	5.490	6.057	4.034	6.059	4.036	
Mid	2441	6.429	6.429 4.394		5.417 3.481		3.491	
High	2480	7.553 5.692		6.201	4.170	6.202	4.171	

Table 10.12 Bluetooth Average RF Power

Channel	Frequency	Output (L	Power E)
	(MHz)	(dBm)	(mW)
Low	2402	-0.759	0.840
Mid	2441	-1.394	0.725
High	2480	-0.340	0.925

Table 10.13 Bluetooth Average RF Power

Figure 10.4 Power Measurement Setup

11. SYSTEM VERIFICATION

11.1 Tissue Verification

				MEASU	RED TISSUE	PARAMETERS				
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]
				824.2	41.551	0.899	40.440	0.903	-2.67	0.44
Sep. 28. 2013	835	21.8	22.5	835.0	41.500	0.900	40.376	0.907	-2.71	0.78
Sep. 20. 2013	Head	21.0	22.5	836.6	41.500	0.902	40.362	0.908	-2.74	0.67
				848.8	41.500	0.915	40.290	0.913	-2.92	-0.22
				824.2	55.240	0.969	53.700	0.972	-2.79	0.31
Oct. 05. 2013	835	22.1	22.4	835.0	55.200	0.970	53.604	0.983	-2.89	1.34
Oct. 05. 2013	Body	22.1	22.4	836.6	55.195	0.972	53.586	0.985	-2.92	1.34
				848.8	55.158	0.987	53.464	0.997	-3.07	1.01
				826.4	41.540	0.899	40.414	0.904	-2.71	0.56
Con 20 2012	835	22.2	22.4	835.0	41.500	0.900	40.356	0.909	-2.76	1.00
Sep. 30. 2013	Head	22.2	22.4	836.6	41.500	0.902	40.346	0.910	-2.78	0.89
				846.6	41.500	0.912	40.283	0.915	-2.93	0.33
				826.4	55.230	0.969	54.023	0.978	-2.19	0.93
0 20 2042	835	22.2	00.4	835.0	55.200	0.970	53.942	0.987	-2.28	1.75
Sep. 30. 2013	Body	22.2	22.4	836.6	55.195	0.972	53.921	0.988	-2.31	1.65
				846.6	55.160	0.984	53.819	0.998	-2.43	1.42
				1850.2	40.000	1.400	40.647	1.381	1.62	-1.36
0-1-04-0040	1900	00.4	00.0	1880.0	40.000	1.400	40.602	1.404	1.50	0.29
Oct. 01. 2013	Head	22.4	22.6	1900.0	40.000	1.400	40.570	1.419	1.43	1.36
				1909.8	40.000	1.400	40.553	1.427	1.38	1.93
				1850.2	53.300	1.520	55.133	1.482	3.44	-2.50
0-1-07-0040	1900	04.0	00.4	1880.0	53.300	1.520	55.059	1.512	3.30	-0.53
Oct. 07. 2013	Body	21.8	22.1	1900.0	53.300	1.520	55.004	1.532	3.20	0.79
				1909.8	53.300	1.520	54.977	1.541	3.15	1.38
				1852.4	40.000	1.400	40.629	1.382	1.57	-1.29
0-1-00-0040	1900	00.0	00.7	1880.0	40.000	1.400	40.590	1.403	1.48	0.21
Oct. 02. 2013	Head	22.2	22.7	1900.0	40.000	1.400	40.559	1.418	1.40	1.29
				1907.6	40.000	1.400	40.546	1.425	1.37	1.79
				1852.4	53.300	1.520	54.525	1.482	2.30	-2.50
0 1 00 0010	1900	00.0	00.7	1880.0	53.300	1.520	54.461	1.510	2.18	-0.66
Oct. 02. 2013	Body	22.2	22.7	1900.0	53.300	1.520	54.410	1.530	2.08	0.66
				1907.6	53.300	1.520	54.390	1.537	2.05	1.12
				2412	39.268	1.766	39.139	1.799	-0.33	1.87
0-1-04-0010	2450	04.0	00.0	2437	39.223	1.788	39.063	1.821	-0.41	1.85
Oct. 04. 2013	Head	21.9	22.3	2450	39.200	1.800	39.026	1.833	-0.44	1.83
				2462	39.184	1.813	38.994	1.844	-0.48	1.71
				2412	52.751	1.914	51.040	1.885	-3.24	-1.52
0-1-04-0010	2450	04.0	00.0	2437	52.717	1.938	50.933	1.902	-3.38	-1.86
Oct. 04. 2013	Body	21.9	22.3	2450	52.700	1.950	50.885	1.913	-3.44	-1.90
				2462	52.685	1.967	50.859	1.923	-3.47	-2.24

	MEASURED TISSUE PARAMETERS												
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]			
				5200	36.000	4.660	36.892	4.703	2.48	0.92			
				5210	35.980	4.667	36.879	4.716	2.50	1.05			
Oct. 08. 2013	5 GHz	21.9	22.4	5300	35.900	4.760	36.705	4.818	2.24	1.22			
Oct. 00. 2013	Head	21.9	22.4	5500	35.600	4.960	36.359	5.055	2.13	1.92			
				5600	35.500	5.070	36.178	5.176	1.91	2.09			
				5800	35.300	5.270	35.803	5.415	1.42	2.75			
				5200	49.000	5.300	48.382	5.194	-1.26	-2.00			
				5210	48.980	5.312	48.366	5.207	-1.25	-1.98			
Oct. 08. 2013	5 GHz	21.9	22.4	5300	48.900	5.420	48.210	5.327	-1.41	-1.72			
Oct. 00. 2013	Body	21.9	22.4	5500	48.600	5.650	47.854	5.597	-1.53	-0.94			
				5600	48.500	5.770	47.663	5.734	-1.73	-0.62			
				5800	48.200	6.000	47.326	6.014	-1.81	0.23			
				5200	36.000	4.660	36.787	4.697	2.19	0.79			
				5260	35.900	4.720	36.672	4.768	2.15	1.02			
	5 OU-			5290	35.900	4.760	36.627	4.800	2.03	0.84			
Oct. 10. 2013	5 GHz Head	22.0	22.5	5300	35.900	4.760	36.599	4.811	1.95	1.07			
	rieau			5500	35.600	4.960	36.257	5.048	1.85	1.77			
				5600	35.500	5.070	36.077	5.169	1.63	1.95			
				5800	35.300	5.270	35.701	5.408	1.14	2.62			
				5200	49.000	5.300	48.354	5.195	-1.32	-1.98			
				5260	48.900	5.372	48.241	5.277	-1.35	-1.77			
	5 OU-			5290	48.900	5.408	48.203	5.315	-1.43	-1.72			
Oct. 10. 2013	5 GHz Body	22.0	22.5	5300	48.900	5.420	48.179	5.329	-1.47	-1.68			
	Dody			5500	48.600	5.650	47.822	5.598	-1.60	-0.92			
				5600	48.500	5.770	47.636	5.735	-1.78	-0.61			
				5800	48.200	6.000	47.297	6.015	-1.87	0.25			
				5200	36.000	4.660	35.336	4.507	-1.84	-3.28			
				5300	35.900	4.760	35.167	4.621	-2.04	-2.92			
	5.011-			5500	35.600	4.960	34.838	4.852	-2.14	-2.18			
Oct. 11. 2013	5 GHz Head	22.3	22.7	5530	35.570	4.991	34.774	4.888	-2.24	-2.06			
	ricau			5600	35.500	5.070	34.662	4.971	-2.36	-1.95			
				5700	35.400	5.170	34.481	5.087	-2.60	-1.61			
				5800	35.300	5.270	34.305	5.202	-2.82	-1.29			
				5200	49.000	5.300	48.401	5.197	-1.22	-1.94			
				5300	48.900	5.420	48.230	5.331	-1.37	-1.64			
	5.011			5500	48.600	5.650	47.873	5.600	-1.50	-0.88			
Oct. 11. 2013	5 GHz Body	22.3	22.7	5530	48.570	5.686	47.808	5.644	-1.57	-0.74			
	Bouy		22.7	5600	48.500	5.770	47.685	5.738	-1.68	-0.55			
				5700	48.300	5.880	47.517	5.874	-1.62	-0.10			
				5800	48.200	6.000	47.351	6.019	-1.76	0.32			

Tissue Verification Note:

Note: The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

11.2 Test System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz, 1900 MHz, 2450 MHz and 5 GHz by using the SAR Dipole kit(s). (Graphic Plots Attached)

			SYS	STEM DIP	OLE VERIFIC	ATION TARG	ET & ME	ASURED				
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Liquid	Ambient Temp.[°C]	Liquid Temp.[°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation [%]
Е	835	D835V2, SN:464	Sep. 28. 2013	Head	21.8	22.5	3930	250	9.40	2.40	9.60	2.13
Е	835	D835V2, SN:464	Oct. 05. 2013	Body	22.1	22.4	3930	250	9.53	2.22	8.88	-6.82
E	835	D835V2, SN:464	Sep. 30. 2013	Head	22.2	22.4	3930	250	9.40	2.31	9.24	-1.70
E	835	D835V2, SN:464	Sep. 30. 2013	Body	22.2	22.4	3930	250	9.53	2.25	9.00	-5.56
Е	1900	D1900V2, SN:5d029	Oct. 01. 2013	Head	22.4	22.6	3930	250	38.4	9.13	36.52	-4.90
Е	1900	D1900V2, SN:5d029	Oct. 07. 2013	Body	21.8	22.1	3930	250	39.6	10.6	42.40	7.07
E	1900	D1900V2, SN:5d029	Oct. 02. 2013	Head	22.2	22.7	3930	250	38.4	8.92	35.68	-7.08
Е	1900	D1900V2, SN:5d029	Oct. 02. 2013	Body	22.2	22.7	3930	250	39.6	9.26	37.04	-6.46
E	2450	D2450V2, SN:726	Oct. 04. 2013	Head	21.9	22.3	3930	250	52.0	12.6	50.40	-3.08
Е	2450	D2450V2, SN:726	Oct. 04. 2013	Body	21.9	22.3	3930	250	50.2	12.4	49.60	-1.20
Е	5200	D5GHzV2, SN: 1103					3930	100	81.1	7.70	77.00	-5.06
Е	5300	D5GHzV2, SN: 1103					3930	100	82.5	8.54	85.40	3.52
Е	5500	D5GHzV2, SN: 1103	Oct. 08. 2013	Head	21.9	22.4	3930	100	85.3	8.27	82.70	-3.05
E	5600	D5GHzV2, SN: 1103					3930	100	84.5	8.13	81.30	-3.79
Е	5800	D5GHzV2, SN: 1103					3930	100	80.5	8.01	80.10	-0.50
E	5200	D5GHzV2, SN: 1103					3930	100	74.7	7.54	75.40	0.94
Е	5300	D5GHzV2, SN: 1103					3930	100	76.0	7.57	75.70	-0.39
Е	5500	D5GHzV2, SN: 1103	Oct. 08. 2013	Body	21.9	22.4	3930	100	80.0	8.10	81.00	1.25
E	5600	D5GHzV2, SN: 1103					3930	100	81.3	8.38	83.80	3.08
Е	5800	D5GHzV2, SN: 1103					3930	100	75.5	7.98	79.80	5.70