

FCC TEST REPORT (Part 15, Subpart E)

Applicant:	KYOCERA Corporation	
Address:	Yokohama Office 2-1-1 Kagahara,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan	

Manufacturer or Supplier:	KYOCERA Corporation
Address:	Yokohama Office 2-1-1 Kagahara,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan
Product:	Mobile Phone
Brand Name:	KYOCERA
Model Name:	EB1217
FCC ID:	JOYEB1217
Date of tests:	Oct. 21, 2024~Dec. 05, 2024

The tests have been carried out according to the requirements of the following standard:

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Prepared by Hanwen Xu	Approved by Peibo Sun
Engineer / Mobile Department	Manager / Mobile Department
Lu Hannen	Simple: bo
Date: Dec. 05, 2024	Date: Dec. 05, 2024

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/lems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of my material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, Hightech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

TABLE OF CONTENTS

R	ELEASE (CONTROL RECORD	4
1	SUMM	IARY OF TEST RESULTS	5
	1.1 ME	ASUREMENT UNCERTAINTY	6
_		RAL INFORMATION	
2			
		NERAL DESCRIPTION OF EUT	
	2.2 DES	SCRIPTION OF TEST MODES	
	2.2.1		
		TY CYCLE OF TEST SIGNAL	
	2.4 DES	SCRIPTION OF SUPPORT UNITS	
	2.4.1	CONFIGURATION OF SYSTEM UNDER TEST	
	2.5 GEI	NERAL DESCRIPTION OF APPLIED STANDARDS	19
3	TEST	TYPES AND RESULTS	20
	3.1 RAI	DIATED EMISSION AND BANDEDGE MEASUREMENT	20
	3.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	20
	3.1.2	LIMITS OF UNWANTED EMISSION	21
	3.1.3	TEST INSTRUMENTS	22
	3.1.4	TEST PROCEDURES	23
	3.1.5	DEVIATION FROM TEST STANDARD	23
	3.1.6	TEST SETUP	24
	3.1.7	EUT OPERATING CONDITION	25
	3.1.8	TEST RESULTS	26
	3.2 CO	NDUCTED EMISSION MEASUREMENT	214
	3.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	214
	3.2.2	TEST INSTRUMENTS	214
	3.2.3	TEST PROCEDURES	215
	3.2.4	DEVIATION FROM TEST STANDARD	216
	3.2.5	TEST SETUP	216
	3.2.6	EUT OPERATING CONDITIONS	216
	3.2.7	TEST RESULTS	217
	3.3 MA	XIMUM CONDUCTED OUTPUT POWER MEASUREMENT	219
	3.3.1	LIMITS OF MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	219
	3.3.2	TEST SETUP	220
	3.3.3	TEST INSTRUMENTS	221
	3.3.4	TEST PROCEDURE	222

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, Hightech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

Test Report No.: PSU-QBJ2409140110RF	07
--------------------------------------	----

	3.3.5	DEVIATION FROM TEST STANDARD	223
	3.3.6	EUT OPERATING CONDITIONS	223
	3.3.7	TEST RESULTS	224
	3.4 MA	XIMUM POWER SPECTRAL DENSITY MEASUREMENT	225
	3.4.1	LIMITS OF MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT	225
	3.4.2	TEST SETUP	225
	3.4.3	TEST INSTRUMENTS	225
	3.4.4	TEST PROCEDURES	226
	3.4.5	DEVIATION FROM TEST STANDARD	226
	3.4.6	EUT OPERATING CONDITIONS	226
	3.4.7	TEST RESULTS	227
	3.5 AU	FOMATICALLY DISCONTINUE TRANSMISSION	228
	3.5.1	LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	228
	3.5.2	TEST INSTRUMENTS	228
	3.5.3	TEST RESULT	228
	3.6 AN	FENNA REQUIREMENTS	229
	3.6.1	STANDARD APPLICABLE	229
	3.6.2	ANTENNA CONNECTED CONSTRUCTION	229
	3.6.3	ANTENNA GAIN	229
4.	PHOT	OGRAPHS OF THE TEST CONFIGURATION	230
5.	MODII	FICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY TH	IE LAB
	231		
6.	APPE	NDIX	232
	EMISSIO	N BANDWIDTH	232
	TEST	RESULT	232
	TEST	GRAPHS	234
	OCCUPII	ED CHANNEL BANDWIDTH	251
	TEST	RESULT	251
	TEST	GRAPHS	253
	DUTY CY	′CLE	270
	TEST	RESULT	270
	TEST	GRAPHS	271
	MAXIMU	M CONDUCTED OUTPUT POWER	274
	TEST	RESULT	274
	MAXIMU	M POWER SPECTRAL DENSITY	277
	TEST	RESULT	277
	TEST	GRAPHS	279
	Huarui 7lav	ers High Technology Tower N, Innovation Center, 88 Zuyi Road, High- Tel: +86 (0557)	368 1008

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-QBJ2409140110RF07	Original release	Dec. 05, 2024

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART E		
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT
15.407(b)(9)	AC Power Conducted Emission	Compliance
15.407(b) (1/2/3/4/5)	Radiated Emission & Band Edge Measurement	Compliance
15.407(a/1/2/3)	Maximum conducted output Power	Compliance
15.407(a/1/2/3)	Peak Power Spectral Density	Compliance
15.407(a)(2)(12)	26 dB Bandwidth	Compliance
15.407(e)	6 dB Bandwidth	Compliance
15.203	Antenna Requirement Compliance	

NOTE:

- 1. Except the data of RSE and Band Edge Measurement, other data please refer to Appendix.
- 2. For 802.11n HT20/ ac VHT20 and 802.11n HT40 / ac VHT40 mode, the whole testing is assessed only 802.11n HT20/ HT40 by referring to their higher conducted power.
- 3. Only the worse data was reported.

*Test Lab Information Reference

Lab A:

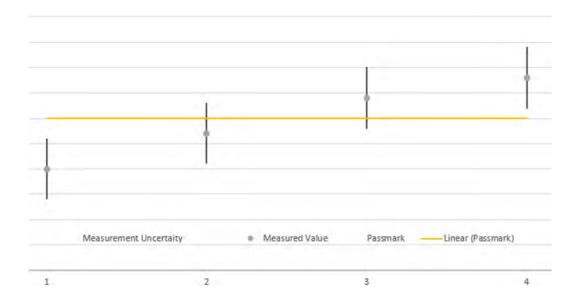
Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Mobile Phone			
BRAND NAME*	KYOCERA	YOCERA		
MODEL NAME*	EB1217			
NOMINAL VOLTAGE*	3.91Vdc (Battery)			
MODULATION *	OFDM			
	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps			
TRANSFER RATE*	802.11n: up to 150.0	Mbps		
	802.11ac: up to 433.3Mbps			
OPERATING FREQUENCY*	5180~5240MHz, 526	0~5320MHz		
	5500~5720MHz			
		4 for 802.11a,802.11n/ac (20MHz)		
	5180~5240MHz	2 for 802.11n/ac (40MHz)		
		1 for 802.11ac(80MHz)		
		4 for 802.11a,802.11n/ac(20MHz)		
NUMBER OF CHANNEL	5260~5320MHz	2 for 802.11n/ac(40MHz)		
		1 for 802.11ac(80MHz)		
		12 for 802.11a, 802.11n/ac (20MHz)		
	5500~5720MHz	6 for 802.11n/ac (40MHz)		
	3	3 for 802.11ac(80MHz)		
	20.37mW for 5180 ~ 5240MHz			
MAX. OUTPUT POWER	20.42mW for 5260 ~	5320MHz		
	24.10mW for 5500 ~ 5720MHz			
ANTENNA TYPE*	IFA ANTENNA			
	5180 ~ 5240MHz	-2.1dBi		
ANTENNA GAIN*	5260 ~ 5320MHz	-1.5dBi		
	5500 ~ 5720MHz	-1dBi		
HW VERSION*	DVT2	.		

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, Hightech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

SW VERSION*	0.330SR
I/O PORTS*	Refer to user's manual
CABLE SUPPLIED*	N/A

NOTE:

below:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX FUNCTION
802.11a	1TX/1RX
802.11n/802.11ac (20MHz)	1TX/1RX
802.11n/802.11ac (40MHz)	1TX/1RX
802.11ac (80MHz)	1TX/1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 5. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.
- 6. The detail differences from the Main manufacturer and Secondary manufacturer are as listed

DCIOW.	1	I
Description	Main manufacturer	Secondary manufacturer
LCM	ShenZhen LIDE	Wannian Lianchuang Display
Lom	Communications Ltd.	Technology Co. , Ltd.
Audio jack FPC	Shenzhen Xinyu Tengyue	Jiangxi Zhiboxin Technology
Audio Jack FFC	Electronics Co.,Ltd.	Limited Company
MIC	AAC	Gettop
Memory	Samsung	Biwin
Radio frequency switch_DFN-6_0.4-	Innowaya	Champhill
4.2 GHz_SPDT_GPIO_patch	Innowave	Спатіріш

The above materials have only manufacturer differences, and the functions are the same. Other than these changes, other RF performance is the same and does not affect the RF results.

7. List of Accessory:

ACCESSORIES	BRAND	MODEL	SPECIFICATION
CPU	MTK	MT6835T	N/A
-NAMC 4 (-DOM 4)		KM5P9001DM-	N/A
eMMC 1 (=ROM 1)	samsung	B424	
eMMC 2 (=ROM 2)	biwin	BW2A2KZC02-	N/A
ewiwic z (-ROW z)	DIWITI	64G	
RAM 1	comeun	KM5P9001DM-	N/A
IVAIVI I	samsun	B424	
RAM 2	biwin	BW2A2KZC02-	N/A
TVAIVI Z	DIWIT	64G	
Battery	KYOCERA	5AAXBT152	Capacity: 3.91Vdc,
Dattery	KIOOLINA	JAAAD1132	4400mAh/17.3Wh

2.2 DESCRIPTION OF TEST MODES

FOR 5180~5240MHz				
802.11a, 802.11n, 802.11ac(20MHz)				
CHANNEL	CHANNEL FREQUENCY CHANNEL FREQUENCY			
36	5180 MHz	44	5220 MHz	
40	5200 MHz	48	5240 MHz	

802.11n, 802.11ac(40MHz)				
CHANNEL FREQUENCY CHANNEL FREQUENCY				
38 5190 MHz 46 5230 MHz				

802.11ac (80MHz)				
CHANNEL FREQUENCY CHANNEL FREQUENCY				
42 5210 MHz				

FOR 5260 ~ 5320MHz			
802.11a, 802.11n, 802.11ac (20MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

802.11n, 802.11ac (40MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
54	5270 MHz	62	5310 MHz

802.11ac (80MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
58 5290 MHz			

FOR 5500 ~ 5720MHz				
	802.11a, 802.11n, 802.11ac (20MHz)			
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY	
100	5500 MHz	124	5620MHz	
104	5520 MHz	128	5640MHz	
108	5540 MHz	132	5660 MHz	
112	5560 MHz	136	5680 MHz	
116	5580 MHz	140	5700 MHz	
120	5600 MHz	144	5720 MHz	

802.11n, 802.11ac(40MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENCY			
102	5510 MHz	126	5630MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

802.11ac (80MHz)			
CHANNEL FREQUENCY CHANNEL FREQUENC			FREQUENCY
106	5530 MHz	122	5610 MHz
138	5690 MHz		

2.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE		APPLICA	ABLE TO	DESCRIPTION		
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION	
Α	V	$\sqrt{}$	$\sqrt{}$	-	Powered by Adapter with wifi(5G) link	
В	-	-	-	$\sqrt{}$	Powered by Battery with wifi(5G) link	
С	-	-	-	-	Powered by USB with wifi(5G) link	

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE:

The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane.

NOTE: "-"means no effect

RADIATED EMISSION TEST (BELOW 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
Α	802.11a	5500-5720	100 to 144	140	OFDM	6.0

RADIATED EMISSION TEST (ABOVE 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11a		36 to 48	36, 40, 48	OFDM	6.0
А	802.11n/ac (20MHz)	5400 5040	36 to 48	36, 40, 48	OFDM	MCS0
А	802.11n/ac (40MHz)	5180-5240	38 to 46	38, 46	OFDM	MCS0
А	802.11ac/ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
А	802.11n/ac (20MHz)	5000 5000	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n/ac (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
А	802.11ac/ac (80MHz)		58	58	OFDM	MCS0
А	802.11a		100 to 144	100, 116, 140, 144	OFDM	6.0
А	802.11n/ac (20MHz)	FF00 F700	100 to 144	100, 116, 140, 144	OFDM	MCS0
А	802.11n/ac (40MHz)	5500-5720	102 to 142	102, 110, 134,142	OFDM	MCS0
А	802.11ac/ac (80MHz)		106 to 138	106, 122, 138	OFDM	MCS0

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
Α	802.11ac(80MHz)	5500-5720	106 to 138	138	OFDM	MCS0

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE	TESTED CHANNEL		DATA RATE (Mbps)
А	802.11a		36 to 48	36, 40, 48	OFDM	6.0
А	802.11n/ac (20MHz)	5180-5240	36 to 48	36, 40, 48	OFDM	MCS0
А	802.11n/ac (40MHz)	5160-5240	38 to 46	38, 46	OFDM	MCS0
Α	802.11ac/ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
А	802.11n/ac (20MHz)	F260 F220	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n/ac (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
А	802.11ac/ac (80MHz)		58	58	OFDM	MCS0
Α	802.11a		100 to 144	100, 116, 140, 144	OFDM	6.0
А	802.11n/ac (20MHz)	5500 5700	100 to 144	100, 116, 140, 144	OFDM	MCS0
А	802.11n/ac (40MHz)	5500-5720	102 to 142	102, 110, 134,142	OFDM	MCS0
А	802.11ac/ac (80MHz)		106 to 138	106, 122, 138	OFDM	MCS0

ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

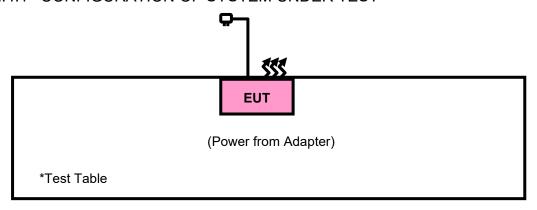
EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
А	802.11a		36 to 48	36, 40, 48	OFDM	6.0
Α	802.11n/ac (20MHz)	5400 5040	36 to 48	36, 40, 48	OFDM	MCS0
Α	802.11n/ac (40MHz)	5180-5240	38 to 46	38, 46	OFDM	MCS0
А	802.11ac/ac (80MHz)		42	42	OFDM	MCS0
А	802.11a		52 to 64	52, 60, 64	OFDM	6.0
Α	802.11n/ac (20MHz)	5260-5320	52 to 64	52, 60, 64	OFDM	MCS0
А	802.11n/ac (40MHz)	5260-5320	54 to 62	54, 62	OFDM	MCS0
А	802.11ac/ac (80MHz)		58	58	OFDM	MCS0
А	802.11a		100 to 144	100, 116, 140, 144	OFDM	6.0
А	802.11n/ac (20MHz)	FE00 F700	100 to 144	100, 116, 140, 144	OFDM	MCS0
А	802.11n/ac (40MHz)	5500-5720	102 to 142	102, 110, 134,142	OFDM	MCS0
А	802.11ac/ac (80MHz)		106 to 138	106, 122, 138	OFDM	MCS0

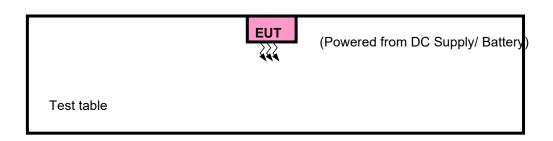
TEST CONDITION						
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY			
RE<1G	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu			
RE≥1G	RE≥1G 23deg. C, 70%RH		Hanwen Xu			
PLC	PLC 25deg. C, 52%RH		Hanwen Xu			
APCM	25deg. C, 60%RH	DC 5V By Adapter	Hanwen Xu			

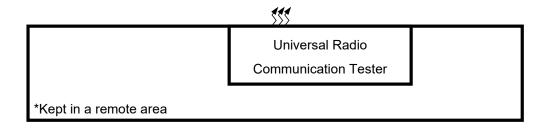
Please Refer to Appendix of this test report.

VERITAS Test Report No.: PSU-QBJ2409140110RF07

2.4 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Adapter	N/A	N/A	N/A	N/A
2	Earphone	N/A	N/A	N/A	N/A


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Unshielded, Detachable, 1.0m;

2.4.1 CONFIGURATION OF SYSTEM UNDER TEST

2.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)
KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
ANSI C63.10-2020

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

3.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.1.2 LIMITS OF UNWANTED EMISSION

	APPLICABLE TO	LIMIT			
RESTRICTED BANDS	789033 D02 General UNII	FIELD STRENGTH AT 3m (dBμV/m)			
BANDO	Test Procedures New Rules v02r01	PK : 74	AV : 54		
	APPLICABLE TO	EIRP LIMIT (dBm/MHz)	EQUIVALENT FIELD STRENGTH AT 3m (dBµV/m)		
OUT OF THE	15.407(b)(1)				
RESTRICTED BANDS	15.407(b)(2)	PK : -27	PK : 68.2		
	15.407(b)(3)				

NOTE:

1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{3} \quad \mu \text{V/m, where P is the eirp (Watts)}.$

3.1.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.21,24	Aug.20,26
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-	D 0 C	HF290-NMNM-	NI/A	N1/A	NI/A
AMI18843A(CABLE)	R&S	7.00M	N/A	N/A	N/A
TMC-	D 9 C	HF290-NMNM-	NI/A	NI/A	NI/A
AMI18843A(CABLE)	R&S	4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25

NOTE:

- 1. The calibration interval of the above test instruments is 12/24 / 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

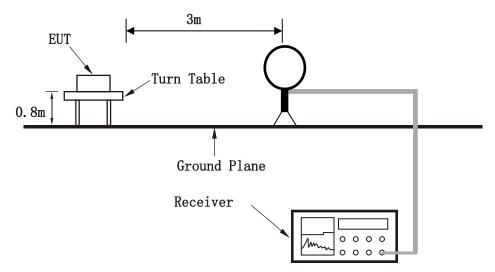
3.1.4 TEST PROCEDURES

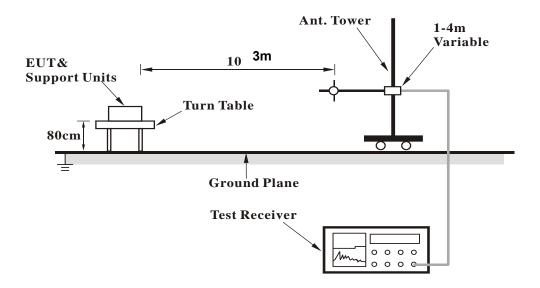
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated, and the worst-case emissions are reported.

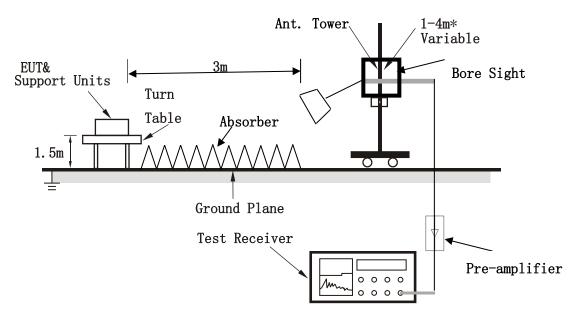
3.1.5 DEVIATION FROM TEST STANDARD


No deviation.


VERITAS Test Report No.: PSU-QBJ2409140110RF07

3.1.6 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

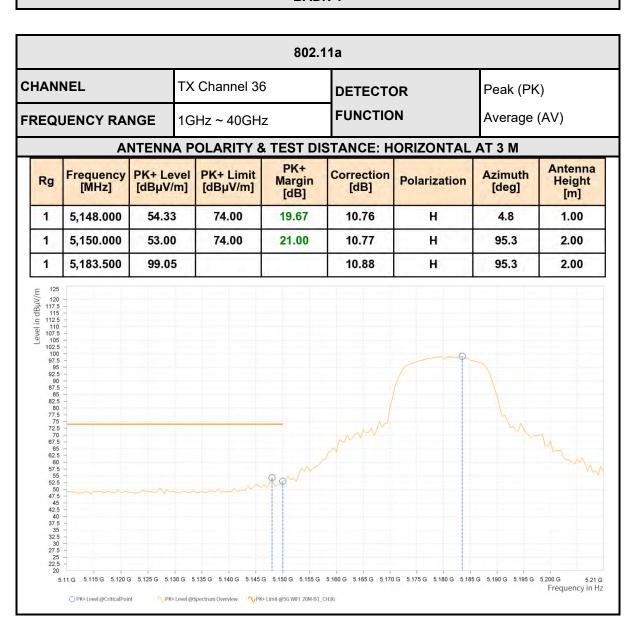
<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.7 EUT OPERATING CONDITION


- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.1.8 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BAND EDGE MEASUREMENT BADN 1

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,148.500	36.10	54.00	17.90	10.76	Н	63.8	1.00
1	5,150.000	36.19	54.00	17.81	10.77	Н	63.8	1.00
1	5,179.000	87.37			10.86	н	63.8	1.00
120 120 120 120 120 120 120 120 120 120				ΦΦ				

√AVG Level @Spectrum Overview
√AVG Limit @5G WIFI 20M-B1_CH36

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.000	60.58	74.00	13.42	10.76	V	334	1.00
1	5,150.000	58.79	74.00	15.21	10.77	٧	267	1.00
1	5,181.500	103.83			10.87	V	334	1.00
102.5 100 97.5 95 92.5 90 87.5								

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	37.51	54.00	16.49	10.77	V	1	1.00
1	5,150.000	37.59	54.00	16.41	10.77	V	1	1.00
1	5,181.500	90.98			10.87	V	239.4	1.00
= 125	11G 5115G 5120					G 5.175 G 5.180 G 5.185		5200 G 5.21

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5180MHz: Fundamental frequency.

IANI	NEL		ΤX	Channel 40)	DETECTO	OR	Peak (PK	()
EQU	JENCY RA			Hz ~ 40GH:			FUNCTION		(AV)
	Al	NTENN	A P	OLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Le	vel m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,144.000	50.26	6	74.00	23.74	10.76	Н	66.2	1.00
2	5,150.000	49.2	5	74.00	24.75	10.77	Н	90.5	2.00
2	5,200.500	98.92	2			10.93	н	355.1	2.00
95 92.55 90 87.5 85 82.5 80 77.5 72.5 70 65 62.5 50 57.5 50 47.5 42.5 42.5 40 37.5 33.5						M			W
30 27.5 25 22.5 20 5			.135 G	5.145 G 5.	155 G 5.165 C		5.185 G 5.195 G	5.205 G 5.21	5 G 5.23 Frequency in F

	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.500	35.57	54.00	18.43	10.77	Н	67.4	1.00
2	5,150.000	35.53	54.00	18.47	10.77	Н	67.4	1.00
2	5,199.000	85.95			10.93	н	67.4	1.00
125 120 127 127 128 129								

√AVG Level @Spectrum Overview
√AVG Limit @5G WIFI 20M-B1_CH40

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,148.000	51.28	74.00	22.72	10.76	V	359	1.00
2	5,150.000	50.02	74.00	23.98	10.77	V	90.5	2.00
2	5,197.000	103.37			10.92	V	337.4	1.00
125 117.5 115.5 110.5 110.5 100.5 100.5 97.5 90.5 90.5 97.5 90.5 97.5 90.5 97.5 90.5 97.5 90.5 97.5 90.5 97.5 90.5 97.5 90.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97			1 ₽⊕^			N		M.,

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.500	36.45	54.00	17.55	10.77	V	358.9	1.00
2	5,150.000	36.42	54.00	17.58	10.77	V	359	1.00
2	5,201.000	91.09			10.93	V	338.4	1.00
125 125 120 120 120 120 120 120 120 120 120 120								

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5200MHz: Fundamental frequency.

	NEL			Channel 48		DETECTO		Peak (PK	,
REQI	UENCY RA			GHz ~ 40GHz POLARITY & TEST DIS		FUNCTIO		Average (AV)	
	A	NTENN	<u> </u>	OLARITY &	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Le [dBµV/	vel m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,145.500	49.80)	74.00	24.20	10.76	Н	359.1	1.00
3	5,150.000	49.49)	74.00	24.51	10.77	Н	4.3	1.00
3	5,242.000	96.89	9			10.90	н	355.1	2.00
Test 125 120 127.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12									P
102.5 100 97.5		•		2000			M. A.		

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,145.500	35.23	54.00	18.77	10.76	Н	66.2	1.00
3	5,150.000	35.21	54.00	18.79	10.77	Н	66.2	1.00
3	5,241.500	85.33			10.90	н	274.2	1.00
125 120 120 117.5 110.5 110.5 110.5 110.5 110.5 100.5			P					

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,147.500	50.20	74.00	23.80	10.76	V	274.2	1.00
3	5,150.000	48.82	74.00	25.18	10.77	V	84.6	2.00
3	5,241.000	103.28			10.90	V	359	1.00
125 120 117.5 117.5 112.5 110.0 107.5 100.9 97.5 92.5 90.8 87.5 80.77.5						M	~	·

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,141.500	35.50	54.00	18.50	10.76	V	342.2	1.00
3	5,150.000	35.39	54.00	18.61	10.77	V	359.1	1.00
3	5,241.500	91.33			10.90	V	1	1.00
125 125 125 125 125 125 125 125 125 125	111 S 5.12 G	5.13 G 5.14 G	5.15 G 5.16 G	5.17 G 5.18	G 5.19 G 5.20	G 521G 522G	5.23 G 5.24	3 525G 52t

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5240MHz: Fundamental frequency.

					802.11n (ZUIVINZ)				
INAH	NEL		TX Cha	innel 36	3	DETECTOR			Peak (PK)	
REQU	JENCY RAI	NGE	1GHz ~ 40GHz			FUNCTIO	FUNCTION		Average (AV)	
	Al	NTENN	A POLA	RITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK+ Le [dBµV/		Limit µV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
1	5,147.500	51.56	5 7	4.00	22.44	10.76	н	338	2.00	
1	5,150.000	49.13	3 7	4.00	24.87	10.77	Н	338	2.00	
1	5,180.000	96.04	1			10.87	Н	110.8	2.00	
95 92,55 90 87,5 88,5 80,77,5 77,5 72,5 65,6 62,5 55,5 50,47,5 40,37,5,5 42,5 37,5 33,5 32,5					R					
30 27.5 25 22.5	=						ommo			
20	.11 G 5.115 G 5.120 C	5.125 G 5.1	30 G 5.135 G 5	140 G 5.145 C	5 5 150 G 5 155 G	5 160 G 5 165 G 5 170	G 5175 G 5180 G 5185	G 5190 G 5195 G	5.200 G 5.21	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	35.57	54.00	18.43	10.77	Н	300.5	1.00
1	5,150.000	35.52	54.00	18.48	10.77	Н	300.5	1.00
1	5,181.000	82.53			10.87	н	355.8	2.00
125 125 125 125 125 125 125 125 125 125								

√AVG Level @Spectrum Overview
√AVG Limit @5G WIFI 20M-B1_CH36

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,145.500	54.61	74.00	19.39	10.76	V	244.3	1.00
1	5,150.000	54.63	74.00	19.37	10.77	V	1	1.00
1	5,178.500	99.46			10.86	V	1	1.00
125 125 125 125 125 125 125 125 125 125				~~~		•		

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	36.62	54.00	17.38	10.77	V	225.2	1.00
1	5,150.000	36.64	54.00	17.36	10.77	V	225.2	1.00
1	5,181.000	87.98			10.87	V	298.1	1.00
120 120 115 12	11 G 5.115 G 5.120 (

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5180MHz: Fundamental frequency.

IAN	NEL		ΤX	Channel 40)	DETECTO	OR	Peak (PK	<u>(</u>)	
REQL	JENCY RAI	NGE	1G	Hz ~ 40GHz	FUNCTION FUNCTION			Average (AV)		
	Al	NTENN	A P	OLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK+ Le		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	5,139.000	49.9	1	74.00	24.09	10.75	н	74.6	1.00	
2	5,150.000	49.09)	74.00	24.91	10.77	н	283	2.00	
2	5,200.000	95.80)			10.93	н	6.2	1.00	
E/N ¹ 48 125 125 126 127 1		-~~		P						
22.5	11 G 5.115 G 5.	125 G 5	135 G	5.145 G 5.	155 G 5,165 G	5.175 G	5.185 G 5.195 G	5.205 G 5.21	5 G 5.23	

₹g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,138.500	35.34	54.00	18.66	10.75	н	269.4	1.00
2	5,150.000	35.19	54.00	18.81	10.77	H	132.4	2.00
2	5,199.000	83.57			10.93	H	355.7	2.00
125 117.5 115.5 110.5 110.5 100.5 100.5 100.5 97.5 98.5 99.5 99.5 99.5 99.5 90.5 77.5 52.5 62.5 62.5 62.5 62.5 52.5 52.5 52								

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,137.000	50.38	74.00	23.62	10.75	V	359	1.00
2	5,150.000	50.27	74.00	23.73	10.77	V	5	1.00
2	5,201.000	100.62			10.93	٧	359	1.00
125 120 120 117.5 117.5 110 117.5 110 117.5 110 107.5 110 107.5 105 105 105 105 105 105 105 105 105 10		Φ						

↑PK+ Level @Spectrum Overview ↑PK+ Limit @5G WIFI 20M-B1_CH40

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
2	5,139.000	35.96	54.00	18.04	10.75	٧	1	1.00		
2	5,150.000	35.89	54.00	18.11	11 10.77 V 1	1 10.77	V	1	1	1.00
2	5,199.000	88.30			10.93	V	310.1	1.00		
120 120 120 120 120 120 120 120 120 120			Φ							

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5200MHz: Fundamental frequency.

IANI	NEL		ТХ	Channel 48	3	DETECTO	OR	Peak (Pk	()		
EQI	JENCY RAI	NGE	1G	Hz ~ 40GHz	<u>7</u>	FUNCTION		Average (AV)			
	Al	NTENN	A P	OLARITY &	TEST DI	ISTANCE: HORIZONTAL AT 3 M					
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
3	5,134.000	50.33	3	74.00	23.67	10.75	н	355.1	2.00		
3	5,150.000	48.75	5	74.00	25.25	10.77	Н	359	2.00		
3	5,242.000	95.8	7			10.90	Н	132.5	2.00		
92.5 90 87.5 85 82.5 80 77.5 70 67.5 65 62.5 60 57.5 50 47.6 42.5 40 47.5			•	~~~~~			M				
35 32.5 30 27.5 25	-										

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,144.000	35.13	54.00	18.87	10.76	Н	355	2.00
3	5,150.000	34.98	54.00	19.02	10.77	Н	311.2	1.00
3	5,239.000	84.25			10.91	н	128.8	2.00
1250 1250 1250 1250 1250 1250 1250 1250			0					

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,142.000	50.23	74.00	23.77	10.76	٧	359.1	1.00
3	5,150.000	49.10	74.00	24.90	10.77	V	307.7	1.00
3	5,242.000	100.90			10.90	٧	307.7	1.00
120 117.5 117.5 110.5 107.5 109.5 100.5 97.5 90.5 90.5 85.8 80.7 77.5 70.7 75.5 52.5 52.5 40.5 47.5 35.5 40.5 47.5 52.5 40.5 47.5 52.5 40.5 47.5 52.5 40.5 47.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 5			•			January Control of the Control of th		

♦ PK+ Level @Spectrum Overview
♦ PK+ Limit @5G WIFI 20M-B1_CH48

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,137.500	35.39	54.00	18.61	10.75	V	233.6	1.00
3	5,150.000	35.31	54.00	18.69	10.77	V	312.5	1.00
3	5,239.000	88.10			10.91	V	233.6	1.00
125 120 120 120 120 120 120 120 120 120 120	11 G 5.12 G	5.13 G 5.14 G	•					

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5240MHz: Fundamental frequency.

AINI	NEL		TX	Channel 38	nel 38 DETECT		OR .	Peak (PK)			
EQI	JENCY RAI	NGE	1GHz ~ 40GHz FUNCTION Average (A				1GHz ~ 40GHz		FUNCTION		(AV)
	Al	NTENN	A PC	OLARITY &	TEST DI	STANCE: H	ORIZONTAL	AT 3 M			
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
1	5,149.500	56.30)	74.00	17.70	10.77	Н	275.4	1.00		
1	5,150.000	57.33	3	74.00	16.67	10.77	Н	275.4	1.00		
1	5,196.000	93.54	1			10.92	н	275.4	1.00		
92.5 90 87.5 85								0			
82.5 80 77.5 75 72.5 70 67.5 65 62.5 60 57.5 55 52.5 54.5 40 37.5 40 37.5 32.5 30											

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	36.84	54.00	17.16	10.77	Н	274.2	1.00
1	5,150.000	36.91	54.00	17.09	10.77	Н	274.2	1.00
1	5,188.000	79.50			10.89	н	274.2	1.00
125 125 125 125 125 125 125 125 125 125		3 5.125 G 5.130 G 5	.135 G 5.140 G 5.145 C	G 5.150 G 5.155 G	5.160 G 5.165 G 5.170	G 5.175 G 5.180 G 5.185	G 5.190 G 5.195 G	5200 G 5.21 Frequency in I

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	59.38	74.00	14.62	10.77	V	4.9	1.00
1	5,150.000	59.71	74.00	14.29	10.77	V	1	1.00
1	5,192.500	97.24			10.91	٧	359.1	1.00
125 120 117.5 117.								

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	38.57	54.00	15.43	10.77	V	1	1.00
1	5,150.000	38.63	54.00	15.37	10.77	V	1	1.00
1	5,192.500	83.44			10.91	V	1	1.00
125 125 125 125 125 125 125 125 125 125								

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5190MHz: Fundamental frequency.

ANI	NEL		TX	Channel 46	6	DETECTO	OR	Peak (Pk	()	
EQL	JENCY RAI			Hz ~ 40GH				Average (AV)		
	ANTENNA POLARITY & TEST DISTANCE: HORIZON							AI3M		
Rg	Frequency [MHz]	PK+ Le [dBµV/	vel m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	5,115.625	49.97	7	74.00	24.03	10.72	Н	1	1.00	
2	5,152.000	48.78	3	74.00	25.22	10.77	Н	5.4	2.00	
2	5,232.625	91.07	7			10.91	Н	355.8	2.00	
100 97.5 95 92.5 90 87.5 85 82.5 82.5 70 67.5 72.5 65 62.5 60 57.5 55 52.5 54.0 42.5 42.5 42.5 32.5 42.5 32.5				······································		~~~				
27.5 25 22.5										

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,143.750	35.10	54.00	18.90	10.76	Н	355.8	2.00
2	5,152.000	35.11	54.00	18.89	10.77	Н	355.8	2.00
2	5,228.125	78.99			10.91	н	245.5	1.00
= 125 125 120 120 120 120 120 120 120 120 120 120	11 G 5.12 G	513 G 514 G	5.15	5.17 G 5.18	G 5.19 G 5.20	G 521G 522G	5.23 G 5.24	G 525G 526

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.375	52.40	74.00	21.60	10.77	V	359	1.00
2	5,152.000	49.52	74.00	24.48	10.77	V	359	1.00
2	5,232.625	98.51			10.91	٧	356.5	1.00
125 117.5 115.5 110.5 110.5 107.5 100.5 10				·····				

↑PK+ Level @Spectrum Overview
↑PK+ Limit @5G WIFI 40M-B1_CH46

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,149.000	35.71	54.00	18.29	10.76	V	276.6	1.00
2	5,152.000	35.61	54.00	18.39	10.77	V	355.4	1.00
2	5,232.250	84.29			10.91	٧	359.1	1.00
120.5 11.5 12.5 12.5 12.5 12.5 12.5 12.5 12			5,15 G 5,16 G	5.17 G 5.18	G 5.19 G 5.20	G 521G 522G	5,23 G 5,24	G 525 G 526

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5230MHz: Fundamental frequency.

INAH	NEL		ТХ	Channel 36	5	DETECTO	OR .	Peak (PK)	
REQU	JENCY RA	NGE	1G	Hz ~ 40GHz		FUNCTION		Average (AV)	
	A	NTENN	A P	OLARITY &	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Le [dBµV/		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,118.000	50.29	9	74.00	23.71	10.72	Н	1	2.00
1	5,150.000	48.77	7	74.00	25.23	10.77	Н	187.4	2.00
1	5,180.000	94.6	1			10.87	Н	101.3	2.00
92.5 90.87.5.85 82.5.5 80.77.5.75 72.5.5 72.5.5 72.5.5 72.5.5 72.5.5 72.5.7 72.	- Α			-		M			^M ~
30 27.5 25 22.5 20									

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.500	35.33	54.00	18.67	10.77	Н	95.3	2.00
1	5,150.000	35.30	54.00	18.70	10.77	н	95.3	2.00
1	5,179.000	82.20			10.86	н	95.3	2.00
120 120 120 120 120 120 120 120 120 120						•		

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,145.500	50.85	74.00	23.15	10.76	V	5.6	1.00
1	5,150.000	49.98	74.00	24.02	10.77	V	197.8	1.00
1	5,179.000	97.34			10.86	٧	359.1	1.00
125 117.5 117.5 112.5 112.5 112.5 100.5 100.5 100.5 95.5 90.5 97.5 90.5 97.5 98.5 92.5 90.5 97.5 98.5 98.5 98.5 98.5 98.5 98.5 98.5 98			~~ A	~	A			A.M.

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,139.000	35.68	54.00	18.32	10.75	V	261	1.00
1	5,150.000	35.89	54.00	18.11	10.77	٧	345.2	1.00
1	5,181.000	85.10			10.87	V	345.2	1.00
120 120 115 115 115 115 115 115 115 115 115 11			•	•		•		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5180MHz: Fundamental frequency.

ANI	NEL		ΤX	Channel 40)	DETECTO	OR	Peak (PK	()
EQl	JENCY RAI			Hz ~ 40GH		FUNCTIO	Average (AV)		
	Al	NTENN	A P	OLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Le [dBµV/	vel m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,117.000	50.20)	74.00	23.80	10.72	Н	185	2.00
2	5,150.000	48.49	9	74.00	25.51	10.77	Н	272.3	2.00
2	5,201.500	93.38	3			10.93	н	262.2	1.00
E 12b 12b 12b 17b 17b 17b 17b 17b 17b 17b 17b 17b 17									
22.5 20	.11 G 5.115 G 5.	125 G 5	.135 G	5.145 G 5.	155 G 5.165 G	5 5.175 G	5.185 G 5.195 G	5.205 G 5.21	5 G 5.23 Frequency in F

₹g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,141.000	35.15	54.00	18.85	10.75	Н	91.7	2.00
2	5,150.000	35.12	54.00	18.88	18.88 10.77	Н	261.1	1.00
2	5,199.000	81.55			10.93	н	261.1	1.00
125 117.5 115.5 110.5 107.5 105.5 102.5 10								

√AVG Level @Spectrum Overview
√AVG Limit @5G WIFI 20M-B1_CH40

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,147.500	49.97	74.00	24.03	10.76	V	359	1.00
2	5,150.000	48.79	74.00	25.21	10.77	V	348.6	1.00
2	5,198.500	97.78	7		10.93	V	359	1.00
125 117.5 115.5 110.5 110.5 100.5 100.5 97.5 98.5 99.5 99.5 99.5 99.5 90.5 77.5 72.5 72.5 52.5 40.5 47.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42								

√PK+ Level @Spectrum Overview

√PK+ Limit @5G WIFI 20M-B1_CH40

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,146.500	35.53	54.00	18.47	10.76	٧	4.9	1.00
2	5,150.000	35.46	54.00	18.54	10.77	V	1	1.00
2	5,201.000	86.55			10.93	V	4.9	1.00
120 120 120 120 120 120 120 120 120 120							7	

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5200MHz: Fundamental frequency.

IANI	NEL		ΤX	Channel 48	3	DETECTO	OR	Peak (PK	()
EQL	JENCY RA	NGE	1G	Hz ~ 40GHz	<u> </u>	FUNCTIO	N	Average (AV)	
	Al	NTENN	<u> A P</u>	OLARITY &	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Le	vel m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,137.000	49.23	3	74.00	24.77	10.75	Н	10.5	2.00
3	5,150.000	47.82	2	74.00	26.18	10.77	Н	92.9	2.00
3	5,234.500	91.58	8			10.91	Н	92.9	2.00
92.5 90 87.5 85 82.5 75 76 72.5 70 67.5 66 62.5 50 47.5 55 55 50 47.5 40 40 37.5 36 40 37.5 36 40 37.5 50 40 40 40 40 40 40 40 40 40 40 40 40 40		Φ							
30 27.5 25 22.5									
20									

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,147.000	35.11	54.00	18.89	10.76	Н	95.4	2.00
3	5,150.000	34.95	54.00	19.05	10.77	Н	86.5	1.00
3	5,238.500	81.52			10.91	н	264.6	1.00
125 125 125 125 125 125 125 125 125 125	11G 5.12G	5.13 G 5.14 G	5,15 G 5,16 G	5.17 G 5.18	G 5.19 G 5.20	G 521G 522G	5,23 G 5,24	G 525G 526

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,144.500	50.53	74.00	23.47	10.76	V	355	2.00
3	5,150.000	48.84	74.00	25.16	10.77	V	10.1	2.00
3	5,239.000	98.52			10.91	V	4.8	1.00
125 120 120 1125 1125 1105 1125 1107.5 100 112		φ						

♦ PK+ Level @Spectrum Overview
♦ PK+ Limit @5G WIFI 20M-B1_CH48

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	5,142.000	35.29	54.00	18.71	10.76	V	14.9	1.00
3	5,150.000	35.18	54.00	18.82	10.77	V	359.1	1.00
3	5,241.500	85.96			10.90	V	14.9	1.00
= 12b / 120.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5		Φ	0					

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5240MHz: Fundamental frequency.

	NEL		TX Channel	38	DETECTO	OR	Peak (Pk	Peak (PK)	
EQI	JENCY RA	NGE	1GHz ~ 40GI	Нz	FUNCTIO	FUNCTION		Average (AV)	
	A	NTENN	A POLARITY	& TEST DI	STANCE: H	ORIZONTAL	AT 3 M	AT 3 M	
Rg	Frequency [MHz]	PK+ Le [dBµV/			Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
1	5,132.500	50.00	74.00	24.00	10.74	Н	359	2.00	
1	5,150.000	52.17	74.00	21.83	10.77	Н	355	2.00	
1	5,193.000	90.03	3		10.91	Н	4.8	1.00	
87.5 85 82.5 80 77.5 75 72.5 70 67.5 65			9						
62.5 60 57.5 55 52.5 50 47.5 45									

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.000	35.85	54.00	18.15	10.76	Н	295.8	1.00
1	5,150.000	35.91	54.00	18.09	10.77	Н	295.8	1.00
1	5,192.000	76.91			10.90	Н	94.9	1.00
125 125 107.	11G 5:115G 5:120(G 5.175 G 5.180 G 5.185		5200 G 5.21

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,141.000	51.72	74.00	22.28	10.75	٧	359	1.00
1	5,150.000	61.84	74.00	12.16	10.77	V	359	1.00
1	5,183.500	95.90			10.88	V	295.7	1.00
125 117.5 117.5 110.5 110.5 107.5 105.5 102.5 10						A		

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.000	37.18	54.00	16.82	10.76	V	299.3	1.00
1	5,150.000	37.50	54.00	16.50	10.77	V	299.3	1.00
1	5,188.500	82.47			10.89	V	299.3	1.00
125 125 120 125 125 125 125 125 125 125 125 125 125	11 G 5.115 G 5.120 G							5.200 G 5.21

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5190MHz: Fundamental frequency.

NEL		ΤX	Channel 46	6	DETECTO	OR .	Peak (PK	()	
JENCY RAI	NGE	1GI	Hz ~ 40GHz	Z	FUNCTIO	FUNCTION		Average (AV)	
Al	NTENN	A P	OLARITY &	TEST DI	STANCE: H	ORIZONTAL	AT 3 M		
Frequency [MHz]	PK+ Le [dBµV/	vel m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
5,133.250	50.10)	74.00	23.90	10.74	Н	359	1.00	
5,150.125	48.20)	74.00	25.80	10.77	н	359	2.00	
5,231.875	91.19	9			10.91	н	4.2	1.00	
	9					m	P		
J	Frequency [MHz] 5,133.250 5,150.125	ANTENN. Frequency [MHz] PK+ Le [dBμV/ 5,133.250 50.10 5,150.125 48.20	ANTENNA Position 1G	ANTENNA POLARITY 8 PK+ Limit [dBμV/m] 5,133.250 50.10 74.00 5,150.125 48.20 74.00	ANTENNA POLARITY & TEST DISTRIBUTION PK+ Level [dBμV/m] PK+ Limit [dBμV/m] [dB] PK+ Limit [dBμV/m] PK+ Margin [dB] PK+ Limit [dBμV/m] PK+ Limit [dBμ	ANTENNA POLARITY & TEST DISTANCE: H Frequency [MHz] PK+ Level [dBμV/m] [dB] PK+ Margin [dB] 5,133.250 50.10 74.00 23.90 10.74 5,150.125 48.20 74.00 25.80 10.77 5,231.875 91.19 10.91	IGHz ~ 40GHz FUNCTION	ENCY RANGE 1GHz ~ 40GHz FUNCTION Average	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,146.750	35.11	54.00	18.89	10.76	Н	297	1.00
2	5,150.125	35.07	54.00	18.93	10.77	н	297	1.00
2	5,227.750	77.35			10.91	н	5	1.00
125 125 117.5 12 117.5 12 117.5 12 117.5 12 117.5 117.	111 S 5.12 G	513G 514G	5.15 G 5.16 G	5.17 G 5.18	G 5.19 G 5.20	G 521G 522G	5,23 G 5,24	G 525 G 5.26

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	5,141.125	50.20	74.00	23.80	10.75	V	358.7	1.00
2	5,150.125	48.78	74.00	25.22	10.77	V	97.2	1.00
2	5,234.125	96.67			10.91	٧	359.1	1.00
125 117.0 117.5 117.5 117.5 117.5 100.5 10					Manda			

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
2	5,144.125	35.45	54.00	18.55	10.76	V	359	1.00		
2	5,150.125	35.36	54.00	18.64	10.77	V	359	1.00		
2	5,232.625	5,232.625	5,232.625	82.97			10.91	٧	297	1.00
120 120 1115 1115 1115 1115 1115 1115 11	11 G 5.12 G	5.13 G 5.14 G	5.15 G 5.16 G	5.17 G 5.18 T	G 5.19 G 5.20	G 521G 522G	5,23 G 5,24	G 5.25 G 5.21		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5230MHz: Fundamental frequency.

ANI	NEL		TX (Channel 42		DETECTO	R	Peak (PK)	
EQL	JENCY RAI	NGE	1GF	lz ~ 40GHz	FUNCTION			Average (AV)	
	Al	NTENI	NA P	OLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,112.975	50.7	79	74.00	23.21	10.72	Н	0.9	2.00
1	5,150.000	48.4	14	74.00	25.56	10.77	Н	358.9	1.00
1	5,192.450	87.0	62			10.91	Н	5.6	1.00
97.5 95.5 90.87.5 85.5 82.5 77.5 70.5 67.5 65.5 62.5 50.5 75.5 50.5 45.4 40.37.5 32.5 32.5	- R- N- 1		~~~~ <u>~</u>) }			www.		
30 27.5 25 22.5 20 5.	.11 G 5.12 G 5.1	3 G 5.14	G 5.1	5 G 5.16 G 5.17	G 5.18 G 5.19	9 G 5.20 G 5.21 G	5.22 G 5.23 G 5	5.24 G 5.25 G 5.	26 G 5.27 G 5.28 Frequency in I

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.100	35.96	54.00	18.04	10.77	Н	65	1.00
1	5,150.000	36.00	54.00	18.00	10.77	Н	65	1.00
1	5,187.775	77.32			10.89	н	65	1.00
125 125 120 120 120 120 120 120 120 120 120 120		•						

√AVG Level @Spectrum Overview
√AVG Limit @5G WiFI 80M-B1_CH42

O AVG Level @CriticalPoint

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,146.550	55.44	74.00	18.56	10.76	V	1	1.00
1	5,150.000	51.67	74.00	22.33	10.77	٧	1	1.00
1	5,187.775	94.11			10.89	٧	1	1.00
125 125 120 120 120 120 120 120 120 120 120 120		······································	ymmulum			Mumm	M.M.M	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	5,149.100	37.35	54.00	16.65	10.77	V	359	1.00
1	5,150.000	37.22	54.00	16.78	10.77	V	359	1.00
1	5,192.025	82.12			10.90	٧	328	1.00
120 120 115 117 120 11								

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5210MHz: Fundamental frequency.

Band 2

IANI	NEL		TX Ch	annel 52	2	DETECTOR		Peak (PK)		
EQL	JENCY RAI	NGE	1GHz	GHz ~ 40GHz		FUNCTIO	FUNCTION		Average (AV)	
	Al	NTENN	A POL	ARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK+ Le [dBµV/	vel PK m] [di	+ Limit BµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
4	5,258.000	99.60)			10.91	н	66.2	1.00	
4	5,350.500	49.68	3	74.00	24.32	11.10	н	355.8	2.00	
4	5,386.000	50.67		74.00	23.33	11.13	Н	153.9	2.00	
92.5 90.87.5 85.82.5 80.77.5 72.5 72.5 65.6 62.5 60.5 57.5 50.47.5 45.4 42.5		Mmm			M.M.M.	rm _m			·····P····	
40 37.5 35 32.5 30 27.5 25 22.5 20										

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,259.000	86.27			10.91	Н	67.4	1.00
4	5,350.000	35.66	54.00	18.34 18.16	18.34 11.10	H	277.8	1.00
4	5,364.000	35.84	54.00		11.11		207.3	1.00
E 125 12 12 12 12 12 12 12 12 12 12 12 12 12	226 5216 5226	5 523G 524G :	5.25 G 5.26 G 5.27 G	528 G 529 G	5.30 G 5.31 G 5.32	G 533 G 534 G 535	G 536G 5.37G	5.38 G 5.39 G 5.4

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,259.500	103.75			10.91	٧	359	1.00
4	5,350.000	49.90	74.00	24.10	11.10	V	4.9	1.00
4	5,356.000	51.27	74.00	22.73	11.11	V	359	1.00
102.5 100 97.5 95.5 92.5 85 82.5 82.5 70.6 67.5 72.6 65.6 65.6 60.5 77.5 55.5 50.0 47.5 40.0 47.5 40.0 47.5 40.0 47.5 40.0 47.5 40.0 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5	mhony			-M. M. M	→ M	M	Φ	

O PK+ Level @CriticalPoint

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,259.000	91.28			10.91	V	359.1	1.00
4	5,350.000 5,366.000	36.82 36.79	54.00 54.00	17.18 17.21	11.10 11.12	v v	4.9 344.5	1.00 1.00

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 5260MHz: Fundamental frequency.