

FCC TEST REPORT

(PART 22)

Applicant:	KYOCERA Corporation		
Address:	Yokohama Office 2-1-1 Kagahara,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan		
Manufacturer or Supplier:	KYOCERA Corporation		
Address:	Yokohama Office 2-1-1 Kagaha	ra,Tsuzuki-ku Yokohama-shi,Kanagawa,Japan	
Product:	Mobile Phone		
Brand Name:	KYOCERA		
Model Name:	EB1217		
FCC ID	JOYEB1217		
Date of tests	Oct. 21, 2024~Dec. 05, 2024		
The tests have be	en carried out according to the re	equirements of the following standard:	
 ✓ FCC PART 22, Subpart H ✓ ANSI/TIA/EIA-603-D ✓ ANSI/TIA/EIA-603-E ✓ ANSI C63.26-2015 			
CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement			
Prepared by Hanwen Xu Engineer / Mobile Department Approved by Peibo Sun Manager / Mobile Department			
Lu Vlannen		Simpei bo	
Date:Dec. 05, 2024		Date:Dec. 05, 2024	

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/nome/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

RELEASE CONTROL RECORD		4
SUMMARY OF TEST RESULT:	S	5
	RTAINTY	
	UMENTS	
	OWLINIO	
GENERAL INFORMATION	ON OF FUT	
2.1 GENERAL DESCRIPTION	ON OF EUT	9
	SYSTEM UNDER TEST	
	PORT UNITS	
2.4 TEST ITEM AND TEST	CONFIGURATION	
2.5 EUT OPERATING CON	DITIONS	15
	ON OF APPLIED STANDARDS	
	SIV OF ALL PLIED OF AND AND OF THE SINGLE SI	
O LEGIT IT POWED MEA	SUREMENT	10
	T POWER MEASUREMENT	
3.1.2 TEST PROCEDUR	ES	16
3.1.3 TEST SETUP		17
3.1.4 TEST RESULTS		17
	Y MEASUREMENT	
3.2.1 LIMITS OF FREQU	ENCY STABILITY MEASUREMENT	10
	EE.	
3.2.4 TEST RESULTS		19
3.3 OCCUPIED BANDWID	TH MEASUREMENT	20
3.3.1 LIMITS OF OCCUP	PIED BANDWIDTH MEASUREMENT	20
	ES	
	EMENT	
	EDGE MEASUREMENT	
3.4.3 TEST PROCEDUR	ES	22
3.4.4 TEST RESULTS		22
	US EMISSIONS	
	ICTED SPURIOUS EMISSIONS MEASUREMENT	
	E	
3.6 RADIATED EMISSION I	MEASUREMENT	24
3.6.1 LIMITS OF RADIAT	ED EMISSION MEASUREMENT	24
	ES	
	TEST STANDARD	
	TEST STANDARD	
	ATIO	
3.7.1 LIMITS OF PEAK T	O AVERAGE RATIO MEASUREMENT	47
3.7.2 TEST SETUP		47
-	ES	
	T CONFIGURATION	
	ING LABORATORIES	
	S FOR ENGINEERING CHANGES TO THE EUT BY	
7 APPENDIX:		52
GSM 850		52
	CDF)	
•		
	UPIED BANDWIDTH	
Huarui 7layers High Technology	Tower N, Innovation Center, 88 Zuyi Road, High-tech District,	Tel: +86 (0557)
(Suzhou) Co., Ltd.	Suzhou City, Anhui Province	368 1008

ENTIAS .	
TEST GRAPHS	59
BAND EDGE	68
TEST RESULT	68
TEST GRAPHS	
CONDUCTED SPURIOUS EMISSION	
TEST RESULT	
TEST GRAPHS	
FREQUENCY STABILITY	
TEST RESULT	
WCMDA BAND5	
PEAK-TO-AVERAGE RATIO	
TEST RESULT	
TEST GRAPHS	
26DB BANDWIDTH AND OCCUPIED BANDWIDTH	
TEST RESULT	
TEST GRAPHS	
BAND EDGE	
TEST RESULT	
TEST GRAPHS	
CONDUCTED SPURIOUS EMISSION	
TEST RESULT	
TEST GRAPHS	
FREQUENCY STABILITY	
TEST RESULT	91

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED	
PSU-QBJ2409140110RF01	Original release	Dec. 05, 2024	

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 22 & Part 2				
STANDARD SECTION	TEST TYPE	RESULT	Test lab*	
§2.1046	Coduncted Output Power	Compliance	А	
§22.913 (a)(5)	Equivalent Isotropic Radiated Power	Compliance	Α	
§2.1055 §22.355	Frequency Stability	Compliance	А	
§2.1049	Occupied Bandwidth	Compliance	А	
§22.913 (d)	Peak to average ratio*	Compliance	А	
§2.1051 §22.917(a)	Band Edge Measurements	Compliance	А	
§2.1051 §22.917(a)	Conducted Spurious Emissions	Compliance	А	
§2.1053 §22.917(a)	Radiated Spurious Emissions	Compliance	А	

^{*} Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01.

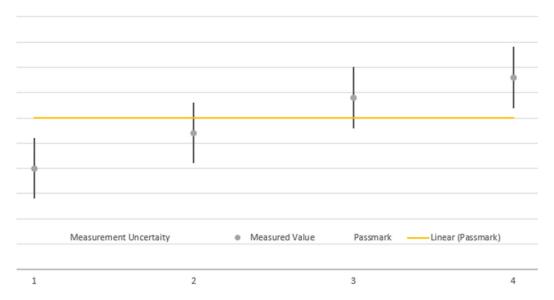
*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province


Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
Maximum Peak Output Power	±2.06dB
Frequency Stability	±76.97Hz
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Band Edge Measurements	±4.70dB
Peak to average ratio	±0.76dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

1.2 TEST SITE AND INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26
Pre-Amplifier	R&S	SCU08F1	101028	Sep.15,24	Sep.14,26
Vector Signal Generator	R&S	SMBV100B	102176	Mar.29,24	Mar.28,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ- EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ- EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESR26	101734	Mar.28,24	Mar.27,26
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS- LINDGREN	3117	227836	Aug.21,24	Aug.20,26
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	EMC32	EMC32	N/A	N/A	N/A
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	Sep.30,24	Sep.29,26
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	J12J103539-00-1	SEP-03-20- 069	Apr.27,24	Apr.26,25
CABLE	R&S	J12J103539-00-1	SEP-03-20- 070	Apr.27,24	Apr.26,25
Temperature Chamber	votsch	VT4002	5856607810 0050	May.30,24	May.29,26

NOTE:

1. The calibration interval of the above test instruments is 12 /24/ 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

- 2. The test was performed in 3m Semi-anechoic Chamber and RF Oven Room.
- 3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Mobile Phone		
BRAND NAME*	KYOCERA		
MODEL NAME*	EB1217		
NOMINAL VOLTAGE*	3.91Vdc (Battery)		
MODULATION TYPE	GSM/GPRS/EDGE	GMSK,8PSK	
MODULATION TIPE	WCDMA	QPSK, 16QAM	
FREQUENCY RANGE	GSM/GPRS/EDGE	824.2MHz ~ 848.8MHz	
FREQUENCT RANGE	WCDMA	826.4MHz ~ 846.6MHz	
	GSM/GPRS850	477.53mW	
MAX. ERP POWER	EDGE850	150.31mW	
	WCDMA B5	70.47mW	
EMICOLONI	GSM /GPRS850	247KGXW	
EMISSION DESIGNATORGOGN	EDGE850	250KG7W	
	WCDMA B5	4M15F9W	
ANTENNA GAIN*	GSM850	-3.3dBi	
ANTENNA GAIN	WCDMA V	-3.3dBi	
ANTENNA TYPE*	IFA Antenna		
HW VERSION*	DVT2		
SW VERSION*	0.330SR		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED*	N/A		
EXTREME TEMPERATURE*	-20°C ~ 60°C		
EXTREME VOLTAGE*	3.4V~ 4.48V		

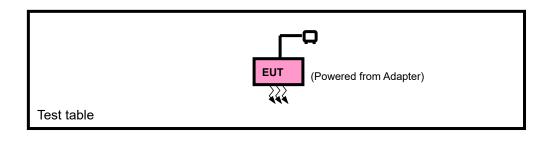
NOTE:

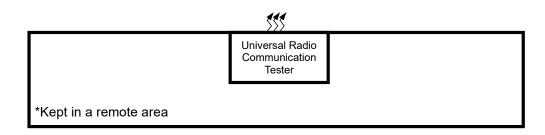
- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

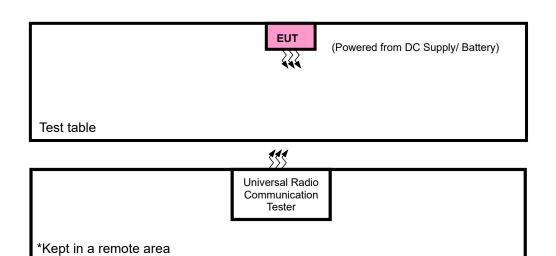
3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX FUNCTION
GSM/GPRS/EDGE	1TX/1RX
WCDMA	1TX/1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in the test report.
- 5. The detail differences from the Main manufacturer and Secondary manufacturer are as listed below:


Description	Main manufacturer	Secondary manufacturer
LCM	ShenZhen LIDE Communications Ltd.	Wannian Lianchuang Display Technology Co. , Ltd.
Audio jack FPC	Shenzhen Xinyu Tengyue Electronics Co.,Ltd.	Jiangxi Zhiboxin Technology Limited Company
MIC	AAC	Gettop
Memory	Samsung	Biwin
Radio frequency switch_DFN-6_0.4-4.2 GHz_SPDT_GPIO_patch	Innowave	Champhill


The above materials have only manufacturer differences, and the functions are the same. Other than these changes, other RF performance is the same and does not affect the RF results.


6. List of Accessory:

ACCESSORIES	BRAND	MODEL	SPECIFICATION
CPU	MTK	MT6835T	N/A
eMMC 1 (=ROM 1)	samsung	KM5P9001DM- B424	N/A
eMMC 2 (=ROM 2)	biwin	BW2A2KZC02- 64G	N/A
RAM 1	samsun	KM5P9001DM- B424	N/A
RAM 2	biwin	BW2A2KZC02- 64G	N/A
Battery	KYOCERA	5AAXBT152	Capacity: 3.91Vdc, 4400mAh/17.3Wh

FOR RADIATION EMISSION

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Adapter	N/A	N/A	N/A	N/A
2	Earphone	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Unshielded, Detachable, 1.0m;

2.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case in ERP and radiated emission was found when positioned on X-plane for GSM /EDGE, Y-plane for WCDMA. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + Adapter with GSM or WCDMA link
В	EUT + DC Supply/Battery with GSM or WCDMA link

GSM MODE

OCINI MODE				
EUT CONFIGURE MODE	TEST ITEM	Available Channel	Tested Channel	MODE
Α	ERP	128 to 251	128, 189, 251	GSM,EDGE
В	FREQUENCY STABILITY	128 to 251	128, 189, 251	GSM,EDGE
Α	OCCUPIED BANDWIDTH	128 to 251	128, 189, 251	GSM,EDGE
Α	BAND EDGE	128 to 251	128, 251	GSM,EDGE
Α	CONDUCTED EMISSION	128 to 251	128, 189, 251	GSM,EDGE
Α	RADIATED EMISSION	128 to 251	128, 189, 251	GSM,EDGE
Α	PEAK TO AVERAGE RATIO	128 to 251	128, 189, 251	GSM,EDGE

WCDMA MODE

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
Α	ERP	4132 to 4233	4132, 4182, 4233	WCDMA
В	FREQUENCY STABILITY	4132 to 4233	4132, 4182, 4233	WCDMA
Α	OCCUPIED BANDWIDTH	4132 to 4233	4132, 4182, 4233	WCDMA
Α	BAND EDGE	4132 to 4233	4132, 4233	WCDMA
Α	CONDCUDETED EMISSION	4132 to 4233	4132, 4182, 4233	WCDMA
Α	RADIATED EMISSION	4132 to 4233	4132, 4182, 4233	WCDMA
Α	PEAK TO AVERAGE RATIO	4132 to 4233	4132, 4182, 4233	WCDMA

TEST CONDITION						
TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY			
ERP	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu			
FREQUENCY STABILITY	23deg. C, 70%RH	DC 3.4V/ 3.91V/ 4.48V By Battery	Hanwen Xu			
OCCUPIED BANDWIDTH	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu			
BAND EDGE	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu			
CONDCUDETED EMISSION	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu			
RADIATED EMISSION	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu			
PEAK TO AVERAGE RATIO	23deg. C, 70%RH	DC 5V By Adapter	Hanwen Xu			

2.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 22 KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI/TIA/EIA-603-D ANSI/TIA/EIA-603-E ANSI C63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

3 TEST TYPES AND RESULTS

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile / Portable station are limited to 7 watts e.r.p.

3.1.2 TEST PROCEDURES

EIRP / ERP MEASUREMENT:

Per KDB 971168 D01 Power Meas License Digital Systems v03r01 or subclause 5.2.5.5 of ANSI C63.26-2015, the relevant equation for determing the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP or EIRP = PMeas + GT - LC

Where:

ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively

(expressed in the same units as P_{Meas}, typically dBW or dBm);

P_{Meas} = measured transmitter output power or PSD, in dBm or dBW;

 G_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

Lc = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

CONDUCTED POWER MEASUREMENT:

The EUT was set up for the maximum power with WCDMA link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP

EIRP / ERP Measurement:

CONDUCTED POWER MEASUREMENT:

COMMUNICATION	EUT
SIMULATOR	

3.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm):

Band	GSM850(ANT0)				
Channel	128	189	251		
Frequency	824.2	836.4	848.8		
GSM	32.21	32.22	32.09		
GPRS 1Tx Slot	32.24	32.21	32.11		
GPRS 2Tx Slot	31.69	31.68	31.60		
GPRS 3Tx Slot	30.40	30.05	29.94		
GPRS 4Tx Slot	28.90	28.88	28.78		
EDGE 1Tx Slot	27.21	27.22	27.02		
EDGE 2Tx Slot	26.10	26.17	25.65		
EDGE 3Tx Slot	23.98	24.01	23.76		
EDGE 4Tx Slot	22.83	22.72	22.55		

Band		WCDMA V(ANT0)	
TX Channel	4132	4182	4233
Rx Channel	4357	4407	4458
Frequency	826.4	836.4	846.6
RMC 12.2K	23.92	23.93	23.83
HSDPA Subtest-1	22.93	22.97	22.91
HSDPA Subtest-2	22.89	22.93	22.95
HSDPA Subtest-3	22.56	22.59	22.51
HSDPA Subtest-4	22.40	22.45	22.36
DC-HSDPA Subtest-1	22.90	22.89	22.85
DC-HSDPA Subtest-2	22.82	22.88	22.87
DC-HSDPA Subtest-3	22.46	22.48	22.40
DC-HSDPA Subtest-4	22.27	22.40	22.26
HSUPA Subtest-1	21.36	21.38	21.32
HSUPA Subtest-2	20.90	20.91	20.84
HSUPA Subtest-3	20.91	20.90	20.83
HSUPA Subtest-4	20.40	20.41	20.34
HSUPA Subtest-5	21.85	21.87	21.79
HSPA+ Subtest-1	22.49	22.53	22.41

ERP POWER (dBm)

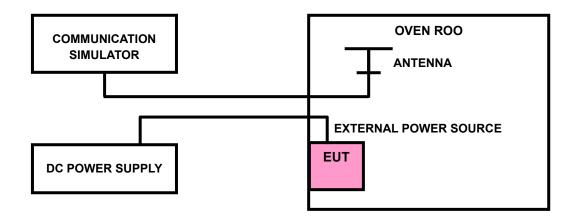
GSM 850						
Channel Frequency (MHz) Conducted Power (dBm) G _T -L _C (dBm) ERP (mW) (w)						
128	824.2	32.24	-3.3	26.79	477.53	7
189	836.4	32.22	-3.3	26.77	475.34	7
251	848.8	32.11	-3.3	26.66	463.45	7

EDGE 850							
Channel Frequency (MHz) Conducted Power (dBm) G _T -L _C (dBm) ERP (mW) (w)							
128	824.2	27.21	-3.3	21.76	149.97	7	
189	836.4	27.22	-3.3	21.77	150.31	7	
251	848.8	27.02	-3.3	21.57	143.55	7	

WCDMA B5							
Channel Frequency (MHz) Conducted Power (dBm) G _T -L _C (dBm) ERP (mW) (W)						Limit (W)	
4132	826.4	23.92	-3.3	18.47	70.31	7	
4182	836.4	23.93	-3.3	18.48	70.47	7	
4233	846.6	23.83	-3.3	18.38	68.87	7	

REMARKS: ERP Output Power (dBm) = EIRP (dBm) -2.15(dB).

3.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT


1.5 ppm is for base and fixed station. 2.5 ppm is for mobile station.

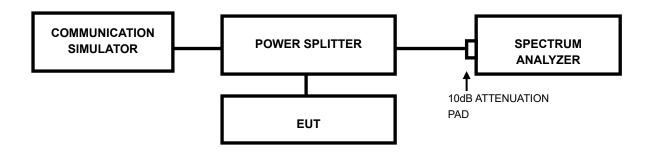
3.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

3.2.3 TEST SETUP

3.2.4 TEST RESULTS


Please Refer to Appendix of this test report.

Note: VL = Low voltage(3.4V); VN/NV = Normal voltage(3.91V); VH = High voltage(4.48V); NT = Normal temperature (25° C)

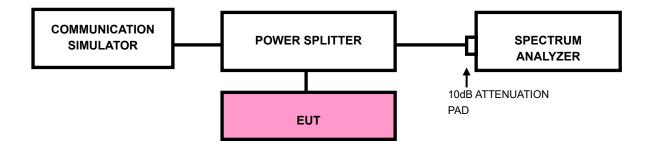
3.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 %of the total mean power of a given emission.

3.3.2 TEST SETUP

3.3.3 TEST PROCEDURES

- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.


3.3.4 TEST RESULTS

Please Refer to Appendix of this test report.

3.4.1 LIMITS OF BAND EDGE MEASUREMENT

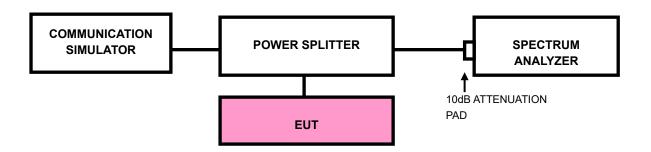
Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

3.4.2 TEST SETUP

- a) All measurements were done at low and high operational frequency range
- b) Connect the transmitter to the spectrum analyzer via coaxial cable while ensuring proper impedance matching.
- c) Tune the analyzer to the nominal center frequency of the emission bandwidth (EBW)
- d) .Set the resolution bandwidth (RBW) ≥ 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- e) Beyond the 1MHz band from the band edge, RBW=1MHz was used.
- f) Set the video bandwidth (VBW) to $\ge 3 \times RBW$.
- g) Select the average power (RMS) display detector.
- h) Set the number of measurement points to ≥ 1001 .
- i) Use auto-coupled sweep time.
- j) Perform the measurement over an interval of time when the transmission is continuous and at its maximum power level.
- k) The RF fundamental frequency should be excluded against the limit line in the operating frequency band and use RBW is 10KHz or 100KHz.
- I) Record the max trace plot into the test report.

3.4.4 TEST RESULTS

Please Refer to Appendix of this test report.


3.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to –13dBm.

3.5.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9kHz up to a frequency including its 10 th harmonic. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

3.5.3 TEST SETUP

3.5.4 TEST RESULTS

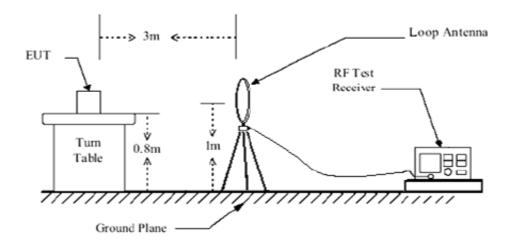
NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

Please Refer to Appendix of this test report.

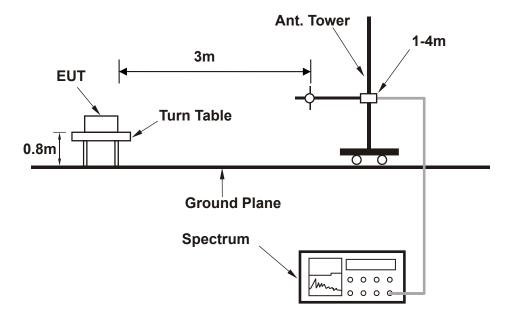
3.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

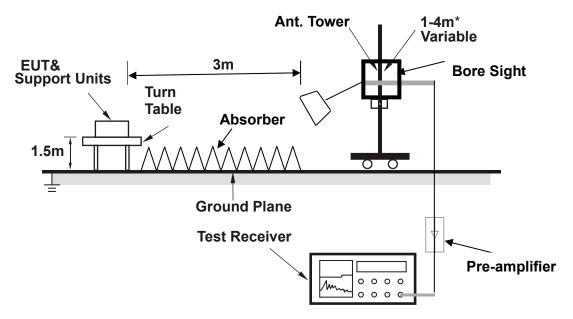
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

3.6.2 TEST PROCEDURES


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole,
 E.R.P power = E.I.P.R power 2.15dBi.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.


3.6.3 DEVIATION FROM TEST STANDARD


No deviation

< Frequency Range below 30MHz >

< Frequency Range 30MHz~1GHz >

Note: Above 1G is a directional antenna

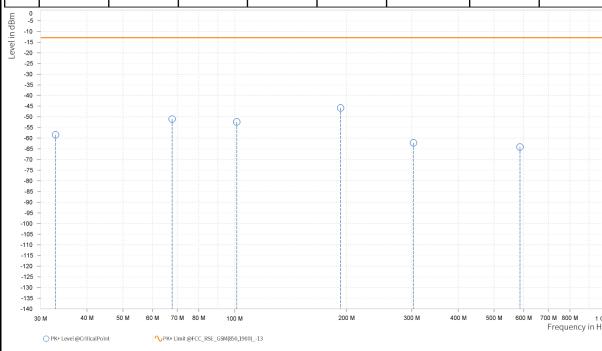
Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA

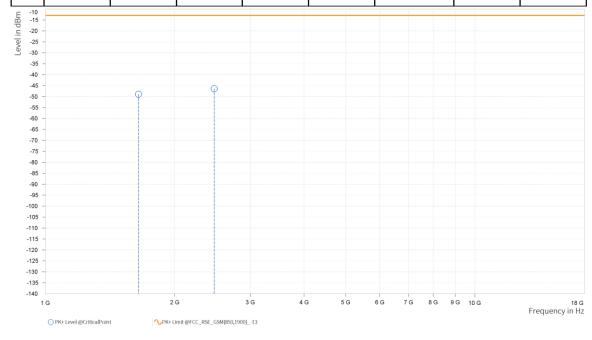
EDGE 850							
MODE	TX channel 128	FREQUENCY RANGE	Below 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ				
TESTED BY	Hanwen Xu						


	Α	NTENNA P	OLARITY 8	K TEST DIS	TANCE: HO	RIZONTAL AT	Г 3 М	
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenn Heigh [m]
1	38.245	-58.64	-13.00	45.64	-1.64	Н	170.2	1.00
1	55.705	-56.02	-13.00	43.02	-7.60	Н	278.2	2.00
1	93.535	-65.04	-13.00	52.04	-13.03	Н	256.2	1.00
1	191.020	-58.52	-13.00	45.52	-5.62	Н	278.2	2.00
1	397.145	-53.07	-13.00	40.07	-0.21	Н	278.2	2.00
1	569.320	-56.11	-13.00	43.11	-1.52	Н	19.6	2.00
-3540455055606570859095100115120	φ	φ	φ		φ	Φ	φ	
-125 - -130 - -135 -								
-140								

MODE	TX channel 128	FREQUENCY RANGE	Below 1000MHz	
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ	
TESTED BY	Hanwen Xu			

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	32.910	-58.44	-13.00	45.44	-8.13	V	84.2	1.00
1	67.830	-51.07	-13.00	38.07	-9.34	٧	278.3	2.00
1	101.295	-52.43	-13.00	39.43	1.99	V	1	1.00
1	192.960	-45.82	-13.00	32.82	-8.10	V	17.8	2.00
1	303.055	-62.20	-13.00	49.20	-2.21	V	17.8	2.00
1	586.780	-64.16	-13.00	51.16	1.29	V	84.2	1.00

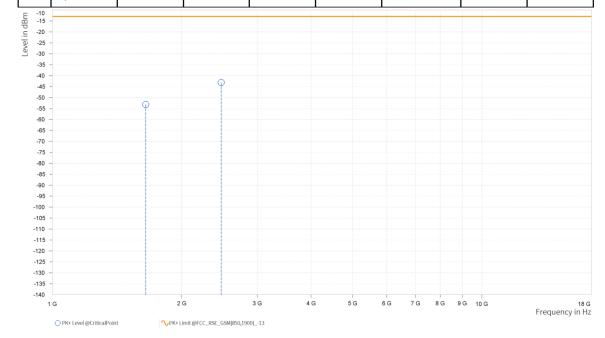

ABOVE 1GHz DATA

Note: For higher frequency, the emission is too low to be detected.

GSM 850							
MODE	TX channel 128	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ				
TESTED BY	Hanwen Xu						

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

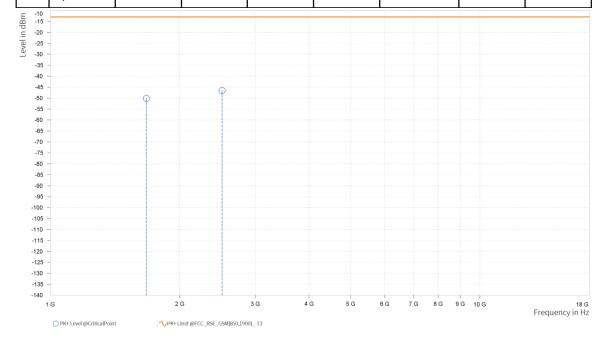
	Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
	2	1,648.000	-48.93	-13.00	35.93	15.90	Н	88.8	1.00
ſ	3	2,472.600	-46.35	-13.00	33.35	20.69	Н	161.8	1.00



MODE	TX channel 128	FREQUENCY RANGE	Above 1000MHz	
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ	
TESTED BY	Hanwen Xu			

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

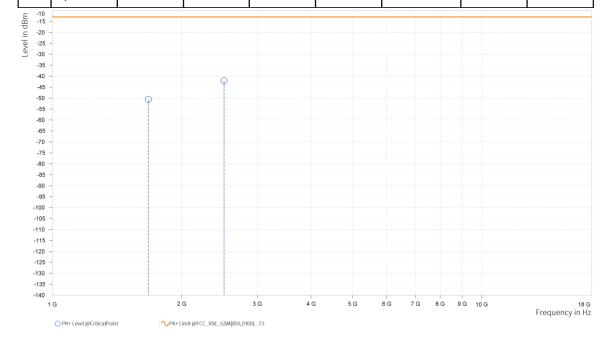
F	}g	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
	2	1,648.400	-53.16	-13.00	40.16	15.51	V	1.7	2.00
	3	2,472.600	-43.08	-13.00	30.08	20.95	V	1	1.00



MODE	TX channel 189	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

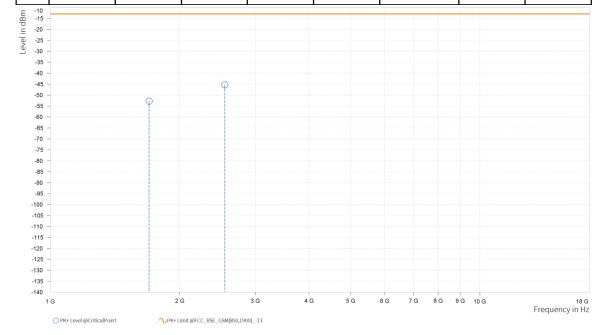
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,672.800	-50.16	-13.00	37.16	16.68	Н	1.9	2.00
3	2,509.200	-46.53	-13.00	33.53	21.00	Н	0.9	2.00



MODE	TX channel 189	FREQUENCY RANGE	Above 1000MHz	
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ	
TESTED BY	Hanwen Xu			

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

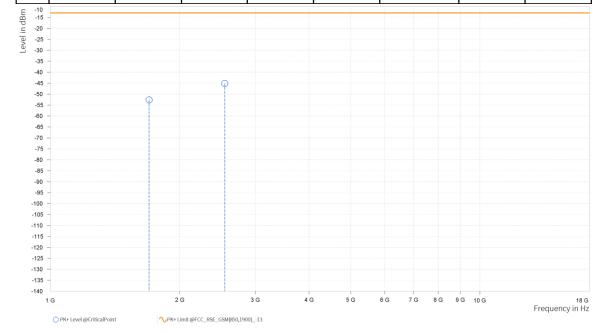
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,672.800	-50.61	-13.00	37.61	15.57	V	272.2	2.00
3	2,509.200	-42.10	-13.00	29.10	21.61	V	1	1.00



MODE	TX channel 251	channel 251 FREQUENCY RANGE	
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

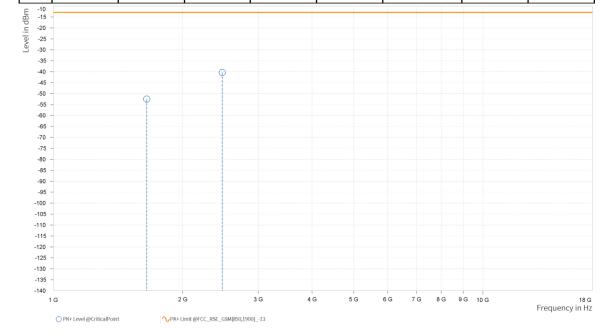
	Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
	2	1,697.600	-52.75	-13.00	39.75	17.07	Н	359	2.00
Γ	3	2,546.400	-45.33	-13.00	32.33	20.95	Н	112	2.00



MODE	TX channel 251	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	123ded C: 70%RH		120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

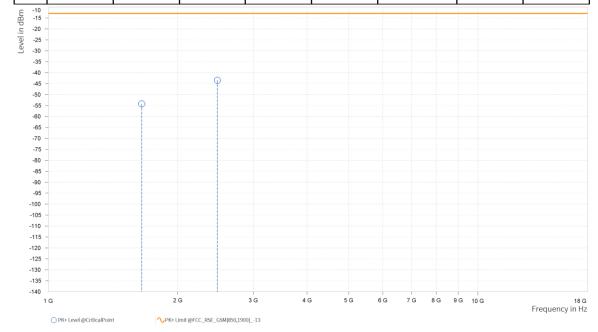
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,697.600	-52.61	-13.00	39.61	16.29	V	1	2.00
3	2,546.400	-45.14	-13.00	32.14	21.56	V	359	2.00



EDGE 850							
MODE	TX channel 128	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ				
TESTED BY	Hanwen Xu						

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

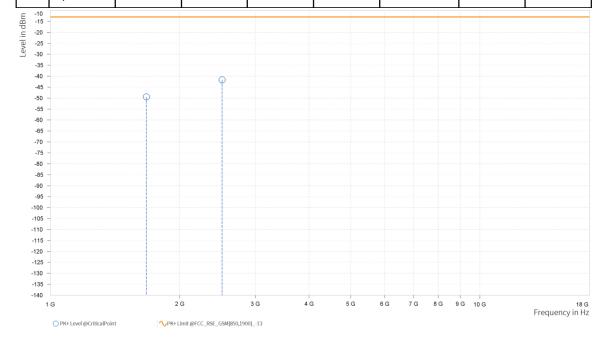
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,648.400	-52.49	-13.00	39.49	15.93	Н	358.2	1.00
3	2,472.500	-40.32	-13.00	27.32	20.69	Н	359	1.00



MODE	TX channel 128	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

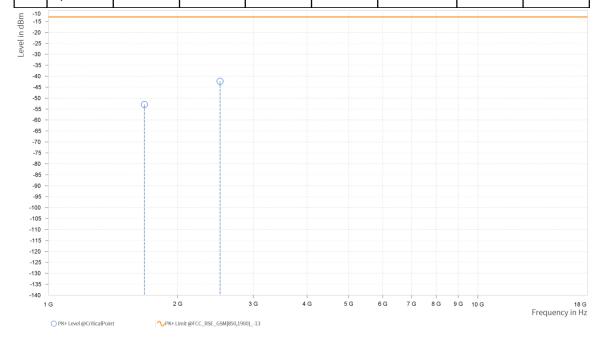
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,648.400	-54.23	-13.00	41.23	15.51	V	272.2	2.00
3	2,473.000	-43.48	-13.00	30.48	20.95	V	199.4	2.00



MODE	TX channel 189	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

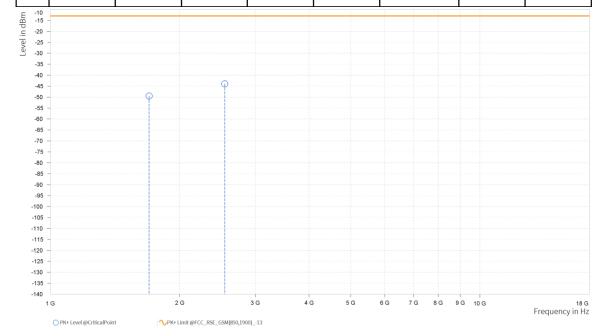
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,672.800	-49.47	-13.00	36.47	16.68	Н	359	2.00
3	2,509.000	-41.70	-13.00	28.70	21.00	Н	1	1.00



MODE	TX channel 189	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

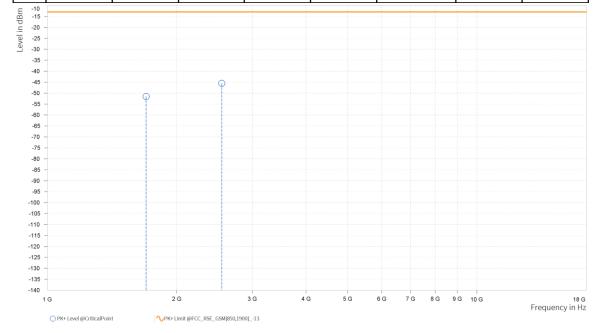
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,672.800	-52.92	-13.00	39.92	15.57	V	358.5	1.00
3	2,509.000	-42.29	-13.00	29.29	21.61	V	197	2.00



MODE	TX channel 251	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

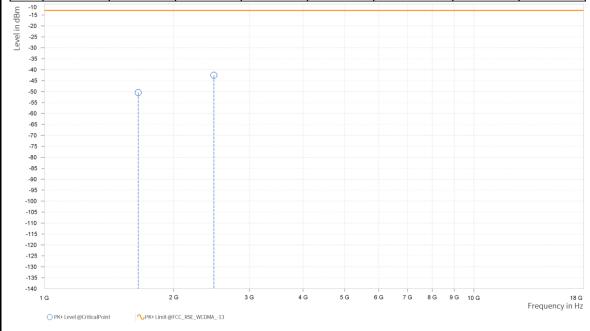
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,697.600	-49.54	-13.00	36.54	17.07	Н	1	1.00
3	2,546.500	-43.90	-13.00	30.90	20.94	Н	359.1	1.00



MODE	TX channel 251	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

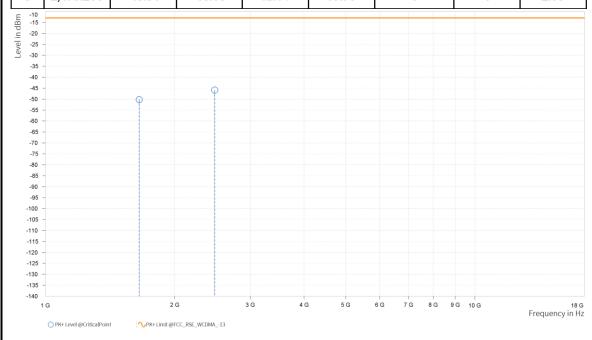
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,697.600	-51.54	-13.00	38.54	16.29	V	272.2	2.00
3	2,546.500	-45.53	-13.00	32.53	21.56	V	1	2.00



WCDMA Band V							
MODE	TX channel 4132	FREQUENCY RANGE	Above 1000MHz				
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ				
TESTED BY	Hanwen Xu						

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

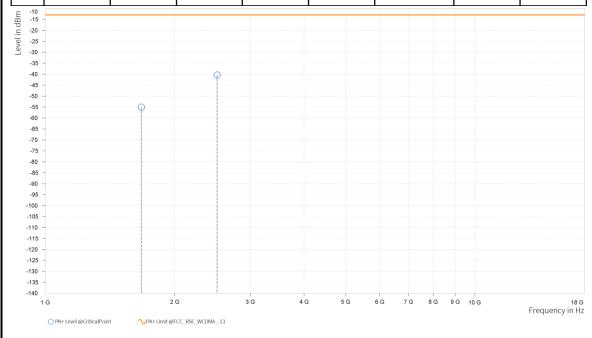
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,652.800	-50.45	-13.00	37.45	14.36	Н	171.9	1.00
3	2,479.200	-42.56	-13.00	29.56	19.47	Н	341	1.00



MODE	TX channel 4132	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

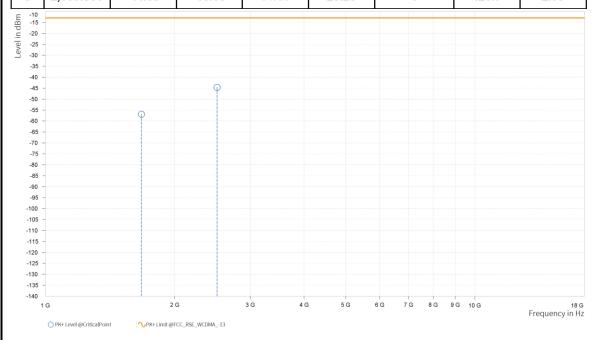
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,652.800	-50.26	-13.00	37.26	13.62	V	325.4	2.00
3	2,479.200	-45.91	-13.00	32.91	19.70	V	1	2.00



MODE	TX channel 4182	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

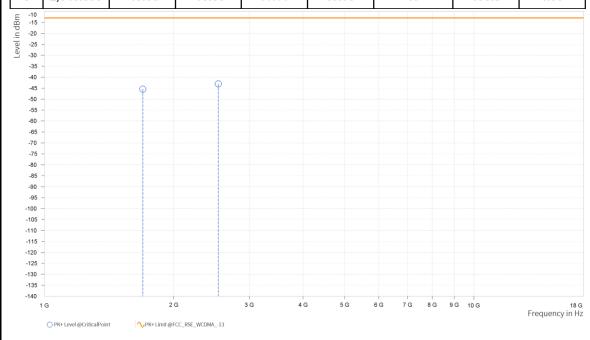
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,673.200	-55.04	-13.00	42.04	14.80	Н	1	1.00
3	2,509.800	-40.38	-13.00	27.38	19.73	Н	1	1.00



MODE	TX channel 4182	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

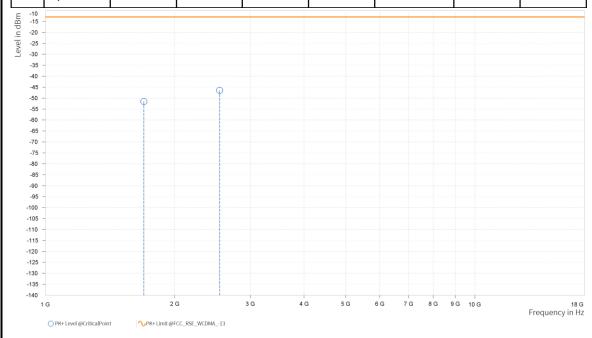
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,673.200	-56.90	-13.00	43.90	13.69	V	186.6	2.00
3	2,509.800	-44.63	-13.00	31.63	20.28	V	123.7	2.00



MODE	TX channel 4233	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

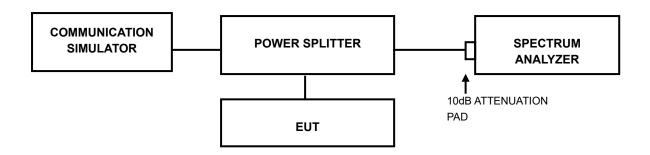
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,695.000	-45.43	-13.00	32.43	15.14	Н	185.9	2.00
3	2,540.000	-43.06	-13.00	30.06	19.36	Н	198.8	1.00



MODE	TX channel 4233	FREQUENCY RANGE	Above 1000MHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

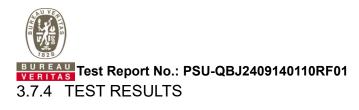
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,695.000	-51.55	-13.00	38.55	14.23	V	171.9	1.00
3	2,540.000	-46.48	-13.00	33.48	20.01	V	63.6	1.00



3.7 PEAK TO AVERAGE RATIO

3.7.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT


In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

3.7.2 TEST SETUP

3.7.3 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

Please Refer to Appendix of this test report.

Please refer to the attached file (Test Setup Photo).

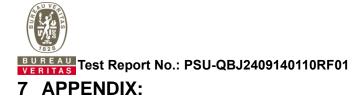
4 PHOTOGRAPHS OF THE TEST CONFIGURATION

5 INFORMATION ON THE TESTING LABORATORIES

We, Huarui 7layers High Technology (Suzhou) Co., Ltd., were founded in 2020 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Huarui 7Layers High Technology (Suzhou) Co., Ltd. Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Accredited Test Lab Cert 6613.01


If you have any comments, please feel free to contact us at the following:

Suzhou EMC/RF Lab: Tel: +86 (0557) 368 1008

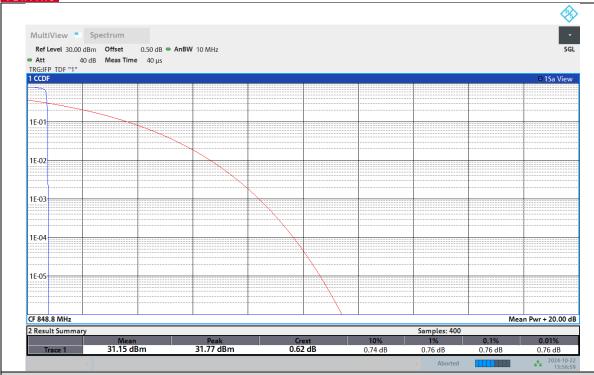
6 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

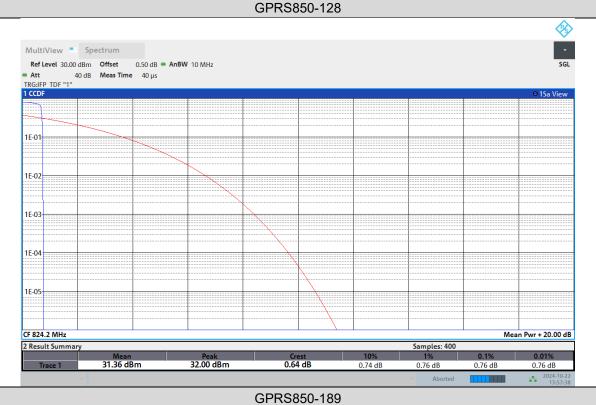
No any modifications are made to the EUT by the lab during the test.

GSM 850

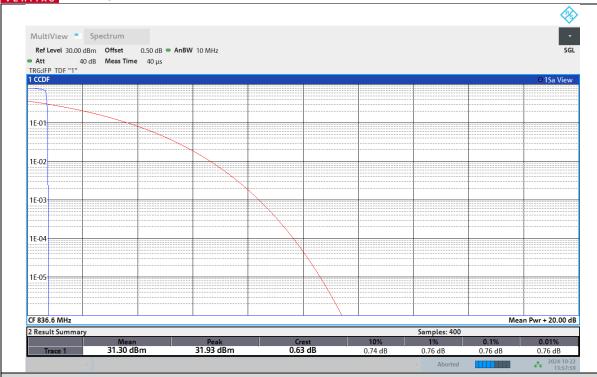
PEAK-TO-AVERAGE RATIO(CCDF)

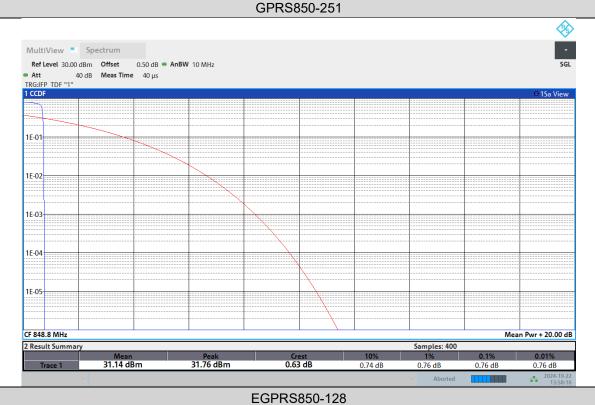
Test Result

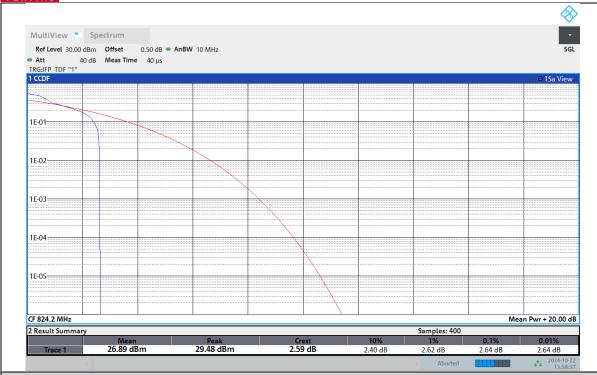

Band	Channel	Result(dB)	Limit(dB)	Verdict
GSM850	128	0.76	13	PASS
GSM850	189	0.66	13	PASS
GSM850	251	0.76	13	PASS
GPRS850	128	0.76	13	PASS
GPRS850	189	0.76	13	PASS
GPRS850	251	0.76	13	PASS
EGPRS850	128	2.64	13	PASS
EGPRS850	189	3.66	13	PASS
EGPRS850	251	2.46	13	PASS

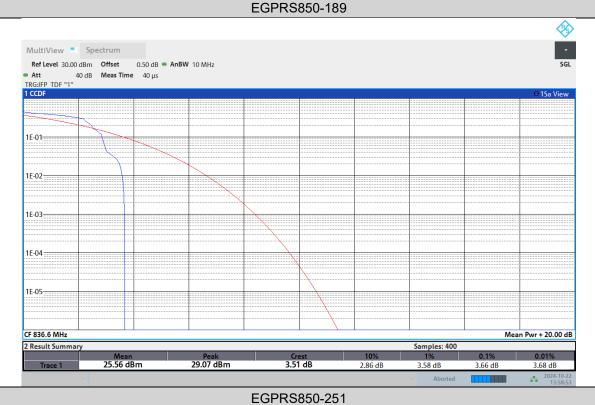


Test Graphs











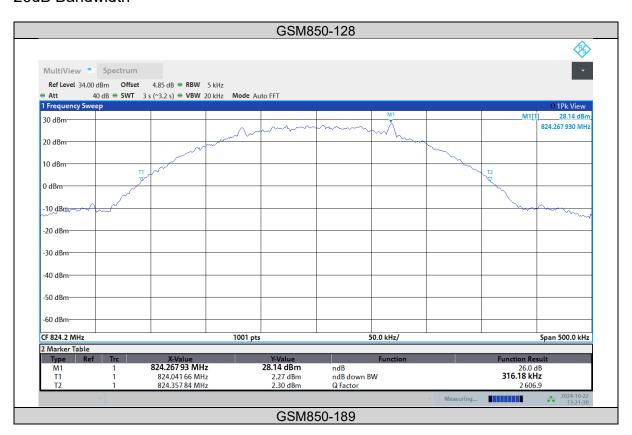
26DB BANDWIDTH AND OCCUPIED BANDWIDTH

Test Result

Band	Channel	Occupied Bandwidth (KHz)	26dB Bandwidth (KHz)	Verdict
GSM850	128	246.961	316.18	PASS
GSM850	189	244.456	316.68	PASS
GSM850	251	245.842	315.68	PASS
GPRS850	128	246.262	318.18	PASS
GPRS850	189	246.005	320.68	PASS
GPRS850	251	245.986	319.68	PASS
EGPRS850	128	247.745	317.18	PASS
EGPRS850	189	248.944	319.68	PASS
EGPRS850	251	249.961	317.18	PASS

Test Graphs

Occupied Bandwidth

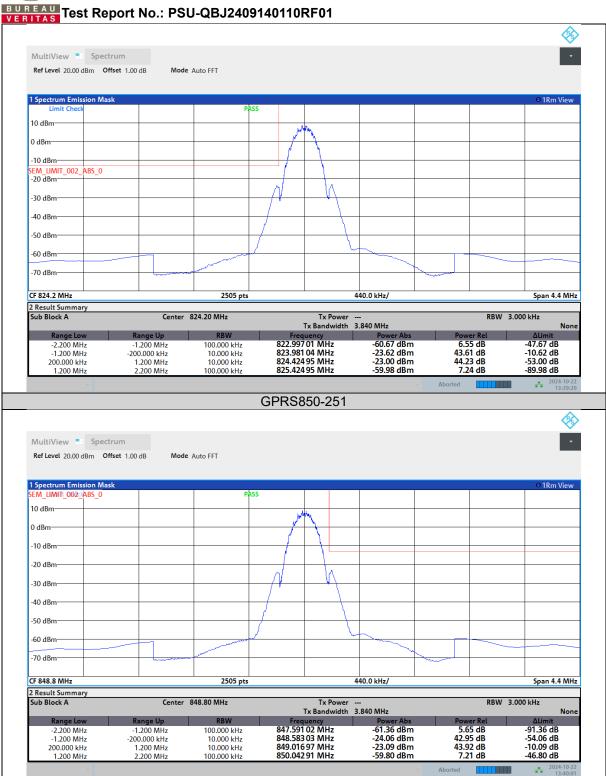


26dB Bandwidth

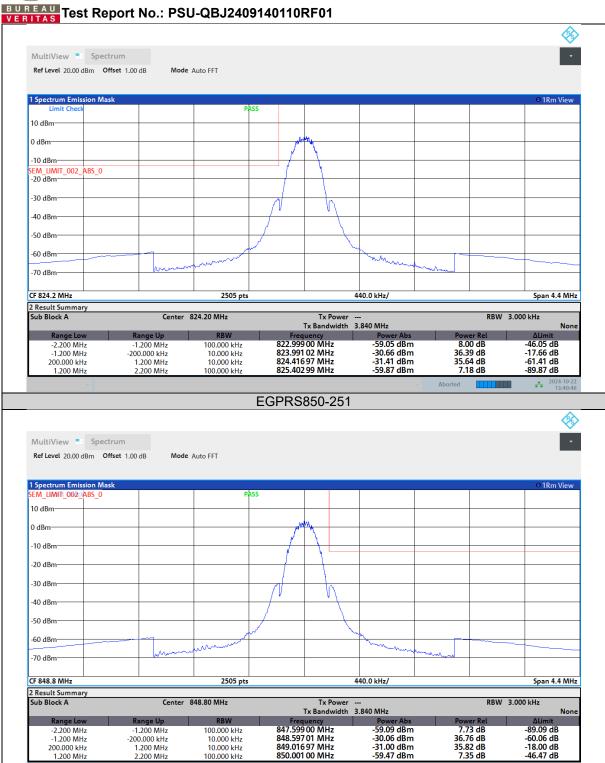
GPRS850-128


BAND EDGE

Test Result


Band	Channel	Result (dBm)	Limit(dBm)	Verdict
GSM850	128	See Graph	-13	PASS
GSM850	251	See Graph	-13	PASS
GPRS850	128	See Graph	-13	PASS
GPRS850	251	See Graph	-13	PASS
EGPRS850	128	See Graph	-13	PASS
EGPRS850	251	See Graph	-13	PASS

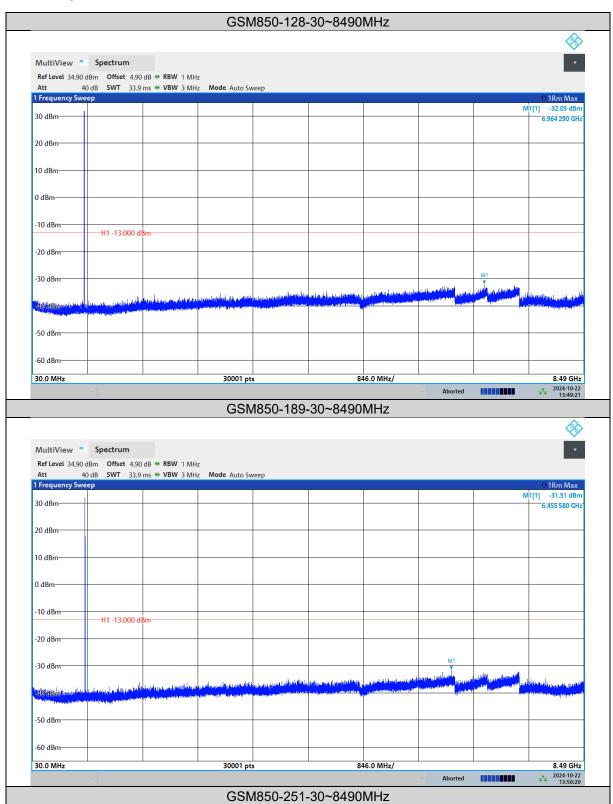
Test Graphs

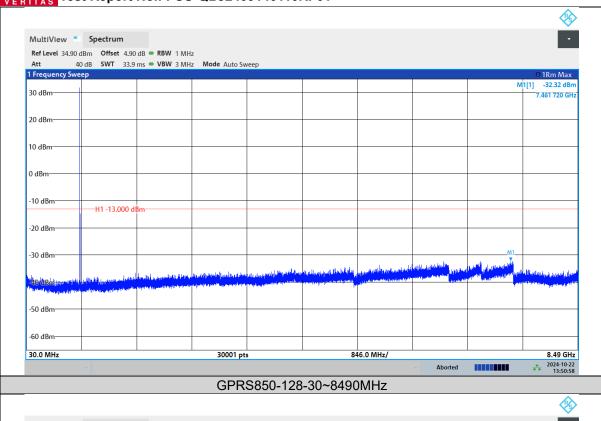


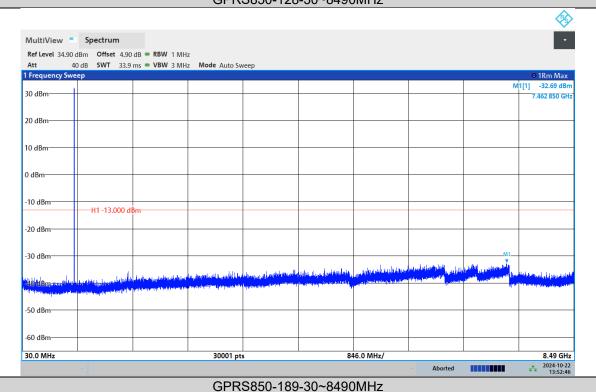
EGPRS850-128

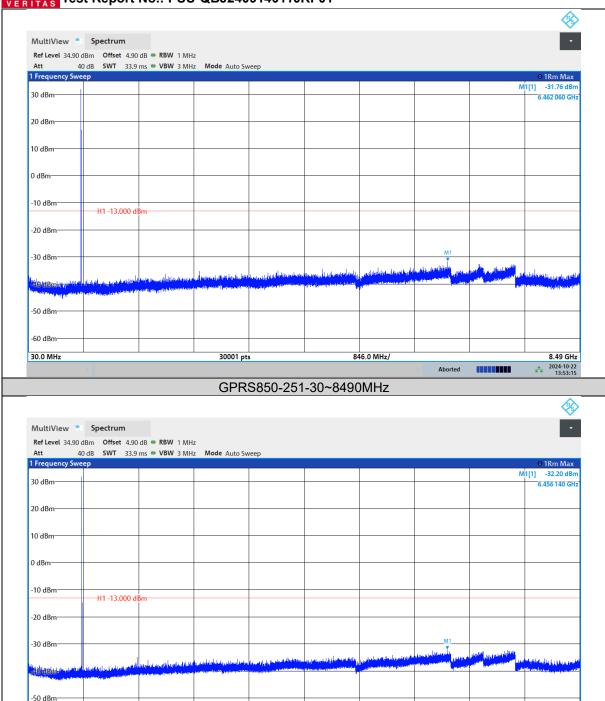
-59.47 dBm

*


100.000 kHz


Test Result

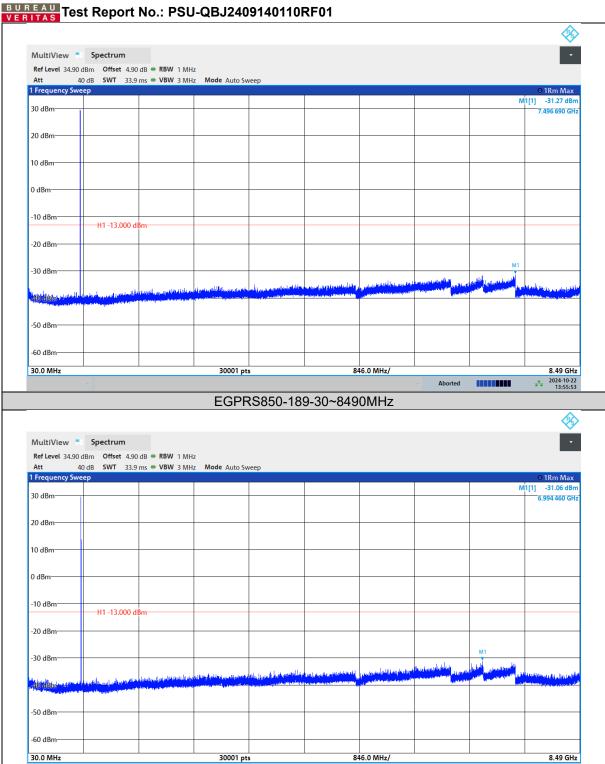

Band	Channel	Frequency Range(MHz)	Result (dBm)	Limit (dBm)	Verdict
GSM850	128	30~8490MHz	See Graph	-13	PASS
GSM850	189	30~8490MHz	See Graph	-13	PASS
GSM850	251	30~8490MHz	See Graph	-13	PASS
GPRS850	128	30~8490MHz	See Graph	-13	PASS
GPRS850	189	30~8490MHz	See Graph	-13	PASS
GPRS850	251	30~8490MHz	See Graph	-13	PASS
EGPRS850	128	30~8490MHz	See Graph	-13	PASS
EGPRS850	189	30~8490MHz	See Graph	-13	PASS
EGPRS850	251	30~8490MHz	See Graph	-13	PASS



-60 dBm

30.0 MHz

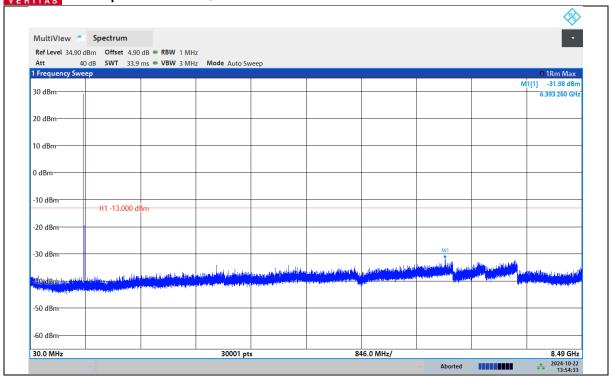
846.0 MHz/


8.49 GHz

2024-10-22 13:53:55

EGPRS850-128-30~8490MHz

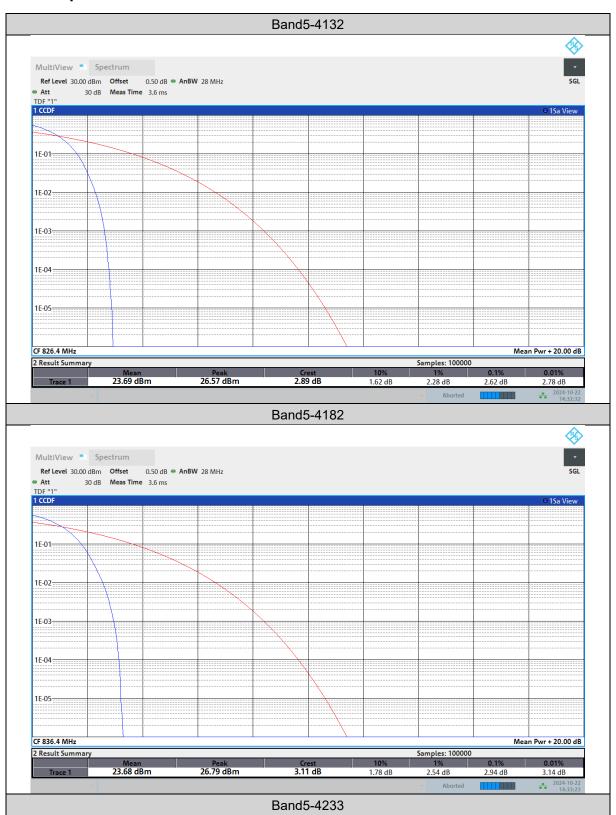
30001 pts



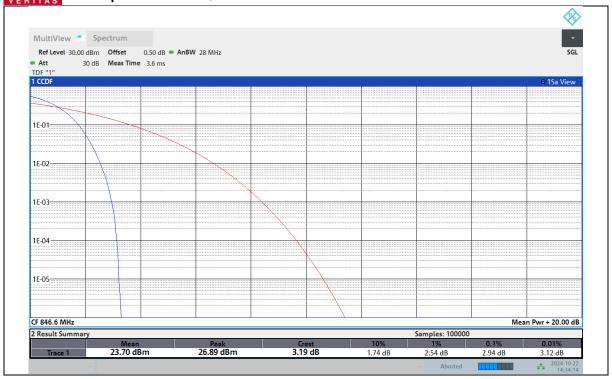
2024-10-22 13:55:10

EGPRS850-251-30~8490MHz

	Voltage								
Band	Channel	Voltage [Vdc]	Temperature (°ℂ)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict		
GSM850	189	LV	NT	6.53	0.0079	±2.5	PASS		
GSM850	189	NV	NT	-8.11	-0.0098	±2.5	PASS		
GSM850	189	HV	NT	-5.28	-0.0064	±2.5	PASS		
GSM850	128	LV	NT	6.29	0.0075	±2.5	PASS		
GSM850	128	NV	NT	-2.18	-0.0026	±2.5	PASS		
GSM850	128	HV	NT	8.54	0.0102	±2.5	PASS		
GSM850	251	LV	NT	-3.77	-0.0044	±2.5	PASS		
GSM850	251	NV	NT	-8.52	-0.0100	±2.5	PASS		
GSM850	251	HV	NT	-8.98	-0.0106	±2.5	PASS		

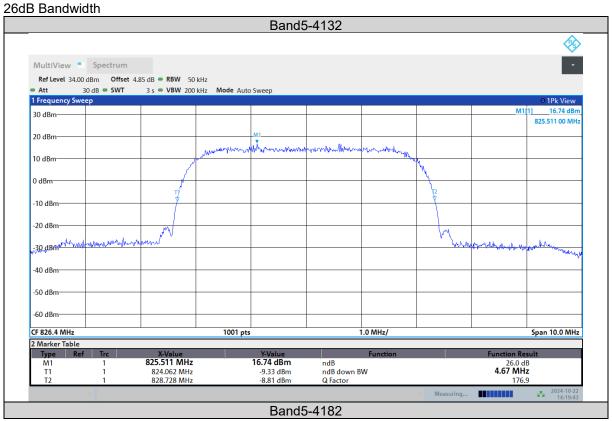

Temperature							
Band	Channel	Voltage [Vdc]	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
GSM850	189	NV	-30	0.51	0.0006	±2.5	PASS
GSM850	189	NV	-20	5.72	0.0069	±2.5	PASS
GSM850	189	NV	-10	-1.03	-0.0012	±2.5	PASS
GSM850	189	NV	0	6.94	0.0084	±2.5	PASS
GSM850	189	NV	10	-5.91	-0.0072	±2.5	PASS
GSM850	189	NV	20	-5.46	-0.0066	±2.5	PASS
GSM850	189	NV	30	0.75	0.0009	±2.5	PASS
GSM850	189	NV	40	-0.70	-0.0008	±2.5	PASS
GSM850	189	NV	50	-3.97	-0.0048	±2.5	PASS
GSM850	128	NV	-30	-0.27	-0.0003	±2.5	PASS
GSM850	128	NV	-20	-3.80	-0.0045	±2.5	PASS
GSM850	128	NV	-10	2.23	0.0027	±2.5	PASS
GSM850	128	NV	0	-6.36	-0.0076	±2.5	PASS
GSM850	128	NV	10	6.96	0.0083	±2.5	PASS
GSM850	128	NV	20	3.19	0.0038	±2.5	PASS
GSM850	128	NV	30	-7.14	-0.0085	±2.5	PASS
GSM850	128	NV	40	-6.77	-0.0081	±2.5	PASS
GSM850	128	NV	50	8.36	0.0100	±2.5	PASS
GSM850	251	NV	-30	-3.61	-0.0043	±2.5	PASS
GSM850	251	NV	-20	8.31	0.0098	±2.5	PASS
GSM850	251	NV	-10	-4.40	-0.0052	±2.5	PASS
GSM850	251	NV	0	4.83	0.0057	±2.5	PASS
GSM850	251	NV	10	5.99	0.0071	±2.5	PASS
GSM850	251	NV	20	7.41	0.0087	±2.5	PASS
GSM850	251	NV	30	8.59	0.0101	±2.5	PASS
GSM850	251	NV	40	4.20	0.0049	±2.5	PASS
GSM850	251	NV	50	-2.00	-0.0024	±2.5	PASS

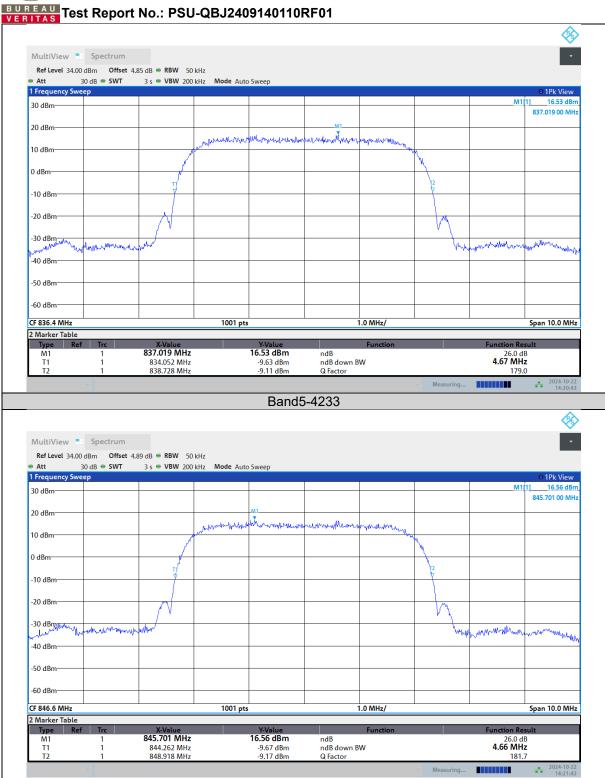
WCMDA BAND5


PEAK-TO-AVERAGE RATIO

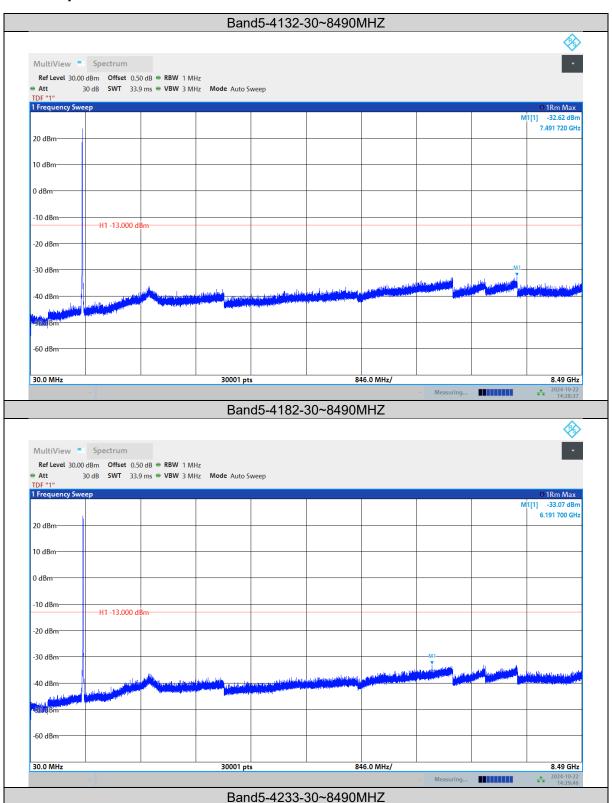
Band	Channel	Peak-to-Average Ratio(dB)	Limit(dBm)	Verdict
Band5	4132	2.62	13	PASS
Band5	4182	2.94	13	PASS
Band5	4233	2.94	13	PASS

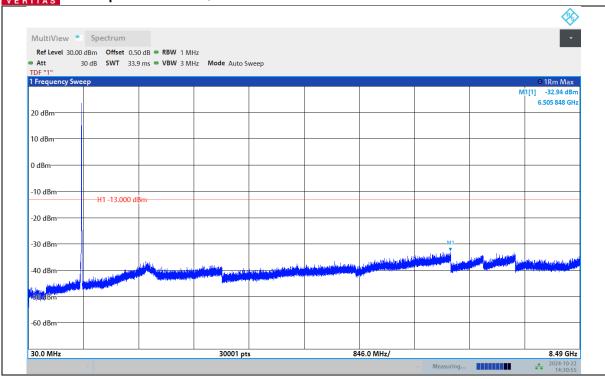
26DB BANDWIDTH AND OCCUPIED BANDWIDTH


Band	Channel	Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict
Band5	4132	4.150	4.67	PASS
Band5	4182	4.140	4.67	PASS
Band5	4233	4.140	4.66	PASS



Band	Channel	Result (dBm)	Limit(dBm)	Verdict
Band5	4132	See Graph	-13	PASS
Band5	4233	See Graph	-13	PASS





Band	Channel	Frequency Range (Mhz)	Result (dBm)	Limit (dBm)	Verdict
Band5	4132	30~8490MHZ	See Graph	-13	PASS
Band5	4182	30~8490MHZ	See Graph	-13	PASS
Band5	4233	30~8490MHZ	See Graph	-13	PASS

	Voltage								
Band	Channel	Voltage (Vdc)	Temperature (°ℂ)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict		
Band5	4132	VL	NT	1.81	0.0022	±2.5	PASS		
Band5	4132	VN	NT	-8.92	-0.0108	±2.5	PASS		
Band5	4132	VH	NT	0.69	0.0008	±2.5	PASS		
Band5	4182	VL	NT	-5.71	-0.0068	±2.5	PASS		
Band5	4182	VN	NT	-9.21	-0.0110	±2.5	PASS		
Band5	4182	VH	NT	5.65	0.0068	±2.5	PASS		
Band5	4233	VL	NT	-1.13	-0.0013	±2.5	PASS		
Band5	4233	VN	NT	-3.36	-0.0040	±2.5	PASS		
Band5	4233	VH	NT	-7.39	-0.0087	±2.5	PASS		

	Temperature							
Band	Channel	Voltage (Vdc)	Temperatur e (°ℂ)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict	
Band5	4132	NV	-30	-5.49	0.0131	±2.5	PASS	
Band5	4132	NV	-20	-5.49	0.0131	±2.5	PASS	
Band5	4132	NV	-10	4.58	0.0055	±2.5	PASS	
Band5	4132	NV	0	-0.50	-0.0006	±2.5	PASS	
Band5	4132	NV	10	-4.67	-0.0057	±2.5	PASS	
Band5	4132	NV	20	1.60	0.0019	±2.5	PASS	
Band5	4132	NV	30	7.75	0.0094	±2.5	PASS	
Band5	4132	NV	40	0.18	0.0002	±2.5	PASS	
Band5	4132	NV	50	-8.84	-0.0107	±2.5	PASS	
Band5	4182	NV	-30	-7.10	-0.0085	±2.5	PASS	
Band5	4182	NV	-20	0.20	0.0002	±2.5	PASS	
Band5	4182	NV	-10	-7.47	-0.0089	±2.5	PASS	
Band5	4182	NV	0	4.64	0.0055	±2.5	PASS	
Band5	4182	NV	10	-2.73	-0.0033	±2.5	PASS	
Band5	4182	NV	20	2.96	0.0035	±2.5	PASS	
Band5	4182	NV	30	5.94	0.0071	±2.5	PASS	
Band5	4182	NV	40	-0.59	-0.0007	±2.5	PASS	
Band5	4182	NV	50	0.98	0.0012	±2.5	PASS	
Band5	4233	NV	-30	0.75	0.0009	±2.5	PASS	
Band5	4233	NV	-20	4.21	0.0050	±2.5	PASS	
Band5	4233	NV	-10	6.22	0.0073	±2.5	PASS	
Band5	4233	NV	0	4.42	0.0052	±2.5	PASS	
Band5	4233	NV	10	-6.97	-0.0082	±2.5	PASS	
Band5	4233	NV	20	4.53	0.0054	±2.5	PASS	
Band5	4233	NV	30	7.44	0.0088	±2.5	PASS	
Band5	4233	NV	40	8.76	0.0103	±2.5	PASS	
Band5	4233	NV	50	8.16	0.0096	±2.5	PASS	

--END--