Page 1 of 121

Report number : Z101C-15098 Issue date : October 28, 2015

The device, as described herewith, was tested pursuant to applicable test procedure and complies with the requirements of;

FCC 47CFR §2. 1093

The test results are traceable to the international or national standards.

Applicant	: KYOCERA Corporation
Equipment under test (El	JT) : Mobile Phone
Model number	: KA85
FCC ID	: JOYKA85
Test place : TÜV SÜD 2 4149-7 Hac Yonezawa-:	30, October 1-3, 5-8, 2015 Zacta Ltd. Yonezawa Testing Center chimanpara 5-chome shi Yamagata 992-1128 Japan -238-28-2880 Fax: +81-238-28-2888

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD Zacta Ltd. This test report must not be used by client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Tested by

Chiaki Kanno

Tadahiro Seino

Authorized by

Eiji Akiba

Deputy General Manager of EMC Technical Department

Table of contents

Page

1. Summary of Test	4
1.1 Purpose of test	. 4
1.2 Standards	. 4
1.3 Modification to the EUT by laboratory	. 4
2. Equipment Under Test	5
2.1 General description of equipment	. 5
2.2 EUT information	
2.3 Variation of the family model(s)	. 6
2.4 Description of test modes	. 6
2.5 Test Results	. 7
2.6 Nominal and Maximum Output Power Specifications	. 8
2.7 DUT Antenna Locations & SAR Test Configurations	. 9
2.8 Near Field Communications (NFC) Antenna	10
2.9 SAR Test Exclusions Applied	.11
2.10 Power Reduction for SAR	.11
2.11 Device Serial Numbers	.11
3. Introduction	12
4. Description of test equipment	13
4.1 SAR Measurement Setup	
4.2 Probe measurement system	14
4.3 Probe calibration process	15
4.4 SAM Twin phantom	17
4.5 ELI phantom	18
4.6 Device Holder for Transmitters	18
4.7 Laptop Extensions Kit	18
4.8 Brain & Muscle Simulating Mixture Characterization	19
4.9 SAR Test equipment	20
5. Test system specifications	21
6. SAR Measurement Procedure	22
7. Definition of reference points	23
7.1 EAR Reference Point.	23
7.2 Handset Reference Points	23
7.3 Device Holder	24
7.4 Positioning for Cheek/Touch	24
7.5 Positioning for Ear / 15 ° Tilt	24
7.6 Body-Worn Accessory Configurations	25
7.7 Extremity Exposure Configurations	25
7.8 Wireless Router Configurations	25
8. ANSI / IEEE C95.1-2005 RF Exposure Limits	26
9. FCC Measurement Procedures	27
9.1 Measured and Reported SAR	27
9.2 Procedures Used to Establish RF Signal for SAR	27
9.3 SAR Measurement Conditions for WCDMA(UMTS)	27

	Zacta
9.3.1 Output Power Verification	
9.3.3 Body SAR Measurements	
9.3.4 SAR Measurements for Handsets with Rel 5 HSDPA	
9.3.5 SAR Measurements for Handsets with Rel 6 HSUPA	
9.4 SAR Measurement Conditions for LTE	
9.5 SAR Testing with 802.11 Transmitters	
9.5.1 General Device Setup	
9.5.2 Frequency Channel Configurations	
10. RF Conducted Power	
10. 1 GSM Conducted Powers	-
10.2 WCDMA Conducted Powers	
10.3 LTE Conducted Powers	
10.3 LTE Conducted Powers	
10.5 Bluetooth Conducted Powers	
11. System Verification	
11.1 Tissue verification	
11.2 Test system verification	
12. SAR Test Results	
12. 1 Head SAR Results	
12.1 Head SAR Results	
12.2 Standalone Wireless router SAR Results	
12.3 Standalone Wireless router SAR Results	
13. FCC Multi-TX and Antenna SAR Considerations	
13.1 Introduction	
13.2 Simultaneous Transmission Procedures	
13.3 Simultaneous Transmission Capabilities	
13.4 Simultaneous Transmission Capabilities	
13.5 Head SAR Simultaneous Transmission SAR Analysis	
13.6 Body-Worn Simultaneous Transmission Analysis	
13.7 Hotspot SAR Simultaneous Transmission Analysis	
14. SAR Measurement Variability	
14.1 Measurement Variability	
14.1 Measurement Uncertainty	
15. IEEE P1528 - Measurement uncertainties	
16. Conclusion	
17. References	
Attachment 1. Probe calibration data	
Attachment 1. Probe calibration data	-
Attachment 2. Dipole calibration data Attachment 3. SAR system validation	
Allachineni J. JAK Systemi vanualion	121

1. Summary of Test

1.1 Purpose of test

It is the original test in order to verify conformance to standards listed in section 1.2.

1.2 Standards

FCC 47CFR §2. 1093

1.2.1 Guidance applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01 v03 (3G SAR Procedures)
- FCC KDB Publication 941225 D05 v02r03 (SAR for LTE Devices)
- FCC KDB Publication 941225 D05A v01r01 (LTE Rel.10 KDB Inquiry Sheet)
- FCC KDB Publication 941225 D06 v02 (Hotspot Mode)
- FCC KDB Publication 248227 D01 v02r01 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01 v05r02 (General SAR Guidance)
- FCC KDB Publication 447498 D03 v01 (Supplement C Cross-Reference)
- FCC KDB Publication 865664 D01 v01r04 (SAR Measurements 100MHz to 6 GHz)
- FCC KDB Publication 865664 D02 v01r01 (RF Exposure Reporting)
- FCC KDB Publication 648474 D04 v01r02 (Handset SAR)

1.2.2 Deviation from standards

None

1.3 Modification to the EUT by laboratory

None

2. Equipment Under Test

2.1 General description of equipment

EUT is the Mobile Phone.

2.2 EUT information

Applicant	:	KYOCERA Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314
Equipment under test	:	Mobile Phone
Trade name	:	Kyocera
Model number	:	KA85
Serial number	:	N/A
EUT condition	:	Pre-Production
Power ratings	:	Battery: DC 3.8V
Size	:	(W) 71.0 × (D) 10.1 × (H) 141.4 mm Overall Diagonal: 158.2mm Display Diagonal: 126.7mm
Environment	:	Indoor and Outdoor use
Terminal limitation	:	-20°C to 60°C
RF Specification		
Equipment type	:	Transceiver
Mode(s) of operation	:	GSM850, PCS1900, WCDMA850, LTE Band 17, LTE Band 5, 2.4GHz W-LAN(802.11b, 802.11g, 802.11n HT20),
GPRS Class Antenna type	:	Class B Internal antenna
Antenna gain	:	GSM 850: -1.2dBi PCS 1900: -0.5dBi WCDMA 850: -1.2dBi LTE Band 17: -3.0dBi LTE Band 5: -1.2dBi 2.4GHz W-LAN: -0.2dBi

Page 6 of 121

Zacta

Frequency of operation

: Up Link GSM 850: 824.2-848.8MHz(Cellular Band) PCS 1900: 1850.2-1909.8MHz(PCS Band) WCDMA 850: 826.4-846.6MHz(WCDMA FDD V) LTE Band 17: 704.0-716.0MHz LTE Band 5: 824.0-849.0MHz 802.11b/g/n(HT20): 2412-2462MHz

Down Link GSM 850: 869.2-893.8MHz(Cellular Band) PCS 1900: 1930.2-1989.8MHz(PCS Band) WCDMA 850: 871.4-891.6MHz(WCDMA FDD V) LTE Band 17: 734.0-746.0MHz LTE Band 5: 869.0-894.0MHz 802.11b/g/n(HT20): 2412-2462MHz

2.3 Variation of the family model(s)

Not applicable

2.4 Description of test modes

The EUT had been tested under operating condition. There are three channels have been tested as following:

Band	Channel	Test mode	
GSM 850	128, 190, 251	Voice/Data	
PCS 1900	512, 661, 810	Voice/ Data	
WCDMA 850	4132, 4183, 4233	Voice/ Data	
LTE Band 17	23780, 23790, 23800(BW:10MHz) 23755, 23790, 23825(BW:5MHz)	Data	
LTE Band 5	20450, 20525, 20600(BW:10MHz) 20425, 20525, 20625(BW:5MHz) 20415, 20525, 20635(BW:3MHz) 20407, 20525, 20643(BW:1.4MHz)	Data	
2.4GHz W-LAN	1, 6, 11	Data	
Bluetooth	0, 39, 78	Data	

For the second mode, and test it against RF exposure of the best at each position of the channel in the worst case.

2.5 Test Results

Equipment Class	Band	Measured Conducted Power	Reported SAR 1g SAR [W/kg]			
		[dBm]	Head	Body-worn	Hotspot	
	GSM 850	32.69	0.222	0.480	-	
	GPRS 850	28.28	0.280	0.539	0.539	
	PCS 1900	29.81	0.289	0.669	-	
PCE	GPRS 1900	28.05	0.412	0.776	1.220	
	WCDMA 850	23.33	0.350	0.657	0.657	
	LTE Band 17	23.34	0.170	0.336	0.336	
	LTE Band 5	23.69	0.474	0.753	0.753	
DTS	2.4GHz W-LAN	16.15	0.170	0.168	0.168	
DSS/DTS	Bluetooth	7.98	N/A	N/A	N/A	
Simultaneo	ous SAR per KDB 690783	D01v01r03	0.633	0.944	1.388	

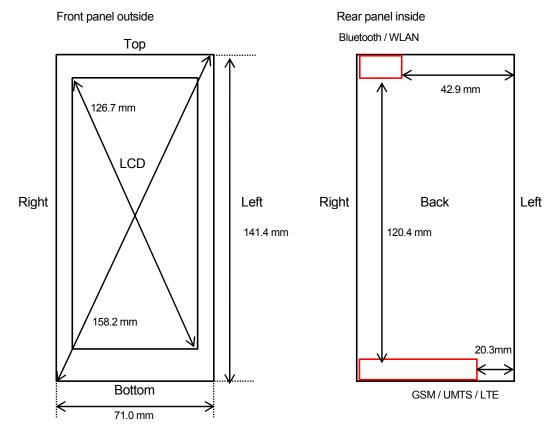
2.6 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r02.

David 8 Mada	Voice [dBm]	E]			
Band & Mode		1TX	1TX	2TX	3TX	4TX
		Slot	Slot	Slot	Slot	Slot
	Maximum	33.0	33.0	31.0	29.0	28.0
GSM/GPRS 850	Nominal	32.0	32.0	30.0	28.0	27.0
GSM/GPRS 1900	Maximum	30.0	30.0	28.5	26.5	25.5
GSIV/GFRS 1900	Nominal	29.0	29.0	27.5	25.5	24.5

Band & Mode	Modulated Average [dBm]			
Build & mode		3GPP	3GPP	3GPP
		RMC	HSDPA	HSUPA
	Maximum	24.0	24.0	24.0
WCDMA 850	Nominal	22.0	22.0	22.0

Band & Mode		Modulated Average [dBm]		
LTE Band 17	Maximum	24.5		
	Nominal	22.5		
LTE Dand 5	Maximum	24.5		
LTE Band 5	Nominal	22.5		


Band & Mode		Modulated Average [dBm]		
	Maximum	17.0		
IEEE 802.11b (2.4 GHz)	Nominal	16.0		
	Maximum	13.0		
IEEE 802.11g (2.4 GHz)	Nominal	12.0		
	Maximum	13.0		
IEEE 802.11n (2.4 GHz)	Nominal	12.0		
Diveteeth	Maximum	8.0		
Bluetooth	Nominal	7.0		
Diveteeth I F	Maximum	1.0		
Bluetooth LE	Nominal	0.0		

2.7 DUT Antenna Locations & SAR Test Configurations

DUT Antenna Locations(Rear side view)

Note: Specific antenna dimensions and separation distances are shown in the antenna distance document.

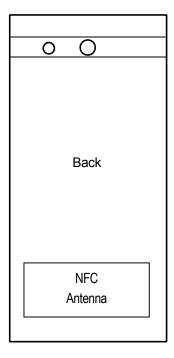
SAR Test Configurations

Mada	Mobile Hotspot Sides for SAR Testing							
Mode	Тор	Bottom	Front	Rear	Right	Left		
GSM 850	Х	0	0	0	0	0		
PCS 1900	Х	0	0	0	0	0		
WCDMA 850	Х	0	0	0	0	0		
LTE Band 17	Х	0	0	0	0	0		
LTE Band 5	Х	0	0	0	0	0		
2.4GHz W-LAN(802.11b/g/n)	0	Х	0	0	0	Х		

Note:

Table 2.1 Mobile Hotspot Sides for SAR Testing

1. Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06 v02 guidance, page 2. The antenna document shows the distances between the transmit antennas and the edges of the device.


2. WIFI Direct GO is supported in the 2.4 GHz band only.

The manufacturer expects 2.4 GHz WIFI Direct GO may be used in a similar manner to wireless router usage. Therefore, 2.4 GHz WIFI Direct GO was evaluated for SAR similarly to wireless router SAR procedures in FCC KDB Publication 941225.

2.8 Near Field Communications (NFC) Antenna

NFC Antenna Locations (Rear Side View)

This DUT has NFC operations. The NFC antenna is integrated into the back cover. Therefore, all SAR tests performed with the device already incorporate the NFC antenna.

2.9 SAR Test Exclusions Applied

(A) WIFI & BT

Since Wireless Router operations are not allowed by the chipset firmware using 2.4 GHz WIFI, only 2.4 GHz WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06 v02.

Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth SAR was not required; $[(6.3/10)^* \sqrt{2.402}] = 1.0 < 3.0$.

Based on the maximum conducted power of Bluetooth LE (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth LE SAR was not required; $[(0.7/10)^* \sqrt{2.402}] = 0.1 < 3.0$.

Based on the maximum conducted power of 2.4 GHz WIFI (rounded to the nearest mW) and the antenna to user separation distance, 2.4 GHz WIFI SAR was required; $[(41/10)^* \sqrt{2.437}] = 6.4 > 3.0$.

Per KDB Publication 447498 D01v05r02, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Licensed Transmitter(s)

GSM/GPRS DTM is not supported for US bands.

Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS Data. And this device is only supported for EDGE Rx.

WCDMA 850 support HSDPA and HSUPA.

2.10 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

2.11 Device Serial Numbers

David & Mada		Serial nber		-Worn Number	Hotspot Serial Number	
Band & Mode	SAR Sample No.1	SAR Sample No.2	SAR Sample No.1	SAR Sample No.2	SAR Sample No.1	SAR Sample No.2
GSM 850		FCC #2	500 #4	FCC #2	FCC #1	FCC #2
GSM 1900						
WCDMA 850	F00 #4					
LTE Band 17	FCC #1		FCC #1			
LTE Band 5]					
2.4GHz W-LAN						

3. Introduction

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95*.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017.

The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU)absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

SAR =
$$\frac{\sigma \cdot E^2}{\rho}$$

Where: σ = conductivity of the tissue - simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

4. Description of test equipment

4.1 SAR Measurement Setup

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 4.1).

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3,40 GHz desktop computer with Windows NT system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

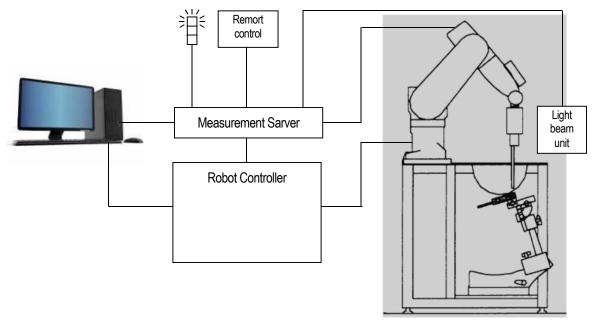


Figure 4.1 SAR Measurement system setup

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

4.2 Probe measurement system

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular

configuration (see Fig. 4.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE System

Probe specifications

Calibration

Frequency

Linearity

Dynamic

Range linearity

Tip diameter

Application

Dimensions Overall length

In air from 10 MHz to 6 GHz In brain and muscle simulating tissue at Frequencies of 750MHz, 835MHz, 900MHz, 1750MHz, 1900MHz, 2000MHz 2300MHz, 2450MHz, 2600MHz, 3500MHz, 5200MHz, 5300MHz, 5500MHz, 5600MHz, 5800MHz 10 MHz to 6 GHz ± 0.2 dB(30 MHz to 6 GHz) $10 \,\mu W/g$ to > $100 \,m W/g$ ± 0.2 dB 337 mm(Tip: 20 mm) 2.5 mm(Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm Dosimetry testing Compliance tests of mobile phones

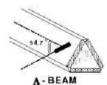
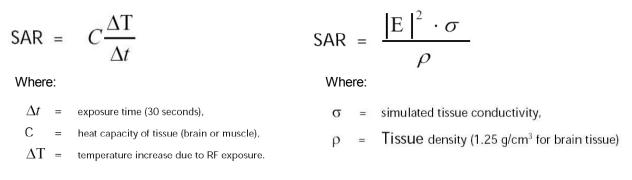


Figure 4.2 Triangular Probe Configurations

Figure 4.3 Probe Thick-Film Technique

4.3 Probe calibration process

Dosimetric Assessment Procedure


Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/-10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

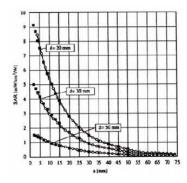


Figure 4.4 E-Field and Temperature Measurements at 900MHz

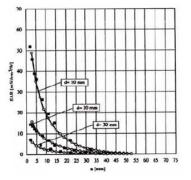


Figure 4.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i} \qquad \begin{array}{c} \text{with } V_i &= \text{linearized voltage of channel i (uV)} & (i = x, y, z) \\ U_i &= \text{measured voltage of channel i (uV)} & (i = x, y, z) \\ cf &= \text{crest factor of exciting field} & (DASY parameter) \\ dcp_i &= \text{diode compression point of channel i (uV)} & (Probe parameter, i = x, y, z) \end{array}$$

From the compensated input signals the primary field data for each channel can be evaluated.

The RMS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

	with	SAR = local specific absorption rate in mW/g
$SAR = E_{m}^2 \cdot \sigma$		Etot = total field strength in V/m
101		σ = conductivity in [mho/m] or [Siemens/m]
$ ho \cdot 1000$		ρ = equivalent tissue density in g/cm ³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770} \qquad \text{with}$$

 P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m

4.4 SAM Twin phantom

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 4.6)

Figure 4.6 SAM Twin phantom

SAM Twin Phantom Specification

Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.
Shell Thickness Filling Volume Dimensions	2 ± 0.2 mm Approx. 25 liters Length: 1000 mm Width: 500 mm Height: adjustable feet

Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 4.7). The perimeter side walls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface.

The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 4.7 Sam Twin Phantom shell

Zacta

4.5 ELI phantom

its

ELI Phantom Specification Construction Pha

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding

performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. (see Fig. 4.8)

Shell Thickness Filling Volume Dimensions

Figure 4.8 ELI phantom

4.6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V5.0 or ELI5, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

4.7 Laptop Extensions Kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioned.

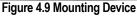


Figure 4.10 Laptop Extensions Kit

4.8 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution. (see Table 4.1)

Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process.

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Table 4.1 Composition of the Equivalent Matter										
Ingredients		Frequency [MHz]								
[% by weight]	7	50	83	35	19	00	24	50	5200 - 5800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	42.10	50.00	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00
Salt(NaCl)	1.500	0.800	1.480	0.940	0.310	0.290	0.160	0.060	-	-
Sugar	56.00	48.80	57.90	48.21	-	-	-	-	-	-
HEC	0.200	0.200	0.250	-	-	-	-	-	-	-
Bactericide	0.200	0.200	0.180	0.100	-	-	-	-	-	-
Triton X-100	-	-	-	-	-	-	19.97	-	17.24	-
DGBE	-	-	-	-	48.45	29.48	7.990	26.54	-	-
Diethylenglycol monohexylether	-	-	-	-	-	-	-	-	17.24	-
Polysorbate (Tween) 80	-	-	-	-	-	-	-	-	-	20.00
Target for Dielectric Constant	41.9	55.5	41.5	55.2	40.0	53.3	39.2	52.7	-	-
Target for Conductivity (S/m)	0.89	0.96	0.90	0.97	1.40	1.52	1.80	1.95	-	-

Table 4.1 Composition of the Equivalent Matter

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1, 1, 3, 3-tetramethylbutyl)phenyl]

4.9 SAR Test equipment

Table 4.2 Test Equipment Calibration

USE	Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Х	SAR Test Room	TOKIN	N/A	N/A	N/A	N/A
Х	Robot Arm	speag	TX60L	F13/5SC6C1/A/01	N/A	N/A
Х	Robot Controller	speag	CS8c	F13/5SC6C1/A/01	N/A	N/A
Х	Probe Alignment Unit LB	speag	N/A	N/A	N/A	N/A
Х	Mounting Device	speag	SD000H01KA	N/A	N/A	N/A
Х	Laptop Holder	speag	SMLH1001CD	N/A	N/A	N/A
Х	Twin SAM V5.0	speag	QD000P40CD	1799	N/A	N/A
Х	ELI V5.0	speag	QDOVA001BB	1230	N/A	N/A
Х	Data Acquisition Electronics	speag	DAE4	1409	Dec. 31, 2015	Dec. 11, 2014
Х	Dosimetric E-Field Probe	speag	EX3DV4	3957	Dec. 31, 2015	Dec. 16, 2014
Х	750MHz SAR Dipole	speag	D750V3	1100	Dec .31, 2015	Dec. 9, 2014
Х	835MHz SAR Dipole	speag	D835V2	4d163	Dec. 31, 2015	Dec. 9, 2014
	900MHz SAR Dipole	speag	D900V2	1d161	Dec. 31, 2015	Dec. 9, 2014
	1450MHz SAR Dipole	speag	D1450V2	1048	Dec. 31, 2015	Dec. 11, 2014
	1750MHz SAR Dipole	speag	D1750V2	1106	Dec. 31, 2015	Dec. 5, 2014
Х	1900MHz SAR Dipole	speag	D1900V2	5d183	Dec. 31, 2015	Dec. 15, 2014
	1950MHz SAR Dipole	speag	D1950V3	1150	Dec. 31, 2015	Dec. 15, 2014
Х	2450MHz SAR Dipole	speag	D2450V2	925	Dec. 31, 2015	Dec. 8, 2014
	2600MHz SAR Dipole	speag	D2600V2	1072	Dec. 31, 2015	Dec. 8, 2014
	5000MHz SAR Dipole	speag	D5GHzV2	1166	Dec. 31, 2015	Dec. 12, 2014
Х	Dielectric Assessment Kit	speag	DAK-3.5	1141	Dec. 31, 2015	Dec. 9, 2014
Х	Network Analyzer	Agilent	8753D	3410J00634	Mar. 31,2016	Mar. 20, 2015
Х	Signal generator	ROHDE	SMB100A	177525	Jun. 30,2016	Jun. 19, 2015
Х	Power Amplifier	R&D	CGA020M602-2633R	B40240	Mar. 31,2016	Mar. 23, 2015
Х	Power meter	ROHDE	NRP2	103269	Jun. 30,2016	Jun. 25, 2015
Х	Power sensor	ROHDE	NRP-Z81	102459	Jun. 30,2016	Jun. 25, 2015
Х	Power sensor	ROHDE	NRP-Z81	102467	Jun. 30,2016	Jun. 25, 2015
Х	Directional Coupler	Narda	4226-20	09886	Feb. 29,2016	Feb. 5, 2015
Х	Attenuator(3dB)	AEROFLEX	26A-03	081217-07	Nov. 30,2015	Nov. 16, 2014
Х	Attenuator(10dB)	SUHNER	6810.19A	10005430	Jan. 31,2016	Jan. 15, 2015
Х	Microwave cable(1m)	SUHNER	SUCOFLEX104	199120/4	Oct. 31,2015	Oct. 7, 2014
Х	Microwave cable(1.5m)	SUHNER	SUCOFLEX104	199121/4	Oct. 31,2015	Oct. 7, 2014
Х	Wideband Radio Frequency Tester	ROHDE	CMW500	126079	Sep. 31, 2016	Sep. 15, 2015
Х	PC	HP	HP Compaq Elite 8300	CZC3234D1P	N/A	N/A
Х	Software	speag	DAK	Ver 1.10.321.11	N/A	N/A
Х	Software	speag	DASY5	Ver 52.8.8.1222	N/A	N/A

NOTE: The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by TÜV SÜD Zacta before each test. The brain simulating material is calibrated by TÜV SÜD Zacta using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

5. Test system specifications

Automated TEST SYSTEM SPECIFICATIONS:

Positioner

RobotStäubli Unimation Corp. Robot Model: TX60LRepeatability0.02mmNo. of axis6

Data Acquisition Electronic (DAE) System

Cell	Controller	

Processor	Intel Core i7-3770
Clock Speed	3.40 GHz
Operating System	Windows 7 Professional
Data Card	DASY5 PC-Board

Data Converter

Features	Signal, multiplexer, A/D converter. & control logic
Software	DASY5
Connecting Lines	Optical downlink for data and status info
	Optical uplink for commands and clock

PC Interface Card

Function

24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot

E-Field Probes

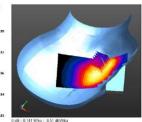
Model Construction Frequency Linearity EX3DV4 S/N: 3957 Triangular core fiber optic detection system 10 MHz to 6 GHz ± 0.2 dB (30 MHz to 6 GHz)

Phantom

Phantom

SAM Twin Phantom (V5.0) ELI Flat Phantom(V5.0)

Shell Material CompositeThickness $2.0 \pm 0.2 \text{ mm}$


Figure 5.1 DASY5 Test System

6. SAR Measurement Procedure

The evaluation was performed using the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664D01v01r04.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table6.1).

On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

- a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- b. After the maximum interpolated values were calculated between the points in the cube,the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 0.1 Area and 20011 Ocan Resolutions per 100 RDB 1 abileation 000004 B0 1001104									
Frequency	Maximum Area Scan Resolution[mm] (Δχarea Δyarea)	Maximum Zoom Scan Resolution[mm] (ΔxzoomΔyzoom)	Maximum Zoom Scan Spatial Resolution[mm] Δzzoom(n)	Minimum Zoom Scan Volume[mm](x,y,z)					
≦2GHz	≦15	≦8	≦5	≧30					
2-3GHz	≦12	≦5	≦5	≧30					
3-4GHz	≦12	≦5	≦4	≧28					
4-5GHz	≦10	≦4	≦3	≧25					
5-6GHz	≦10	≦4	≦2	≧22					

Table 6.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04

7. Definition of reference points

7.1 EAR Reference Point

Figure 7.1 shows the front, back and side views of the SAM Twin Phantom. The point"M" is the reference point for the center of the mouth, "LE" is the left ear reference point(ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Earcanal (EEC) along the B- M line (Back-Mouth), as shown in Figure 7.1. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 7.2).

Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

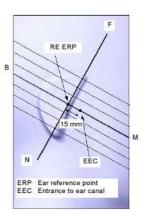


Figure 7.1 Close-up side view of ERPs

7.2 Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 7.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outersurface of the both the left and right head phantoms on the ear reference point.

Figure 7.2 Front, back and side view of SAM Twin Phantom

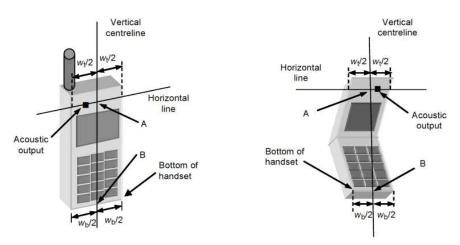


Figure 7.3 Handset Vertical Center & Horizontal Line Reference Points

7.3 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters:relative permittivity ϵ =3 and loss tangent δ = 0.02.

7.4 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Fig. 7.4), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.



Figure 7.4 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Fig. 7.5)

7.5 Positioning for Ear / 15 ° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7.6).

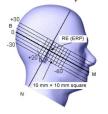


Figure 7.5 Side view/relevant markings



Figure 7.6 Front, Side and Top View of Ear/15° Position

Figure 7.7 Sample Body-Worn Diagram

7.6 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Fig. 7.7). Per FCC KDB Publication 648474 D04 v01r02, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 v05r02 should be used to test for body-worn accessory SAR compliance,without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

7.7 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v05r02 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v05r02, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require

extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

7.8 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02 where SAR test considerations for handsets(L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures.

The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

8. ANSI / IEEE C95.1-2005 RF Exposure Limits

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employmentrelated; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, which have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	HUMAN EXPOSURE LIMITS							
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)						
SPATIAL PEAK SAR * (Brain)	1.60	8.00						
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40						
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0						

Table 8.1 SAR Human Exposure Specified in ANSI/IEEE C95.1-2005

NOTES:

* The Spatial Peak value of the SAR averaged over any 1 g of tissue

(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

** The Spatial Average value of the SAR averaged over the whole-body.

*** The Spatial Peak value of the SAR averaged over any 10 g of tissue

(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

9. FCC Measurement Procedures

Power measurements were performed using a base station simulator under digital average power.

9.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05r02, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

9.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 v03 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4].

Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

9.3 SAR Measurement Conditions for WCDMA(UMTS)

9.3.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active.

Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

9.3.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 2.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

9.3.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

9.3.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel. The H-set used in FRC for HSDPA should be configured according to the UE category of a test device.

The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing.

HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK =5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

			•				
Subtest	βc	βd	βd (SF)	βc/βd	β _{HS} (Note1, Note 2)	CM, dB (Note 3)	MPR, dB (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
				-			

Figure 9.1 Table C.10.1.4 of TS 234.121-1

Notes:

1. $\triangle ACK$, $\triangle NACK$ and $\triangle CQI = 30/15$ with $\beta_{HS} = 30/15 *\beta c$.

2. For clauses 5.2C, 5.7A, 5.13.1A and 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{HS} = 30/15 * β c, and \triangle CQI = 24/15 with β_{HS} = 24/15 * β c.

3. CM = 1 for $\beta c/\beta d$ =12/15, $\beta_{HS}/\beta c$ = 24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH, the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

4. For Subtest 2, the $\beta c/\beta d$ ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 11/15$ and $\beta d = 15/15$.

9.3.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices" Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub -test	βc	βa	β₀ (SF)	₿₀/₿₫	β _{HS} (Note 1)	β _{ec}	β _{ed} (Note 5, Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFC
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/ 225	1309/ 225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/1 <mark>5</mark>	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/ 15	4	1	1.0	0.0	21	81
		Not	tes:						•			•	

Figure 9.2	Table (C.11.1.3 o	f TS 234.121-1
------------	---------	------------	----------------

1. Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{HS} = 30/15 * \beta_{C}$.

2. CM = 1 for $\beta_2/\beta_d = 12/15$, $\beta_{1+s}/\beta_c = 22/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. 3. For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved

3. For subtest 1 the β_0/β_a ratio of 11/15 for the TFC during the measurement period (1F1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_a = 15/15$. 4. For subtest 5 the β_0/β_a ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved

by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

6. β_{ed} cannot be set directly, it is set by Absolute Grant Value.

9.4 SAR Measurement Conditions for LTE

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	Channel bandwidth / Transmission bandwidth (RB)								
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
QPSK	> 5	> 4	>8	> 12	> 16	> 18	≤ 1			
16 QAM	≤ 5	≤ 4	≤8	≤ 12	≤ 16	≤ 18	≤ 1			
16 QAM	> 5	>4	>8	> 12	> 16	> 18	≤ 2			

Figure 9.3 Table 6.2.3-1 of TS 36.101

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signalling Value of "NS 01"

Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)	
6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA	
		3	>5	s 1	
6.6.2.2.1		5	>6	≤ 1	
		10	>6	<u>≤</u> 1	
	00,00	15	>8	≤ 1	
		20	>10	≤ 1	
		5	>6	s 1	
6.6.2.2.2	41	10, 15, 20	See Tab	e 6.2.4-4	
6.6.3.3.1	ា	10,15,20	≥ 50	s 1	
6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a	
6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2	
6.6.3.3.3	19	10, 15	> 44	≤ 3	
6.6.3.3.4	21	10, 15	> 40	≤ 1 ≤ 2	
	20	15 20		Table 6.2.4-3	
6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5	
· ·	855	5 z 7	2	672	
	(sub-clause) 6.6.2.1.1 6.6.2.2.1 6.6.2.2.1 6.6.3.3.1 6.6.2.2.3 6.6.3.3.2 6.6.3.3.2 6.6.3.3.3 6.6.3.3.4 6.6.3.3.4 6.6.2.2.1	(sub-clause) 6.6.2.1.1 Table 5.5-1 6.6.2.2.1 2. 4.10, 23, 25, 35, 36 6.6.2.2.1 2. 4.10, 23, 25, 35, 36 6.6.2.2.2 41 6.6.3.3.1 1 6.6.2.2.3 12, 13, 14, 17 6.6.3.3.2 13 6.6.3.3.3 19 6.6.3.3.4 21 20 6.6.2.2.1 23 ¹ 23 ¹	$ \begin{array}{c c c c c c } \mbox{(sub-clause)} & bandwidth (MHz) \\ \hline bandwidth (MHz) \\ \hline 6.6.2.1.1 & Table 5.5-1 & 1.4, 3, 5, 10, 15, 20 \\ \hline 15, 20 \\ \hline 10, 15, 20 \\ \hline 10, 15 \\ \hline 20 \\ \hline 6.6.2.2.1 & 5 \\ \hline 10, 15, 20 \\ \hline 6.6.2.2.3 & 12, 13, 14, 17 & 1.4, 3, 5, 10 \\ \hline 6.6.3.3.1 & 1 & 10, 15, 20 \\ \hline 6.6.3.3.2 & 13 & 10 \\ \hline 6.6.3.3.3 & 19 & 10, 15 \\ \hline 6.6.3.3.4 & 21 & 10, 15 \\ \hline 6.6.3.3.4 & 21 & 10, 15 \\ \hline 6.6.3.3.4 & 21 & 10, 15 \\ \hline 6.6.2.2.1 & 23^1 & 1.4, 3, 5, 10 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c } \mbox{(sub-clause)} & \begin{tabular}{ c c c c } \begin{tabular}{ c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c c } \end{tabular} \\ \end{tabular} & \begin{tabular}{ c c c c c } \end{tabular} \\ \end{tabular} & \begin{tabular}{ c c c c c c c } \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

Figure 9.4 Table 6.2.4-1 of TS 36.101

9.5 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n /ac transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r01 for more details.

9.5.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers.

The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5.2 Frequency Channel Configurations

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

10. RF Conducted Power

10.1 GSM Conducted Powers

				Maximum Burs	st-Averaged Output	ut Power [dBm]				
				GPRS/EDGE(GMSK)Data						
Band	Channel	Frequency [MHz]	Voice GSM CS 1slot	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot			
	128	824.2	32.64	32.62	30.59	28.67	27.53			
GSM 850	190	836.6	<u>32.69</u>	32.68	30.63	28.28	27.43			
	251	848.8	32.66	32.64	30.29	28.24	26.98			
	512	1850.2	29.67	29.66	27.91	26.04	24.76			
PCS 1900	661	1880.0	29.81	29.81	28.05	26.18	24.91			
	810	1909.8	<u>29.83</u>	29.82	28.17	26.25	25.01			
			Calculated Maximum Frame-Averaged Output Power [dBm]							
		_		GPRS/EDGE(GMSK)Data						
Band	Channel	Frequency [MHz]	Voice GSM CS 1slot	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot			
	128	824.2	23.61	23.59	24.57	24.41	24.52			
GSM 850	190	836.6	23.66	23.65	24.61	24.02	24.42			
	251	848.8	23.63	23.61	24.27	23.98	23.97			
	512	1850.2	20.64	20.63	21.89	21.78	21.75			
PCS 1900	661	1880.0	20.78	20.78	22.03	21.92	21.90			
	810	1909.8	20.80	20.79	22.15	21.99	22.00			

Table 10.1 The power was measured by CMW500

Note:

1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

- 2. The bolded GPRS modes were selected according to the highest frame-averaged output power table according to KDB 941225 D01 v03.
- 3. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 4. This device does not support EDGE. (EDGE RX only)

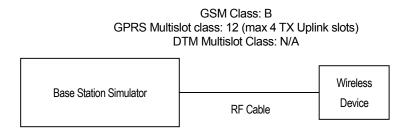


Figure 10.1 Power Measurement Setup

10.2 WCDMA Conducted Powers

3GPP	Mode	Sub-	Power [dBm]				_		De/0d	
Release Version	Channel	Channel Frequency [MHz]		4132	4183	4233	MPR	Вс	ßd	Bc/ßd
Vereien	Frequency [M			826.4	836.6	846.6				
00	99 W-CDMA	RMC		23.31	23.33	<u>23.35</u>				
99		AMR	-	23.32	23.32	23.26	-	-	-	-
5			1	22.28	22.24	22.20	0	2/15	15/15	2/15
5	HSDPA		2	21.92	21.90	21.96	0	12/15	15/15	12/15
5	(Cellular)		3	21.31	21.37	21.29	0.5	15/15	8/15	15/8
5			4	21.20	21.30	21.25	0.5	15/15	4/15	15/4
6			1	22.37	22.13	22.27	0	11/15	15/15	11/15
6			2	20.79	21.21	20.78	2	6/15	15/15	6/15
6	HSUPA	HSUPA			21.00	21.35	1	15/15	9/15	15/9
6					21.52	21.77	2	2/15	15/15	2/15
6		abla 40.2 T	5	22.34	22.28	22.29	0	15/15	15/15	15/15

Table 10.2 The power was measured by CMW500

WCDMA SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01 v03.

HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

This device does not support DC-HSDPA.



Figure 10.2 Power Measurement Setup

10.3 LTE Conducted Powers

							Avg Power[dBm]]
Band	BW [MHz]	Mode	RB Allocation	RB offset	Target MPR	23780	23790	23800
	נאורזצן		Allocation	Unset		709.0 MHz	710.0 MHz	711.0 MHz
			1	0	0	23.16	23.25	23.34
			1	25	0	23.16	23.27	23.27
			1	49	0	23.24	23.30	23.13
		QPSK	25	0	1	22.35	22.25	22.19
			25	12	1	22.22	22.33	22.25
			25	25	1	22.17	22.23	22.22
LTE	10		50	0	1	22.16	22.19	22.13
Band 17	10		1	0	1	22.70	22.80	22.09
			1	25	1	22.61	23.05	22.09
			1	49	1	22.58	23.22	21.85
		16QAM	25	0	2	21.30	21.11	21.16
			25	12	2	21.21	21.22	21.30
			25	25	2	21.20	21.16	21.24
			50	0	2	21.32	21.06	21.06

							Avg Power[dBm]]
Band	BW [MHz]	Mode	RB Allocation	RB offset	Target MPR	23755	23790	23825
	נואורזבן		Anocation	Uliset		706.5 MHz	710.0 MHz	713.5 MHz
			1	0	0	23.20	22.90	23.27
			1	12	0	23.33	22.86	23.31
			1	24	0	23.02	22.94	23.05
		QPSK	12	0	1	22.22	22.11	22.22
			12	7	1	22.23	22.15	22.18
			12	13	1	22.17	22.27	22.23
LTE	5		25	0	1	22.20	22.16	22.20
Band 17	5		1	0	1	23.01	21.76	21.89
			1	12	1	22.76	22.02	22.40
			1	24	1	22.92	21.98	22.27
		16QAM	12	0	2	21.29	20.91	21.25
			12	7	2	21.19	21.04	21.15
			12	13	2	21.05	21.15	20.99
			25	0	2	21.08	21.21	21.20

Table 10.3 The power was measured by CMW500

							Avg Power[dBm]]
Band	BW [MHz]	Mode	RB Allocation	RB offset	Target MPR	20450	20525	20600
	נואורובן		Allocation	onset	WFR	829.0 MHz	20525	844.0 MHz
			1	0	0	23.69	23.63	23.48
			1	25	0	23.54	23.61	23.19
			1	49	0	23.63	23.62	23.27
		QPSK	25	0	1	22.67	22.72	22.57
			25	12	1	22.63	22.61	22.30
			25	25	1	22.58	22.59	22.29
LTE	40		50	0	1	22.64	22.67	22.45
Band 5	10		1	0	1	23.41	22.52	22.26
			1	25	1	23.31	22.90	22.15
			1	49	1	23.01	22.77	21.96
		16QAM	25	0	2	21.59	21.62	21.58
			25	12	2	21.66	21.52	21.35
			25	25	2	21.76	21.54	21.30
			50	0	2	21.67	21.48	21.53

							Avg Power[dBm]]
Band	BW [MHz]	Mode	RB Allocation	RB offset	Target MPR	20425	20525	20625
	נוארזבן		Allocation	Uliset		826.5 MHz	lz 836.5 MHz	846.5 MHz
			1	0	0	23.72	23.30	23.25
			1	12	0	23.65	23.39	23.25
			1	24	0	23.53	23.17	23.19
		QPSK	12	0	1	22.56	22.67	22.25
			12	7	1	22.66	22.61	22.25
			12	13	1	22.62	22.53	22.26
LTE	r.		25	0	1	22.63	22.61	22.21
Band 5	5		1	0	1	23.07	22.08	22.04
			1	12	1	23.03	22.55	22.50
			1	24	1	23.15	22.38	22.32
		16QAM	12	0	2	21.55	21.72	21.04
			12	7	2	21.57	21.42	21.09
			12	13	2	21.55	21.68	21.14
			25	0	2	21.59	21.62	21.19

Table 10.4 The power was measured by CMW500

						Avg Power[dBm]			
Band	BW [MHz]	Mode	RB Allocation	RB offset	Target MPR	20415	20525	20634	
	[WII 12]		Anocation	011561	WIF IX	825.5 MHz		847.4 MHz	
			1	0	0	23.54	23.51	23.05	
			1	8	0	23.45	23.47	23.08	
			1	14	0	23.70	23.43	23.09	
		QPSK	8	0	1	22.74	22.64	22.20	
			8	4	1	22.62	22.66	22.31	
			8	7	1	22.71	22.67	22.30	
LTE	3		15	0	1	22.66	22.59	22.16	
Band 5	5		1	0	1	23.43	22.53	22.10	
			1	8	1	23.35	22.20	22.15	
			1	14	1	23.40	22.21	22.16	
		16QAM	8	0	2	21.73	21.71	21.04	
			8	4	2	21.68	21.72	21.36	
			8	7	2	21.73	21.73	21.55	
			15	0	2	21.78	21.70	21.27	

							Avg Power[dBm]]
Band	BW [MHz]	Mode	RB Allocation	RB offset	Target MPR	20407	20525	20642
	נואורזבן		Allocation	Uliset	WIFK	824.7 MHz	836.5 MHz	848.2 MHz
			1	0	0	23.70	23.52	23.09
			1	3	0	23.85	23.53	23.17
			1	5	0	23.64	23.41	23.11
		QPSK	3	0	0	23.58	23.53	23.20
			3	1	0	23.61	23.55	23.10
			3	3	0	23.60	23.59	23.10
LTE	1.4		6	0	1	22.66	22.63	22.34
Band 5	1.4		1	0	1	23.05	22.75	22.01
			1	3	1	23.06	22.78	22.31
			1	5	1	22.91	22.72	21.99
		16QAM	3	0	1	22.50	22.61	22.28
			3	1	1	22.46	22.61	22.29
			3	3	1	22.32	22.59	22.17
			6	0	2	21.87	21.46	21.46

Table 10.5 The power was measured by CMW500

Justification of SAR measurements in LTE mode

- According to Chapter 4 'SAR test procedures for LTE devices of FCC KDB Publication 941225 D05 the following test configurations for standalone measurements of the largest channel bandwidth (chapter 4.2) had to be taken into consideration.
- 4.2.1. QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.6 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

- 4.2.2. QPSK with 50% RB allocation The procedures required for 1 RB allocation in 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.
- 4.2.3. QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 4.2.1 and 4.2.2 are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

• 4.2.4. Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 4.2.1, 4.2.2 and 4.2.3 to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > $\frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

Testing of other channel bandwidths was not necessary because the output power of equivalent channel configurations was less than ½ dB larger compared to the largest channel bandwidth and reported SAR was < 1.45 W/kg.

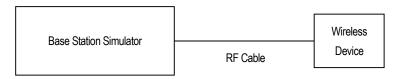


Figure 10.3 Power Measurement Setup

10.4 WLAN Conducted Powers

	_		802.11b (2.4 GHz) Co	onducted Power [dBm]	
Mode	Frequency		DATA RA	TE [Mbps]	
	[MHz]	1	2	5.5	11
	2412	15.90	15.84	15.80	15.74
802.11b	2437	<u>16.15</u>	16.08	16.07	16.05
	2462	15.77	15.68	15.63	15.62

Table 10.6 IEEE 802.11b Average RF Power

	F			802.11g	(2.4 GHz) Con	ducted Power	[dBm]						
Mode	Frequency [MHz]				Data Rate	[Mbps]							
	נויורזבן	6	9	12	18	24	36	48	54				
	2412	11.90	11.88	11.89	11.85	11.78	11.74	10.72	9.76				
802.11g	2437	12.13	12.12	12.10	12.06	12.01	12.01	10.94	9.94				
	2462	11.67	11.67 11.65 11.65 11.64 11.57 11.53 10.55 9.58										

Table 10.7 IEEE 802.11g Average RF Power

	_			802.11n HT	20 (2.4 GHz) (Conducted Pov	ver [dBm]				
Mode	Frequency	[MHz] Data Rate [Mbps]									
	[וייו וב]	6.5	13	19.5	26	39	52	58.5	65		
802.11n	2412	11.82	11.77	11.76	11.71	11.71	10.68	10.67	9.69		
(HT20)	2437	12.05	12.01	12.00	11.96	11.92	10.89	10.86	9.86		
(11120)	2462	11.67	11.59	11.59	11.53	11.51	10.55	10.49	9.54		

Table 10.8 IEEE 802.11n Average RF Power

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r01:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The underlined data rate and channel above were tested for SAR.

Rohde & Schwarz NRP2	 Rohde & Schwarz NRP-Z81	 Wireless Device
Power Meter	Power Sensor	Device

Figure 10.4 Power Measurement Setup for Bandwidths < 50 MHz

10.5 Bluetooth Conducted Powers

Mode	Frequency	Output [1Mt			t Power lbps]	Output Power [3Mbps]		
	[MHz]	[dBm]	[mW]	[dBm]	[mW]	[dBm]	[mW]	
	2402	7.98	6.281	5.70	3.715	5.71	3.724	
Bluetooth	2441	7.93	6.209	5.59	3.622	5.61	3.639	
	2480	7.58	5.728	5.23	3.334	5.25	3.350	

Table 10.9 Bluetooth Average RF Power

		Output	Power
Mode	Frequency [MHz]	[L	E]
		[dBm]	[mW]
	2402	-1.73	0.671
Bluetooth LE	2440	-2.18	0.605
	2480	-2.32	0.586

Table 10.10 Bluetooth Average RF Power

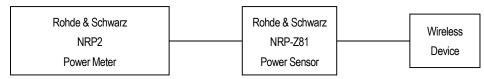


Figure 10.5 Power Measurement Setup

11. System Verification

11.1 Tissue verification

				MEASUR	ED TISSUE PAR	RAMETERS					
Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Measured Frequency [MHz]	Target Dielectric constant, ε _r	Target Conductivity, σ[S/m]	Measured Dielectric constant, ɛr	Measured Conductivity, σ[S/m]	^{3 Er} Deviation [%]	σ Deviation [%]	
				709.0	42.164	0.890	41.45	0.873	-1.69	-1.89	
October. 3, 2015	750	22.0	22.4	710.0	42.160	0.890	41.42	0.876	-1.76	-1.58	
October: 5, 2015	Head	22.0	22.4	711.0	42.156	0.890	41.41	0.879	-1.77	-1.28	
				750.0	41.900	0.890	40.78	0.913	-2.67	2.58	
				709.0	55.664	0.960	54.38	0.934	-2.31	-2.67	
October. 5, 2015	750	23.1	23.6	710.0	55.660	0.960	54.28	0.936	-2.48	-2.54	
October: 5, 2015	Body	23.1	23.0	711.0	55.656	0.960	54.31	0.934	-2.42	-2.73	
				750.0	55.500	0.960	53.98	0.970	-2.74	1.01	
				824.2	41.603	0.910	42.58	0.914	2.35	0.40	
October. 1, 2015	835	22.5	22.1	835.0	41.523	0.910	42.37	0.925	2.04	1.60	
October: 1, 2015	Head	22.5	ZZ. I	836.6	41.511	0.910	42.39	0.929	2.12	2.04	
				848.8	41.500	0.919	42.26	0.939	1.83	2.20	
				824.2	55.203	0.980	54.99	1.005	-0.39	2.55	
October. 1, 2015	835	23.3	23.2	835.0	55.200	0.980	54.87	1.011	-0.60	3.16	
October: 1, 2015	Body	23.3	Z3.Z	836.6	55.200	0.980	54.90	1.014	-0.54	3.47	
				848.8	55.200	0.989	54.72	1.025	-0.87	3.64	
					826.4	41.589	0.910	42.57	0.918	2.36	0.85
October. 1, 2015	835	22.5	22.1	835.0	41.523	0.910	42.37	0.925	2.04	1.65	
October: 1, 2015	Head	22.5	ZZ. I	836.6	41.511	0.910	42.39	0.929	2.12	2.09	
				846.6	41.500	0.917	42.31	0.936	1.95	2.08	
				826.4	55.200	0.980	55.01	1.001	-0.34	2.14	
October 1 2015	835	23.3	23.2	835.0	55.200	0.980	54.87	1.011	-0.60	3.16	
October. 1, 2015	Body	23.3	23.Z	836.6	55.200	0.980	54.90	1.014	-0.54	3.47	
				848.8	55.200	0.989	54.72	1.025	-0.87	3.64	
				829.0	41.569	0.910	42.48	0.918	2.19	0.92	
October 1 2015	835	00 F	22.1	835.0	41.523	0.910	42.37	0.925	2.04	1.60	
October: 1, 2015	October. 1, 2015 Head 22.5		ZZ. I	836.5	41.512	0.910	42.39	0.929	2.12	2.04	
			844.0	41.500	0.920	42.26	0.934	1.83	1.53		
				829.0	55.200	0.980	53.90	0.997	-2.36	1.70	
October 2 2015	835	23.5	22.9	835.0	55.200	0.980	53.86	1.004	-2.43	2.45	
October. 2, 2015	Body			836.5	55.200	0.980	53.92	1.010	-2.32	3.06	
				844.0	55.200	0.985	52.83	1.013	-4.29	2.84	

				MEASUF	RED TISSUE PAR	RAMETERS				
Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Measured Frequency [MHz]	Target Dielectric constant, ε _r	Target Conductivity, σ[S/m]	Measured Dielectric constant, ɛr	Measured Conductivity, σ[S/m]	³ Deviation [%]	σ Deviation [%]
				1850.2	40.000	1.400	40.23	1.368	0.57	-2.29
October. 5, 2015	1900	23.7	23.4	1880.0	40.000	1.400	40.05	1.396	0.12	-0.29
October: 5, 2015	Head	23.1	23.4	1900.0	40.000	1.400	39.99	1.416	-0.02	1.14
				1909.8	40.000	1.400	39.94	1.426	-0.15	1.86
				1850.2	53.300	1.520	52.97	1.483	-0.62	-2.43
October. 6, 2015	1900	21.8	22.1	1880.0	53.300	1.520	52.87	1.519	-0.81	-0.07
October: 0, 2015	Body	21.0	ZZ. I	1900.0	53.300	1.520	52.79	1.539	-0.96	1.25
				1909.8	53.300	1.520	52.74	1.548	-1.05	1.84
				1850.2	53.300	1.520	52.80	1.503	-0.94	-1.12
October. 7. 2015	1900	22.3	22.1	1880.0	53.300	1.520	52.67	1.538	-1.18	1.18
October: 7, 2015	Body	22.3	ZZ. I	1900.0	53.300	1.520	52.54	1.553	-1.43	2.17
				1909.8	53.300	1.520	52.52	1.565	-1.46	2.96
				1850.2	53.300	1.520	52.57	1.475	-1.37	-2.96
October. 8, 2015	1900	22.4	22.1	1880.0	53.300	1.520	52.45	1.503	-1.59	-1.12
October: 0, 2015	Body	22.4	22.1	1900.0	53.300	1.520	52.32	1.528	-1.84	0.53
				1909.8	53.300	1.520	52.26	1.541	-1.95	1.38
				2412	39.252	1.770	39.44	1.766	0.48	-0.23
September. 30, 2015	2450	20.3	21.5	2437	39.200	1.790	39.31	1.789	0.28	-0.06
Septembel: 30, 2015	Head	20.3	21.0	2450	39.200	1.800	39.29	1.802	0.23	0.11
				2462	39.200	1.814	39.24	1.819	0.10	0.28
				2412	52.752	1.914	51.74	1.933	-1.92	0.99
October. 1. 2015	2450	22.5	22.5 21.9	2437	52.700	1.940	51.61	1.966	-2.07	1.34
	Body	22.5		2450	52.700	1.950	51.61	1.985	-2.07	1.79
				2462	52.700	1.969	51.53	1.997	-2.22	1.42

Tissue Verification Note

Note: The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container.
- Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.

3) The complex admittance with respect to the probe aperture was measured.

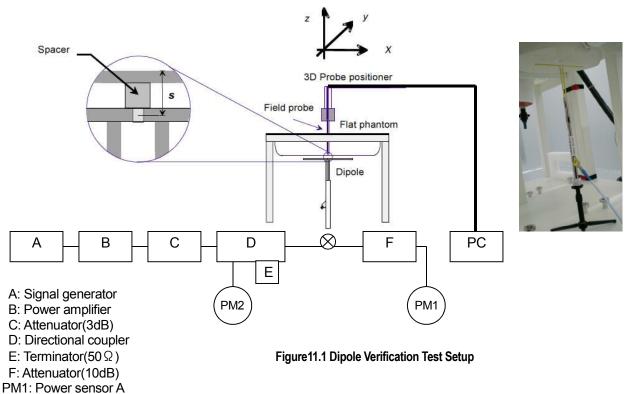
4) The complex relative permittivity, for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon'_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}}\int_{a}^{b}\int_{a}^{b}\int_{0}^{a}\cos\phi'\frac{\exp\left[-j\omega(\infty_{0}\varepsilon'_{r}\varepsilon_{0})^{1/2}r\right]}{r}d\phi'd\rho'd\rho$$

Where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho \rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

11.2 Test system verification

Prior to assessment, the system is verified to the \pm 10% of the specifications at 750 MHz, 835 MHz, 1900 MHz, 2450 MHz by using the SAR Dipole kit(s). (Graphic Plots Attached)


		SY	STEM D	POLE VERIF	ICATION TAF	RGET & N	/IEASURE	D			
Freq. [MHz]	SAR Dipole Kits	Date(s)	Liquid	Ambient Temp.[°C]	Liquid Temp.[°C]	Probe S/N	Input Power [mW]	1W Targeted SAR 1g [W/kg]	Measured SAR 1g [W/kg]	1W Normalized SAR 1g [W/kg]	Deviation [%]
750	D750V3, S/N: 1100	October. 3, 2015	Head	22.0	22.4	3957	250	8.10	2.05	8.20	1.23
750	D750V3, S/N: 1100	October. 5, 2015	Body	23.1	23.6	3957	250	8.57	2.16	8.64	0.82
835	D835V2, S/N: 4d163	October. 1, 2015	Head	22.5	22.1	3957	250	9.19	2.23	8.92	-2.94
835	D835V2, S/N: 4d163	October. 1, 2015	Body	23.3	23.2	3957	250	9.46	2.29	9.16	-3.17
835	D835V2, S/N: 4d163	October. 2, 2015	Body	23.5	22.9	3957	250	9.46	2.29	9.16	-3.17
1900	D1900V2, S/N: 5d183	October. 5, 2015	Head	23.7	23.4	3957	250	39.4	9.18	36.72	-6.80
1900	D1900V2, S/N: 5d183	October. 6, 2015	Body	21.8	22.1	3957	250	39.6	9.85	39.40	-0.51
1900	D1900V2, S/N: 5d183	October. 7, 2015	Body	22.3	22.1	3957	250	39.6	9.77	39.08	-1.31
1900	D1900V2, S/N: 5d183	October. 8, 2015	Body	22.4	22.1	3957	250	39.6	9.43	37.72	-4.75
2450	D2450V2, S/N: 925	September. 30, 2015	Head	20.3	21.5	3957	250	52.0	12.30	49.20	-5.38
2450	D2450V2, S/N: 925	October. 1, 2015	Body	22.5	21.9	3957	250	51.0	13.10	52.40	2.75

Note1 : Validation was measured with input 250 mW, 100 mW and normalized to 1W.

Note2 : To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period.

Note3: Full system validation status and results can be found in Attachment 3.

PM2: Power sensor B

12. SAR Test Results

12.1 Head SAR Results

						MEA	SUREMEN	T RESULTS						
Plot No.	Freque MHz	ency Ch	Mode/ Band	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Phantom Position	Device Serial Number	# of Time slots	Dyty Cycle	1g SAR [W/kg]	Scaling Factor	1g Scaled SAR [W/kg]
	836.6	190	GSM850	GSM	33.0	32.69	0.01	Left Touch	FCC#2	1	1: 8.3	0.181	1.074	0.194
1	836.6	190	GSM850	GSM	33.0	32.69	-0.01	Right Touch	FCC#2	1	1: 8.3	0.207	1.074	0.222
	836.6	190	GSM850	GSM	33.0	32.69	0.00	Left Tilt	FCC#2	1	1: 8.3	0.175	1.074	0.188
	836.6	190	GSM850	GSM	33.0	32.69	-0.11	Right Tilt	FCC#2	1	1: 8.3	0.175	1.074	0.188
	836.6	190	GSM850	GPRS	33.0	32.68	0.17	Right Touch	FCC#2	1	1: 8.3	0.230	1.076	0.248
	836.6	190	GSM850	GPRS	31.0	30.63	0.06	Right Touch	FCC#2	2	1: 4.2	0.251	1.089	0.273
2	836.6	190	GSM850	GPRS	29.0	28.28	-0.01	Right Touch	FCC#2	3	1: 2.8	0.237	1.180	0.280
	836.6	190	GSM850	GPRS	28.0	27.43	0.19	Right Touch	FCC#2	4	1: 2.1	0.233	1.140	0.266
	836.6	190	GSM850	GPRS	31.0	30.63	0.06	Left Touch	FCC#2	2	1: 4.2	0.224	1.089	0.244
	836.6	190	GSM850	GPRS	31.0	30.63	-0.02	Left Tilt	FCC#2	2	1: 4.2	0.225	1.089	0.245
	836.6	190	GSM850	GPRS	31.0	30.63	-0.05	Right Tilt	FCC#2	2	1: 4.2	0.221	1.089	0.241
		Uncor	ANSI / IEEE C95 Sp trolled Exposure	atial Peak		osure					Head 5 W/kg(mW/g) veraged over 1 gram			

Table 12.1 GSM/GPRS 850 Head SAR

Freque	201		MEASUREMENT RESULTS														
o. Bar		Mode/	Service	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	# of Time		yty	1g SAR	Scaling	1g Scaled			
MHz	Ch	Band	OCIVICE	Power [dBm]	[dBm]	[dB]	Position	Number	slots	C	/cle	[W/kg]	Factor	SAR [W/kg]			
1880.0	661	PCS1900	PCS	30.0	29.81	0.08	Left Touch	FCC#1	1	1:	8.3	0.167	1.045	0.174			
1880.0	661	PCS1900	PCS	30.0	29.81	-0.20	Right Touch	FCC#1	1	1:	8.3	0.277	1.045	0.289			
1880.0	661	PCS1900	PCS	30.0	29.81	-0.09	Left Tilt	FCC#1	1	1:	8.3	0.0407	1.045	0.0425			
1880.0	661	PCS1900	PCS	30.0	29.81	0.09	Right Tilt	FCC#1	1	1:	8.3	0.0385	1.045	0.0402			
1880.0	661	PCS1900	GPRS	30.0	29.81	0.08	Right Touch	FCC#1	1	1:	8.3	0.270	1.045	0.282			
1880.0	661	PCS1900	GPRS	28.5	28.05	0.14	Right Touch	FCC#1	2	1:	4.2	0.311	1.109	0.345			
1880.0	661	PCS1900	GPRS	26.5	26.18	-0.12	Right Touch	FCC#1	3	1:	2.8	0.311	1.076	0.335			
1880.0	661	PCS1900	GPRS	25.5	24.91	0.16	Right Touch	FCC#1	4	1:	2.1	0.360	1.146	0.412			
1880.0	661	PCS1900	GPRS	28.5	28.05	-0.02	Left Touch	FCC#1	2	1:	4.2	0.235	1.109	0.261			
1880.0	661	PCS1900	GPRS	28.5	28.05	0.06	Left Tilt	FCC#1	2	1:	4.2	0.0569	1.109	0.0631			
1880.0	661	PCS1900	GPRS	28.5	28.05	0.16	Right Tilt	FCC#1	2	1:	4.2	0.0516	1.109	0.0572			
	880.0 880.0 880.0 880.0 880.0 880.0 880.0 880.0 880.0 880.0 880.0	B80.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661 880.0 661	BR0.0 661 PCS1900 880.0 661 PCS1900	BR0.0 661 PCS1900 PCS 880.0 661 PCS1900 GPRS 880.0 661 PCS1900 GPRS	Image: Name Image: Name	Main Lit Lit <thlit< th=""> <thlit< th=""></thlit<></thlit<>	Marcine Lot Lot <thlot< th=""> Lot <thlot< th=""> <thlot< t<="" td=""><td>Image Image <th< td=""><td>Image Image <th< td=""><td>Main Image <thi< td=""><td>MHz Ch IdBm] IdBm] IdBm] IdBm] IdBm] IdBm] Number slots Number</td><td>MHz Ch [dBm] [dBm</td><td>MHz Ch IdBmin IdBmin</td><td>MHz Ch Ch</td></thi<></td></th<></td></th<></td></thlot<></thlot<></thlot<>	Image Image <th< td=""><td>Image Image <th< td=""><td>Main Image <thi< td=""><td>MHz Ch IdBm] IdBm] IdBm] IdBm] IdBm] IdBm] Number slots Number</td><td>MHz Ch [dBm] [dBm</td><td>MHz Ch IdBmin IdBmin</td><td>MHz Ch Ch</td></thi<></td></th<></td></th<>	Image Image <th< td=""><td>Main Image <thi< td=""><td>MHz Ch IdBm] IdBm] IdBm] IdBm] IdBm] IdBm] Number slots Number</td><td>MHz Ch [dBm] [dBm</td><td>MHz Ch IdBmin IdBmin</td><td>MHz Ch Ch</td></thi<></td></th<>	Main Image Image <thi< td=""><td>MHz Ch IdBm] IdBm] IdBm] IdBm] IdBm] IdBm] Number slots Number</td><td>MHz Ch [dBm] [dBm</td><td>MHz Ch IdBmin IdBmin</td><td>MHz Ch Ch</td></thi<>	MHz Ch IdBm] IdBm] IdBm] IdBm] IdBm] IdBm] Number slots Number	MHz Ch [dBm] [dBm	MHz Ch IdBmin IdBmin	MHz Ch Ch			

ANSI / IEEE C95.1-2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg(mW/g) averaged over 1 gram

Table 12.2 PCS/GPRS 1900 Head SAR

	MEASUREMENT RESULTS														
Plot	Frequ	ency	Mode/	Comico	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	1g SAR	Dyty	Scaling	1g Scaled		
No.	MHz	Ch	Band	Service	Power [dBm]	[dBm]	[dB]	Position	Number	[W/kg]	Cycle	Factor	SAR [W/kg]		
	836.6	4183	WCDMA850	RMC	24.0	23.33	0.01	Left Touch	FCC#2	0.272	1:1	1.167	0.317		
5	836.6	4183	WCDMA850	RMC	24.0	23.33	-0.09	Right Touch	FCC#2	0.300	1:1	1.167	0.350		
	836.6	4183	WCDMA850	RMC	24.0	23.33	0.00	Left Tilt	FCC#2	0.280	1:1	1.167	0.327		
	836.6	4183	WCDMA850	RMC	24.0	0.03	Right Tilt	FCC#2	0.272	1:1	1.167	0.317			
			ANSI / IEEE C95.1-2	2005– SAFE	TY LIMIT				Hea 1.6 W/kg						

Spatial Peak Uncontrolled Exposure/General Population Exposure 1.6 W/kg(mW/g) averaged over 1 gram

Table 12.3 WCDMA 850 Head SAR

						MEASU	JREMENT	RESULTS							
Plot	Freq	uency	Band	Modulation / Band	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	RB	RB	Dyty	1g SAR	Scaling	1g Scaled
No.	MHz	Ch		width [MHz]	Power [dBm]	[dBm]	[dB]	Position	Number	Size	Offset	Cycle	[W/kg]	Factor	SAR [W/kg]
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	0.10	Left Touch	FCC#1	1	0	1:1	0.0919	1.306	0.120
6	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	-0.19	Right Touch	FCC#1	1	0	1:1	0.130	1.306	0.170
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	0.06	Left Tilt	FCC#1	1	0	1:1	0.0861	1.306	0.112
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	0.18	Right Tilt	FCC#1	1	0	1:1	0.106	1.306	0.138
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	-0.04	Left Touch	FCC#1	25	0	1:1	0.0733	1.303	0.0955
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	-0.12	Right Touch	FCC#1	25	0	1:1	0.0941	1.303	0.123
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	-0.02	Left Tilt	FCC#1	25	0	1:1	0.0727	1.303	0.0947
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	0.09	Right Tilt	FCC#1	25	0	1:1	0.0791	1.303	0.103
		Unc	ANSI / IEEE C9: Sj ontrolled Exposure	patial Peak		Ire					Hea 1.6 W/kg average 1 gra	(mW/g) d over			

						MEAS	SUREMENT	RESULTS							
Plot	Freq	uency	Band	Modulation / Band	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	RB	RB	Dyty	1g SAR	Scaling	1g Scaled
No.	MHz	Ch		width [MHz]	Power [dBm]	[dBm]	[dB]	Position	Number	Size	Offset	Cycle	[W/kg]	Factor	SAR [W/kg]
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	-0.18	Left Touch	FCC#1	1	0	1:1	0.371	1.205	0.447
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	0.04	Right Touch	FCC#1	1	0	1:1	0.360	1.205	0.434
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	-0.05	Left Tilt	FCC#1	1	0	1:1	0.390	1.205	0.470
7	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	0.09	Right Tilt	FCC#1	1	0	1:1	0.393	1.205	0.474
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	0.05	Left Touch	FCC#1	25	0	1:1	0.250	1.197	0.299
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	0.04	Right Touch	FCC#1	25	0	1:1	0.269	1.197	0.322
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	-0.10	Left Tilt	FCC#1	25	0	1:1	0.258	1.197	0.309
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	-0.01	Right Tilt	FCC#1	25	0	1:1	0.262	1.197	0.314
		Unco		5.1-2005– SAFE patial Peak re/General Popu		ure					Head 1.6 W/kg(r averaged 1 grai	mW/g) over			

Table 12.5 LTE Band 5 Head SAR

						MEASU	IREMENT	RESULTS						
Plot	Freque	ency	Mode/	Service	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	Data Rate	Dyty	1g SAR	Scaling	1g Scaled
No.	MHz	Ch	Band	Gervice	Power [dBm]	[dBm]	[dB]	Position	Number	[Mbps]	Cycle	[W/kg]	Factor	SAR [W/kg]
8	2437	6	802.11b	DSSS	17.0	16.15	0.08	Left Touch	FCC#1	1	1:1	0.140	1.216	0.170
	2437	6	802.11b	DSSS	17.0	16.15	0.19	Right Touch	FCC#1	1	1:1	0.084	1.216	0.102
	2437	6	802.11b	DSSS	17.0	16.15	0.17	Left Tilt	FCC#1	1	1:1	0.134	1.216	0.163
	2437	6	802.11b	DSSS	17.0	16.15	-0.19	Right Tilt	FCC#1	1	1:1	0.109	1.216	0.133
				Spatial Peak	AFETY LIMIT	osure					Head W/kg(mW eraged ove 1 gram			

Table 12.6 DTS Head SAR

12.2 Standalone Body-Worn SAR Results	12.2 Standalone B	ody-Worn SAR	Results
---------------------------------------	-------------------	--------------	---------

						MEA	SUREMEN	IT RESULTS						
Plot No.	Frequ	lency	Mode/ Band	Service	Maximum Allowed Power	Conducted Power	Drift Power	Spacing [Side]	Device Serial	# of Time	Dyty Cycle	1g SAR	Scaling Factor	1g Scaled SAR
NO.	MHz	Ch	Danu		[dBm]	[dBm]	[dB]	[Side]	Number	slots	Cycle	[W/kg]	Factor	[W/kg]
	836.6	190	GSM850	GSM	33.0	32.69	-0.01	10mm [Front]	FCC#1	1	1: 8.3	0.349	1.074	0.375
9	836.6	190	GSM850	GSM	33.0	32.69	0.01	10mm [Rear]	FCC#1	1	1: 8.3	0.447	1.074	0.480
	836.6	190	GSM850	GPRS	31.0	30.63	0.01	10mm [Front]	FCC#1	2	1: 4.2	0.375	1.089	0.408
10	836.6	190	GSM850	GPRS	31.0	30.63	-0.02	10mm [Rear]	FCC#1	2	1: 4.2	0.495	1.089	0.539
			ANSI / IEEE C trolled Exposu	Spatial Peak		osure					Head 1.6 W/kg(mW averaged ov 1 gram			

Table 12.7 GSM Body-Worn SAR

						MEA	SUREMEN	T RESULTS						
Plot No.	Freque	ency	Mode/ Band	Service	Maximum Allowed Power	Conducted Power	Drift Power	Spacing [Side]	Device Serial	# of Time	Dyty Cycle	1g SAR	Scaling Factor	1g Scaled SAR
140.	MHz	Ch	Dana		[dBm]	[dBm]	[dB]	[olde]	Number	slots	Oycle	[W/kg]	ractor	[W/kg]
	1880.0	661	PCS1900	PCS	30.0	29.81	0.17	10mm [Front]	FCC#2	1	1: 8.3	0.361	1.045	0.377
11	1880.0	661	PCS1900	PCS	30.0	29.81	-0.11	10mm [Rear]	FCC#2	1	1: 8.3	0.640	1.045	0.669
	1880.0	661	PCS1900	GPRS	28.5	28.05	0.17	10mm [Front]	FCC#2	2	1: 4.2	0.425	1.109	0.471
12	1880.0	661	PCS1900	GPRS	28.5	28.05	-0.06	10mm [Rear]	FCC#2	2	1: 4.2	0.700	1.109	0.776
			ANSI / IEEE C9 S trolled Exposu	patial Peak		osure					Head 1.6 W/kg(mV averaged ov 1 gram			

Table 12.8 PCS Body-Worn SAR

						MEASURI	EMENT RE	SULTS						
Plot No.	Frequ MHz	uency Ch	Mode/ Band	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Spacing [Side]	Device Serial Number	# of Time slots	Dyty Cycle	1g SAR [W/kg]	Scaling Factor	1g Scaled SAR [W/kg]
	836.6	4183	WCDMA850	RMC	24.0	23.33	-0.11	10mm [Front]	FCC#1	N/A	1:1	0.461	1.167	0.538
13	836.6	4183	WCDMA850	RMC	24.0	23.33	0.10	10mm [Rear]	FCC#1	N/A	1:1	0.563	1.167	0.657
			ANSI / IEEE C95 Sp trolled Exposure	atial Peak		ure					Head .6 W/kg(m averaged o 1 gram	over		

Table 12.9 WCDMA Body-Worn SAR

						MEASUR	EMENT RE	SULTS							
Plot	Freq	uency	Band	Modulation / Band	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	RB	RB	Dyty	1g SAR	Scaling	1g Scaled
No.	MHz	Ch		width [MHz]	Power [dBm]	[dBm]	[dB]	Position	Number	Size	Offset	Cycle	[W/kg]	Factor	SAR [W/kg]
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	0.03	10mm [Front]	FCC#2	1	0	1:1	0.176	1.306	0.230
14	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	-0.02	10mm [Rear]	FCC#2	1	0	1:1	0.257	1.306	0.336
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	0.00	10mm [Front]	FCC#2	25	0	1:1	0.146	1.303	0.190
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	-0.01	10mm [Rear]	FCC#2	25	0	1:1	0.206	1.303	0.268
		Unc	ANSI / IEEE C9: Sp ontrolled Exposure	patial Peak		ıre					1.6 W/ avera	lead kg(mW/g) ged over gram			

Table 12.10 LTE Band 17 E	Body-Worn SAR
---------------------------	---------------

						MEASUR	EMENT RE	SULTS							
Plot	Freq	uency	Band	Modulation / Band	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	RB	RB	Dyty	1g SAR	Scaling	1g Scaled
No.	MHz	Ch		width [MHz]	Power [dBm]	[dBm]	[dB]	Position	Number	Size	Offset	Cycle	[W/kg]	Factor	SAR [W/kg]
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	0.08	10mm [Front]	FCC#2	1	0	1:1	0.531	1.205	0.640
15	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	-0.03	10mm [Rear]	FCC#2	1	0	1:1	0.625	1.205	0.753
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	0.09	10mm [Front]	FCC#2	25	0	1:1	0.373	1.197	0.446
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	-0.07	10mm [Rear]	FCC#2	25	0	1:1	0.419	1.197	0.501
		Unc	ANSI / IEEE C9: Sj ontrolled Exposuri	patial Peak		ire					1.6 W/ avera	lead kg(mW/g) ged over gram			

Table 12.11 LTE Band 5 Body-Worn SAR

						MEASU	IREMENT I	RESULTS						
Plot	Freque	ency	Mode/	Service	Maximum Allowed	Conducted Power	Drift Power	Spacing	Device Serial	Data Rate	Dyty	1g SAR	Scaling	1g Scaled
No.	MHz	Ch	Band	Gervice	Power [dBm]	[dBm]	[dB]	[Side]	Number	[Mbps]	Cycle	[W/kg]	Factor	SAR [W/kg]
	2437	6	802.11b	DSSS	17.0	16.15	-0.02	10mm [Front]	FCC#1	1	1:1	0.0444	1.216	0.0540
16	2437	6	802.11b	DSSS	17.0	16.15	0.16	10mm [Rear]	FCC#1	1	1:1	0.138	1.216	0.168
				Spatial Peak	AFETY LIMIT	osure					Body 6 W/kg(mW iveraged ov 1 gram			

Table 12.12 DTS Body-Worn SAR

12.3 Standalone Wireless router SAR Results

						MEA	SUREMEN	T RESULTS						
Plot No.	Frequ MHz	uency Ch	Mode/ Band	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Spacing [Side]	Device Serial Number	# of Time slots	Dyty Cycle	1g SAR [W/kg]	Scaling Factor	1g Scaled SAR [W/kg]
	836.6	190	GSM850	GPRS	31.0	30.63	0.09	10mm [Bottom]	FCC#1	2	1: 4.2	0.0489	1.089	0.0532
	836.6	190	GSM850	GPRS	31.0	30.63	0.01	10mm [Front]	FCC#1	2	1: 4.2	0.375	1.089	0.408
	836.6	190	GSM850	GPRS	33.0	32.68	0.11	10mm [Rear]	FCC#1	1	1: 8.3	0.382	1.076	0.411
10	836.6	190	GSM850	GPRS	31.0	30.63	-0.02	10mm [Rear]	FCC#1	2	1: 4.2	0.495	1.089	0.539
	836.6	190	GSM850	GPRS	29.0	28.28	-0.06	10mm [Rear]	FCC#1	3	1: 2.8	0.407	1.180	0.480
	836.6	190	GSM850	GPRS	28.0	27.43	0.06	10mm [Rear]	FCC#1	4	1: 2.1	0.448	1.140	0.511
	836.6	190	GSM850	GPRS	31.0	30.63	0.01	10mm [Right]	FCC#1	2	1: 4.2	0.244	1.089	0.266
	836.6	190	GSM850	GPRS	31.0	30.63	0.01	10mm [Left]	FCC#1	2	1: 4.2	0.288	1.089	0.314
	836.6	190	GSM850	GPRS	31.0	30.63	0.09	10mm [Rear]	FCC#1	2	1: 4.2	0.318	1.089	0.346
			ę	Spatial Peak	SAFETY LIMIT						Body 1.6 W/kg(mW/g averaged over 1 gram			

Table 12.13 GSM850 GPRS Hotspot SAR

Note: Yellow entries represent measurements with connected earphone cable.

						ME	ASUREME	NT RESULTS	S					
Plot No.	Freque	-	Mode/ Band	Service	Maximum Allowed Power	Conducted Power	Drift Power	Spacing [Side]	Device Serial	# of Time	Dyty Cycle	1g SAR	Scaling Factor	1g Scaled SAR
	MHz	Ch			[dBm]	[dBm]	[dB]	[]	Number	slots	-,	[W/kg]		[W/kg]
	1880.0	661	PCS1900	GPRS	28.5	28.05	-0.01	10mm [Bottom]	FCC#2	2	1: 4.2	0.692	1.109	0.768
	1880.0	661	PCS1900	GPRS	28.5	28.05	0.17	10mm [Front]	FCC#2	2	1: 4.2	0.425	1.109	0.471
	1880.0	661	PCS1900	GPRS	30.0	29.81	-0.16	10mm [Rear]	FCC#2	1	1: 8.3	0.643	1.045	0.672
	1880.0	661	PCS1900	GPRS	28.5	28.05	-0.06	10mm [Rear]	FCC#2	2	1: 4.2	0.700	1.109	0.776
	1880.0	661	PCS1900	GPRS	26.5	26.18	0.00	10mm [Rear]	FCC#2	3	1: 2.8	0.795	1.076	0.856
	1850.2	512	PCS1900	GPRS	25.5	24.76	0.00	10mm [Rear]	FCC#2	4	1: 2.1	0.746	1.186	0.885
	1880.0	661	PCS1900	GPRS	25.5	24.91	-0.07	10mm [Rear]	FCC#2	4	1: 2.1	0.881	1.146	1.009
17	1909.8	810	PCS1900	GPRS	25.5	25.01	0.17	10mm [Rear]	FCC#2	4	1: 2.1	1.090	1.119	1.220
	1880.0	661	PCS1900	GPRS	28.5	28.05	0.11	10mm [Right]	FCC#2	2	1: 4.2	0.140	1.109	0.155
	1880.0	661	PCS1900	GPRS	28.5	28.05	0.04	10mm [Left]	FCC#2	2	1: 4.2	0.0160	1.109	0.0177
	1880.0	661	PCS1900	GPRS	25.5	24.91	-0.02	10mm [Rear]	FCC#2	4	1: 2.1	0.933	1.146	1.069
	1909.8	810	PCS1900	GPRS	25.5	25.01	-0.03	10mm [Rear]	FCC#2	4	1: 2.1	1.050	1.119	1.175
			ę	Spatial Peak	SAFETY LIMIT C Population Ex						Body 1.6 W/kg(mV averaged ov 1 gram			

Table 12.14 PCS1900 GPRS Hotspot SAR

Note: Yellow entries represent measurements with connected earphone cable. / Blue entries represent repeatability measurements.

						MEASUR	EMENT RE	SULTS						
Plot No.	Free MHz	quency Ch	Mode/ Band	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Spacing [Side]	Device Serial Number	# of Time slots	Dyty Cycle	1g SAR [W/kg]	Scaling Factor	1g Scaled SAR [W/kg]
	836.6	4183	WCDMA850	RMC	24.0	23.33	0.02	10mm [Bottom]	FCC#1	N/A	1:1	0.0649	1.167	0.0757
	836.6	4183	WCDMA850	RMC	24.0	23.33	-0.11	10mm [Front]	FCC#1	N/A	1:1	0.461	1.167	0.538
13	836.6	4183	WCDMA850	RMC	24.0	23.33	0.10	10mm [Rear]	FCC#1	N/A	1:1	0.563	1.167	0.657
	836.6	4183	WCDMA850	RMC	24.0	23.33	-0.06	10mm [Right]	FCC#1	N/A	1:1	0.352	1.167	0.411
	836.6	4183	WCDMA850	RMC	24.0	23.33	-0.06	10mm [Left]	FCC#1	N/A	1:1	0.300	1.167	0.350
	836.6	4183	WCDMA850	RMC	24.0	23.33	0.00	10mm [Rear]	FCC#1	N/A	1:1	0.447	1.167	0.522
	ANSI / IEEE C95.1-2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure										Body I.6 W/kg(m averaged 1 gran	iW/g) over		

Table 12.15 WCDMA Hotspot SAR

Note: Yellow entries represent measurements with connected earphone cable.

						MEASU	REMENT F	RESULTS							
Plot No.	Freq	uency Ch	Band	Modulation / Band width [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Phantom Position	Device Serial Number	RB Size	RB Offset	Dyty Cycle	1g SAR [W/kg]	Scaling Factor	1g Scaled SAR [W/kg]
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	-0.11	10mm [Bottom]	FCC#2	1	0	1:1	0.026	1.306	0.0340
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	0.03	10mm [Front]	FCC#2	1	0	1:1	0.176	1.306	0.230
14	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	-0.02	10mm [Rear]	FCC#2	1	0	1:1	0.257	1.306	0.336
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	0.10	10mm [Right]	FCC#2	1	0	1:1	0.158	1.306	0.206
	711.0	23800	LTE Band 17	QPSK, 10M	24.5	23.34	-0.04	-0.04 10mm [Left] FCC#2 1 0 1:1 0.127 1.306 0.16							
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	-0.04	10mm [Bottom]	FCC#2	25	0	1:1	0.0204	1.303	0.0266
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	0.00	10mm [Front]	FCC#2	25	0	1:1	0.146	1.303	0.190
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	-0.01	10mm [Rear]	FCC#2	25	0	1:1	0.206	1.303	0.268
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	0.17	10mm [Right]	FCC#2	25	0	1:1	0.112	1.303	0.146
	709.0	23780	LTE Band 17	QPSK, 10M	23.5	22.35	0.00	10mm [Left]	FCC#2	25	0	1:1	0.102	1.303	0.133
		Unc	ANSI / IEEE C95 Sp ontrolled Exposure					ave	Head V/kg(mW/g raged over 1 gram						

Table 12.16 LTE Band 17 Hotspot SAR

						MEAS	UREMENT	RESULTS							
Plot No.	Freq	uency Ch	Band	Modulation / Band width [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Phantom Position	Device Serial Number	RB Size	RB Offset	Dyty Cycle	1g SAR [W/kg]	Scaling Factor	1g Scaled SAR [W/kg]
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	0.05	10mm [Bottom]	FCC#2	1	0	1:1	0.0669	1.205	0.0806
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	0.08	10mm [Front]	FCC#2	1	0	1:1	0.531	1.205	0.640
15	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	-0.03	10mm [Rear]	FCC#2	1	0	1:1	0.625	1.205	0.753
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	-0.15	10mm [Right]	FCC#2	1	0	1:1	0.356	1.205	0.429
	829.0	20450	LTE Band 5	QPSK, 10M	24.5	23.69	0.00	10mm [Left]	FCC#2	0.426	1.205	0.513			
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	0.14	10mm [Bottom]	FCC#2	25	0	1:1	0.0524	1.197	0.0627
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	0.09	10mm [Front]	FCC#2	25	0	1:1	0.373	1.197	0.446
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	-0.07	10mm [Rear]	FCC#2	25	0	1:1	0.419	1.197	0.501
836.5 20525 LTE Band 5 QPSK, 10M 23.5 22.72								10mm [Right]	FCC#2	25	0	1:1	0.197	1.197	0.236
	836.5	20525	LTE Band 5	QPSK, 10M	23.5	22.72	0.05	10mm [Left]	FCC#2	25	0	1:1	0.283	1.197	0.339
		Unco		95.1-2005– SAF Spatial Peak ıre/General Pop		sure					ave	Head V/kg(mW/g raged over 1 gram			

Table 12.17 LTE Band 5 Hotspot SAR

						MEA	SUREMEN	T RESULTS						
Plot	Freque	ency	Mode/	Service	Maximum Allowed	Conducted Power	Drift Power	Spacing	Device Serial	Data Rate	Dyty	1g SAR	Scaling	1g Scaled
No.	MHz	Ch	Band		Power [dBm]	[dBm]	[dB]	[Side]	Number	[Mbps]	Cycle	[W/kg]	Factor	SAR [W/kg]
	2437	6	802.11b	DSSS	17.0	16.15	0.00	10mm [Top]	FCC#1	1	1:1	0.100	1.216	0.122
	2437	6	802.11b	DSSS	17.0	16.15	-0.02	10mm [Front]	FCC#1	1	1:1	0.0444	1.216	0.0540
16	2437	6	802.11b	DSSS	17.0	16.15	0.16	10mm [Rear]	FCC#1	1	1:1	0.138	1.216	0.168
	2437	6	802.11b	DSSS	17.0	16.15	0.15	10mm [Right]	FCC#1	1	1:1	0.0344	1.216	0.0418
	ANSI / IEEE C95.1-2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure										Body 1.6 W/kg(i averaged 1 grad	mW/g) I over		

Table 12.18 WLAN Hotspot SAR

12.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication447498 D01v05r02.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05r02.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r02, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
- 8. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06 v02, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 9. Per FCC KDB 865664 D01v01r03, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 14 for variability analysis.

GSM Notes:

- 1. This device supports GSM VOIP in the head and body-worn configurations, therefore GPRS was additionally evaluated for head and body-worn compliance.
- 2. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 3. Per FCC KDB Publication 447498 D01v05r02, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

WCDMA Notes:

- 1. WCDMA mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01 v03.
- 2. Body SAR for HSPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSPA active is less than 0.25 dB higher than that measured without HSPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit.
- 3. Per FCC KDB Publication 447498 D01v05r02, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

WLAN Notes:

- 1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r01 for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- WIFI Direct GO is supported in the 2.4 GHz band only. The manufacturer expects 2.4 GHz WIFI Direct GO may be used in a similar manner to wireless router usage. Therefore, 2.4 GHz WIFI Direct GO was evaluated for SAR similarly to wireless router SAR procedures in FCC KDB Publication 941225.
- 3. WIFI transmission was verified using a spectrum analyzer.
- 4. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels was not required.

13. FCC Multi-TX and Antenna SAR Considerations

13.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05r02 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n/ac and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

13.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =	Max. Tune up Power _(mW)	$\sqrt{f_{(GHz)}}$
Estimated SAR -	Min. Test Separation $Distance_{(mm)}$	7.5

Mode	Frequency	Allo	mum wed wer	Separation Distance (Body)	Estimated SAR (Body)
	MHz	[dBm]	[mW]	[mm]	[W/kg]
Bluetooth	2402	8.0	6.28	10	0.130

Table 13.1 Estimated SAR

Note : Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v05r02, the maximum power of the channel was rounded to the nearest mW before calculation.

13.3 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v05r02, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 13.1 and are color-coded to indicate communication modes which share the same path.

Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 13.1 Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05r02 3) procedures.

13.4 Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance v05r02, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

 $SPLSR = (SAR_1 + SAR_2)^{1.5} /Ri$

Where:

SAR1 is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR2 is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of

$$[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$$

A new threshold of 0.04 is also introduced in the draft KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

 $(SAR_1 + SAR_2)^{1.5} / Ri < 0.04$

Ref.	Simultaneous Transmit Configurations	Head IEEE1528 Supp C	Body-Worm Accessory Supple- ment C	Hot Spot FCC KDB 941225 D06 Edges/sides	Note
1	GSM850 Voice + 2.4GHz WIFI	Yes	Yes	N/A	
2	PCS1900 Voice + 2.4GHz WIFI	Yes	Yes	N/A	
3	WCDMA850 Voice + 2.4GHz WIFI	Yes	Yes	Yes	
4	LTE Band 17 Data + 2.4GHz WIFI	Yes	Yes	Yes	
5	LTE Band 5 Data + 2.4GHz WIFI	Yes	Yes	Yes	
6	GSM850 GPRS + 2.4GHz WIFI	Yes	Yes	Yes	
7	PCS1900 GPRS + 2.4GHz WIFI	Yes	Yes	Yes	
8	GSM850 Voice + Bluetooth	N/A	Yes	N/A	
9	PCS1900 Voice + Bluetooth	N/A	Yes	N/A	
10	GSM850 GPRS + Bluetooth	N/A	Yes	N/A	
11	PCS1900 GPRS + Bluetooth	N/A	Yes	N/A	
12	WCDMA850 + Bluetooth	N/A	Yes	N/A	
13	LTE Band 17 Data + Bluetooth	N/A	Yes	N/A	
14	LTE Band 5 Data + Bluetooth	N/A	Yes	N/A	

Table 13.2 Simultaneous Transmission Scenarios

Notes:

1. 2.4 GHz WIFI is supported Hotspot and WIFI-Direct.

2. WCDMA, GPRS is supported Hotspot.

3. Bluetooth and WIFI cannot transmit simultaneously since they share the same chip.

4. GSM and WCDMA cannot transmit simultaneously since they share the same chip.

5. VoIP is supported in WCDMA, GSM.

Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Simultaneous transmission scenarios involving WIFI Direct are specified above.

13.5 Head SAR Simultaneous Transmission Analysis

Simult TX	Configuration	GSM850 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	ℬAR [W/kg]	SPLSR [Yes/No]	Simult TX	Configuration	PCS1900 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∑SAR [W/kg]	SPLSR [Yes/No]
	Left Touch	0.194	0.170	0.365	No		Left Touch	0.174	0.170	0.345	No
Head	Right Touch	0.222	0.102	0.324	No	Head	Right Touch	0.289	0.102	0.392	No
SAR	Left Tilt	0.188	0.163	0.351	No	SAR	Left Tilt	0.0425	0.163	0.205	No
	Right Tilt	0.188	0.133	0.321	No		Right Tilt	0.0402	0.133	0.173	No

Table 13.3 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Held to Ear)

Simult TX	Configuration	GPRS 850 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	SSAR [W/kg]	SPLSR [Yes/No]	Simult TX	Configuration	GPRS 1900 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∑SAR [W/kg]	SPLSR [Yes/No]
	Left Touch	0.244	0.170	0.414	No		Left Touch	0.261	0.170	0.431	No
Head	Right Touch	0.280	0.102	0.382	No	Head	Right Touch	0.412	0.102	0.515	No
SAR	Left Tilt	0.245	0.163	0.408	No	SAR	Left Tilt	0.0631	0.163	0.226	No
	Right Tilt	0.241	0.133	0.373	No		Right Tilt	0.0572	0.133	0.190	No

Table 13.4 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Held to Ear)

Simult TX	Configuration	WCDMA 850 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∕SAR [W/kg]	SPLSR [Yes/No]
	Left Touch	0.317	0.170	0.488	No
Head	Right Touch	0.350	0.102	0.452	No
SAR	Left Tilt	0.327	0.163	0.490	No
	Right Tilt	0.317	0.133	0.450	No

Table 13.5 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Held to Ear)

Simult TX	Configuration	LTE Band17 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∑SAR [W/kg]	SPLSR [Yes/No]	Simult TX	Configuration	LTE Band5 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∑SAR [W/kg]	SPLSR [Yes/No]
	Left Touch	0.120	0.170	0.290	No		Left Touch	0.447	0.170	0.617	No
Head	Right Touch	0.170	0.102	0.272	No	Head	Right Touch	0.434	0.102	0.536	No
SAR	Left Tilt	0.112	0.163	0.275	No	SAR	Left Tilt	0.470	0.163	0.633	No
	Right Tilt	0.138	0.133	0.271	No		Right Tilt	0.474	0.133	0.606	No

Table 13.6 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Held to Ear)

Configuration	Mode	2G/3G SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	ΣSAR [W/kg]	SPLSR [Yes/No]
Front Side	GSM 850	0.375	0.0540	0.429	No
Rear Side	GSM 850	0.480	0.168	0.648	No
Front Side	GPRS 850	0.408	0.0540	0.462	No
Rear Side	GPRS 850	0.539	0.168	0.707	No
Front Side	PCS 1900	0.377	0.0540	0.431	No
Rear Side	PCS 1900	0.669	0.168	0.836	No
Front Side	GPRS 1900	0.471	0.0540	0.525	No
Rear Side	GPRS 1900	0.776	0.168	<u>0.944</u>	No
Front Side	WCDMA 850	0.538	0.0540	0.592	No
Rear Side	WCDMA 850	0.657	0.168	0.825	No
Front Side	LTE Band 17	0.230	0.0540	0.284	No
Rear Side	LTE Band 17	0.336	0.168	0.504	No
Front Side	LTE Band 5	0.640	0.0540	0.694	No
Rear Side	LTE Band 5	0.753	0.168	0.921	No

13.6 Body-Worn Simultaneous Transmission Analysis

Table 13.7 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Body-Worn at 10 mm)

Configuration	Mode	2G/3G SAR [W/kg]	Bluetooth SAR [W/kg]	ΣSAR [W/kg]	SPLSR [Yes/No]
Front Side	GSM 850	0.375	0.130	0.505	No
Rear Side	GSM 850	0.480	0.130	0.610	No
Front Side	GPRS 850	0.408	0.130	0.538	No
Rear Side	GPRS 850	0.539	0.130	0.669	No
Front Side	PCS 1900	0.377	0.130	0.507	No
Rear Side	PCS 1900	0.669	0.130	0.799	No
Front Side	GPRS 1900	0.471	0.130	0.601	No
Rear Side	GPRS 1900	0.776	0.130	0.906	No
Front Side	WCDMA 850	0.538	0.130	0.668	No
Rear Side	WCDMA 850	0.657	0.130	0.787	No
Front Side	LTE Band 17	0.230	0.130	0.360	No
Rear Side	LTE Band 17	0.336	0.130	0.466	No
Front Side	LTE Band 5	0.640	0.130	0.770	No
Rear Side	LTE Band 5	0.753	0.130	0.883	No

Table 13.8 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 10 mm)

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

13.7 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06 v02, the device edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Simult TX	Configuration	GPRS 850 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	⊗AR [W/kg]	SPLSR [Yes/No]	Simult TX	Configuration	GPRS 1900 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∑SAR [W/kg]	SPLSR [Yes/No]
	Тор	-	0.122	0.122	No		Тор	-	0.122	0.122	No
	Bottom	0.0532	-	0.0532	No		Bottom	0.768	-	0.768	No
Body	Front	0.408	0.0540	0.462	No	Body	Front	0.471	0.0540	0.525	No
SAR	Rear	0.539	0.168	0.707	No	SAR	Rear	1.220	0.168	1.388	No
	Right	0.266	0.0418	0.308	No		Right	0.155	0.0418	0.197	No
	Left	0.314	-	0.314	No		Left	0.0177	-	0.0177	No

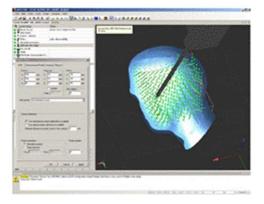
Table 13.9 Simultaneous Transmission Scenario (Hotspot at 10 mm)

Simult TX	Configuration	WCDMA 850 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∑SAR [W/kg]	SPLSR [Yes/No]
	Тор	-	0.122	0.122	No
	Bottom	0.0757	-	0.0757	No
Body	Front	0.538	0.0540	0.592	No
SAR	Rear	0.657	0.168	0.825	No
	Right	0.411	0.0418	0.453	No
	Left	0.350	-	0.350	No

Table 13.10 Simultaneous Transmission Scenario (Hotspot at 10 mm)

Simult TX	Configuration	LTE Band 17 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∕SAR [W/kg]	SPLSR [Yes/No]	Simult TX	Configuration	LTE Band 5 SAR [W/kg]	2.4G W-LAN (802.11b) SAR [W/kg]	∑SAR [W/kg]	SPLSR [Yes/No]
	Тор	-	0.122	0.122	No		Тор	-	0.122	0.122	No
	Bottom	0.0340	-	0.0340	No		Bottom	0.0806	-	0.0806	No
Body	Front	0.230	0.0540	0.284	No	Body	Front	0.640	0.0540	0.694	No
SAR	Rear	0.336	0.168	0.504	No	SAR	Rear	0.753	0.168	0.921	No
	Right	0.206	0.0418	0.248	No		Right	0.429	0.0418	0.471	No
	Left	0.166	-	0.166	No		Left	0.513	-	0.513	No

Table 13.11 Simultaneous Transmission Scenario (Hotspot at 10 mm)


Description of Volume Scan:

In order to determine the EM field distribution in a three-dimensional spatial extension, volume scans are required. In free space, these assessments can help to gain more information on the performance of the DUT(e.g., to determine the degree of symmetry of the filed radiated from a horn antenna).

For dosimetric application, it is necessary to assess the peak spatial SAR value averaged over a volume. For this purpose, fine resolution volume scans need to be performed at the peak SAR location(s) determined during the Area Scan. In DASY5 software these scans are called Zoom Scan jobs. The default Zoom Scan measures 7 x 7 x 7 points with a step size of 5 mm. Faster evaluations can be achieved with a reduced number of measurement points. For example, a Zoom Scan with a grid step size in x- and y-directions of 7.5 mm (5 x 5 x 7cube configuration) reduces the measurement time to almost half with only 1-2% difference in SAR reading compared to the fine-resolution 7 x 7 x 7 scan.

For SAR evaluations with larger spatial extensions (e.g., within a complete phantom head section)a Volume Scan job should be used.

The Volume Scan job is compatible with DASY5 SAR, PRO and NEO system levels. Volume Scans are used to assess peak SAR and averaged SAR measurement in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location With an Administrator access mode, the grid can be optionally graded in Z-direction, whereby the smallest grid step and the grading ratio can be defined. Chosen grading ratio is automatically adjusted so that the desired extent in Z-direction is fully covered.

Under the Report page, the quantity to be evaluated for an instant report may be selected.

SAR Assessment:

Alternative 1

- Evaluation Method
 - Maximum summed SAR Value
- Description
 - Easiest and most conservative method to determine the upper limit of multi-band SAR
- Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Multi-band SAR Value is 0.9 + 1.3 = 2.2

Alternative 2

- Evaluation Method
 - Selection of highest assessed maximum SAR Value
- Description
 - Accurate estimate of the multi-band SAR
- Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Multi-band SAR Value is 1.3

Alternative 3

- Evaluation Method
 - Combining existing Area and Zoom Scan results by Post-Processor
- Description
 - Rapid way of obtaining the multi-band SAR. It is always applicable.
- Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Combining results by Post-Processor

Alternative 4

- Evaluation Method
 - Combining existing Area and Zoom Scan results by Post-Processor
- Description
 - The most accurate way of assessing the multi-band SAR and always
- Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Combining results by Post-Processor

14. SAR Measurement Variability

14.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r03, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4.	Repeated measurements are not rec	quired when the original highest measured SAR is < 0.80 W/kg.

Frequ	ency	Mode	Service	# of Time Slots	Spacing [Side]	Measured SAR(1g)	1st Repeated SAR(1g)	Ratio	2nd Repeated SAR(1g)	Ratio	3rd Repeated SAR(1g)	Ratio
MHz	Ch			01013		[W/kg]	[W/kg]		[W/kg]		[W/kg]	
1909.8	810	PCS1900	GPRS	4	10 mm [Rear]	1.09	1.05	1.04	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1-2005 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General population Exposure							Body 1.6 W/kg(mW/g) averaged over 1 gram				

14.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664D01v01r03, the standard measurement uncertainty analysis per IEEE 1528-2013 was not required.

15. IEEE P1528 - Measurement uncertainties

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when determining compliance or non-compliance with test result.

750MHz Head

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	∞
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	8
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	8
System Detection Limits	± 1.0	R	√3	1	± 0.6	8
Readout Electronics	± 0.3	Ν	1	1	± 0.3	8
Response Time	± 0.8	R	√3	1	± 0.5	8
Integration Time	± 2.6	R	√3	1	± 1.5	8
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	8
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	8
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	8
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	8
Liquid conductivity (meas.)	± 2.6	R	1	0.64	± 1.7	8
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	8
Liquid permittivity (meas.)	± 2.7	R	1	0.6	± 1.6	8
Combined Std. Uncertainty					± 12.4	387
Expanded uncertainty (95% confidence interval)					± 24.8	

750MHz Body

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	8
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	8
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	8
System Detection Limits	± 1.0	R	√3	1	± 0.6	8
Readout Electronics	± 0.3	Ν	1	1	± 0.3	8
Response Time	± 0.8	R	√3	1	± 0.5	8
Integration Time	± 2.6	R	√3	1	± 1.5	8
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	8
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	8
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	8
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	8
Liquid conductivity (meas.)	± 1.0	R	1	0.64	± 0.6	8
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	8
Liquid permittivity (meas.)	± 2.7	R	1	0.6	± 1.6	8
Combined Std. Uncertainty					± 11.3	387
Expanded uncertainty (95% confidence interval)					± 22.6	

835MHz Head

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	8
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	8
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	8
System Detection Limits	± 1.0	R	√3	1	± 0.6	8
Readout Electronics	± 0.3	Ν	1	1	± 0.3	8
Response Time	± 0.8	R	√3	1	± 0.5	8
Integration Time	± 2.6	R	√3	1	± 1.5	8
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	8
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	8
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	8
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	8
Liquid conductivity (meas.)	± 1.7	R	1	0.64	± 1.1	8
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	8
Liquid permittivity (meas.)	± 2.0	R	1	0.6	± 1.2	8
Combined Std. Uncertainty					± 11.4	387
Expanded uncertainty (95% confidence interval)					± 22.8	

835MHz Body

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	8
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	8
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	8
System Detection Limits	± 1.0	R	√3	1	± 0.6	8
Readout Electronics	± 0.3	Ν	1	1	± 0.3	8
Response Time	± 0.8	R	√3	1	± 0.5	8
Integration Time	± 2.6	R	√3	1	± 1.5	8
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	8
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	8
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	8
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	8
Liquid conductivity (meas.)	± 3.2	R	1	0.64	± 2.0	8
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	8
Liquid permittivity (meas.)	± 2.4	R	1	0.6	± 1.4	8
Combined Std. Uncertainty					± 12.5	387
Expanded uncertainty (95% confidence interval)					± 25.0	

1900MHz Head

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	∞
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	∞
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	∞
System Detection Limits	± 1.0	R	√3	1	± 0.6	∞
Readout Electronics	± 0.3	Ν	1	1	± 0.3	∞
Response Time	± 0.8	R	√3	1	± 0.5	∞
Integration Time	± 2.6	R	√3	1	± 1.5	∞
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	∞
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	8
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	∞
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	œ
Liquid conductivity (meas.)	± 1.1	R	1	0.64	± 0.7	œ
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	œ
Liquid permittivity (meas.)	± 0.0	R	1	0.6	± 0.0	œ
Combined Std. Uncertainty					± 9.8	387
Expanded uncertainty (95% confidence interval)					± 19.6	

1900MHz Body

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	∞
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	8
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	8
System Detection Limits	± 1.0	R	√3	1	± 0.6	8
Readout Electronics	± 0.3	Ν	1	1	± 0.3	8
Response Time	± 0.8	R	√3	1	± 0.5	8
Integration Time	± 2.6	R	√3	1	± 1.5	8
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	8
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	8
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	8
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	8
Liquid conductivity (meas.)	± 2.2	R	1	0.64	± 1.4	∞
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	∞
Liquid permittivity (meas.)	± 1.8	R	1	0.6	± 1.1	œ
Combined Std. Uncertainty					± 11.6	387
Expanded uncertainty (95% confidence interval)					± 23.2	

2450MHz Head

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	8
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	8
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	8
System Detection Limits	± 1.0	R	√3	1	± 0.6	8
Readout Electronics	± 0.3	Ν	1	1	± 0.3	8
Response Time	± 0.8	R	√3	1	± 0.5	8
Integration Time	± 2.6	R	√3	1	± 1.5	8
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	8
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	8
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	8
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	8
Liquid conductivity (meas.)	± 0.1	R	1	0.64	± 0.1	8
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	8
Liquid permittivity (meas.)	± 0.2	R	1	0.6	± 0.1	8
Combined Std. Uncertainty					± 9.3	387
Expanded uncertainty (95% confidence interval)					± 18.6	

2450MHz Body

Error Description	Uncertainty Value ± %	Probability distribution	Divisor	ci (1g)	Standard uncertainty ±%,(1g)	vi or veff
Measurement System						
Probe Calibration	± 6.0	Ν	1	1	± 6.0	∞
Axial Isotropy	± 4.7	R	√3	0.7	± 1.9	8
Hemispherical Isotropy	± 9.6	R	√3	0.7	± 3.9	8
Boundary Effect	± 1.0	R	√3	1	± 0.6	8
Linearity	± 4.7	R	√3	1	± 2.7	8
System Detection Limits	± 1.0	R	√3	1	± 0.6	8
Readout Electronics	± 0.3	Ν	1	1	± 0.3	∞
Response Time	± 0.8	R	√3	1	± 0.5	∞
Integration Time	± 2.6	R	√3	1	± 1.5	8
RF Ambient Noise	± 3.0	R	√3	1	± 1.7	8
RF Ambient Reflections	± 3.0	R	√3	1	± 1.7	8
Probe Positioner	± 0.4	R	√3	1	± 0.2	8
Probe Positioning	± 2.9	R	√3	1	± 1.7	∞
Max. SAR Eval.	± 1.0	R	√3	1	± 0.6	8
Test sample related						
Device Positioning	± 2.9	Ν	1	1	± 2.9	145
Device Holder	± 3.6	Ν	1	1	± 3.6	5
Power Drift	± 5.0	R	√3	1	± 2.9	∞
Phantom and set-up						
Phantom Uncertainty	± 4.0	R	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	R	√3	0.64	± 1.8	8
Liquid conductivity (meas.)	± 1.8	R	1	0.64	± 1.2	∞
Liquid permittivity (target)	± 5.0	R	√3	0.6	± 1.7	∞
Liquid permittivity (meas.)	± 2.1	R	1	0.6	± 1.3	8
Combined Std. Uncertainty					± 11.6	387
Expanded uncertainty (95% confidence interval)					± 23.2	

16. Conclusion

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

17. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2013, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Pre standard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01 v03, D05 v02r03, D05A v01r01, D06 v02
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02r01
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04

- [29] FCC SAR Evaluation Considerations for Laptop, Notebook, Net book and Tablet Computers, FCC KDB Publication 616217 D04
- [30] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [31] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [32] 615223 D01 802 16e WiMax SAR Guidance v01, Nov. 13, 2009
- [33] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [34] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.