

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM170500533105

Email: ee.shenzhen@sgs.com Page: 1 of 81

FCC REPORT

Application No:SZEM1705005331RGApplicant:Kyocera CorporationManufacturer:Kyocera CorporationFactory:Kyocera Corporation

Product Name: Tablet

Model No.(EUT): FA85

Trade Mark: Kyocera

FCC ID: JOYFA85

Standards: 47 CFR Part 15, Subpart C (2017)

Test Method KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10 (2013)

Date of Receipt: 2017-12-28

Date of Test: 2017-12-29 to 2018-01-07

Date of Issue: 2018-01-08

Test Result: PASS *

. * In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derek Yang

Derole yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170500533105

Page: 2 of 81

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
01		2018-01-08		Original		

Authorized for issue by:		
Tested By	(Mike Hu) /Project Engineer	2018-01-08 Date
Checked By	(Jim Huang) /Reviewer	2018-01-08 Date

Report No.: SZEM170500533105

Page: 3 of 81

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM170500533105

Page: 4 of 81

4 Contents

		Page
CO	VER PAGE	1
VEF	RSION	2
TES	ST SUMMARY	3
COI	NTENTS	4
GEN	NERAL INFORMATION	5
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	GENERAL DESCRIPTION OF EUT TEST ENVIRONMENT AND MODE DESCRIPTION OF SUPPORT UNITS TEST LOCATION TEST FACILITY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS OTHER INFORMATION REQUESTED BY THE CUSTOMER MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) EQUIPMENT LIST	
_		
6.2 6.3 6.4 6.5 6.6 6.7 6.8	CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 6DB OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND-EDGE FOR RF CONDUCTED EMISSIONS RF CONDUCTED SPURIOUS EMISSIONS RADIATED SPURIOUS EMISSIONS 1 Radiated emission below 1GHz. 2 Transmitter emission above 1GHz.	
	VEI TES CO GE 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.11 TES 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.8 6.8 6.8	5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST ENVIRONMENT AND MODE 5.4 DESCRIPTION OF SUPPORT UNITS

Report No.: SZEM170500533105

Page: 5 of 81

5 General Information

5.1 Client Information

Applicant:	Kyocera Corporation	
Address of Applicant:	2-1-1 Kagahara, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan	
Manufacturer:	Kyocera Corporation	
Address of Manufacturer:	2-1-1 Kagahara, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan	
Factory:	Kyocera Corporation	
Address of Factory:	2-1-1 Kagahara, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan	

5.2 General Description of EUT

	•		
Product Name:	Tablet		
Model No.:	FA85		
Trade Mark:	Kyocera		
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz		
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels		
Channel Separation:	5MHz		
	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK)		
Type of Modulation:	IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)		
	IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK, BPSK)		
Sample Type:	Portable Device		
Antenna Type:	PIFA		
Antenna Gain:	2.62dBi		
Power Supply	DC3.8V (1 x 3.8V Rechargeable battery)7000mAh		
Power Supply	Battery: Charge by DC 5V		

Report No.: SZEM170500533105

Page: 6 of 81

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency	
The Lowest channel	2412MHz	
The Middle channel	2437MHz	
The Highest channel	2462MHz	

Report No.: SZEM170500533105

Page: 7 of 81

5.3 Test Environment and Mode

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	50 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: SZEM170500533105

Page: 8 of 81

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty	
1	Total RF power, conducted	0.75dB	
2	RF power density, conducted	2.84dB	
3	Spurious emissions, conducted	0.75dB	
		4.5dB (30MHz-1GHz)	
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)	
5	Conduct emission test	3.12 dB(9KHz- 30MHz)	
6	Temperature test	1℃	
7	Humidity test	3%	
8	DC and low frequency voltages	0.5%	

Report No.: SZEM170500533105

Page: 9 of 81

5.11 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-10-09	2018-10-09	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-14	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017-09-28	2018-09-28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017-09-28	2018-09-28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017-09-28	2018-09-28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-14	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09	

	RF connected test							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)		
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-10-09	2018-10-09		
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2017-03-06	2018-03-06		
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14		
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017-10-09	2018-10-09		
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017-10-09	2018-10-09		

Report No.: SZEM170500533105

Page: 10 of 81

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-10-09	2018-10-09	
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-11-01	2020-11-01	
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17	
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017-11-24	2020-11-24	
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14	
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09	
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13	

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)	
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017-05-10	2018-05-10	
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017-04-14	2018-04-14	
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29	
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017-07-06	2018-07-06	
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14	

Report No.: SZEM170500533105

Page: 11 of 81

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10	
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017-07-19	2018-07-19	
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017-11-15	2020-11-15	
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-10-09	2018-10-09	
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14	
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017-11-24	2020-11-24	
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12	
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017-10-09	2018-10-09	
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A	

Report No.: SZEM170500533105

Page: 12 of 81

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.62dBi.

Report No.: SZEM170500533105

Page: 13 of 81

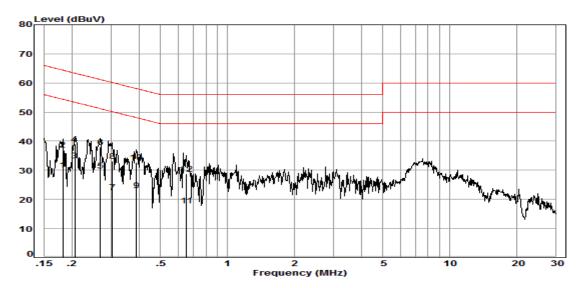
6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
	- (111)	Limit (d	Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
Limit:	0.15-0.5	66 to 56*	56 to 46*		
Littit.	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test Procedure:	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 				
Test Setup:	ANSI C63.10: 2013 on cor	AE WOOM	Test Receiver		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170500533105

Page: 14 of 81


Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
First Tool Made	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
Final Test Mode:	Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

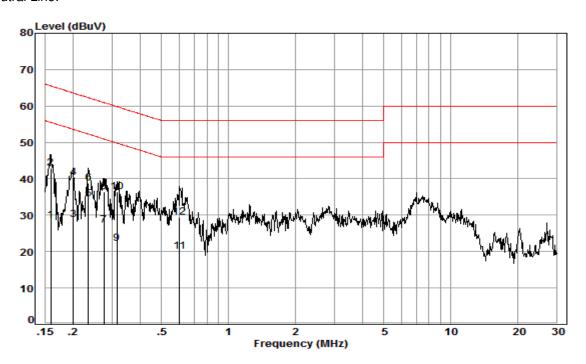
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room

Condition: Line Job No. : 05331RG

Test mode: f


	mouc.							
		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.02	9.51	20.51	30.04	54 42	-24 38	Average
2	0.18	0.02	9.51	27.51	37.04		-27.38	_
3	0.10	0.02	9.50	23.89	33.41			Average
4	0.21	0.02	9.50	29.45	38.97		-24.39	
5	0.27	0.01	9.51	20.41	29.93			Average
6	0.27	0.01	9.51	28.44	37.96		-23.20	_
7	0.30	0.01	9.51	12.84	22.36	50.15	-27.79	Äverage
8	0.30	0.01	9.51	23.51	33.03	60.15	-27.12	QP
9	0.39	0.01	9.49	13.58	23.08	48.08	-25.00	Average
10	0.39	0.01	9.49	23.14	32.64	58.08	-25.44	QP
11	0.65	0.02	9.51	8.34	17.87	46.00	-28.13	Average
12	0.65	0.02	9.51	19.35	28.88	56.00	-27.12	QP

Report No.: SZEM170500533105

Page: 15 of 81

Neutral Line:

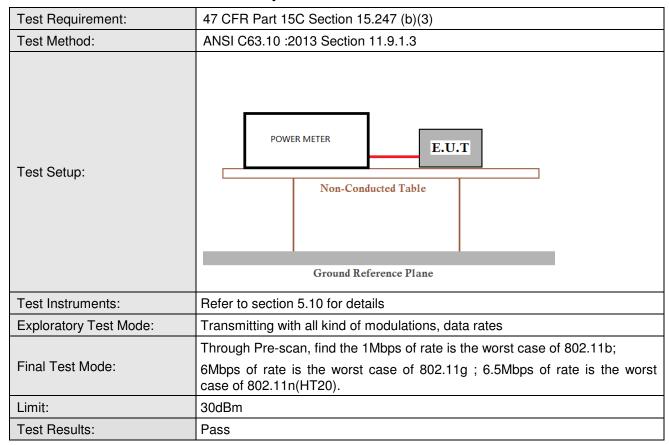
Site : Shielding Room

Condition: Neutral Job No. : 05331RG

Test mode: f

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16	0.02	9.58	18.91	28.51	55.52	-27.01	Average
2	0.16	0.02	9.58	33.36	42.96	65.52	-22.56	QP
3	0.20	0.02	9.57	19.28	28.87	53.58	-24.71	Average
4	0.20	0.02	9.57	30.82	40.41	63.58	-23.17	QP
5	0.23	0.01	9.58	24.94	34.53	52.30	-17.77	Average
6	0.23	0.01	9.58	29.23	38.82	62.30	-23.48	QP
7	0.28	0.01	9.58	17.73	27.32	50.94	-23.62	Average
8	0.28	0.01	9.58	26.73	36.32	60.94	-24.62	QP
9	0.31	0.01	9.58	12.64	22.23	49.84	-27.61	Average
10	0.31	0.01	9.58	26.86	36.45	59.84	-23.39	QP
11	0.60	0.02	9.62	10.37	20.01	46.00	-25.99	Average
12	0.60	0.02	9.62	19.80	29.44	56.00	-26.56	QP

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM170500533105

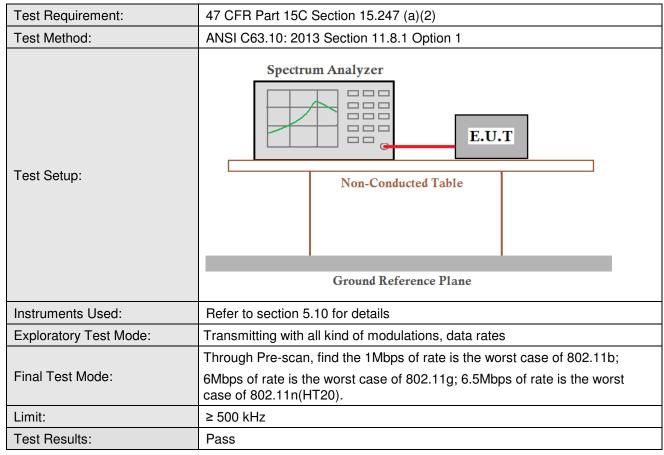
Page: 16 of 81

6.3 Conducted Peak Output Power

Report No.: SZEM170500533105

Page: 17 of 81

Measurement Data


Measurement Data					
	802.11b mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	17.78	30.00	Pass		
Middle	18.06	30.00	Pass		
Highest	17.73	30.00	Pass		
	802.11g mo	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	18.17	30.00	Pass		
Middle	17.83	30.00	Pass		
Highest	18.10	30.00	Pass		
	802.11n(HT20)	mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	18.28	30.00	Pass		
Middle	18.49	30.00	Pass		
Highest	18.22 30.00		Pass		

Report No.: SZEM170500533105

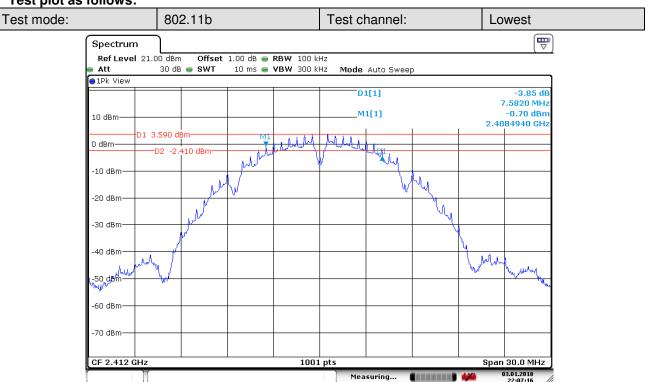
Page: 18 of 81

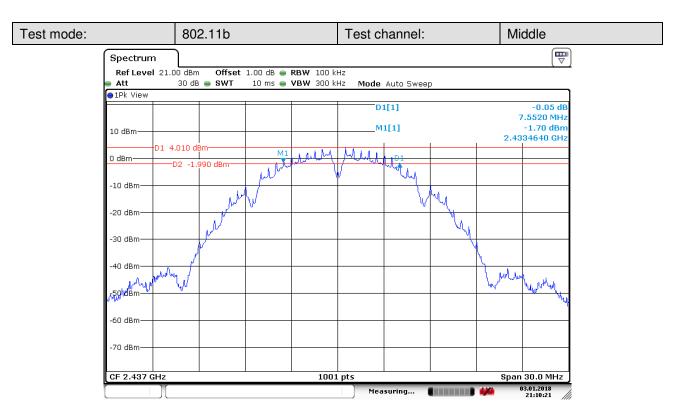
6.4 6dB Occupy Bandwidth

Report No.: SZEM170500533105

Page: 19 of 81

Measurement Data

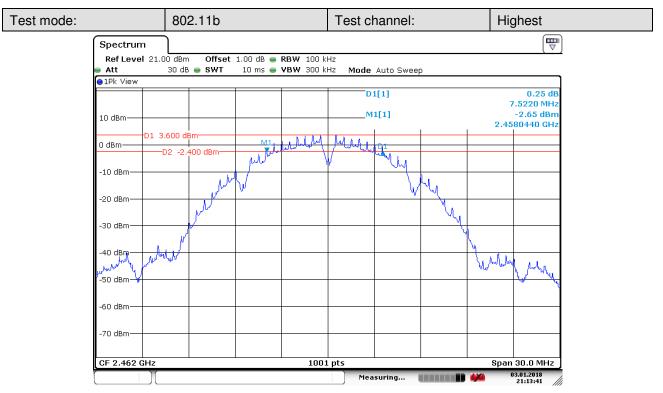

weasurement Data					
	802.11b mode				
Test channel	6dB Occupy Bandwidth (MHz)	Result			
Lowest	7.58	≥500	Pass		
Middle	7.55	≥500	Pass		
Highest	7.52	≥500	Pass		
	802.11g mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	16.21	≥500	Pass		
Middle	16.42	≥500	Pass		
Highest	16.30	≥500	Pass		
	802.11n(HT20) mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	17.35	≥500	Pass		
Middle	17.50 ≥500		Pass		
Highest	17.23 ≥500 Pass				


Report No.: SZEM170500533105

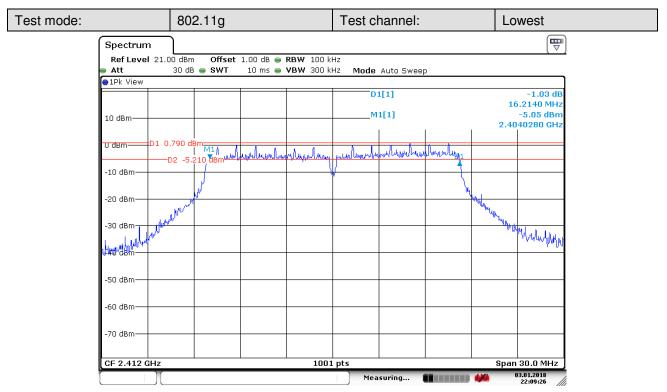
Page: 20 of 81

Test plot as follows:

Date: 3.JAN.2018 22:07:17



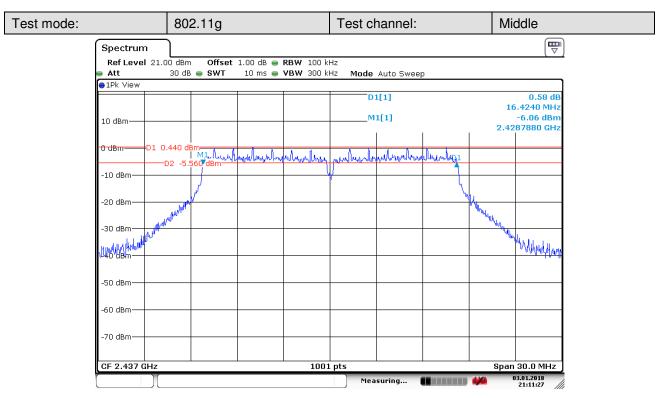
Date: 3.JAN.2018 21:10:21



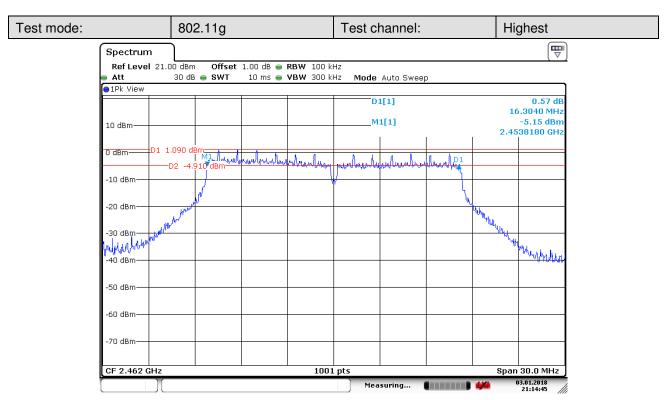
Report No.: SZEM170500533105

Page: 21 of 81

Date: 3.JAN.2018 21:13:41



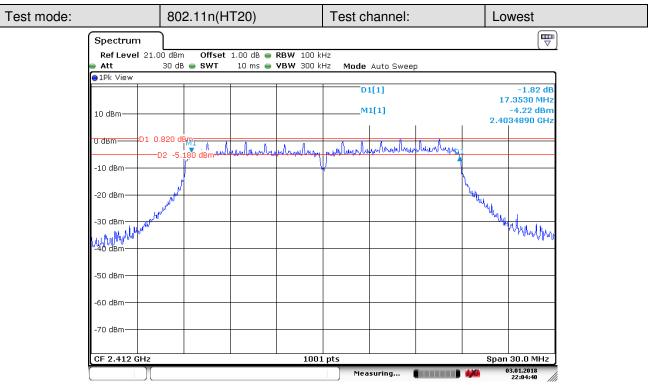
Date: 3.JAN.2018 22:09:26



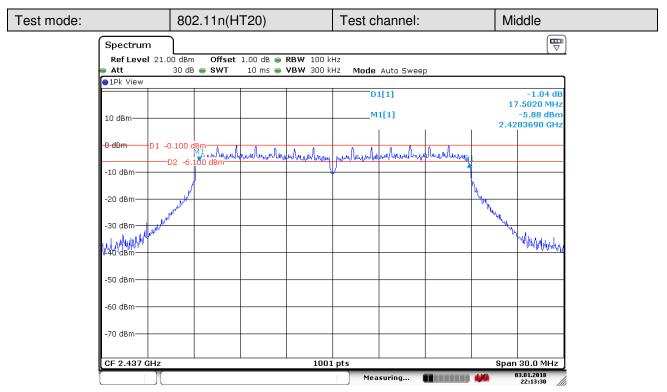
Report No.: SZEM170500533105

Page: 22 of 81

Date: 3.JAN.2018 21:11:28

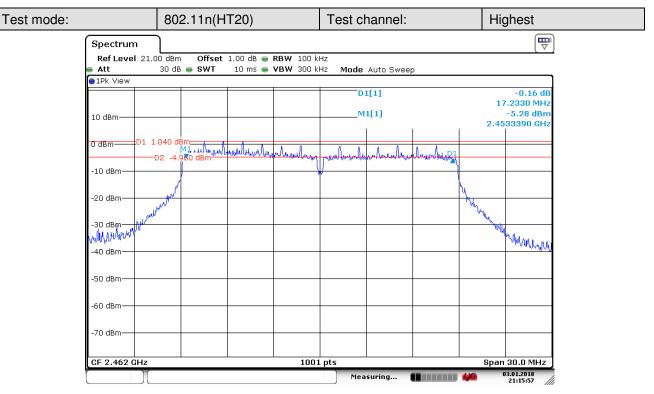


Date: 3.JAN.2018 21:14:46



Report No.: SZEM170500533105

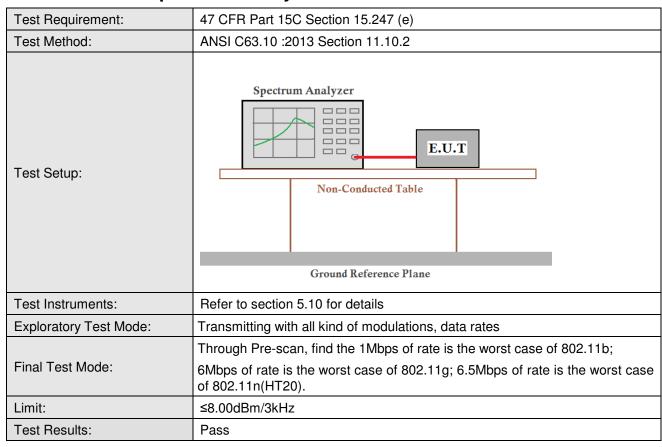
Page: 23 of 81



Date: 3.JAN.2018 22:13:31

Report No.: SZEM170500533105

Page: 24 of 81


Date: 3.JAN.2018 21:15:58

Report No.: SZEM170500533105

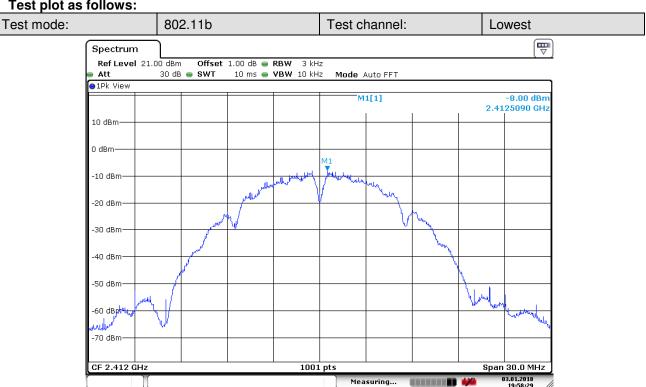
Page: 25 of 81

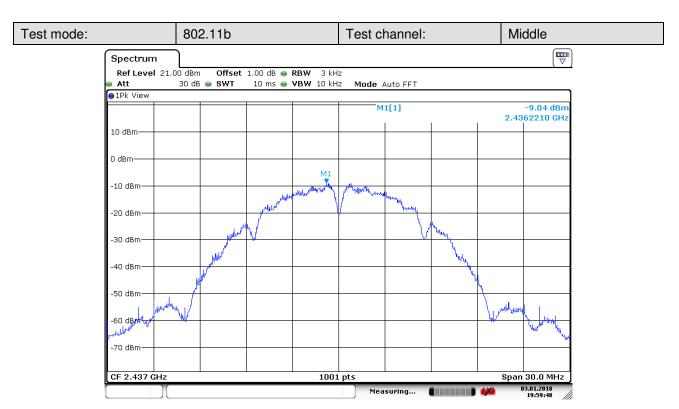
6.5 Power Spectral Density

Report No.: SZEM170500533105

Page: 26 of 81

Measurement Data

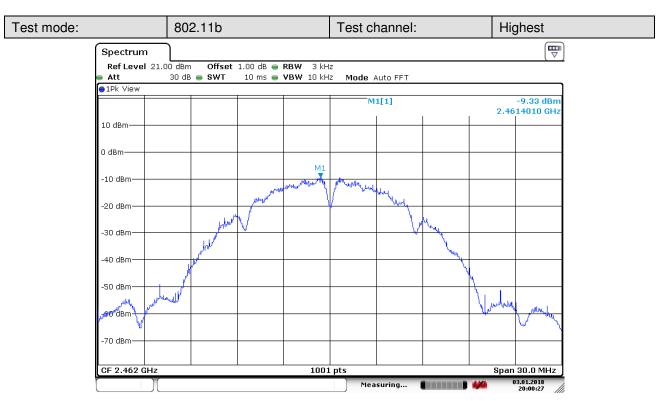

mododi omont Data	weasurement bata				
	802.11b mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-8.00	≤8.00	Pass		
Middle	-9.04	≤8.00	Pass		
Highest	-9.33	≤8.00	Pass		
	802.11g mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-12.11	≤8.00	Pass		
Middle	-13.07	≤8.00	Pass		
Highest	-11.46	≤8.00	Pass		
	802.11n(HT20) mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-12.83	≤8.00	Pass		
Middle	-12.70	≤8.00	Pass		
Highest	-12.29	≤8.00	Pass		


Report No.: SZEM170500533105

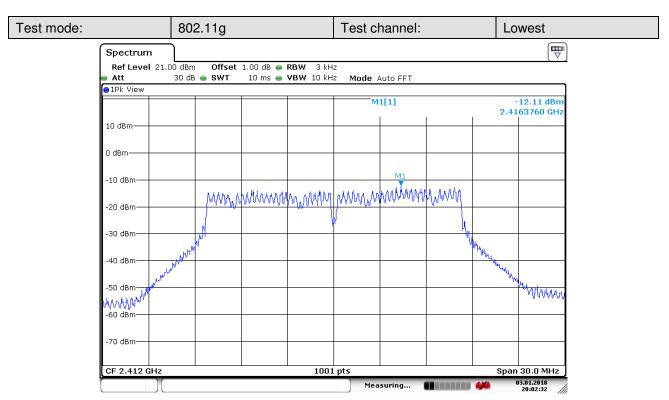
27 of 81 Page:

Test plot as follows:

Date: 3.JAN.2018 19:58:29



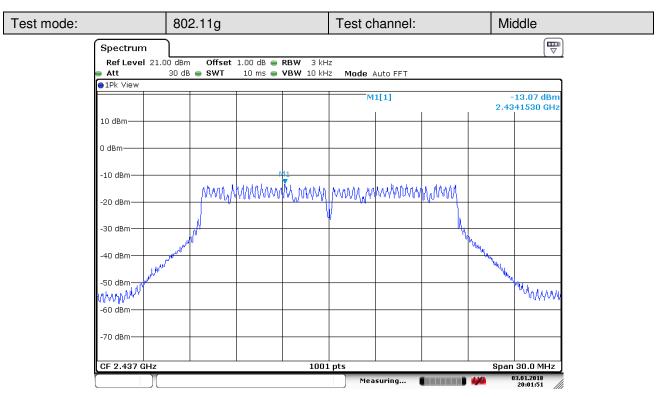
Date: 3.JAN.2018 19:59:49



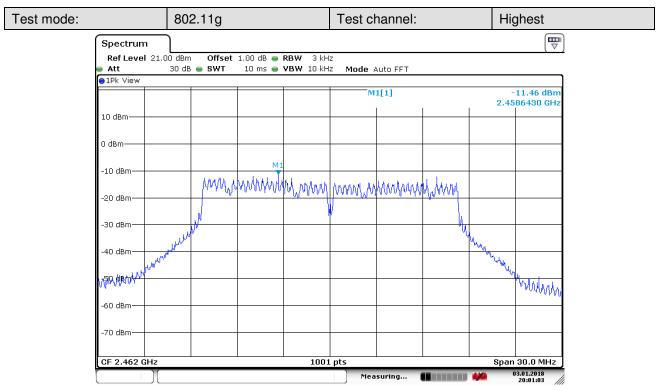
Report No.: SZEM170500533105

Page: 28 of 81

Date: 3.JAN.2018 20:00:27

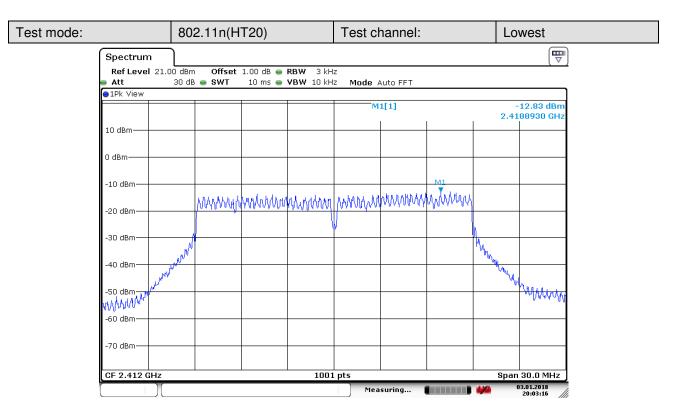


Date: 3.JAN.2018 20:02:32

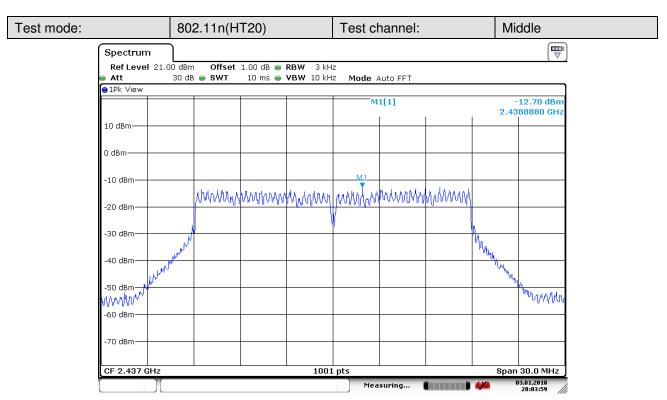


Report No.: SZEM170500533105

Page: 29 of 81



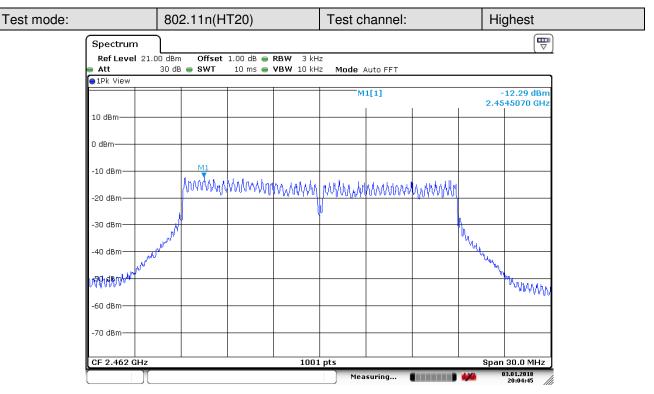
Date: 3.JAN.2018 20:01:03



Report No.: SZEM170500533105

Page: 30 of 81

Date: 3.JAN.2018 20:03:16



Date: 3.JAN.2018 20:04:00

Report No.: SZEM170500533105

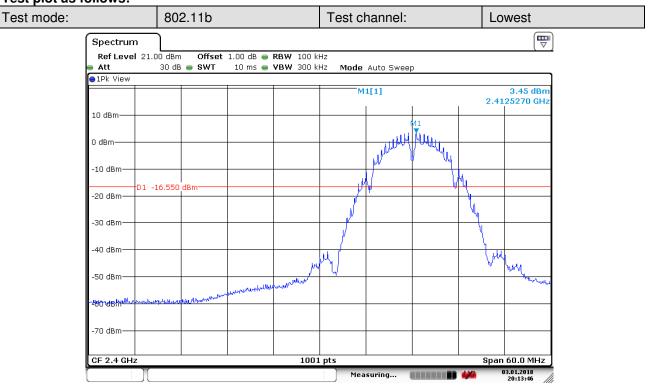
Page: 31 of 81

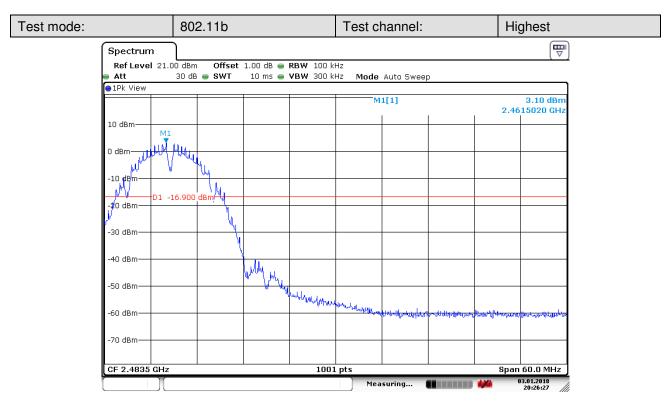
Date: 3.JAN.2018 20:04:46

Report No.: SZEM170500533105

Page: 32 of 81

6.6 Band-edge for RF Conducted Emissions

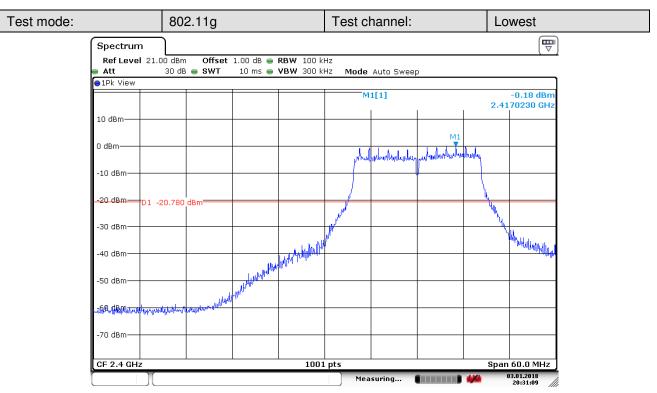

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2013 Section 11.13		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		


Report No.: SZEM170500533105

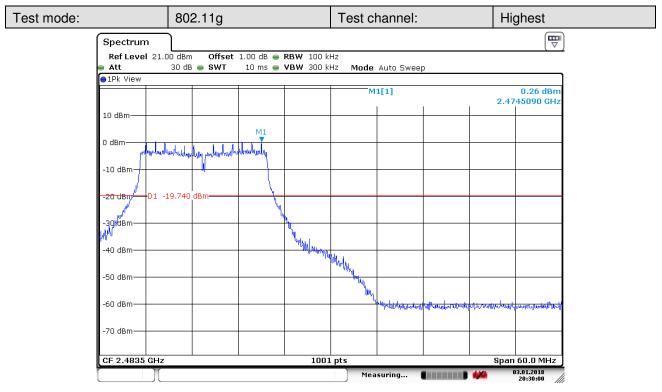
Page: 33 of 81

Test plot as follows:

Date: 3.JAN.2018 20:13:46

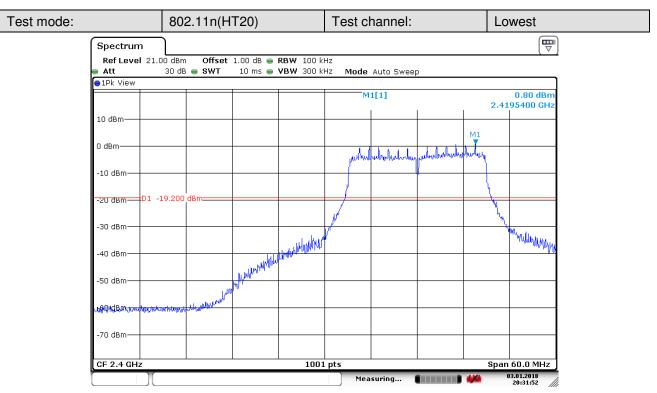


Date: 3.JAN.2018 20:26:28

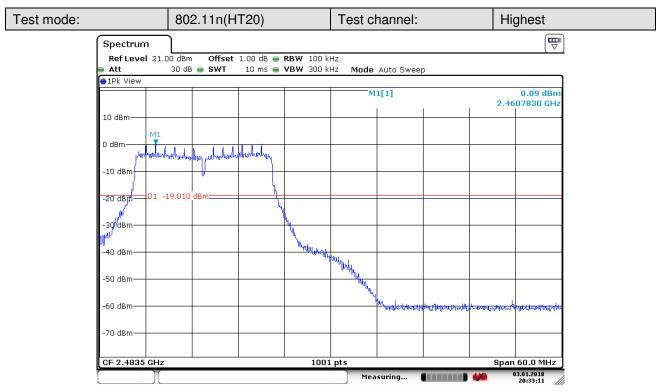


Report No.: SZEM170500533105

Page: 34 of 81

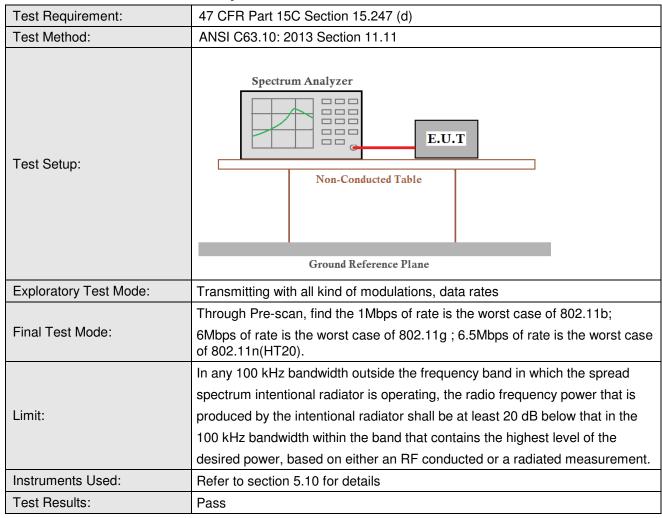


Date: 3.JAN.2018 20:30:01



Report No.: SZEM170500533105

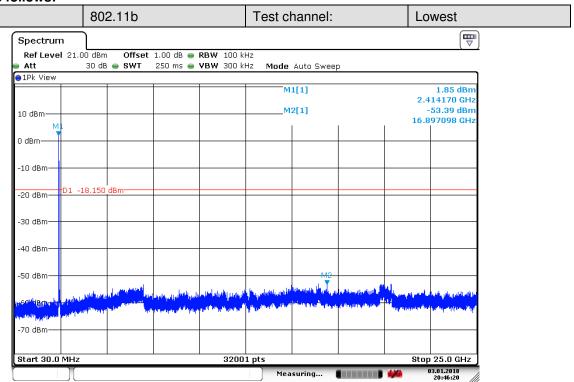
Page: 35 of 81


Date: 3.JAN.2018 20:33:11

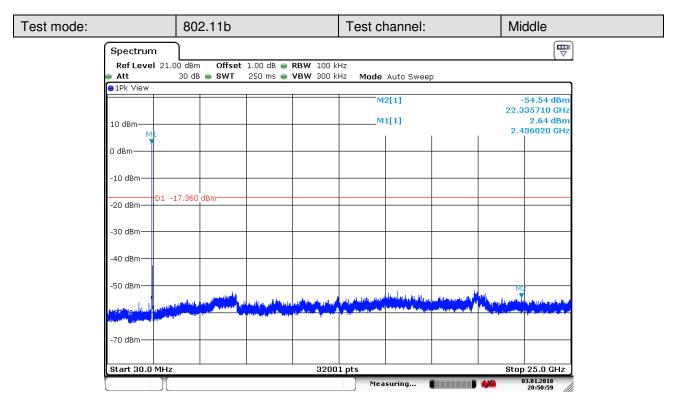
Report No.: SZEM170500533105

Page: 36 of 81

6.7 RF Conducted Spurious Emissions



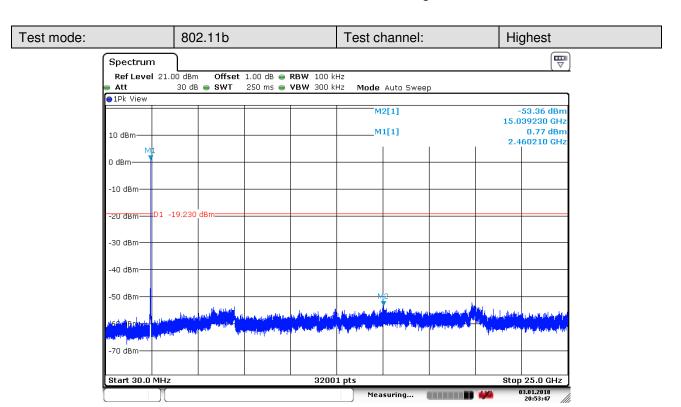
Report No.: SZEM170500533105


Page: 37 of 81

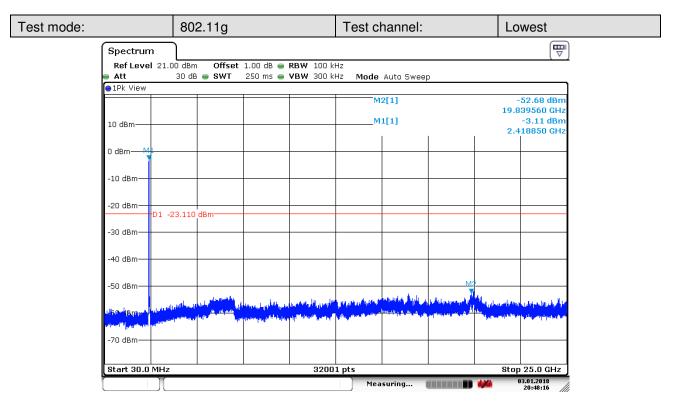
Test plot as follows:

Test mode:

Date: 3.JAN.2018 20:46:21



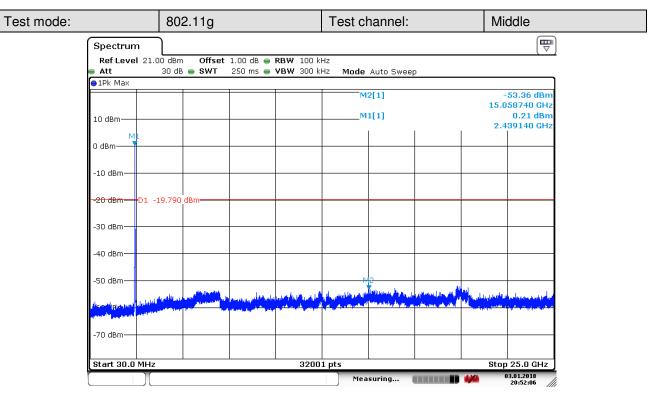
Date: 3.JAN.2018 20:50:59



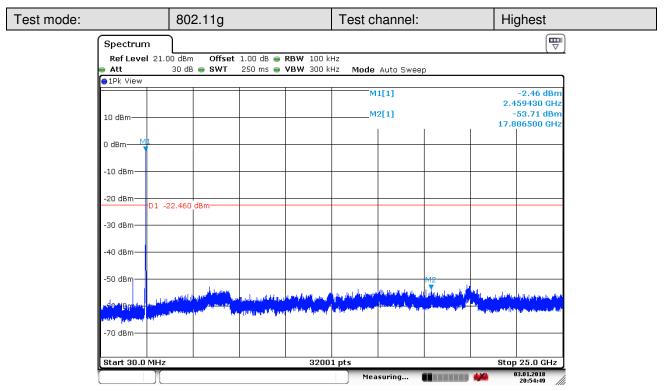
Report No.: SZEM170500533105

Page: 38 of 81

Date: 3.JAN.2018 20:53:48



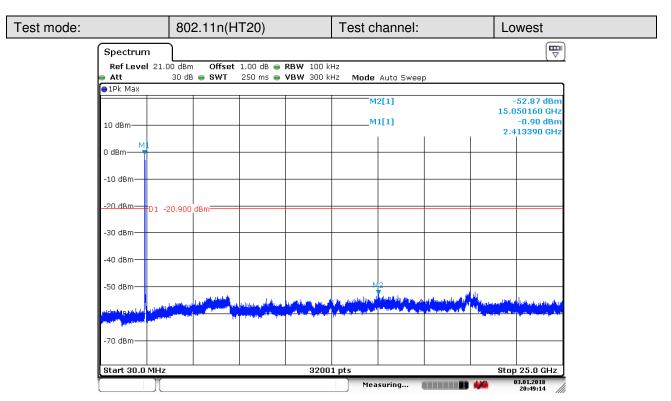
Date: 3.JAN.2018 20:48:16



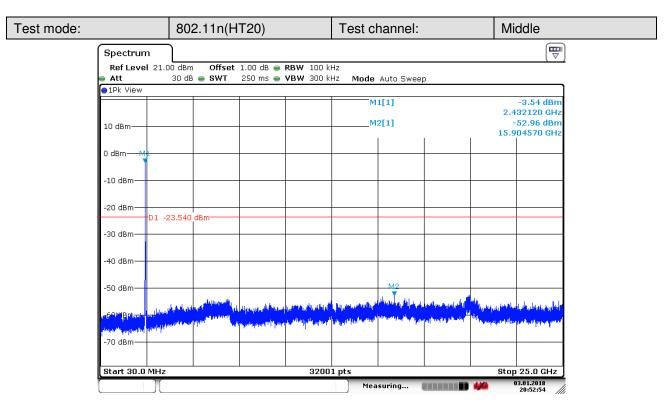
Report No.: SZEM170500533105

Page: 39 of 81

Date: 3.JAN.2018 20:52:06



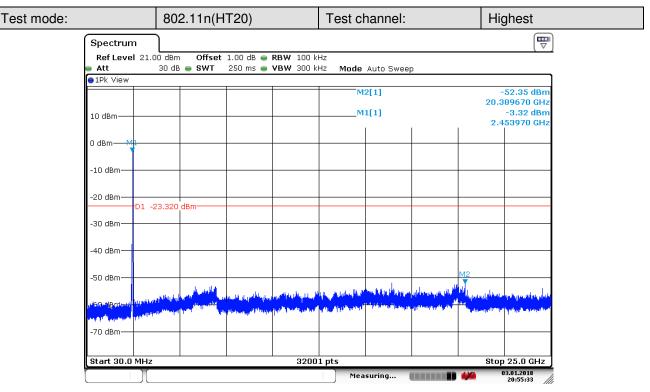
Date: 3.JAN.2018 20:54:49



Report No.: SZEM170500533105

Page: 40 of 81

Date: 3.JAN.2018 20:49:15



Date: 3.JAN.2018 20:52:55

Report No.: SZEM170500533105

Page: 41 of 81

Date: 3.JAN.2018 20:55:33

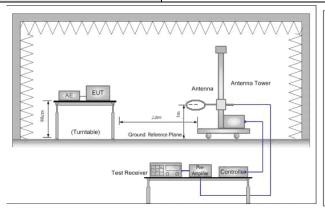
Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: SZEM170500533105

Page: 42 of 81

6.8 Radiated Spurious Emissions


47 CFR Part 15C Section 15.209 and 15.205								
ANSI C63.10 :2013 Sect	ion 11.12							
Measurement Distance:	3m or 10m (Semi-A	Anechoic Cha	amber)					
Frequency	Detector	RBW	VBW	Remark				
0.009MHz-0.090MHz	: Peak	10kHz	30kHz	Peak				
0.009MHz-0.090MHz	. Average	10kHz	30kHz	Average				
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
0.110MHz-0.490MHz	. Peak	10kHz	30kHz	Peak				
0.110MHz-0.490MHz	. Average	10kHz	30kHz	Average				
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
Above 1011	Peak	1MHz	3MHz	Peak				
Above 1GHZ	Peak	1MHz	10Hz	Average				
Fraguenav	Field strength	Limit	Domork	Measurement				
Frequency	(microvolt/meter)	(dBuV/m)	Hemark	distance (m)				
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
1.705MHz-30MHz	30	-	ı	30				
30MHz-88MHz	100	40.0	Quasi-peak	3				
88MHz-216MHz	150	43.5	Quasi-peak	3				
216MHz-960MHz	200	46.0	Quasi-peak	3				
960MHz-1GHz	500	54.0	Quasi-peak	3				
Above 1GHz	500	54.0	Average	3				
Note: 15.35(b), Unless of	therwise specified,	the limit on p	eak radio fre	quency				
emissions is 20dB above	the maximum per	mitted avera	ge emission li	mit				
applicable to the equipm	ent under test. This	s peak limit a	pplies to the t	otal peak				
emission level radiated by the device.								
	Frequency 0.009MHz-0.090MHz 0.009MHz-0.110MHz 0.110MHz-0.490MHz 0.490MHz-30MHz 0.490MHz-30MHz 30MHz-1GHz Above 1GHz Frequency 1.705MHz-30MHz 1.705MHz-30MHz 30MHz-16Hz 400MHz-1.705MHz 1.705MHz-30MHz 1.705MHz-30MHz 30MHz-16Hz 1.705MHz-30MHz 30MHz-16Hz 400MHz-16Hz 400MHz-1	Peak Peak	ANSI C63.10 :2013 Section 11.12 Measurement Distance: 3m or 10m (Semi-Anechoic Characterist) Frequency Detector RBW 0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz-30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 10kHz Peak 1MHz Peak 1MHz Peak 1MHz No9MHz-1GHz 2400/F(kHz) - 1.705MHz-30MHz 2400/F(kHz) - 1.705MHz-30MHz 30 - 30MHz-88MHz 100 40.0 88MHz-216MHz 150 43.5 216MHz-960MHz 200 46.0 960MHz-1GHz 500 54.0 Note: 15.35(b), Unless otherwise specified, the limit on pemissions is 20dB above the maximum permitted average applicable to the equipment under test. This peak limit a	NSI C63.10 :2013 Section 11.12				

Report No.: SZEM170500533105

Page: 43 of 81

Test Setup:

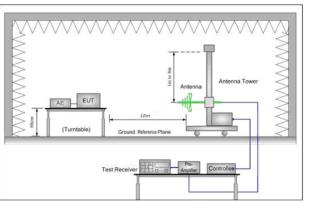


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

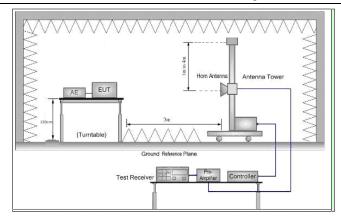


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aepx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aepx. Attention is drawn to the ilimitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170500533105

Page: 44 of 81

	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.				
	h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel				
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. 				
	j. Repeat above procedures until all frequencies measured was complete.				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.				
	Charge + Transmitting mode.				
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.				
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;				
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case				
	of 802.11n(HT20); For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case. Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

Report No.: SZEM170500533105

Page: 45 of 81

6.8.1 Radiated emission below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

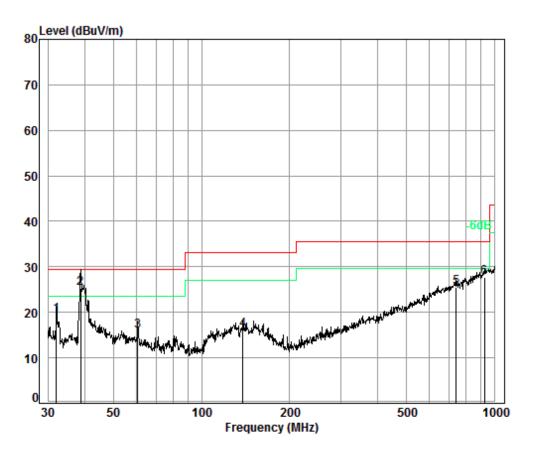
 $L_3 / L_{10} = D_{10} / D_3$

Note:

 L_3 : Level @ 3m distance. Unit: uV/m; L_{10} : Level @ 10m distance. Unit: uV/m;

 D_3 : 3m distance. Unit: m D_{10} : 10m distance. Unit: m

The level at 3m test distance is below:


Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Over Limit (dB)	Ant. Polarization
31.95	19.35	9.28	30.93	29.81	40.00	-10.19	V
38.75	25.32	18.45	61.50	35.78	40.00	-4.22	V
60.70	25.32	18.45	61.50	35.78	40.00	-4.22	V
138.39	16.22	6.47	21.57	26.68	43.50	-16.82	V
739.66	25.55	18.95	63.15	36.01	46.00	-9.99	V
922.52	27.69	24.24	80.79	38.15	46.00	-7.85	V
38.75	13.77	4.88	16.27	24.23	40.00	-15.77	Н
53.32	14.02	5.02	16.74	24.48	40.00	-15.52	Н
148.96	15.14	5.71	19.05	25.60	43.50	-17.90	Н
381.25	17.69	7.66	25.55	28.15	46.00	-17.85	Н
651.94	23.90	15.67	52.23	34.36	46.00	-11.64	Н
965.54	26.48	21.09	70.29	36.94	54.00	-17.06	Н

Report No.: SZEM170500533105

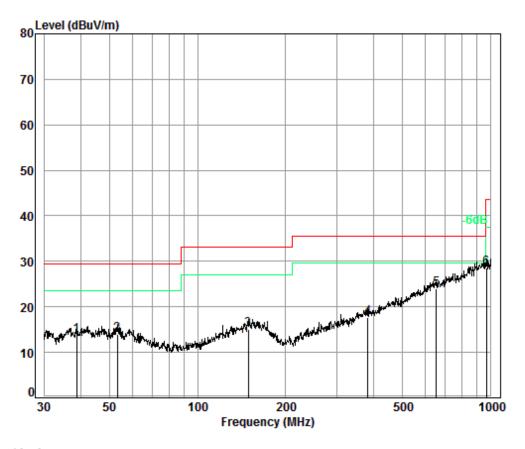
Page: 46 of 81

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m VERTICAL

Job No. : 05331RG

Test Mode: f


Freq				Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.95	6.70	12.54	32.51	32.62	19.35	29.50	-10.15
2 pp	38.75	6.78	13.16	32.47	37.85	25.32	29.50	-4.18
3	60.70	7.00	11.85	32.45	29.59	15.99	29.50	-13.51
4	138.39	7.39	12.65	32.45	28.63	16.22	33.10	-16.88
5	739.66	9.20	20.64	32.27	27.98	25.55	35.60	-10.05
6	922.52	9.51	22.53	31.21	26.86	27.69	35.60	-7.91

Report No.: SZEM170500533105

Page: 47 of 81

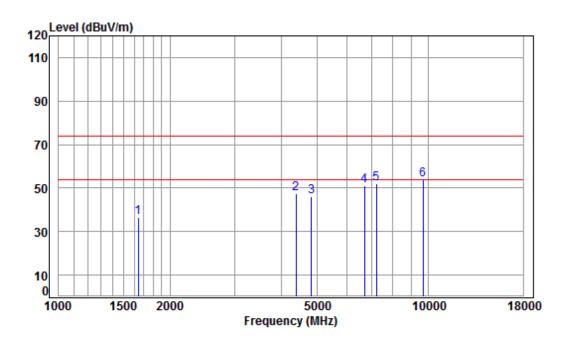
Test mode: Charge + Transmitting Horizontal

Condition: 10m HORIZONTAL

Job No. : 05331RG

Test Mode: f

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
						•		
1	38.75	6.78	13.16	32.47	26.30	13.77	29.50	-15.73
2	53.32	6.97	12.51	32.43	26.97	14.02	29.50	-15.48
3	148.96	7.45	13.34	32.43	26.78	15.14	33.10	-17.96
4	381.25	8.30	14.51	32.34	27.22	17.69	35.60	-17.91
5 pp	651.94	9.03	19.56	32.27	27.58	23.90	35.60	-11.70
6	965.54	9.60	22.78	30.88	26.98	28.48	43.50	-15.02



Report No.: SZEM170500533105

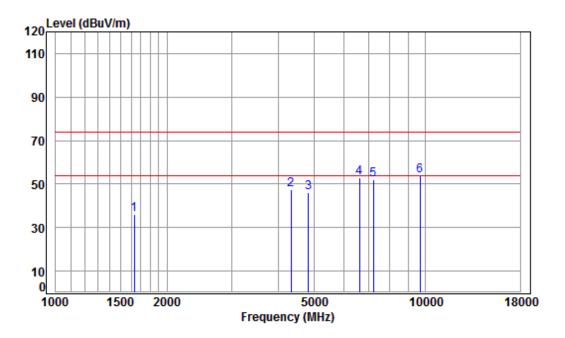
Page: 48 of 81

6.8.2 Transmitter emission above 1GHz

Test mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Vertical
Tool Illoud.	002.110	1 Cot oriarinos.	LOWCSI	ricinant.	i car	Vortioai

Condition: 3m VERTICAL Job No : 05331RG

Mode : 2412 TX RSE


		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1644.019	5.30	26.44	38.03	42.94	36.65	74.00	-37.35	peak
2		4379.699	7.43	33.60	38.20	44.70	47.53	74.00	-26.47	peak
3		4824.000	7.91	34.19	38.42	42.59	46.27	74.00	-27.73	peak
4		6717.762	10.91	35.72	37.57	42.20	51.26	74.00	-22.74	peak
5		7236.000	10.07	36.40	37.08	42.69	52.08	74.00	-21.92	peak
6	pp	9648.000	10.77	37.53	35.07	40.55	53.78	74.00	-20.22	peak

Report No.: SZEM170500533105

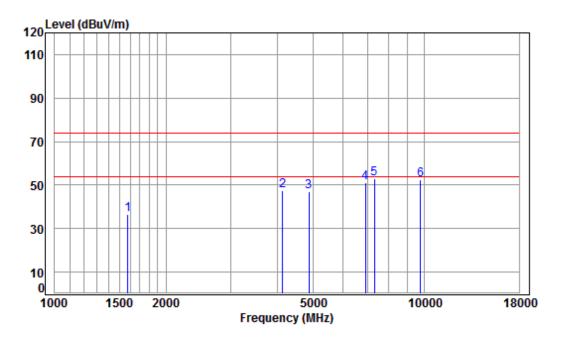
Page: 49 of 81

Test mode: 802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1634.543	5.31	26.40	38.03	42.57	36.25	74.00	-37.75	peak
2		4329.354	7.37	33.60	38.18	44.44	47.23	74.00	-26.77	peak
3		4824.000	7.91	34.19	38.42	42.63	46.31	74.00	-27.69	peak
4		6621.375	11.19	35.45	37.66	44.02	53.00	74.00	-21.00	peak
5		7236.000	10.07	36.40	37.08	42.82	52.21	74.00	-21.79	peak
6	pp	9648.000	10.77	37.53	35.07	40.40	53.63	74.00	-20.37	peak

Report No.: SZEM170500533105

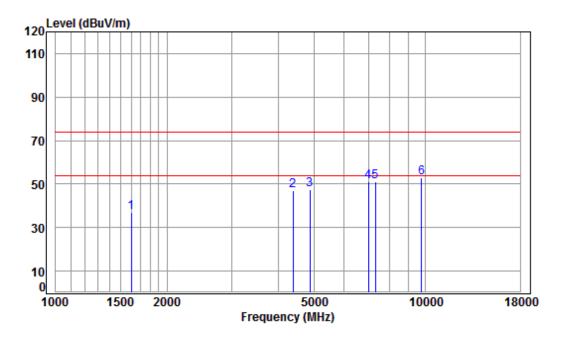
Page: 50 of 81

Test mode:	802.11b	Test channel:	Middle	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 05331RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11B


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	1578.822								•
	4133.699 4874.000								•
5 pp	6914.763 7311.000	10.05	36.37	37.01	43.58	52.99	74.00	-21.01	peak
6	9748.000	10.82	37.55	35.02	39.21	52.56	74.00	-21.44	peak

Report No.: SZEM170500533105

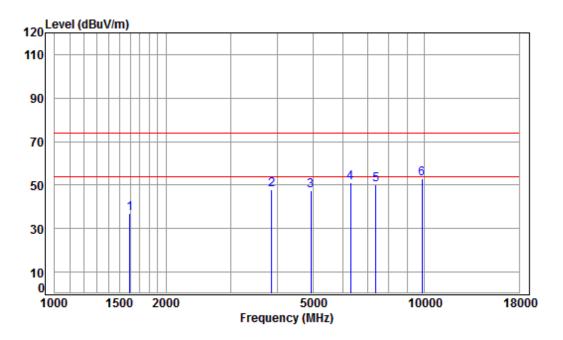
Page: 51 of 81

Test mode: 802.11b	Test channel:	Middle	Remark:	Peak	Horizontal
--------------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11B


			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1		1601.804	5.35	26.26	38.03	43.21	36.79	74.00	-37.21	peak	
2		4379.699	7.43	33.60	38.20	44.24	47.07	74.00	-26.93	peak	
3		4874.000	7.96	34.28	38.44	43.58	47.38	74.00	-26.62	peak	
4		6995.172	10.14	36.49	37.30	41.81	51.14	74.00	-22.86	peak	
5		7311.000	10.05	36.37	37.01	41.83	51.24	74.00	-22.76	peak	
6	pp	9748.000	10.82	37.55	35.02	39.56	52.91	74.00	-21.09	peak	

Report No.: SZEM170500533105

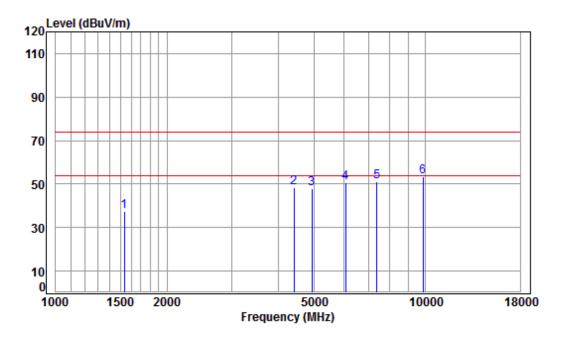
Page: 52 of 81

Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Vertical
			1			

Condition: 3m VERTICAL

Job No : 05331RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11B


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1597.181	5.35	26.24	38.03	43.36	36.92	74.00	-37.08	peak
2	3856.668	6.84	33.22	37.99	45.76	47.83	74.00	-26.17	peak
3	4924.000	8.01	34.37	38.47	43.40	47.31	74.00	-26.69	peak
4	6303.890	11.17	34.95	37.98	43.01	51.15	74.00	-22.85	peak
	7386.000 p 9848.000								•

Report No.: SZEM170500533105

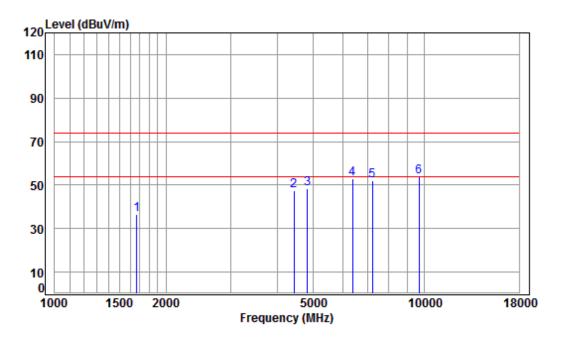
Page: 53 of 81

Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Horizontal
------------	---------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11B


	Freq			Preamp Factor					Remark
	MHz			dB					
1	1533.841	5.44	25.96	38.04	43.98	37.34	74.00	-36.66	peak
2	4405.090	7.46	33.60	38.22	45.38	48.22	74.00	-25.78	peak
3	4924.000	8.01	34.37	38.47	43.96	47.87	74.00	-26.13	peak
4	6071.417	10.71	34.76	38.22	43.46	50.71	74.00	-23.29	peak
5	7386.000	10.03	36.34	36.94	41.85	51.28	74.00	-22.72	peak
6 p	p 9848.000	10.87	37.57	34.97	39.94	53.41	74.00	-20.59	peak

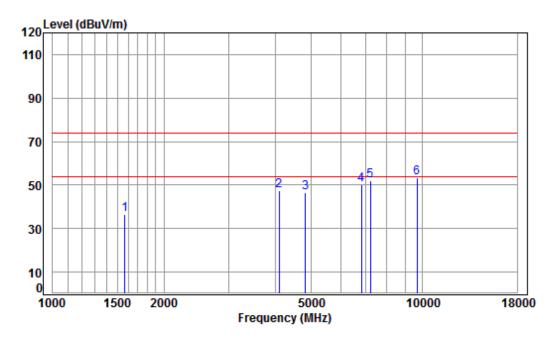
Report No.: SZEM170500533105

Page: 54 of 81

Test mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 05331RG Mode : 2412 TX RSE


OLE		. 2.4	G MILT	110						
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1667.951	5.27	26.54	38.03	42.73	36.51	74.00	-37.49	peak
2		4443.453	7.50	33.60	38.24	44.53	47.39	74.00	-26.61	peak
3		4824.000	7.91	34.19	38.42	44.63	48.31	74.00	-25.69	peak
4		6395.654	11.34	35.02	37.89	44.47	52.94	74.00	-21.06	peak
5		7236.000	10.07	36.40	37.08	42.51	51.90	74.00	-22.10	peak
6	pp	9648.000	10.77	37.53	35.07	40.57	53.80	74.00	-20.20	peak

Report No.: SZEM170500533105

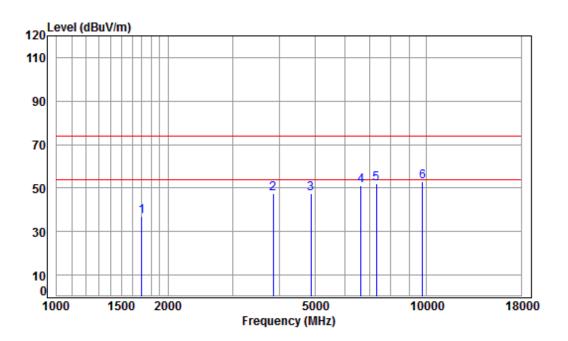
Page: 55 of 81

Test mode: 802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11G


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1569.721	5.39	26.12	38.03	42.91	36.39	74.00	-37.61	peak
2		4098.010	7.10	33.60	38.05	44.76	47.41	74.00	-26.59	peak
3		4824.000	7.91	34.19	38.42	42.89	46.57	74.00	-27.43	peak
4		6835.278	10.58	36.05	37.45	41.12	50.30	74.00	-23.70	peak
5		7236.000	10.07	36.40	37.08	42.60	51.99	74.00	-22.01	peak
6	pp	9648.000	10.77	37.53	35.07	40.06	53.29	74.00	-20.71	peak

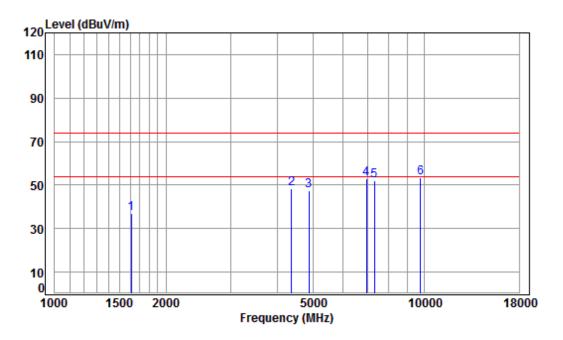
Report No.: SZEM170500533105

Page: 56 of 81

Test mode:	802.11g	Test channel:	Middle	Remark:	Peak	Vertical
------------	---------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL Job No : 05331RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11G


000	_	. 2.7	G MILL	110						
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
										
1		1697.129	5.23	26.66	38.02	43.13	37.00	/4.00	-3/.00	peak
2		3845.537	6.83	33.19	37.99	45.37	47.40	74.00	-26.60	peak
3		4874.000	7.96	34.28	38.44	43.74	47.54	74.00	-26.46	peak
4		6640.542	11.13	35.50	37.64	42.27	51.26	74.00	-22.74	peak
5		7311.000	10.05	36.37	37.01	42.55	51.96	74.00	-22.04	peak
6	pp	9748.000	10.82	37.55	35.02	39.58	52.93	74.00	-21.07	peak

Report No.: SZEM170500533105

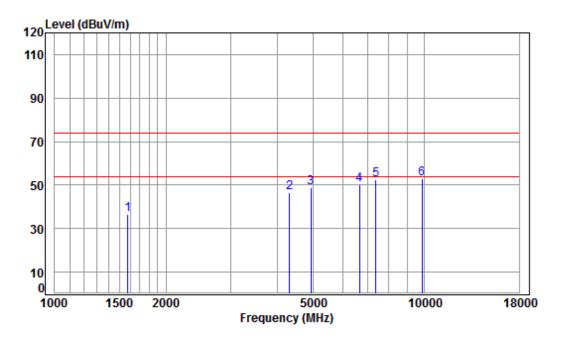
Page: 57 of 81

Test mode:	802.11g	Test channel:	Middle	Remark:	Peak	Horizontal
------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11G


					Preamp					
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1611.091	5.34	26.30	38.03	43.45	37.06	74.00	-36.94	peak
2		4367.058	7.41	33.60	38.20	45.40	48.21	74.00	-25.79	peak
3		4874.000	7.96	34.28	38.44	43.52	47.32	74.00	-26.68	peak
4		6954.852	10.25	36.38	37.34	43.53	52.82	74.00	-21.18	peak
5		7311.000	10.05	36.37	37.01	42.54	51.95	74.00	-22.05	peak
6	pp	9748.000	10.82	37.55	35.02	40.20	53.55	74.00	-20.45	peak

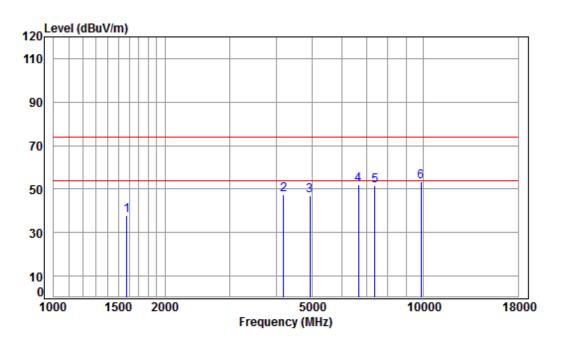
Report No.: SZEM170500533105

Page: 58 of 81

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Vertical
			1			

Condition: 3m VERTICAL

Job No : 05331RG Mode : 2462 TX RSE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB	
1	1578.822	5.38	26.16	38.03	43.16	36.67	74.00	-37.33	peak
2	4316.859	7.36	33.60	38.17	43.91	46.70	74.00	-27.30	peak
3	4924.000	8.01	34.37	38.47	45.00	48.91	74.00	-25.09	peak
4	6659.763	11.08	35.56	37.62	41.11	50.13	74.00	-23.87	peak
5	7386.000	10.03	36.34	36.94	42.87	52.30	74.00	-21.70	peak
6 p	p 9848.000	10.87	37.57	34.97	39.63	53.10	74.00	-20.90	peak

Report No.: SZEM170500533105

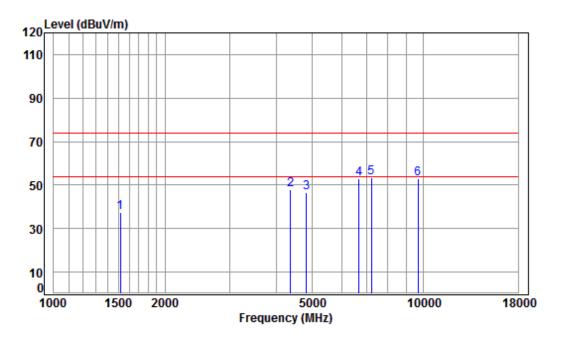
Page: 59 of 81

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11G


Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit Remark dBuV dBuV/m dBuV/m MHz dB dB/m dB dB 1578.822 38.03 44.22 37.73 74.00 -36.27 peak 5.38 26.16 1 2 4181.768 7.20 33.60 38.10 44.59 47.29 74.00 -26.71 peak 3 4924.000 8.01 34.37 38.47 43.19 47.10 74.00 -26.90 peak 4 6659.763 11.08 35.56 37.62 43.15 52.17 74.00 -21.83 peak 5 7386.000 10.03 36.34 36.94 42.02 51.45 74.00 -22.55 peak 6 pp 9848.000 10.87 37.57 34.97 39.75 53.22 74.00 -20.78 peak

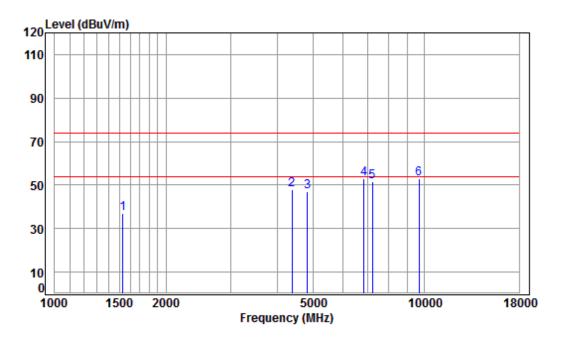
Report No.: SZEM170500533105

Page: 60 of 81

Test mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Vertical
------------	---------------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL

Job No : 05331RG Mode : 2412 TX RSE


				•					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1516.210	5.46	25.87	38.04	43.98	37.27	74.00	-36.73	peak
2	4367.058	7.41	33.60	38.20	45.01	47.82	74.00	-26.18	peak
3	4824.000	7.91	34.19	38.42	42.67	46.35	74.00	-27.65	peak
4	6679.040	11.02	35.61	37.60	43.87	52.90	74.00	-21.10	peak
5 pp	7236.000	10.07	36.40	37.08	43.80	53.19	74.00	-20.81	peak
6	9648.000	10.77	37.53	35.07	39.72	52.95	74.00	-21.05	peak

Report No.: SZEM170500533105

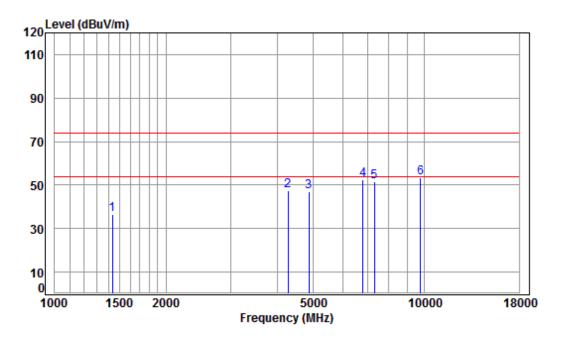
Page: 61 of 81

Test mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2412 TX RSE


				•					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1529.414	5.44	25.94	38.04	43.55	36.89	74.00	-37.11	peak
2	4379.699	7.43	33.60	38.20	45.08	47.91	74.00	-26.09	peak
3	4824.000	7.91	34.19	38.42	43.37	47.05	74.00	-26.95	peak
4	6855.063	10.53	36.10	37.44	43.51	52.70	74.00	-21.30	peak
5	7236.000	10.07	36.40	37.08	42.36	51.75	74.00	-22.25	peak
6 r	op 9648.000	10.77	37.53	35.07	39.80	53.03	74.00	-20.97	peak

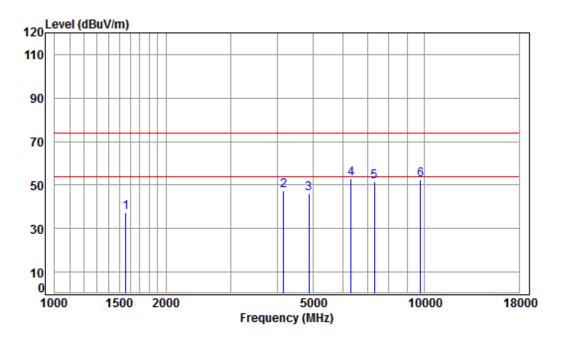
Report No.: SZEM170500533105

62 of 81 Page:

Test mode: 802.11n(HT20) Test channel: Middle Remark: Peak Ver
--

Condition: 3m VERTICAL

Job No : 05331RG Mode : 2437 TX RSE


		_			Preamp					
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Kemark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1435.189	5.27	25.54	38.05	43.74	36.50	74.00	-37.50	peak
2		4279.589	7.31	33.60	38.15	44.90	47.66	74.00	-26.34	peak
3		4874.000	7.96	34.28	38.44	43.20	47.00	74.00	-27.00	peak
4		6815.551	10.64	36.00	37.47	43.51	52.68	74.00	-21.32	peak
5		7311.000	10.05	36.37	37.01	42.17	51.58	74.00	-22.42	peak
6	pp	9748.000	10.82	37.55	35.02	39.99	53.34	74.00	-20.66	peak

Report No.: SZEM170500533105

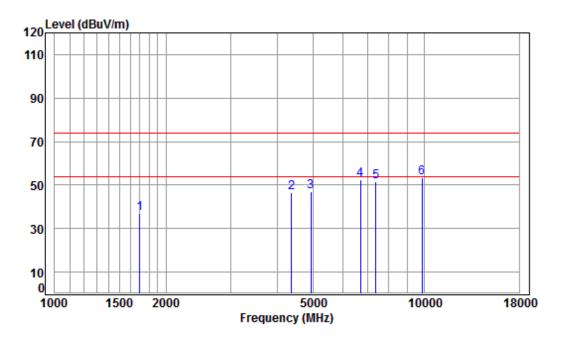
Page: 63 of 81

Test mode:	802.11n(HT20)	Test channel:	Middle	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2437 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1560.673	5.40	26.08	38.04	44.15	37.59	74.00	-36.41	peak
2	4157.664	7.17	33.60	38.09	44.92	47.60	74.00	-26.40	peak
3	4874.000	7.96	34.28	38.44	42.08	45.88	74.00	-28.12	peak
4 pp	6322.136	11.20	34.96	37.96	44.91	53.11	74.00	-20.89	peak
5	7311.000	10.05	36.37	37.01	42.04	51.45	74.00	-22.55	peak
6	9748.000	10.82	37.55	35.02	39.14	52.49	74.00	-21.51	peak

Report No.: SZEM170500533105

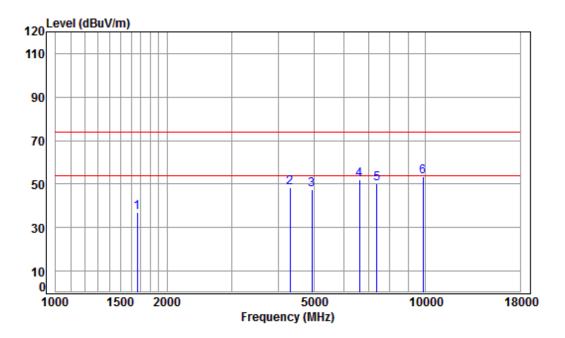
Page: 64 of 81

Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Vertical
------------	---------------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 05331RG

Mode : 2462 TX RSE


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1697.129	5.23	26.66	38.02	43.31	37.18	74.00	-36.82	peak
2		4367.058	7.41	33.60	38.20	43.94	46.75	74.00	-27.25	peak
3		4924.000	8.01	34.37	38.47	43.17	47.08	74.00	-26.92	peak
4		6717.762	10.91	35.72	37.57	43.51	52.57	74.00	-21.43	peak
5		7386.000	10.03	36.34	36.94	42.20	51.63	74.00	-22.37	peak
6	pp	9848.000	10.87	37.57	34.97	40.04	53.51	74.00	-20.49	peak

Report No.: SZEM170500533105

Page: 65 of 81

Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal
------------	---------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2462 TX RSE

000	_	. 2.7	G MILL	IIIV Z	•					
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1663.137	5.27	26.52	38.03	43.35	37.11	74.00	-36.89	peak
2		4304.400								•
3		4924.000	8.01	34.37	38.47	43.43	47.34	74.00	-26.66	peak
4		6621.375	11.19	35.45	37.66	43.00	51.98	74.00	-22.02	peak
5		7386.000	10.03	36.34	36.94	40.73	50.16	74.00	-23.84	peak
6	pp	9848.000	10.87	37.57	34.97	40.00	53.47	74.00	-20.53	peak

Report No.: SZEM170500533105

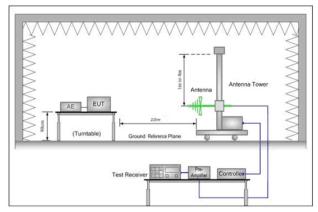
Page: 66 of 81

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz,The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM170500533105

Page: 67 of 81

Restricted bands around fundamental frequency 6.9

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12									
Test Site:	Measurement Distance: 3n	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)									
	Frequency	Limit (dBuV/m @3m)	Remark								
	30MHz-88MHz	40.0	Quasi-peak Value								
	88MHz-216MHz	43.5	Quasi-peak Value								
Limit:	216MHz-960MHz	46.0	Quasi-peak Value								
	960MHz-1GHz	54.0	Quasi-peak Value								
	Above 4011=	54.0	Average Value								
	Above 1GHz	74.0	Peak Value								
Test Setup:		·	<u>. </u>								

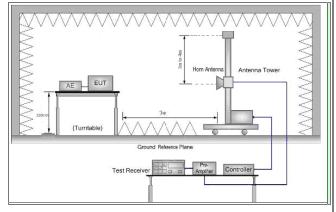


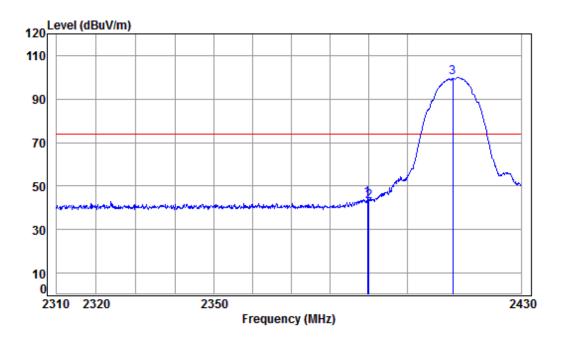
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM170500533105

Page: 68 of 81

	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
	radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel, the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
Exploratory rest wode.	Charge + Transmitting mode.
	Pretest the EUT at Charge +Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM170500533105

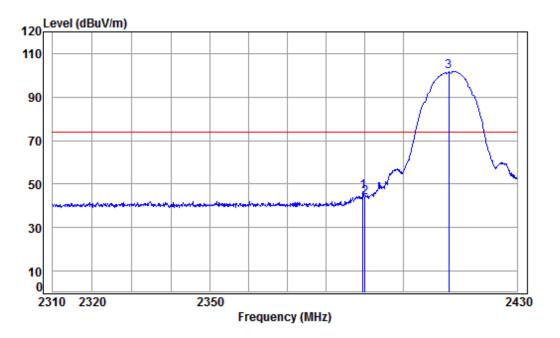
Page: 69 of 81

Test plot as follows:

Condition: 3m VERTICAL

Job No : 05331RG

Mode : 2412 Band edge Note : 2.4G WiFi 11B


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.605	5.47	29.08	38.30	48.10	44.35	74.00	-29.65	Peak
2	2390.000	5.47	29.08	38.30	46.59	42.84	74.00	-31.16	Peak
3 рр	2412.000	5.50	29.14	38.28	103.61	99.97	74.00	25.97	Peak

Report No.: SZEM170500533105

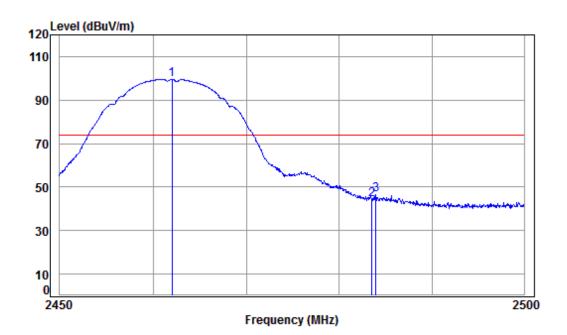
Page: 70 of 81

Worse case mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2412 Band edge Note : 2.4G WiFi 11B


	Freq					Level			Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.484	5.47	29.08	38.31	50.22	46.46	74.00	-27.54	peak
2	2390.000	5.47	29.08	38.30	47.68	43.93	74.00	-30.07	peak
3 pp	2412.000	5.50	29.14	38.28	105.58	101.94	74.00	27.94	peak

Report No.: SZEM170500533105

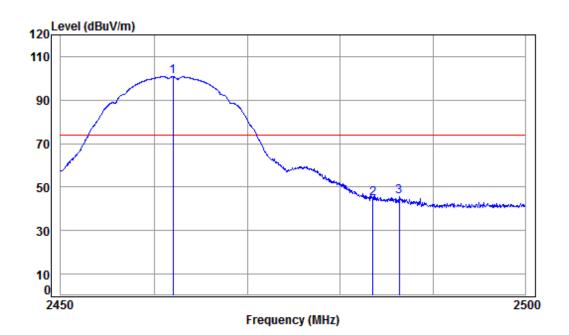
Page: 71 of 81

Worse case mode:	802.11b	Test channel:	Highest	Remark:	Peak	Vertical
------------------	---------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 05331RG

Mode : 2462 Band edge Note : 2.4G WiFi 11B


	Freq				Read Level				Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2462.000	5.57	29.29	38.24	103.06	99.68	74.00	25.68	Peak
2	2483.500	5.60	29.35	38.22	47.62	44.35	74.00	-29.65	Peak
3	2483.940	5.60	29.35	38.22	49.72	46.45	74.00	-27.55	Peak

Report No.: SZEM170500533105

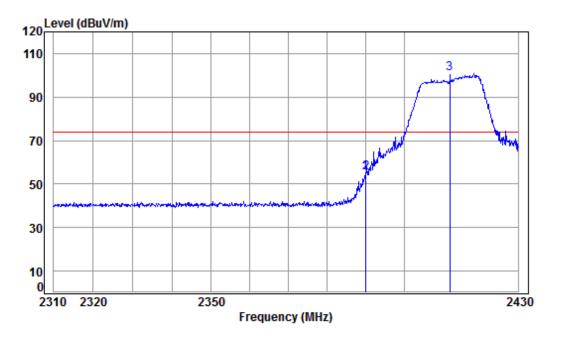
Page: 72 of 81

Worse case mode:	802.11b	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	---------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2462 Band edge Note : 2.4G WiFi 11B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2462.000	5.57	29.29	38.24	104.18	100.80	74.00	26.80	peak
2		2483.500	5.60	29.35	38.22	47.90	44.63	74.00	-29.37	peak
3		2486.350	5.60	29.36	38.22	48.76	45.50	74.00	-28.50	peak

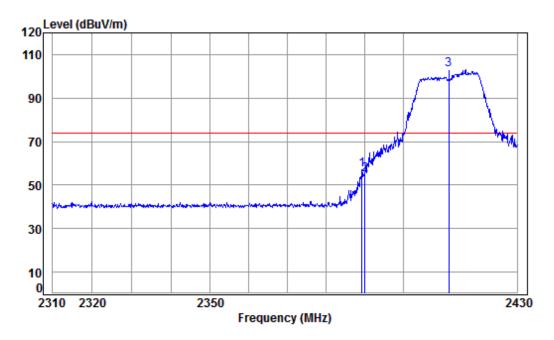
Report No.: SZEM170500533105

Page: 73 of 81

Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical
TT 0100 0a00 1110a0.	002.119	1 oot onamion.		i tomant.	1 Oak	Voitioai

Condition: 3m VERTICAL Job No : 05331RG

Mode : 2412 Band edge Note : 2.4G WiFi 11G


		Freq			•		Level			Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.847	5.47	29.08	38.30	59.02	55.27	74.00	-18.73	Peak
2		2390.000	5.47	29.08	38.30	58.82	55.07	74.00	-18.93	Peak
3	pp	2412.000	5.50	29.14	38.28	104.34	100.70	74.00	26.70	Peak

Report No.: SZEM170500533105

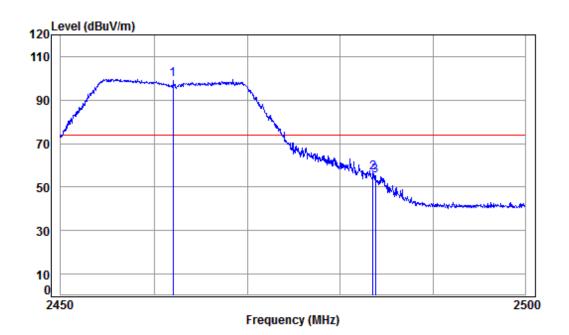
Page: 74 of 81

Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2412 Band edge Note : 2.4G WiFi 11G


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.242	5.47	29.08	38.31	60.90	57.14	74.00	-16.86	peak
2		2390.000	5.47	29.08	38.30	58.45	54.70	74.00	-19.30	peak
3	pp	2412.000	5.50	29.14	38.28	106.53	102.89	74.00	28.89	peak

Report No.: SZEM170500533105

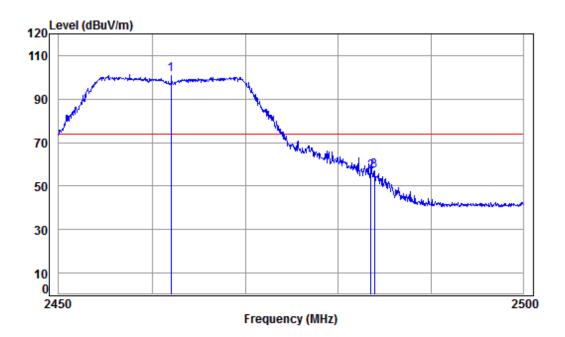
Page: 75 of 81

Worse case mode: 802.11g Test channel: Highest Remark: Peak Vertica

Condition: 3m VERTICAL Job No : 05331RG

Mode : 2462 Band edge Note : 2.4G WiFi 11G

: 12


Cable Ant Preamp Limit 0ver Read Loss Factor Factor Level Level Line Limit Remark Freq dBuV dBuV/m dBuV/m MHz dΒ dB/m dB dB 1 pp 2462.000 5.57 29.29 38.24 103.04 99.66 74.00 25.66 Peak 29.35 38.22 59.72 2483.500 5.60 56.45 74.00 -17.55 Peak 3 2483.790 5.60 29.35 38.22 58.46 55.19 74.00 -18.81 Peak

Report No.: SZEM170500533105

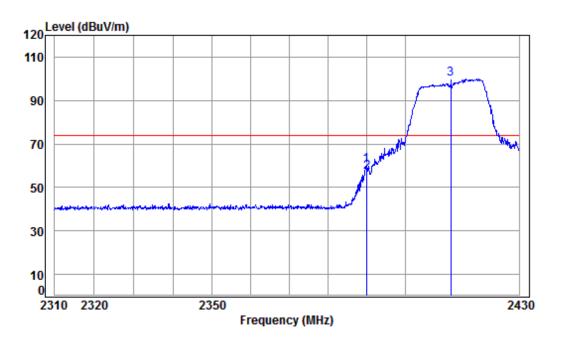
Page: 76 of 81

Worse case mode:	802.11g	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	---------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2462 Band edge Note : 2.4G WiFi 11G


Freq						Limit Line		Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2462.000	5.57	29.29	38.24	104.69	101.31	74.00	27.31	peak
2 2483.500	5.60	29.35	38.22	59.65	56.38	74.00	-17.62	peak
3 2483.890	5.60	29.35	38.22	60.24	56.97	74.00	-17.03	peak

Report No.: SZEM170500533105

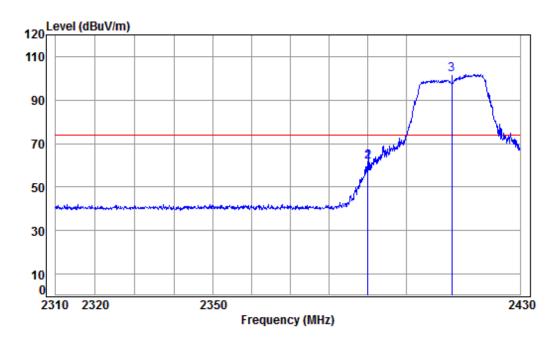
Page: 77 of 81

Worse case mode: 802	02.11n(HT20) Test ch	nannel: Lowest	Remark:	Peak	Vertical
----------------------	----------------------	----------------	---------	------	----------

Condition: 3m VERTICAL

Job No : 05331RG

Mode : 2412 Band edge Note : 2.4G WiFi 11N20


		Freq					Level			Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1		2389.847	5.47	29.08	38.30	64.08	60.33	74.00	-13.67	Peak	
2		2390.000	5.47	29.08	38.30	60.78	57.03	74.00	-16.97	Peak	
3	pp	2412.000	5.50	29.14	38.28	103.47	99.83	74.00	25.83	Peak	

Report No.: SZEM170500533105

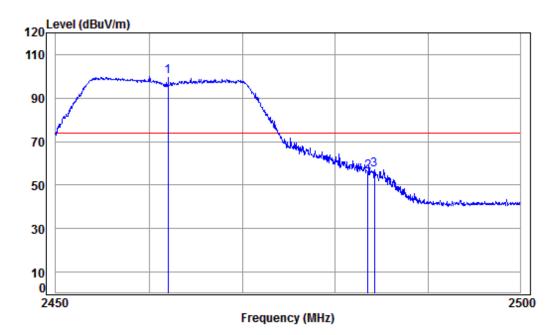
Page: 78 of 81

Worse case mode: 802.11n(HT20) Test channel: Lowest Remark: Peak Horizont

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2412 Band edge Note : 2.4G WiFi 11N20


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.968	5.47	29.08	38.30	65.46	61.71	74.00	-12.29	peak
2		2390.000	5.47	29.08	38.30	65.46	61.71	74.00	-12.29	peak
3	pp	2412.000	5.50	29.14	38.28	105.44	101.80	74.00	27.80	peak

Report No.: SZEM170500533105

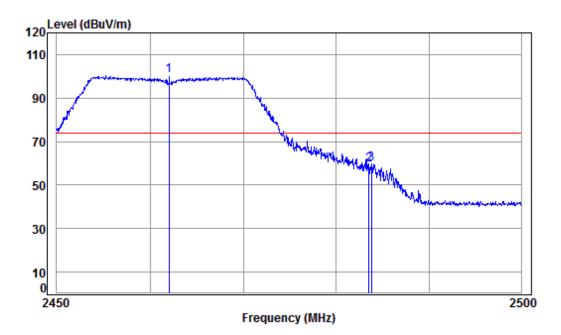
Page: 79 of 81

Worse case mode: 802.11n(HT20) Test channel: Highest Remark: Peak Vertical
--

Condition: 3m VERTICAL

Job No : 05331RG

Mode : 2462 Band edge Note : 2.4G WiFi 11N20


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2462.000	5.57	29.29	38.24	103.10	99.72	74.00	25.72	Peak
2		2483.500	5.60	29.35	38.22	59.17	55.90	74.00	-18.10	Peak
3		2484.191	5.60	29.35	38.22	60.41	57.14	74.00	-16.86	Peak

Report No.: SZEM170500533105

Page: 80 of 81

Worse case mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	---------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2462 Band edge Note : 2.4G WiFi 11N20

			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2462.000	5.57	29.29	38.24	103.81	100.43	74.00	26.43	peak
2		2483.500	5.60	29.35	38.22	62.63	59.36	74.00	-14.64	peak
3		2483.790	5.60	29.35	38.22	63.14	59.87	74.00	-14.13	peak

Report No.: SZEM170500533105

Page: 81 of 81

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1705005331RG