

FCC CFR47 CERTIFICATION

PART 24E

TEST REPORT

FOR

KYOCERA CORPORATION

MODEL: UTC1900D-US-A

FCC ID: JOYIUC19AA

REPORT NUMBER: 04I2701-3

ISSUE DATE: JUNE 10, 2004

Prepared for

KYOCERA CORPORATION 2-1-1 KAGAHARA TSUZUKI-KU YOKOHAMA-SHI, JAPAN

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, ROUTE 2 MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENT

1.		ST RESULT CERTIFICATION	
2.	EU	Г DESCRIPTION	4
3.	TES	ST METHODOLOGY	4
4.	TES	ST FACILITY	4
5.	AC	CREDITATION AND LISTING	4
6.	ME	ASURING INSTRUMENT CALIBRATION	
7.	TES	ST SETUP, PROCEDURE AND RESULT	5
7	7.1.	SECTION 2.1046: RF POWER OUTPUT	5
7	.2.	SECTION 2.1047: MODULATION CHARACTERISTICS	
7	'.3.	SECTION 2.1049: OCCUPIED BANDWIDTH	
7	'.4.	SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL	19
7	.5.	SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION	
7	'.6.	SECTION 2.1055: FREQUENCY STABILITY	
7	'.7.	RADIATED EMISSION	
7	'.8.	POWERLINE CONDUCTED EMISSION	
8.	API	ENDIX	
8	8.1.	EXTERNAL & INTERNAL PHOTOS	
8	8.2.	SCHEMATICS	
8	3.3.	BLOCK DIAGRAM	
8	8.4.	USER MANUAL	

Page 2 of 68

1. TEST RESULT CERTIFICATION

COMPANY NAME:	KYOCERA CORPORATION
	2-1-1 KAGAHARA TSUZUKI-KU YOKOHAMA-SHI
	KANAGAWA 224-8502, JAPAN
EUT DESCRIPTION:	USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM
MODEL NUMBER:	UTC1900D-US-A
DATE TESTED:	JUNE 01 TO JUNE 6, 2004

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR, LICENSED TX MODULE IN MOBILE APPLICATION
MEASUREMENT PROCEDURE	ANSI C63.4 / 2001, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 24 Subpart E

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 24 Subpart E-Broadband PCS. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Tested By:

Released For CCS By:

VIEN TRAN EMC TECHNICIAN COMPLIANCE CERTIFICATION SERVICES THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Page 3 of 68

2. EUT DESCRIPTION

The EUT is a 1900MHz User Terminal (Card Type) of Wireless Broadband Internet System, which has an output power of 27.1dBm / 512mW (EIRP Peak Output Power), which is designed for the bands transmitting of frequency range 1900MHz to 1910MHz.

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300F2))

6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Page 4 of 68

7. TEST SETUP, PROCEDURE AND RESULT

7.1. SECTION 2.1046: RF POWER OUTPUT

INSTRUMENTS LIST

TEST EQUIPMENT LIST						
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date		
Spectrum Analyzer 20 Hz ~44 GHz	Agilent	E4446A	US42070220	1/13/2005		
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004		
Power Sensor, 100 kHz ~4.2 GHz	HP	8482A	2349A08568	11/7/2004		
10dB Attenuator	Weinschel	56-10	M2348	CNR		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	2/4/2005		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2005		
Signal Generator	R&S	SMP04	DE34210	5/25/2005		
-						

Page 5 of 68

MEASUREMENT PROCEDURE

1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

2). The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the frequency of the transmitter.

3). The output of the test antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4). The transmitter shall be placed 0.80 meter above the ground plane, the X, Y, and Z positions shall be tested and the worst case reported if necessary. The transmitter shall be switched on with typical modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

8). The maximum signal level detected by the measuring receiver shall be noted.

9). The transmitter shall be replaced by a tuned dipole (substitution antenna).

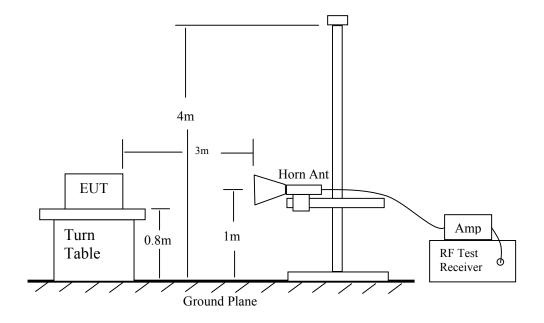
10). The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.

11). The substitution antenna shall be connected to a calibrated signal generator.

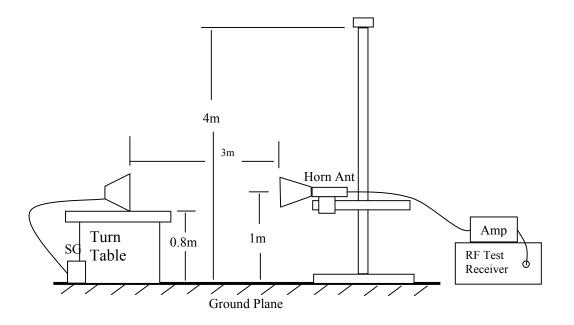
12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

Page 6 of 68


14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.


16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

Page 7 of 68

Radiated Emission Above 1000 MHz

Radiated Emission – Substitution Method setup

Page 8 of 68

REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

X position:

Y position:

Z position:

Page 9 of 68

Test result:

Output Power:

BPSK

	Ch.#	Freq. (MHz)	EIRP Peak Power (dBm)	Conducted Average Power (dBm)
Low Ch.	0	1900.3125	24.10	16.35
Mid Ch.	7	1904.6875	23.80	17.42
High Ch.	15	1909.6875	26.40	17.28

QPSK

	Ch.#	Freq. (MHz)	EIRP Peak Power (dBm)	Conducted Average Power (dBm)
Low Ch.	0	1900.3125	25.90	16.25
Mid Ch.	7	1904.6875	26.50	16.22
High Ch.	15	1909.6875	25.70	17.10

8PSK

	Ch.#	Freq. (MHz)	EIRP Peak Power (dBm)	Conducted Average Power (dBm)
Low Ch.	0	1900.3125	26.40	16.40
Mid Ch.	7	1904.6875	25.10	16.92
High Ch.	15	1909.6875	27.10	17.10

12QAM

	Ch.#	Freq. (MHz)	EIRP Peak Power (dBm)	Conducted Average Power (dBm)
Low Ch.	0	1900.3125	26.00	14.37
Mid Ch.	7	1904.6875	25.40	15.26
High Ch.	15	1909.6875	27.10	15.40

16QAM

	Ch.#	Freq. (MHz)	EIRP Peak Power (dBm)	Conducted Average Power (dBm)
Low Ch.	0	1900.3125	24.20	14.77
Mid Ch.	7	1904.6875	24.20	15.30
High Ch.	15	1909.6875	25.90	15.32

Page 10 of 68

Output Power (EIRP):

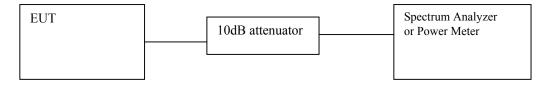
f	SA reading	SGreading	a	Gain	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
BPSK									
Low Ch, 190	0.3125MHz								
1.900	85.7	18.3	1.4	7.2	5.1	24.1	33.0	-8.9	PK Vert @ Worst Position
Mid Ch, 1904	1.6875MHz								~
1.904	85.3	17.9	1.4	7.2	5.1	23.8	33.0	-9.2	PK Vert @ Worst Position
High Ch, 190	9.6875MHz								
1.91000	88.0	20.5	1.4	7.2	5.1	26.4	33.0	-6.6	PK Vert @ Worst Position
QPSK									
Low Ch, 190	0.3125MHz								
1.90000	87.5	20.0	1.4	7.2	5.1	25.9	33.0	-7.1	PK Vert @ Worst Position
Mid Ch, 190									
1.90447	88.1	20.7	1.4	7.2	5.1	26.5	33.0	-6.5	PK Vert @ Worst Position
High Ch, 190									
1.90970	87.2	19.8	1.4	7.2	5.1	25.7	33.0	-7.3	PK Vert @ Worst Position
8PSK									
Low Ch, 190	0.3125MHz	·							
1.90035	88.0	20.5	1.4	7.2	5.1	26.4	33.0	-6.6	PK Vert @ Worst Position
Mid Ch, 190	1.6875MHz								
1.90447	86.7	19.2	1.4	7.2	5.1	25.1	33.0	-7.9	PK Vert @ Worst Position
High Ch, 190	9.6875MHz								
1.90970	88.6	21.2	1.4	7.2	5.1	27.1	33.0	-5.9	PK Vert @ Worst Position
12QAM									
Low Ch, 190).3125MHz								
1.90035	87.6	20.1	1.4	7.2	5.1	26.0	33.0	-7.0	PK Vert @ Worst Position
Mid Ch, 190									
1.90447	86.9	19.5	1.4	7.2	5.1	25.4	33.0	-7.6	PK Vert @ Worst Position
High Ch, 190									
1.90970	88.6	21.2	1.4	7.2	5.1	27.1	33.0	-5.9	PKVert @Worst Position
16QAM									
Low Ch, 190).3125MHz								
1.90035	85.7	18.3	1.4	7.2	5.1	24.2	33.0	-8.8	PK Vert @ Worst Position
Mid Ch, 190	1.6875MHz								
1.90035	85. 7	18.3	1.4	7.2	5.1	24.2	33.0	-8.8	PK Vert @ Worst Position
High Ch, 190	9.6875MHz								
1.90970	87.4	20.0	1.4	7.2	5.1	25.9	33.0	-7.1	PK Vert @ Worst Position

The peak reading is included the duty cycle factor of $10*\log(0.33) = -4.8$

Page 11 of 68

7.2. SECTION 2.1047: MODULATION CHARACTERISTICS

Not applicable.


7.3. SECTION 2.1049: OCCUPIED BANDWIDTH

OCCUPIED BANDWIDTH:

INSTRUMENTS LIST

TEST EQUIPMENT LIST							
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date			
Spectrum Analyzer	HP	E4446A	US42510266	7/23/2004			
10dB Attenuator	Weinschel	56-10	M2348	CNR			
Power Meter	HP	436A	2709A29209	7/15/2004			
Power Sensor, 100 kHz ~ 4.2 GHz	HP	8482A	2349A08568	7/15/2004			

TEST SETUP

Page 12 of 68

TEST PROCEDURE

The EUT's output RF connector (made solely for the purpose of the test) was connected with a short cable to the spectrum analyzer, RES BW was set to about 1% of emission BW, -26 dBc display line was placed on the screen (or 99% bandwidth), the occupied BW is the delta frequency between the two points where the display line intersects the signal trace.

RESULT

No non-compliance noted, reference only.

BPSK

	Ch.#	Freq. (MHz)	99% BW (KHz)	26dBc BW (KHz)
Low Ch.	0	1900.3125	521.544	607.622
Mid Ch.	7	1904.6875	523.036	533.110
High Ch.	15	1909.6875	516.173	613.784

QPSK

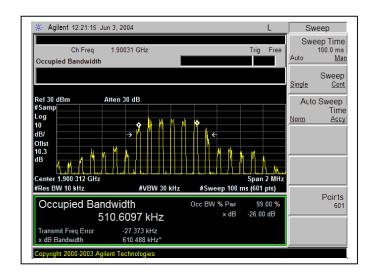
	Ch.#	Freq. (MHz)	99% BW (KHz)	26dBc BW (KHz)
Low Ch.	0	1900.3125	510.610	610.488
Mid Ch.	7	1904.6875	523.916	536.052
High Ch.	15	1909.6875	526.924	536.290

8PSK

	Ch.#	Freq. (MHz)	99% BW (KHz)	26dBc BW (KHz)
Low Ch.	0	1900.3125	521.132	610.952
Mid Ch.	7	1904.6875	516.716	607.554
High Ch.	15	1909.6875	528.401	536.526

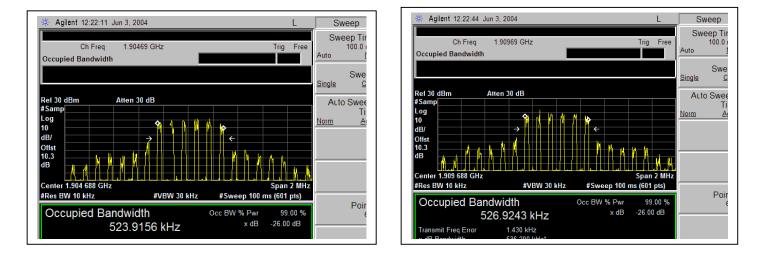
12QAM

	Ch.#	Freq. (MHz)	99% BW (KHz)	26dBc BW (KHz)
Low Ch.	0	1900.3125	524.332	610.950
Mid Ch.	7	1904.6875	529.230	536.550
High Ch.	15	1909.6875	523.056	534.984


16QAM

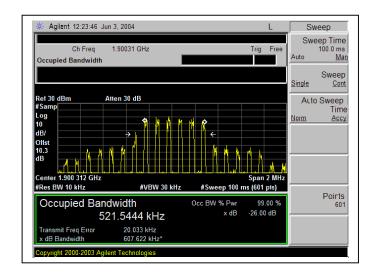
	Ch.#	Freq. (MHz)	99% BW (KHz)	26dBc BW (KHz)
Low Ch.	0	1900.3125	523.204	616.783
Mid Ch.	7	1904.6875	526.554	536.413
High Ch.	15	1909.6875	523.204	616.783

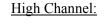
Page 13 of 68

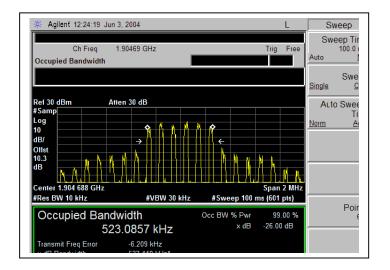

BPSK Modulation:

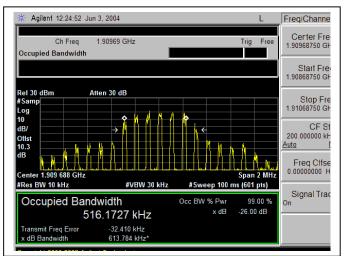
Low Channel

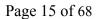
Mid Channel:



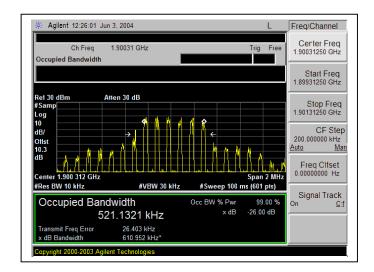



QPSK Modulation:


Low Channel



Mid Channel:



8PSK Modulation:

Low Channel

Sweep Sweep Tim 100.0 m

Swee

Auto Swee

Co

Tir

Ac

Poirt

Fre

Span 2 MH

99.00 %

-26.00 dB

ns (601 pts)

#Sweep 100

x dB

Occ BW % Pwr

Auto

Single

Norm

Trig

Mid Channel:

1.90469 GHz

Atten 30 dB

516.7160 kHz

#VBW 30 kHz

Agilent 12:26:26 Jun 3, 2004

Ch Freq

Occupied Bandwidth

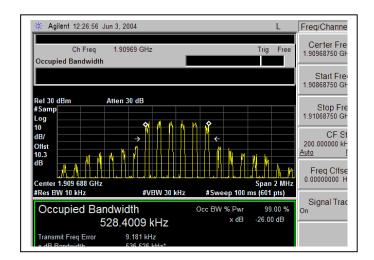
Center 1.904 688 GHz

Occupied Bandwidth

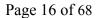
Res BW 10 kHz

Ref 30 dBm

#San


Log

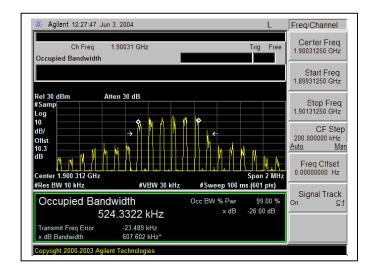
0


dB/

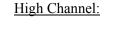
Offst

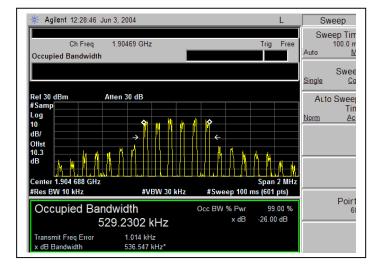
10.3

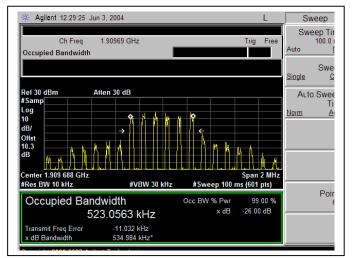
High Channel:

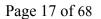


COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885This report shall not be reproduced except in full, without the written approval of CCS. This document may
be altered or revised by Compliance Certification Services personnel only, and shall be noted in the
revision section of the document.

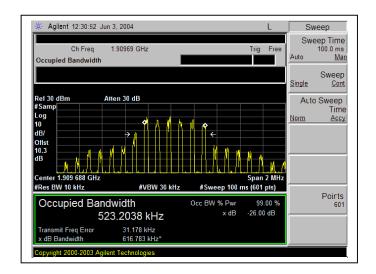

High Channa

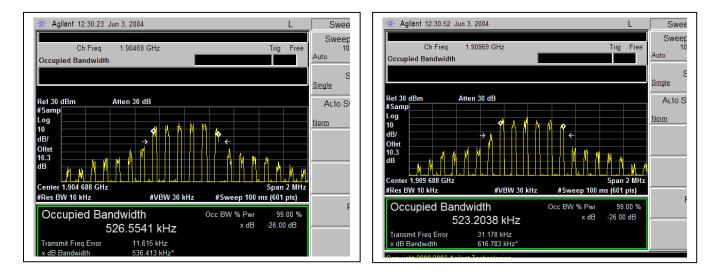

12QAM Modulation:

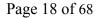

Low Channel



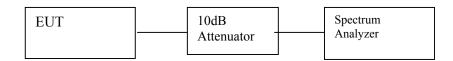
Mid Channel:




16QAM Modulation:


Low Channel

Mid Channel:



7.4. SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL

INSTRUMENTS LIST

TEST EQUIPMENT LIST								
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date				
Spectrum Analyzer	HP	E4446A	US42510266	7/23/2004				
10dB Attenuator	Weinschel	56-10	M2348	CNR				
Power Meter	HP	436A	2709A29209	7/15/2004				
Power Sensor, 100 kHz ~ 4.2 GHz	HP	8482A	2349A08568	7/15/2004				

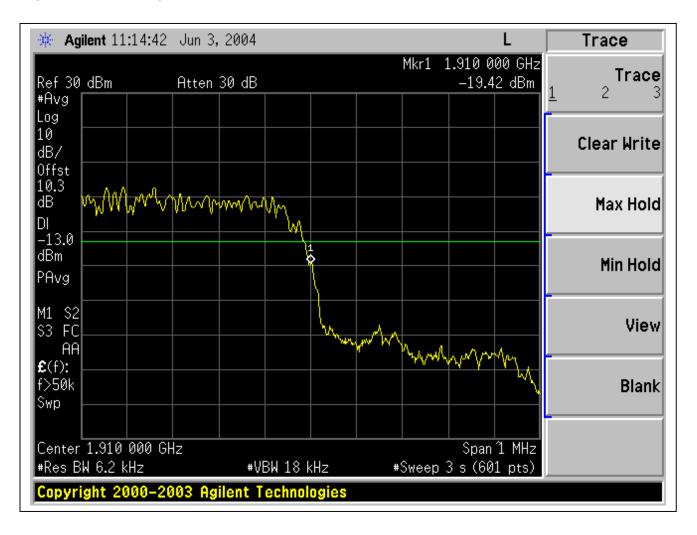
TEST SETUP

TEST PROCEDURE

- RF signal or three balanced signals (intermodulation measurement) were applied to the RF input. One set as close as possible to the bottom of the block edge and one set as close as possible to the top of the block edge. Set the RES BW to 1% of the emission bandwidth to show compliance with the -13dBm limit, in the 1 MHz bands immediately outside and adjacent to the top and bottom edges of the frequency block.
- 2) For the Out-of-Band measurements a 1 MHz RES BW was used to scan from 15 MHz to 10xfo of the fundamental carrier for all frequency block. A display line was placed at -13dBm to show compliance for spurious, harmonics, and intermodulation emissions.

Page 19 of 68

RESULT:

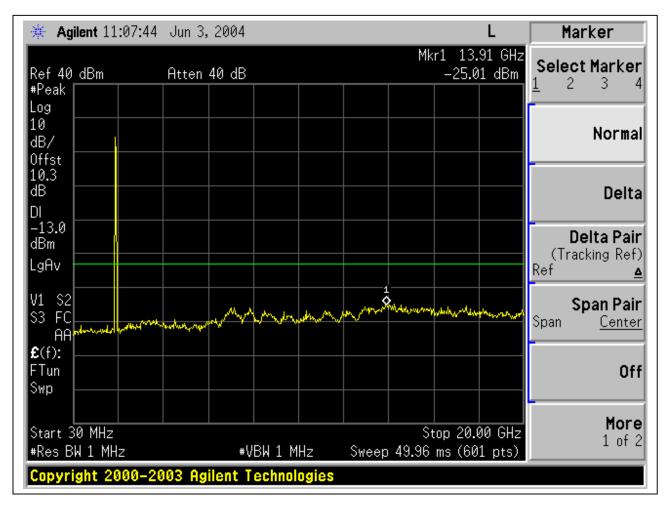

BPSK Modulation: Band Edges, Out-Of-Band Emissions

Low Channel Band Edge

Peak Search	L					2004	Jun 3,):49:42	ilent 10	🔆 Ag
Next Peak	.895 813 GHz -49.56 dBm	Mkr1 :				10 dB	Atten		dBm	Ref 10 #Avg
Next Pk Right										Log 10 dB/ Offst
Next Pk Left										10.3 dB DI
Min Search										-13.0 dBm PAvg
Pk-Pk Search										M1 S2 S3 FC AA
Mkr → CF	marker Contained	, tarayak kura	eyebberrahayw	mperiore	ah-resonanta		7.18-9.09-10 ⁻¹ 61.41	terre (have ^t the state of the	mhineachtaith	£ (f): f>50k Swp
More 1 of 2	Span 2 MHz s (601 pts)	Sweep :		kHz	BW 18	#V	Iz	000 GH Hz		Center #Res B
				ogies	echnol	ilent T	103 Ag	000-20	ght 20	Copyri

Page 20 of 68

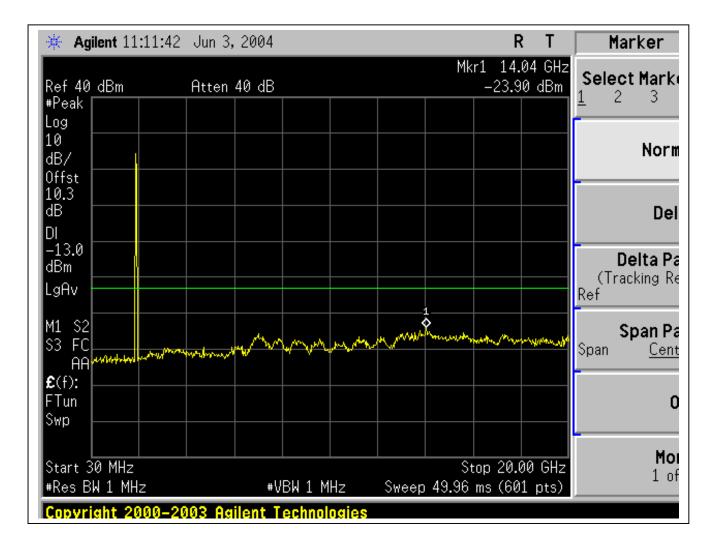
High Channel Band Edge


Page 21 of 68

Agilent 11:10:29 Jun 3, 2004 L Marker 瘚. Mkr1 13.78 GHz Select Marker -25.34 dBm Ref 40 dBm Atten 40 dB 1 2 3. 4 #Peak Log 10 Normal dB/ Offst 10.3 dB Delta DI -13.0 Delta Pair dBm (Tracking Ref) LgAv Ref ≙ Mary V1 S2 Span Pair \$3 FC Span Center AA £(f): FTun Off Swp. More Stop 20.00 GHz Start 30 MHz 1 of 2 Sweep 49.96 ms (601 pts) #Res BW 1 MHz #VBW 1 MHz Copyright 2000-2003 Agilent Technologies

Low Channel, Out-Of-Band Emissions

Page 22 of 68

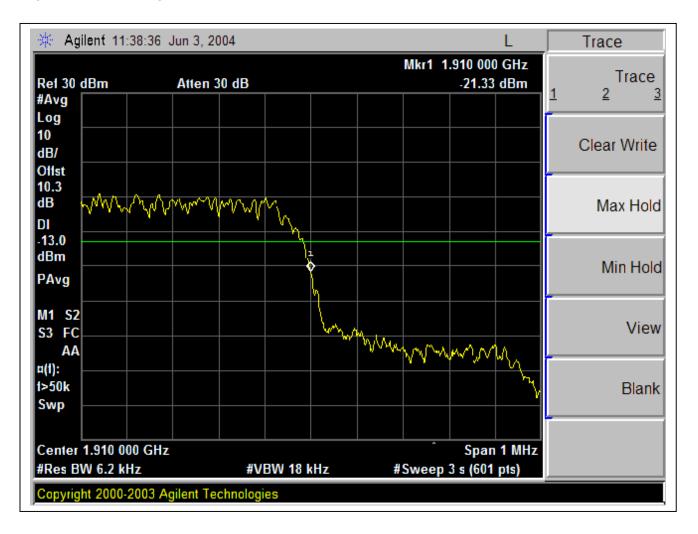

Mid Channel, Out-Of-Band Emissions

Page 23 of 68

REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

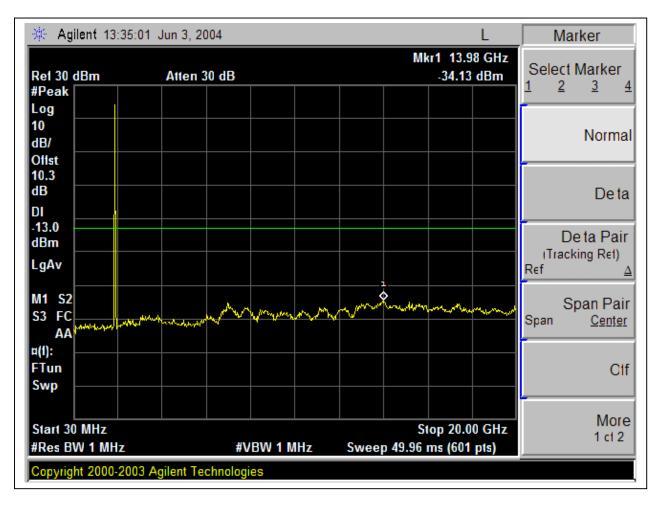
High Channel, Out-Of-Band Emissions

Page 24 of 68

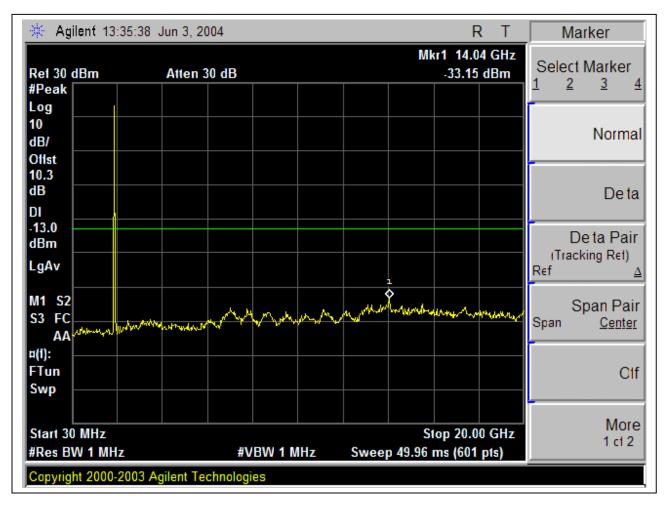

QPSK Modulation: Band Edges, Out-Of-Band Emissions

Low Channel Band Edge

🔆 Agilent 11:3	5:31 Jun 3, 2004			L	Peak Search
Ref 10 dBm #Avg	Atten 10 dB		Mkr1 1.3	895 813 GHz -49.62 dBm	Next Peak
Log 10 dB/ Offst					Next Pk Right
10.3 dB DI					Next Pk Lett
-13.0 dBm PAvg				1	Min Search
M1 S2 S3 FC AA					Pk-Pk Search
n(i): 1>50k Swp	Lauranananang demakarang	ayunta kuna ana	harton of the second	apression Coloradore	Mkr © CF
Center 1.895 000 #Res BW 6.2 kH		/BW 18 kHz	#Sweep 3	Span 2 MHz s (601 pts)	More 1 ct 2
Copyright 2000-20	003 Agilent Technolog	ies			

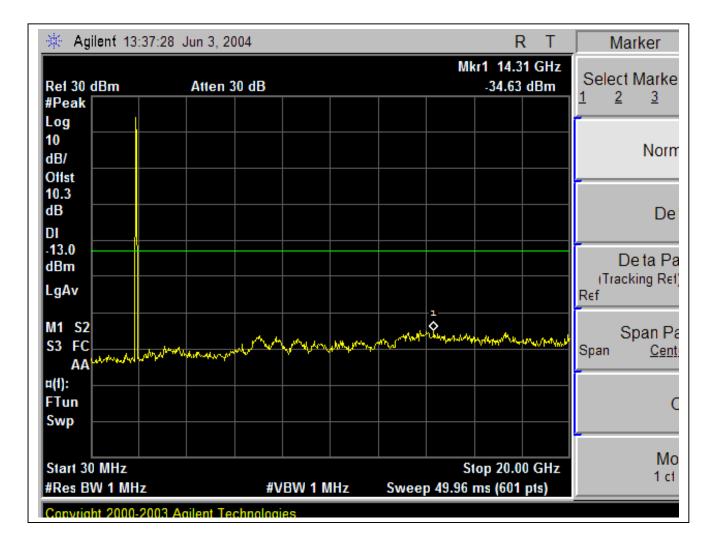

Page 25 of 68

High Channel Band Edge


Page 26 of 68

Low Channel, Out-Of-Band Emissions

Page 27 of 68

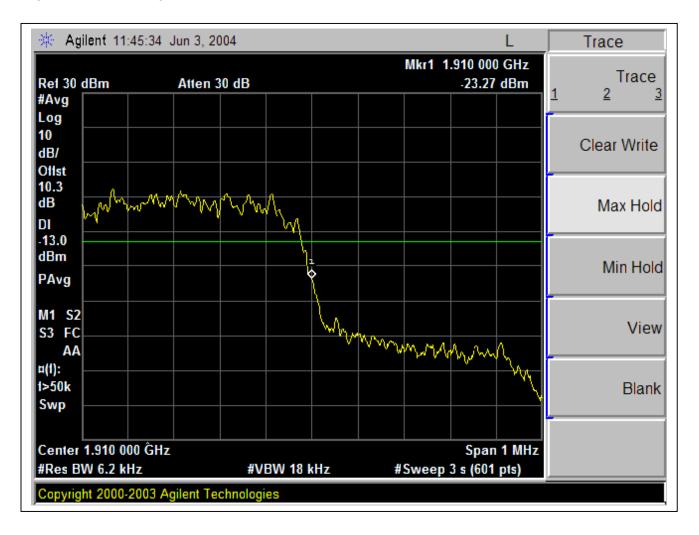

Mid Channel, Out-Of-Band Emissions

Page 28 of 68

REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

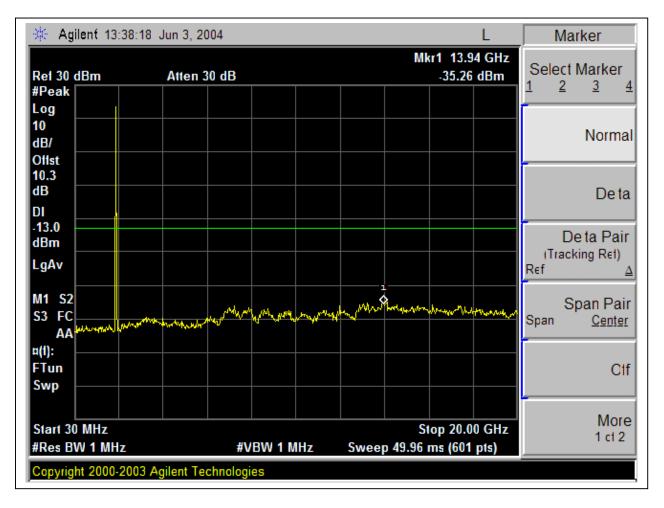
High Channel, Out-Of-Band Emissions

Page 29 of 68

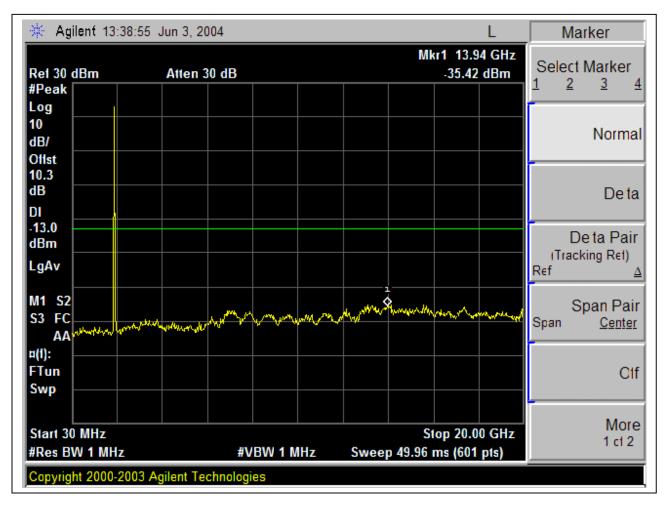

8PSK Modulation: Band Edges, Out-Of-Band Emissions

Low Channel Band Edge

🔆 Agilent 11:4	3:43 Jun 3, 2004			L	Peak Search
			Mkr1 1	1.895 813 GHz	
Ref 10 dBm #Avg	Atten 10 dB			-49.57 dBm	Next Peak
Log					
10					Next Dk Dight
dB/					Next Pk Right
Offst 10.3					
dB					Next Pk Lett
DI					Next i k Leit
-13.0					
dBm					Min Search
PAvg				1	Will Ocaren
				*	
M1 S2 S3 FC					Pk-Pk Search
¤(f):					
1>50k	freed present of the manufactory and the provident	- Maltheman Maringer A.	www.www.www.	addition provides	Mkr © Cl
Swp					
					Maria
Center 1.895 000	GHz	^		Span 2 MHz	More 1 ct 2
#Res BW 6.2 kHz	z #V	BW 18 kHz	#Sweep	3 s (601 pts)	
Copyright 2000-20	003 Agilent Technolog	ies			

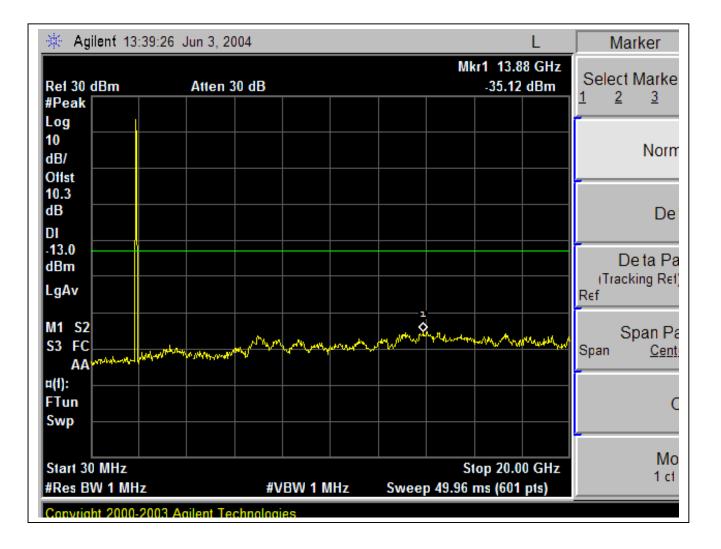

Page 30 of 68

High Channel Band Edge


Page 31 of 68

Low Channel, Out-Of-Band Emissions

Page 32 of 68

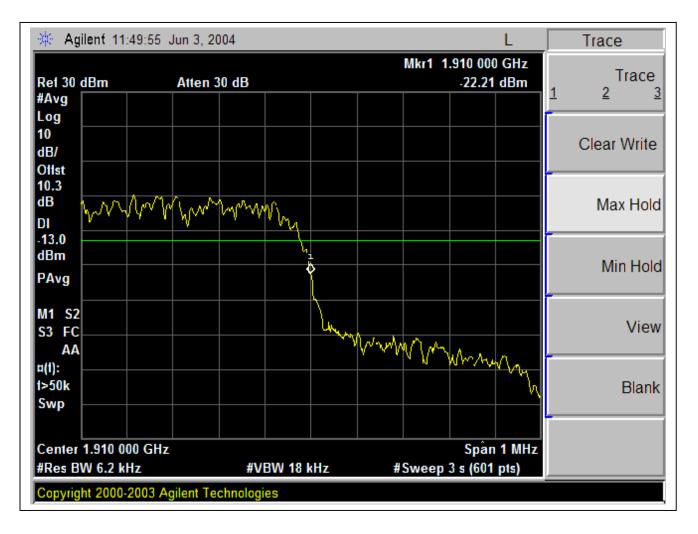

Mid Channel, Out-Of-Band Emissions

Page 33 of 68

REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

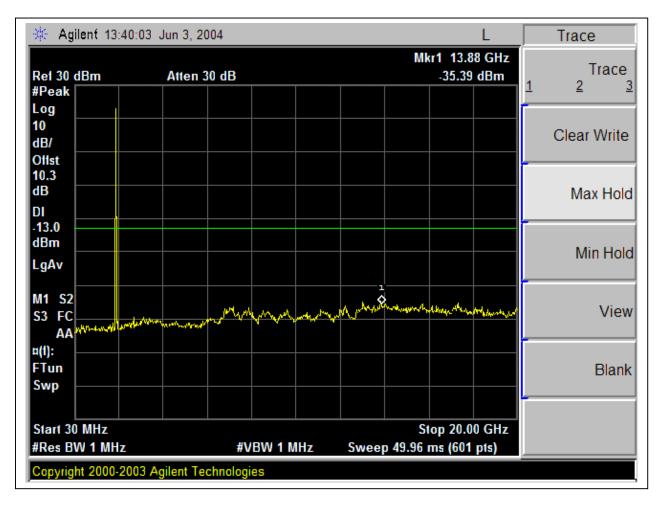
High Channel, Out-Of-Band Emissions

Page 34 of 68

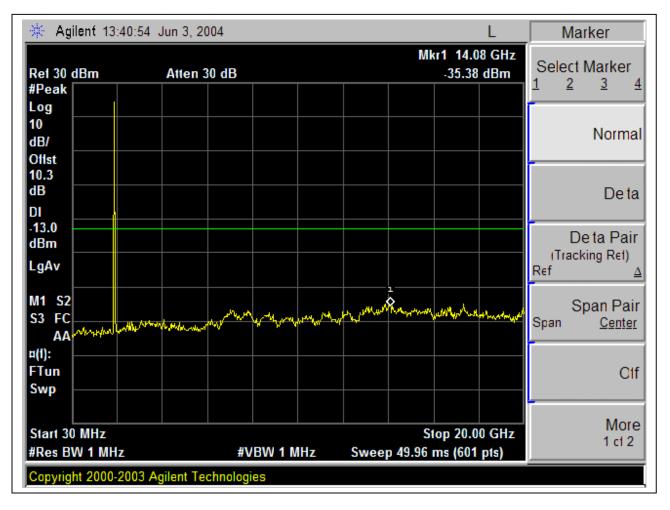

12QAM Modulation: Band Edges, Out-Of-Band Emissions

Low Channel Band Edge

🔆 Agilent 11:48	3:23 Jun 3, 2004			L	Act Fctn Posn
				5 813 GHz	
Ref 10 dBm	Atten 10 dB	, , , ,	-	50.35 dBm	Тор
#Avg					
Log					
dB/					Certer
Offst					
10.3					
dB					Bottom
DI					
-13.0					
dBm					
PAvg				L I	
M1 S2				1	
S3 FC					
AA					
¤(1):					
1>50k	easy provident and the second	comment with money	under a start war and the	susper realization	
Swp					
Center 1.895 000				Span 2 MHz	
#Res BW 6.2 kHz	#V	BW 18 kHz	#Sweep 3 s	(601 pts)	
Copyright 2000-20	03 Agilent Technolog	ies			
70pyngnt 2000-20	ioo Agriente reennolog	100			

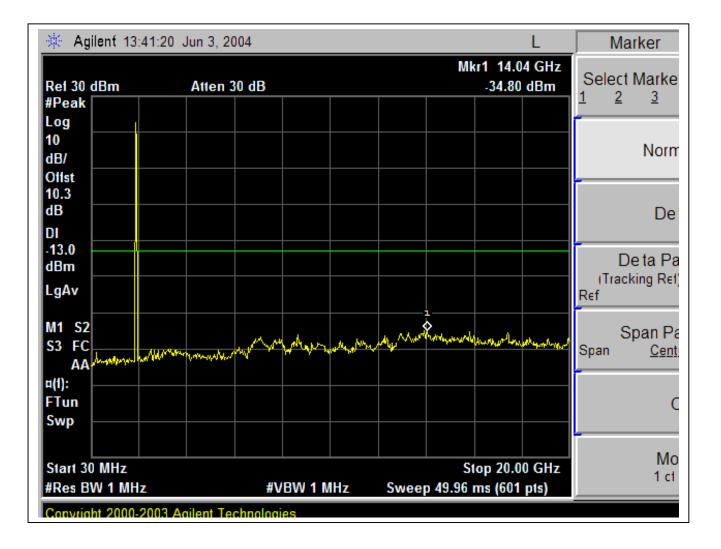

Page 35 of 68

High Channel Band Edge


Page 36 of 68

Low Channel, Out-Of-Band Emissions

Page 37 of 68

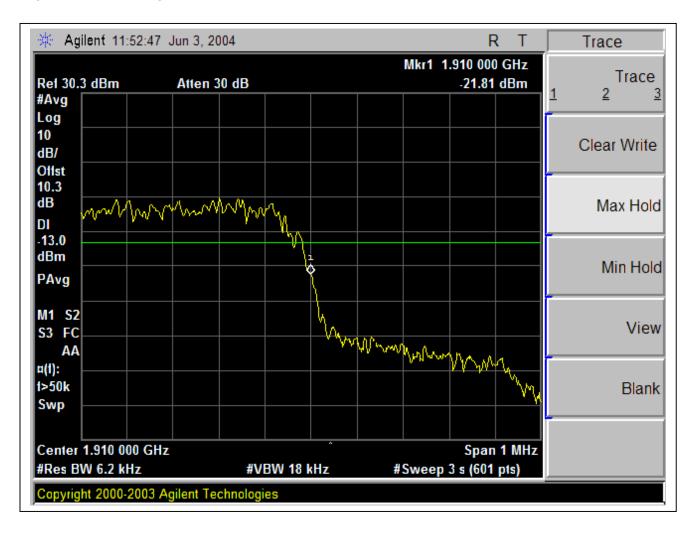

Mid Channel, Out-Of-Band Emissions

Page 38 of 68

REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

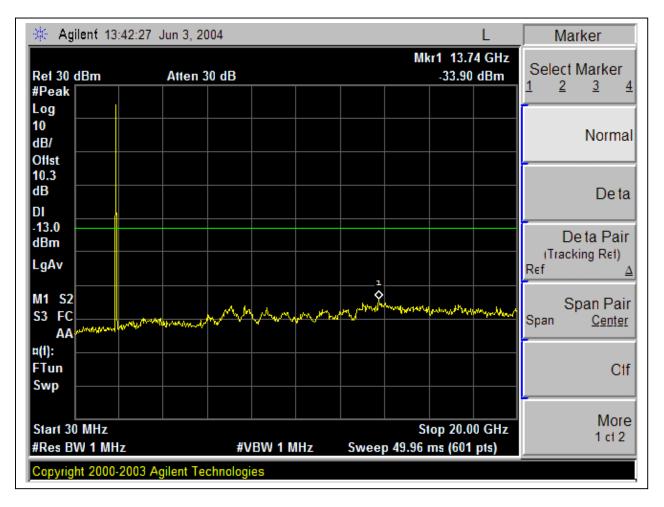
High Channel, Out-Of-Band Emissions

Page 39 of 68

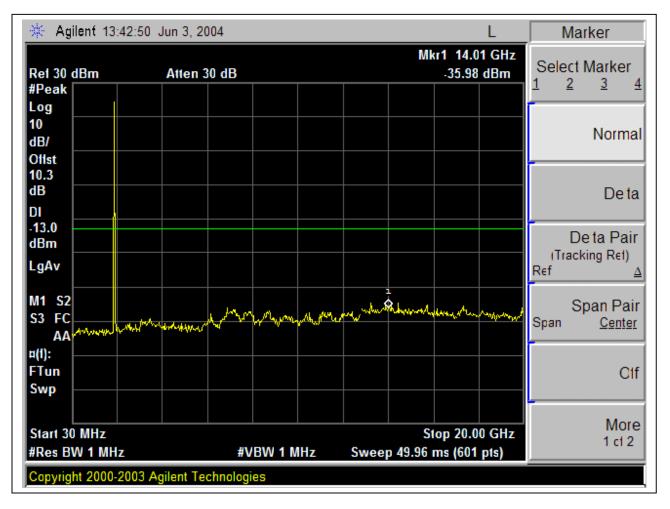

16QAM Modulation: Band Edges, Out-Of-Band Emissions

Low Channel Band Edge

🔆 Agilent 11:51:2	20 Jun 3, 2004			L	Peak Search
Ref 10.3 dBm #Avg	Atten 10 dB		Mkr1 1.	895 813 GHz -50.47 dBm	Next Peak
Log 10 dB/ Offst					Next Pk Right
10.3 dB DI					Next Pk Lett
-13.0 dBm PAvg				1	Min Search
M1 S2 S3 FC AA					Pk-Pk Search
a(1): 1>50k Swp	dentada yaa meganego dhaqed dheka sebbb	and an addition of the second	an mapa tana ana ana ana ana ana ana ana ana a	norman harmen	Mkr © CF
Center 1.895 000 G #Res BW 6.2 kHz		3W 18 kHz	#Sweep 3	Span 2 MHz 3 s (601 pts)	More 1 ct 2
Copyright 2000-2003	3 Agilent Technologi	es			

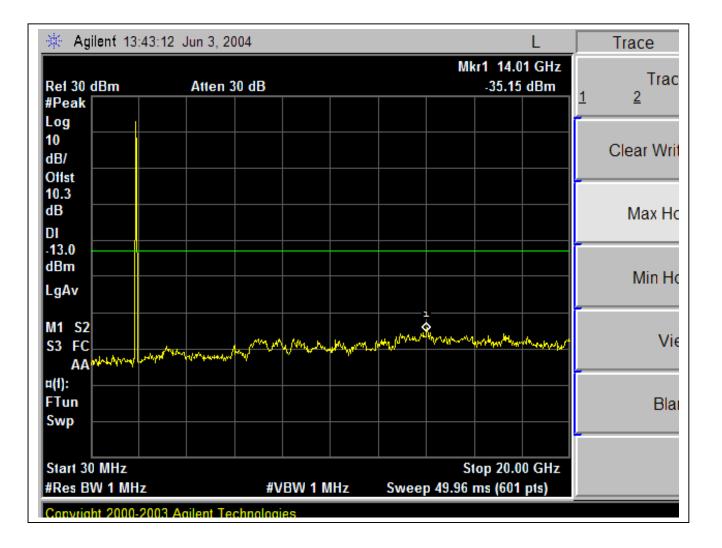

Page 40 of 68

High Channel Band Edge

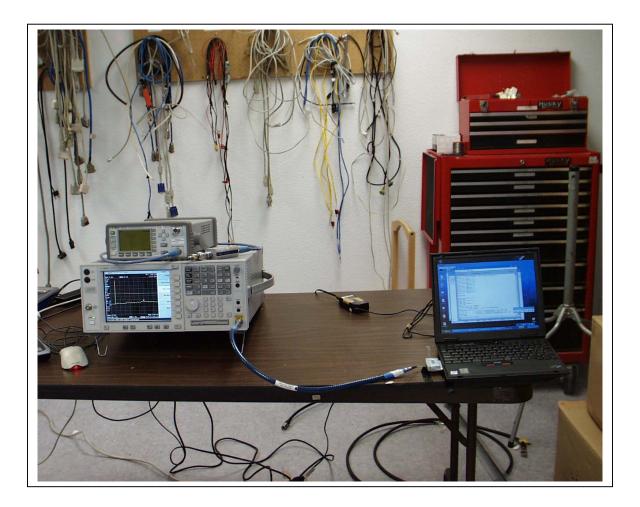

Page 41 of 68

Low Channel, Out-Of-Band Emissions

Page 42 of 68


Mid Channel, Out-Of-Band Emissions

Page 43 of 68


REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

High Channel, Out-Of-Band Emissions

Page 44 of 68

Test Setup Photos

Page 45 of 68

7.5. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION

INSTRUMENTS LIST

	TEST EQUIPMENT LIST						
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date			
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/2005			
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924342	4/26/2005			
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	2/4/2005			
Antenna, Tuned Dipole	CDI	Roberts	116	5/15/2005			
Peak Power Meter	Agilent	E4416A	GB41291160	11/7/2004			
Signal Generator	R & S	SMP04	DE34210	5/25/2005			
2.7GHz HPF	MicroTronic	HPM13194	1	CNR			
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2005			

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak	⊠ 1 MHz □ 1 MHz	☐ 1 MHz ☐ 10 Hz

Page 46 of 68

TEST SETUP

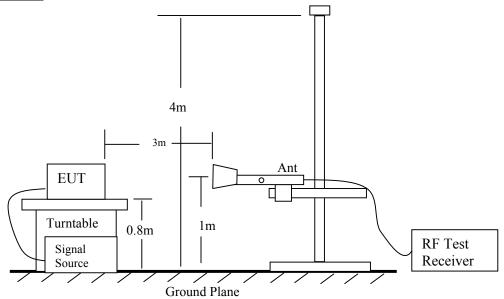


Fig 1: Radiated Emission Measurement

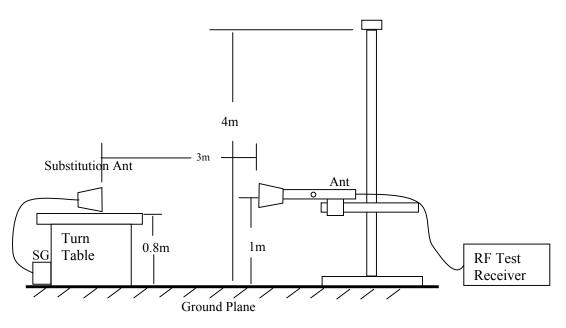


Fig 2: Radiated Emission - Substitution Method set-up

Page 47 of 68

TEST PROCEDURE

1). On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

2). The test antenna shall be oriented initially for vertical polarization located 1m from the EUT to correspond to the frequency of the transmitter.

3). The output of the test antenna shall be connected to the measuring receiver and either a peak or average detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

4). The transmitter shall be switched on, if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

5). The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.

6). The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

7). The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

8). The maximum signal level detected by the measuring receiver shall be noted.

9). The transmitter shall be replaced by a substitution antenna.

10). The substitution antenna shall be oriented for vertical polarization.

11). The substitution antenna shall be connected to a calibrated signal generator.

12). If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

13). The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.

14). The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

15). The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

16). The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

17). The measure of the effective radiated power is the larger of the two levels recorded, at the input to the substitution antenna, corrected for the gain of the substitution antenna if necessary.

<u>RESULT</u>

No non-compliance noted, as shown below

Page 48 of 68

BPSK: Low, Mid, & High Channels:

f	SA reading	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
low ch, 1900	.3125MHz								
3.800	49.5	-47.5	2.5	9.5	7.4	-40.4	-13.0	-27.4	V
5.700	44.0	-48.5	3.3	11.2	9.0	-40.6	-13.0	-27.6	H, noise floor
3.80000	45.0	-51.9	2.5	9.5	7.4	-44.8	-13.0	-31.8	V
5.70000	43.0	-48.5	3.3	11.2	9.0	-40.6	-13.0	-27.6	H, noise floor
Mid Ch, 190	4.6875MHz								
3.80900	47.5	-49.4	2.5	9.5	7.4	-42.4	-13.0	-29.4	V
5.71000	43.3	-49.2	3.3	11.2	9.0	-41.3	-13.0	-28.3	H, noise floor
3.80900	44.5	-52.3	2.5	9.5	7.4	-45.3	-13.0	-32.3	V
5.71400	42.8	-48.7	3.3	11.2	9.0	-40.8	-13.0	-27.8	H, noise floor
High ch, 190	9.6875MHz								
3.81900	48.4	-48.5	2.5	9.5	7.4	-41.5	-13.0	-28.5	
5.72900	43.0	-49.5	3.3	11.2	9.1	-41.6	-13.0	-28.6	noise floor
3.81900	44.4	-52.4	2.5	9.5	7.4	-45.4	-13.0	-32.4	
5.72900	42.0	-49.5	3.3	11.2	9.1	-41.6	-13.0	-28.6	noise floor
Note: No oth	er emissions were	detected above t	he system noi	se floor up to 20	OGHz				

Page 49 of 68

QPSK: Low, Mid, & High Channels:

f	SA reading	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Low ch, 1900.312	25MHz								
3.800	46.8	-50.2	2.5	9.5	7.4	-43.1	-13.0	-30.1	V
5.700	43.7	-48.8	3.3	11.2	9.0	-40.9	-13.0	-27.9	H,noise floor
3.80000	44.9	-52.0	2.5	9.5	7.4	-45.0	-13.0	-32.0	V
5.70000	42.6	-48.9	3.3	11.2	9.0	-41.0	-13.0	-28.0	H, noise floor
Mid ch, 1904.687	/5MHz								
3.80900	48.2	-48.7	2.5	9.5	7.4	-41.7	-13.0	-28.7	V
5.71000	43.5	-49.0	3.3	11.2	9.0	-41.1	-13.0	-28.1	H,noise floor
3.80900	45.1	-51.7	2.5	9.5	7.4	-44.7	-13.0	-31.7	V
5.71400	43.0	-48.5	3.3	11.2	9.0	-40.6	-13.0	-27.6	H, noise floor
High ch, 1909.68	75MHz								
3.81900	48.7	-48.2	2.5	9.5	7.4	-41.2	-13.0	-28.2	V
5.72900	43.4	-49.1	3.3	11.2	9.1	-41.2	-13.0	-28.2	H,noise floor
3.81900	45.2	-51.6	2.5	9.5	7.4	-44.6	-13.0	-31.6	V
5.72900	42.3	-49.2	3.3	11.2	9.1	-41.3	-13.0	-28.3	H, noise floor
Note: No other e	missions were det	ected above the sy	stem noise flo	or up to 20GHz	Z				

Page 50 of 68

8PSK: Low, Mid, & High Channels:

f	SA reading	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Low ch, 19	000.3125MHz								
3.800	47.7	-49.3	2.5	9.5	7.4	-42.2	-13.0	-29.2	V
5.700	41.8	-50.7	3.3	11.2	9.0	-42.8	-13.0	-29.8	H,noise floor
3.80000	43.5	-53.4	2.5	9.5	7.4	-46.3	-13.0	-33.3	V
5.70000	42.2	-49.3	3.3	11.2	9.0	-41.4	-13.0	-28.4	H,noise floor
Mid ch, 19	04.6875MHz								
3.80900	49.2	-47.7	2.5	9.5	7.4	-40.7	-13.0	-27.7	V
5.71000	43.8	-48.7	3.3	11.2	9.0	-40.8	-13.0	-27.8	H,noise floor
3.80900	44.3	-52.5	2.5	9.5	7.4	-45.5	-13.0	-32.5	V
5.71400	42.3	-49.2	3.3	11.2	9.0	-41.3	-13.0	-28.3	H,noise floor
High ch, 1	909.6875MHz								
3.81900	48.0	-48.9	2.5	9.5	7.4	-41.9	-13.0	-28.9	V
5.72900	44.0	-48.5	3.3	11.2	9.1	-40.6	-13.0	-27.6	H,noise floor
3.81900	44.7	-52.1	2.5	9.5	7.4	-45.1	-13.0	-32.1	V
5.72900	43.7	-47.8	3.3	11.2	9.1	-39.9	-13.0	-26.9	H,noise floor
Note: No o	ther emissions w	ere detected abov	e the system r	oise floor up to	20GHz				

Page 51 of 68

12QAM: Low, Mid, & High Channels:

f	SA reading	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Low ch, 1900.	3125MHz								
3.800	48.4	-48.6	2.5	9.5	7.4	-41.5	-13.0	-28.5	V
5.700	42.5	-50.0	3.3	11.2	9.0	-42.1	-13.0	-29.1	H, noise floor
3.80000	43.4	-53.5	2.5	9.5	7.4	-46.4	-13.0	-33.4	V
5.70000	42.1	-49.4	3.3	11.2	9.0	-41.5	-13.0	-28.5	H, noise floor
Mid ch, 1904.6	6875MHz								
3.80900	48.1	-48.8	2.5	9.5	7.4	-41.8	-13.0	-28.8	V
5.71000	43.2	-49.3	3.3	11.2	9.0	-41.4	-13.0	-28.4	H, noise floor
3.80900	43.6	-53.2	2.5	9.5	7.4	-46.2	-13.0	-33.2	V
5.71400	41.8	-49.7	3.3	11.2	9.0	-41.8	-13.0	-28.8	H, noise floor
High ch, 1909.	6875MHz								
3.81900	48.9	-48.0	2.5	9.5	7.4	-41.0	-13.0	-28.0	V
5.72900	42.5	-50.0	3.3	11.2	9.1	-42.1	-13.0	-29.1	H, noise floor
3.81900	43.8	-53.0	2.5	9.5	7.4	-46.0	-13.0	-33.0	V
5.72900	42.0	-49.5	3.3	11.2	9.1	-41.6	-13.0	-28.6	H, noise floor
Note: No other	r emissions were d	letected above the	system noise	floor up to 200	Hz				

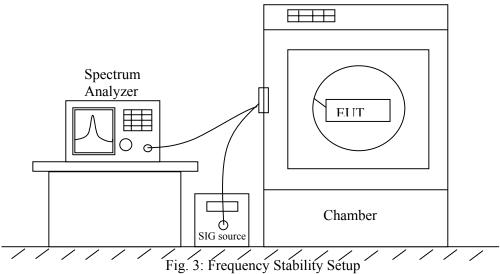
Page 52 of 68

16QAM: Low, Mid, & High Channels:

f	SA reading	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Low ch, 1900.3	25MHz								
3.800	48.0	-49.0	2.5	9.5	7.4	-41.9	-13.0	-28.9	V
5.700	43.0	-49.5	3.3	11.2	9.0	-41.6	-13.0	-28.6	H, noise floor
3.80000	43.6	-53.3	2.5	9.5	7.4	-46.2	-13.0	-33.2	V
5.70000	41.8	-49.7	3.3	11.2	9.0	-41.8	-13.0	-28.8	H, noise floor
Mid ch, 1904.68	75MHz								
3.80900	48.1	-48.9	2.5	9.5	7.4	-41.8	-13.0	-28.8	V
5.71000	43.1	-49.4	3.3	11.2	9.0	-41.5	-13.0	-28.5	H, noise floor
3.80900	44.0	-52.8	2.5	9.5	7.4	-45.8	-13.0	-32.8	V
5.71400	42.5	-49.0	3.3	11.2	9.0	-41.1	-13.0	-28.1	H, noise floor
High ch, 1909.6	875MHz								
3.81900	47.5	-49.4	2.5	9.5	7.4	-42.4	-13.0	-29.4	V
5.72900	43.2	-49.3	3.3	11.2	9.1	-41.4	-13.0	-28.4	H, noise floor
3.81900	43.4	-53.4	2.5	9.5	7.4	-46.4	-13.0	-33.4	V
5.72900	42.3	-49.2	3.3	11.2	9.1	-41.3	-13.0	-28.3	H, noise floor
Note: No other	emissions were d	letected above the	e system noise	floor up to 200	Hz				
			·	·					

Page 53 of 68

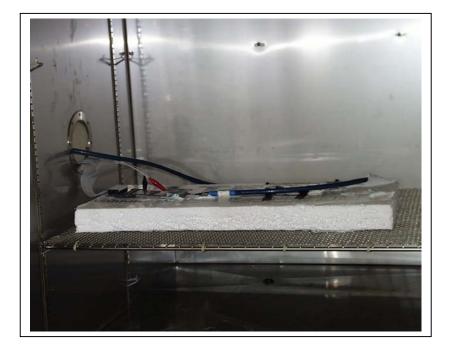
7.6. SECTION 2.1055: FREQUENCY STABILITY

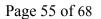

INSTRUMENTS LIST

TEST EQUIPMENT LIST							
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date			
EMI Test Receiver	R & S	ESIB40	100192	11/21/2004			
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	29800	5/30/2005			
Splitter	Agilent	N/A	2339A06150	N/A			
10dB Pad	Weinschel	56-10	M2348	N/A			
Signal Generator	Agilent	E4432B	MY41000108	11/14/2005			

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Show entire High emissions	Peak	300 Hz	300 Hz


TEST SETUP


Page 54 of 68

REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

Test Setup Photos

TEST PROCEDURE

• Frequency stability versus environmental temperature

Setup the configuration per figure 6 for frequencies measurement inside the environmental chamber.
 Set the temperature of the chamber to 25°C. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.
 Turn EUT off and set Chamber temperature to -30°C.

3). Allow sufficient time (approximately 20 to 30 minus after chamber reach the assigned temperature) for EUT to stabilize. Turn on EUT and measure the EUT operating frequency. Turn off EUT after the measurement.

4). Repeat step 3 with a 10°C increased per stage until the highest temperature of +50°C reached, record all measured frequencies on each temperature step.

• Frequency stability versus AC input voltage

1). Setup the configuration per figure 6 and set chamber temperature to 25°C. Use a variable AC power supply to power the EUT and set AC output voltage to EUT nominal input AC voltage. Set SA Resolution Bandwidth low enough to obtain the desired frequency resolution and measure the EUT 25°C operating frequency as reference frequency.

2). Slowly reduce the EUT input voltage to specified extreme voltage variation ($\pm 15\%$) and record the maximum frequency change.

<u>RESULT</u>

No non-compliance noted, as shown below because the EUT uses the same OSC in both receiver and transmitter LO circuit. As a result, the frequency does not shift in Frequency Stability Test.

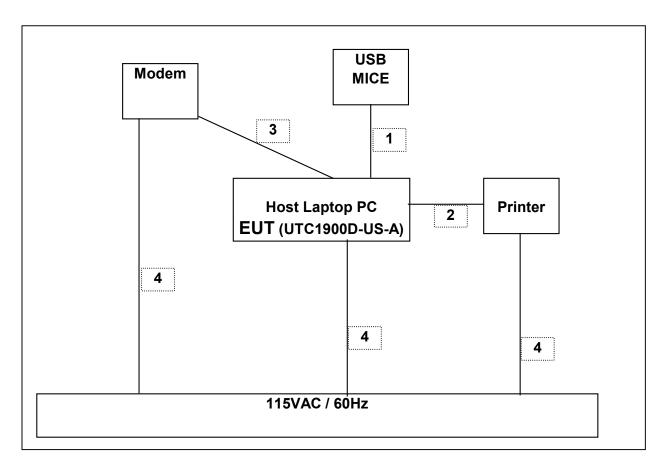
Frequency stability versus environmental temperature

Page 56 of 68

	Reference Frequency: Low or High Channel @ 25% Limit: to stay within the authorized block							
Power Supply	Environment	Frequenc	y Deviation Mea	asureed with Tir	ne Elapse			
(Vac)	Temperature (?C)	(MHz)	Delta (ppm)	Limit (ppm)	Delta (Hz)			
115.00	50	1910.00780	-0.157	± 2.5	300.000002			
115.00	40	1910.00780	-0.157	± 2.5	300.000002			
115.00	30	1910.00760	-0.052	± 2.5	99.99999997			
115.00	25	1910.00750	0	± 2.5	0			
115.00	20	1910.00740	0.052	± 2.5	-100			
115.00	10	1910.00720	0.157	± 2.5	-300			
115.00	0	1910.00720	0.157	± 2.5	-300			
115.00	-10	1910.00720	0.157	± 2.5	-300			
115.00	-20	1910.00680	0.366	± 2.5	-700			
115.00	-30	1910.00680	0.366	± 2.5	-700			
97.75	25	1910.00850	-0.524	± 2.5	1000			
132.25	25	1910.00780	-0.157	± 2.5	300.000002			

Page 57 of 68

7.7. RADIATED EMISSION


Detector	Setting	of Spectrum	Analyzer
Dettettor	Sound	or spectrum	7 Mary ZOI

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
30 to 1000	⊠ Peak	⊠ 100 KHz	⊠ 100 KHz
	⊠ Quasi Peak	⊠ 1 MHz	⊠ 1 MHz

I/O Cables

Cable	I/O	# of I/O	Connector	Type of	Cable	Data		
No	Port	Port	Туре	Cable	Length	Traffic	Bundled	Remark
1	Mouse	1	USB	Un-shielded	2m	Yes	No	N/A
2	Paralell	1	DB25	Un-shielded	2m	Yes	Yes	N/A
3	Diel Up	1	RJ11	Un-shielded	2m	Yes	Yes	N/A
4	AC	3	US 115V	Un-shielded	2m	No	No	N/A

TEST SETUP

Page 58 of 68

TEST PROCEDURE

1. The EUT was placed on the turn table 0.8 meter above ground inside 3 meter Anechoic Chamber.

2. Set the resolution bandwidth to 120KHz in the test receiver and select Peak function to scan the frequency below 1 GHz.

3. Shift the interference-receiving antenna located in antenna tower upwards and downwards between 1 and 4 meters above ground and find out the local peak emission on frequency domain.

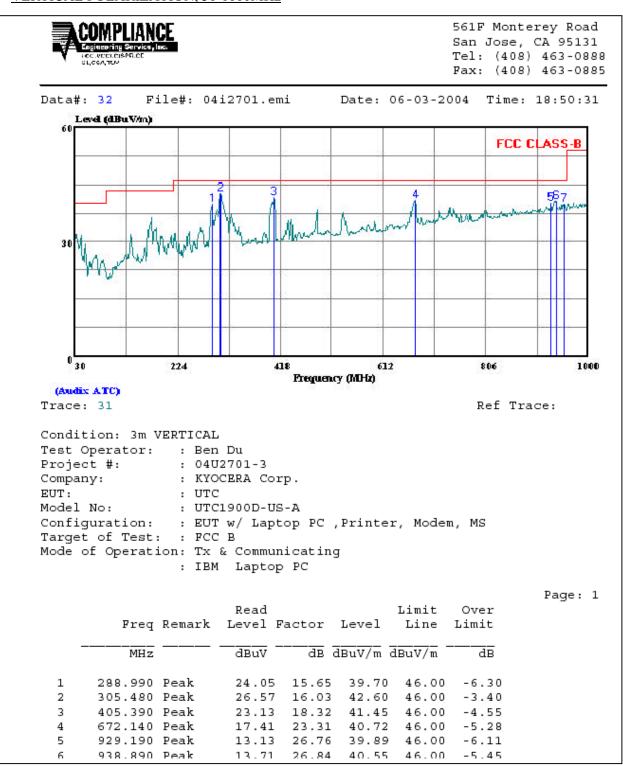
4. Locate the interference-receiving antenna at the position where the local peak reach the maximum emission.

5. Rotate the turn table and stop at the angle where the measurement device has maximum reading

6. Shift the interference-receiving antenna again to detect the maximum emission of the local peak

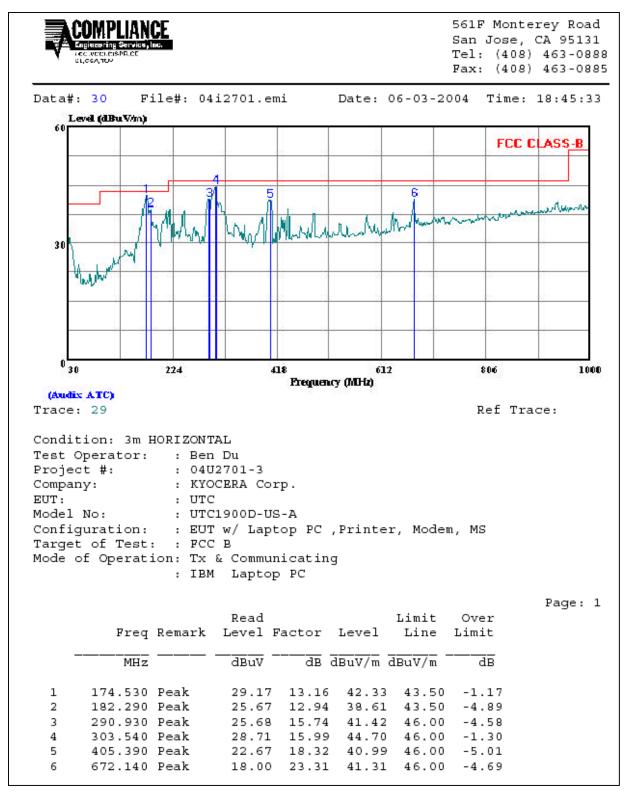
7. If the reading of the local peak under Peak function is lower than limit by 6dB, then Quasi Peak detection is not needed and this reading should be recorded. And if it is higher than Peak limit, then the test is fail. Others, switch the receiver to Quasi Peak function, set the resolution bandwidth to 100kHz and repeat the procedures $(3)\sim(6)$. If the reading is lower than limit, this reading should be recorded, otherwise, the test is fail.

MEASUREMENT RESULT

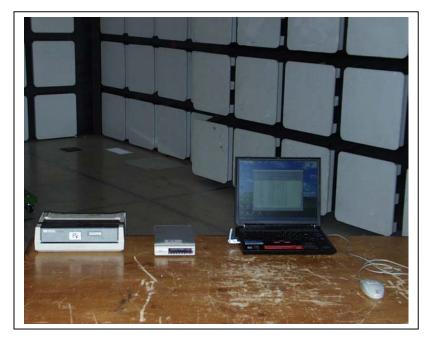

No non-compliance noted, as shown below.

Page 59 of 68

REPORT NO: 04I2701-3


DATE: JUNE 10, 2004 EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

VERTICAL POLARIZATION, 30-1000MHz


Page 60 of 68

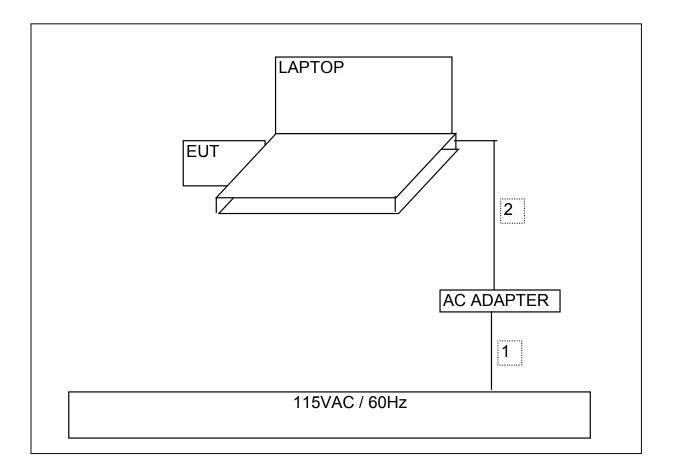
HORIZONTAL POLARIZATION, 30-1000MHz

Page 61 of 68

Radiated Emission photos

Page 62 of 68

7.8. POWERLINE CONDUCTED EMISSION


Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
150 KHz to 30 MHz	⊠ Peak □ CISPR Quasi Peak	9 KHz	9 KHz

TEST I/O CABLES

Cable No	I/O Port	# of I/O Port	Connector Type	Type of Cable	Cable Length	Data Traffic	Bundled	Remark
110		1011			Length			
1	AC	1	US115V	SHIELED	2	NO	NO	Bundled AC Cable for LC test
2	DC	1	DC	SHIELED	3	NO	NO	Ferrite on DC output end

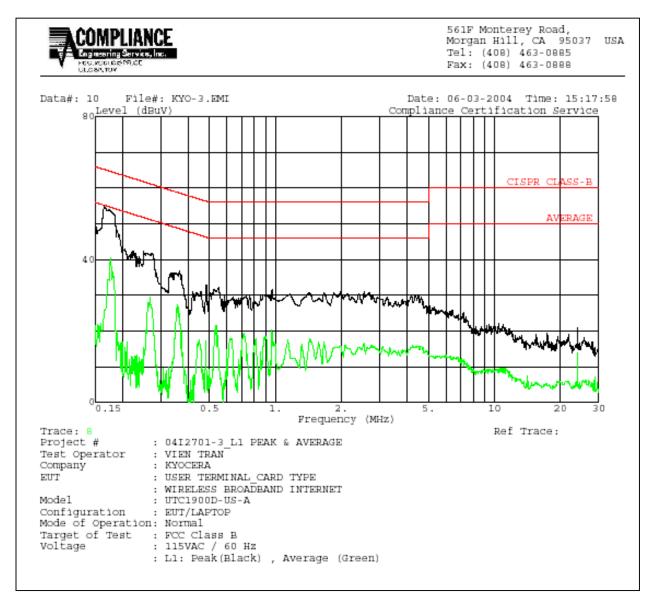
TEST SETUP

Page 63 of 68

TEST PROCEDURE

1. The EUT was placed on a wooden table 40 cm from a vertical ground plane and approximately 80 cm above the horizontal ground plane on the floor. The EUT was set to transmit in a continuous mode.

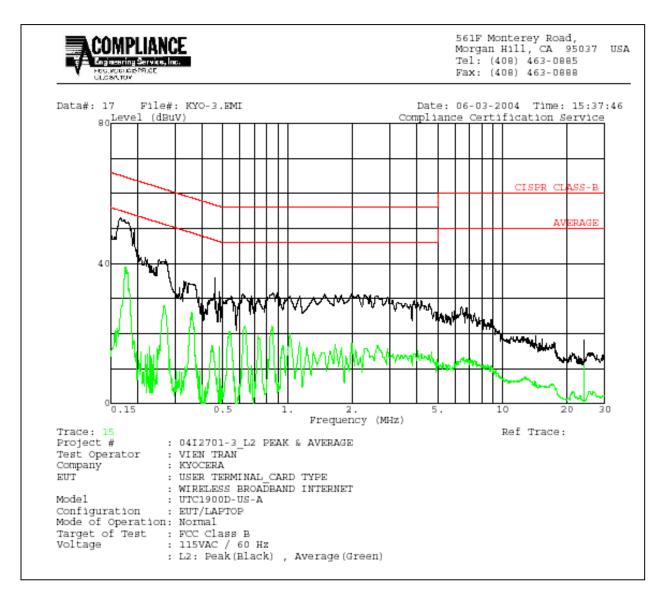
2. Line conducted data was recorded for both NEUTRAL and HOT lines.


MEASUREMENT RESULT

No non-compliance noted, as shown below.

Freq.		Closs	Limit	EN_B	Margin		Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.16	55.49		41.26	0.00	65.63	55.63	-10.14	-14.37	L1
0.96	31.36		20.43	0.00	56.00	46.00	-24.64	-25.57	L1
5.36	26.56		16.30	0.00	60.00	50.00	-33.44	-33.70	L1
0.16	52.58		38.67	0.00	65.63	55.63	-13.05	-16.96	L2
0.96	32.30		20.96	0.00	56.00	46.00	-56.00	-25.04	L2
5.36	28.10		12.76	0.00	60.00	50.00	-31.90	-37.24	L2

Page 64 of 68


LINE ONE

Page 65 of 68

REPORT NO: 04I2701-3 DATE: JUNE 10, 2004 FCC ID: JOYIUC19AA EUT: USER TERMINAL (CARD TYPE) OF WIRELESS BROADBAND INTERNET SYSTEM

LINE TWO

Page 66 of 68

AC Conducted Emission photos

Page 67 of 68

8. APENDIX

8.1. EXTERNAL & INTERNAL PHOTOS

Please refer to attached sheets.

8.2. SCHEMATICS

Please refer to attached sheets.

8.3. BLOCK DIAGRAM

Please refer to attached sheets.

8.4. USER MANUAL

Please refer to attached sheets.

END OF REPORT

Page 68 of 68