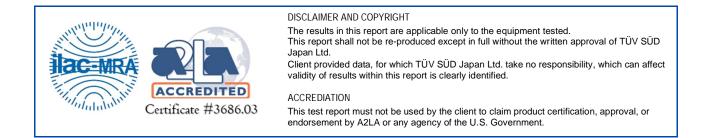
Report on the RF Testing of:

KYOCERA Corporation Mobile Phone, Model: EB1173 FCC ID: JOYEB1173

In accordance with FCC Part15 Subpart E (DFS)


Prepared for: KYOCERA Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-23099-0

SIGNATURE			
	oak Signity		
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Hiroaki Suzuki	Deputy Manager of RF Group	Approved Signatory	2023.09.27
	Deputy Manager of RF Group		

EXECUTIVE SUMMARY – Result: Complied A sample(s) of this product was tested and the result above was confirmed in accordance with FCC Part15 Subpart E.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 www.tuvsud.com/ja-jp

TÜV SÜD Japan Ltd.

Add value. Inspire trust.

Contents

1	Summary of Test3
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Modification history of the test report3Standards3Test methods3Deviation from standards3List of applied test(s) of the EUT3Test information3Test set up3Test period3
2	Equipment Under Test4
All inform 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	ation in this chapter was provided by the applicant.4EUT information4Modification to the EUT6Variation of family model(s)6Description of EUT7EUT Maximum Conducted Power7Transmit Power Control (TPC)7Statement of Manufacturer8U-NII DFS Rule Requirements8Parameters of DFS Test Signals10
3	Configuration of Equipment11
3.1 3.2	Equipment used
4	Test Result12
4.1 4.2 4.3 4.4	DFS Detection Threshold Levels12Channel Loading/Data Streaming14Channel Closing Transmission Time and Channel Move Time16Non-Occupancy Period20
5	Measurement uncertainty22
6	Laboratory Information23
Appendix	x A. Test Equipment24

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-23099-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart E FCC 14-30

1.3 Test methods

ANSI C63.10-2013 KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 KDB905462 D03 UNII Clients Without Radar Detection New Rules v01r02

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
KDB905462 D02 (8.2)	DFS Detection Threshold Levels	Radiated	PASS	-
KDB905462 D02 (7.7, 8.3)	Channel Loading/Data Streaming	Radiated	PASS	-
KDB905462 D02 (5.1, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3)	Channel Closing Transmission Time and Channel Move Time	Radiated	PASS	-
KDB905462 D02 (5.1.2, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3) KDB905462 D03	Non-Occupancy Period	Radiated	PASS	-

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

4-September-2023 - 6-September-2023

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant	KYOCERA Corporation
	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan
	Phone: +81-45-943-6253 Fax: +81-45-943-6314
Equipment Under Test (EUT)	Mobile Phone
Model number	EB1173
Serial number	350614610006623
Trade name	Kyocera
Number of sample(s)	1
EUT condition	Pre-Production
Power rating	Battery: DC 3.87 V
Size	(W) 81.2 mm × (D) 17.5 mm × (H) 164.9 mm
Environment	Indoor and Outdoor use
Terminal limitation	-20°C to 60°C
Hardware version	DMT1
Software version	EB1173_nightly_20230713
Firmware version	Not applicable
RF Specification	
Protocol	IEEE802.11a, IEEE802.11n (HT20), IEEE802.11n (HT40) IEEE802.11ac (VHT20), IEEE802.11ac (VHT40), EEE802.11ac (VHT80)
Frequency range	IEEE802.11a/n/ac (HT20/VHT20): 5180 MHz-5320 MHz, 5500 MHz-5720 MHz IEEE802.11n/ac (HT40/VHT40): 5190 MHz-5310 MHz, 5510 MHz-5710 MHz IEEE802.11ac (VHT80): 5210 MHz, 5290 MHz, 5530 MHz, 5610 MHz, 5690 MHz
Number of RF Channels	IEEE802.11a/n/ac (HT20/VHT20): 20 Channels IEEE802.11n/ac (HT40/VHT40): 10 Channels IEEE802.11ac (VHT80): 5 Channels
Modulation type	IEEE802.11a/n/ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Channel separation	IEEE802.11a/n/ac (HT20/VHT20): 20 MHz IEEE802.11n/ac (HT40/VHT40): 40 MHz

IEEE802.11ac (VHT80): 80 MHz

Output power	13.967 mW (IEEE802.11a)
(W53 or W56)	13.771 mW (IEEE802.11n: HT20)
,	14.334 mW (IEEE802.11n: HT40)
	14.142 mW (IEEE802.11ac: VHT80)
DFS Function	Client (Without Radar Detection)
TPC Function	500mW not required
Antenna type	Internal antenna
Antenna gain	5.15-5.35 GHz band: 0.3 dBi 5.47-5.725 GHz band: 2.0 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State	Description of Modification	Modification fitted by	Date of Modification	
Model: EB1173, Serial Number: 350614610006623				
0 As supplied by the applicant		Not Applicable	Not Applicable	

2.3 Variation of family model(s)

2.3.1 List of family model(s)

	EB1173		EB1169		EB1185		EB1205	
	Pattern1*	Pattern2	Pattern1	Pattern2	Pattern1	Pattern2	Pattern1	Pattern2
hybrid shield	without	with	with	without	with	without	without	with
Radio Function (Cellular)	4G:B2/B4/B5/B12/B41 3G:B2/B4/B5 2G:850/1900						n ≪Components	-
Radio Function (etc)	WiFi:2.4G/5G BT/NFC+FeliCa/GPS							
size	164.9 × 81.2 × 17.5 [mm]							

*: Tested

The hybrid shield is a resin, so there is no EMC impact.

The hybrid shield is mounted on top of the screen (tempered glass), but the enclosure size remains unchanged.

EB1205 does not use WWAN (2G/3G/4G) functionality. However, WWAN (2G/3G/4G) components are installed.

2.3.2 Reason for selection of EUT

The applicant decided that the differences between the hybrid shield and the design had no EMC impact and selected EB1173 Pattarn1 with full function.

2.4 Description of EUT

Operational Made	Operational Frequency Range		
Operational Mode	5250-5350MHz	5470-5725MHz	
Client without radar detection and adhoc function	Applicable	Applicable	

For FCC and IC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges excluding the 5600-5650 MHz range.

2.5 EUT Maximum Conducted Power

Mode	Frequency Band	Maximum Conducted Output Power		Maximum EIRP	
	(MHz)	Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
902 110	5250-5350	10.980	12.531	0.3	13.428
802.11a	5470-5725	10.780	11.967	2.0	18.967

Mode	Frequency Band	Maximum Conducted Output Power		Maximum EIRP	
	(MHz)	Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
802.11n	5250-5350	10.428	11.036	0.3	11.825
(20MHz)	5470-5725	10.708	11.771	2.0	18.655

	Frequency Band	Maximum Conducted Output Power		Maximum EIRP	
Mode	(MHz)	Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
802.11n	5250-5350	10.571	11.405	0.3	12.221
(40MHz)	5470-5725	10.911	12.334	2.0	19.548

	Frequency Band	Maximum Conduc	ted Output Power	Maximum EIRP	
Mode	(MHz)	Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
802.11ac	5250-5350	11.412	13.842	0.3	14.832
(80MHz)	5470-5725	10.642	11.593	2.0	18.374

2.6 Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an E.I.R.P. of less than 500 mW.

Maximum EIRP of this device is 19.548 mW which less than 500mW, therefore it's not require TPC function.

2.7 Statement of Manufacturer

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

2.8 U-NII DFS Rule Requirements

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately.

DFS Requirements Prior to Use of a Channel

KDB905462 D02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

		Operational Mod	e
Requirement	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

DFS requirements during normal operation

KDB905462 D02

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode				
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection			
DFS Detection Threshold	Yes	Not required			
Channel Closing Transmission Time	Yes	Yes			
Channel Move Time	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required			

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection			
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link			
All other tests	Any single BW mode	Not required			
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.					

DFS Detection Thresholds

KDB905462 D02

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)				
EIRP ≥ 200 milliwatt	-64 dBm				
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm				
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.					

Response Requirements

KDB905462 D02

Table 4: provides the response requirements for Master and Client Devices incorporating DFS.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
	200 milliseconds + an aggregate of 60 milliseconds
Channel Closing Transmission Time	over remaining 10 second period.
	See Notes 1 and 2.
LLNII Detection Bondwidth	NII 99% transmission power bandwidth.
U-NII Detection Bandwidth	See Note 3.
Note 1: Channel Move Time and the Cha	annel Closing Transmission Time should be performed

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

2.9 Parameters of DFS Test Signals

Short Pulse Radar Test Waveforms

KDB905462 D02

Table 5: Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup: {(1/360) x (19 x 10 ⁶ PRIusec)}	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrea	ate (Radar 1		-	80%	120
Note 1	: Short Puls		ould be used for the de		

Long Pulse Radar Test Waveform

KDB905462 D02

Table 6: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Frequency Hopping Radar Test Waveform

KDB905462 D02

Table 7: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

3 Configuration of Equipment

This test configuration is based on the manufacture's instruction. Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID / DoC	Comment
1	Mobile Phone	KYOCERA	EB1173	350614610006623	JOYEB1173	EUT

3.2 Support Unit used

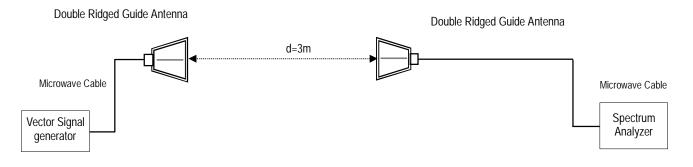
No.	Equipment	Company	Model No.	Serial No.	FCC ID	Comment
а	Access Point	Cisco	AIR-CAP3702E-A-K9	FJC1938F0NV	LDK102087	*1, *2
NOTE: 1. This device was functioned as a Master device during the DFS test.						

NOTE: 2. The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

4 Test Result

4.1 DFS Detection Threshold Levels

4.1.1 Measurement procedure


[KDB905462 D02(8.2)]

Spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain - coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -63 dBm as measured on the spectrum analyzer.

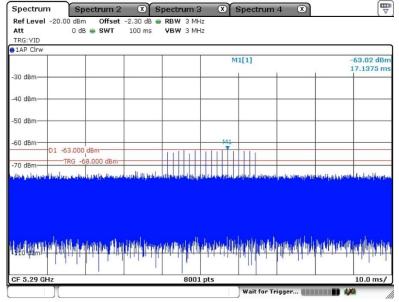
The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The spectrum analyzer is set to;

- RBW=3 MHz, VBW=3 MHz, Span=Zero span Sweep=10ms, Detector=Peak, Trace mode=Clear / write
- Test configuration

4.1.2 Limit

None



4.1.3 Radar Waveform

Date	:	4-September-2023			
Temperature	:	22.3 [°C]			
Humidity	:	66.8 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber			Tadahiro Seino

Radar Type 0 Calibration Plot

Frequency: 5290MHz [5.3GHz Band]

Date: 4.SEP.2023 13:43:01

Frequency: 5530MHz [5.6GHz Band]

Spectrum		ectrum 2		Spec				0	9	Sp	ect	rum	4	X			
Ref Level -: Att		Offset ·	-2.60 dB 100 ms	-		3 MI 3 MI											
TRG: VID	0 4	- UNI	100 110			0.111	12										
1AP Clrw				-			_										
									N	11[1]						63.02 dBm 2.8375 ms
-30 dBm				+			-			+			1				2.0070 111
-40 dBm				+			+			+			+				
0000000																	
-50 dBm							\square			T							
-60 dBm											M1						_
D	1 -63.000	dBm			П	1			11		Ť		-				
-70 dBm-	TRG -6	68.300 dBm											-			_	
الم والأرافة المراج		a set and	at an alla				Jul I								4. 04 M	6.00	the sub-reality
ista kasa ayan ka		onderstation of the original of the	0.01.45		-000							-often	10.00	DOOM LOD	an a	or from	
Line Hilling	a da ditri.	Adda Lis B. (d) .	an ikkal	di.	uh	1		h	11	IV.	194	ul qui	. Miller	le de la	a Martin	1.14	a hill hill b
th Thidswittill	til to th	1.1.1.1.1	all the la	<u>II</u>	1.h	11	11.	11	- 1	1	11	111	111	1	111		T 1 1 72
		1	1	1											ļ,		
CF 5.53 GHz				_	8	300	1 pt	s				_	_				10.0 ms/
										W	/ait	for T	rigger	1111		1,10	

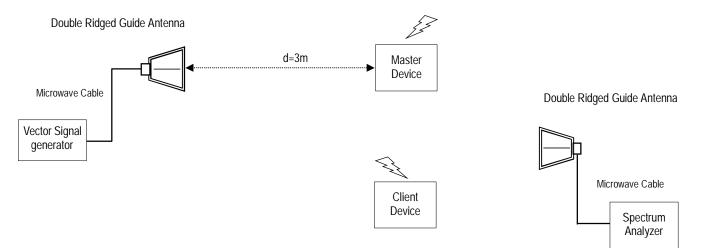
Date: 4.SEP.2023 13:51:01

4.2 Channel Loading/Data Streaming

4.2.1 Measurement procedure

[KDB905462 D02(7.7, 8.3)]

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:


-The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.

-Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.

The spectrum analyzer is set to;

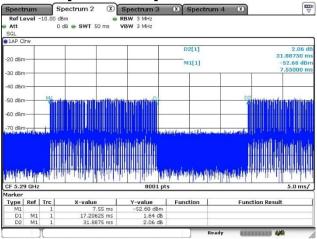
- RBW=3 MHz, VBW=3 MHz, Span=Zero span Sweep=10ms, Detector=Peak, Trace mode=Clear / write

- Test configuration

4.2.2 Limit

Timing plot duty cycle greater than 17%

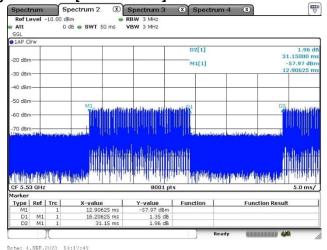
4.2.3 Measurement result


Date	:	4-September-2023	
Temperature	:	22.3 [°C]	
Humidity	:	66.8 [%]	Τe
Test place	:	3m Semi-anechoic chamber	

est engineer :

Tadahiro Seino

Client device Data Traffic Plot


Frequency: 5290MHz [5.3GHz Band]

Date: 4.SEP.2023 14:08:11

ON Time	ON+OFF Time	Duty Cycle
[ms]	[ms]	[%]
17.20625	31.8875	53.96

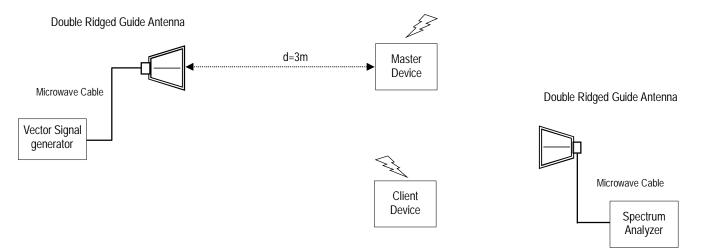
Frequency: 5530MHz [5.6GHz Band]

ON Time	ON+OFF Time	Duty Cycle
[ms]	[ms]	[%]
16.20625	31.15	52.03

4.3 Channel Closing Transmission Time and Channel Move Time

4.3.1 Measurement procedure

[KDB905462 D02(5.1, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3)]


Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The spectrum analyzer is set to;

- RBW=3 MHz, VBW=3 MHz, Span=Zero span
 Sweep=30 s, Detector=Peak, Trace mode=Clear / write

- Test configuration

4.3.2 Limit

(1) Channel Closing Transmission Time: The Aggregate Transmission Time is within 60ms within the Channel Move Time range excluding 200ms after the radar waveform is detected.

(2) Channel Move Time: The time to stop all transmissions on the current channel within 10 seconds when a radar waveform above the DFS detection threshold is detected.

4.3.3 Calculation method

Measurement of the aggregate duration of the Channel Closing Transmission Time method.

Dwell[ms]= S[ms] / B[points]

- Dwell is the dwell time per spectrum analyzer sampling bin.

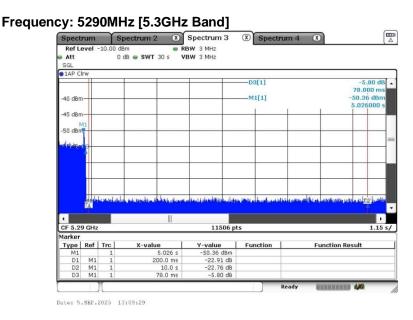
- S is the sweep time.

- B is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by:

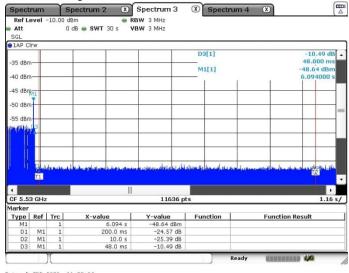
C[ms]= N[bins] x Dwell[ms]

- C is the Closing Time.


- N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

4.3.4 Measurement result

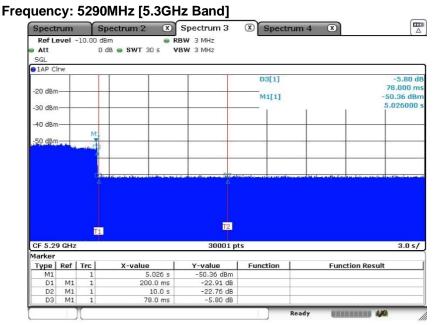
Date	:	5-September-2023			
Temperature	:	22.6 [°C]			
Humidity	:	69.4 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber			Tadahiro Seino



Channel Closing Transmission Time Plot

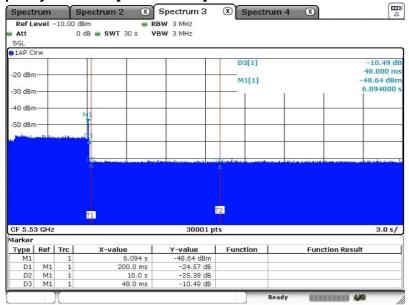
S	B	Dwell	N	Aggregate Channel Closing Transmission Time	Limit
[ms]	[points]	[ms]	[bins]	[ms]	[ms]
1150	11506	0.099948	0	0	60

Frequency: 5530MHz [5.6GHz Band]



Date: 5.SEP.2023 11:22:04

S	B	Dwell	N	Aggregate Channel Closing Transmission Time	Limit
[ms]	[points]	[ms]	[bins]	[ms]	[ms]
1160	11636	0.099691	0	0	


Channel Move Time Plot

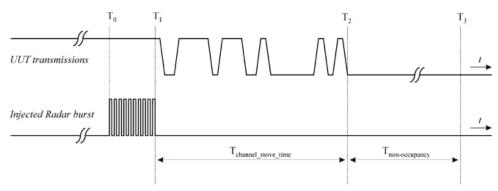
Date: 5.SEP.2023 13:08:59

Channel Move Time	Limit
[s]	[s]
0.078	10

Frequency: 5530MHz [5.6GHz Band]

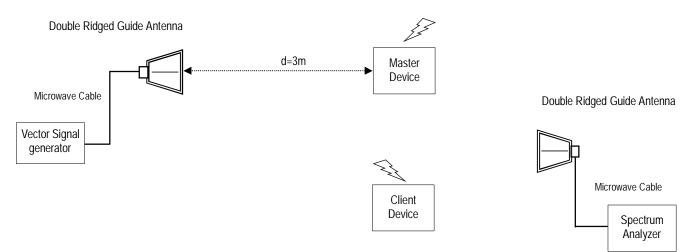
Date: 5.SEP.2023 11:21:43

Channel Move Time	Limit
[s]	[s]
0.048	10


4.4 Non-Occupancy Period

4.4.1 Measurement procedure

[KDB905462 D02(5.1.2, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3), KDB905462 D03]


The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes.

If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

The spectrum analyzer is set to;

- RBW=3 MHz, VBW=3 MHz, Span=Zero span
 Sweep=2000 s, Detector=Peak, Trace mode=Clear / write
- Test configuration

4.4.2 Limit

The client has vacated the Channel in the specified time (Channel Closing Transmission Time and Channel Move Time) and does not transmit on a Channel for 30 minutes after the detection and Channel move (Non-Occupancy Period).

4.4.3 Measurement result

Date	:	6-September-2023			
Temperature	:	22.8 [°C]			
Humidity	:	69.1 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber			Ta

Tadahiro Seino

Non-Occupancy Period Plot

Spectrum	Spectrum 2	Spectrum 3	Spectrur	m4 🗵	
Ref Level -1	0.00 dBm	RBW 3 MHz			
🖷 Att	0 dB 👄 SWT 2	000 s VBW 3 MHz			
SGL					
1AP Clrw					
			D1[1]		-20
-20 dBm					1810.
LO GDIII			M1[1]		-51.2
-30 dBm					154.
-40 dBm-					
M1					
-50 dBm					
in the set of the set					
The standard of the standard o		erende erendesetelte der sonstarre seinde			al a faith an
CF 5.29 GHz		30001	pts		200
Marker					
Type Ref 1	Trc X-value	Y-value	Function	Function	Result
	1 154.6	667 s -51.23 dBn	n		
M1 D1 M1		.81 ks -20.12 di			

Date: 6.SEP.2023 14:39:32

Frequency: 5530MHz [5.6GHz Band]

20 dBm 1810.00 30 dBm 127.20 40 dBm 127.20 50 dBm 1 40 dBm 1 40 dBm 1 50 dBm 1 50 dBm 1 50 dBm 1 50 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pectrum	Spectrum 2	Spectrum 3	Spectru	m 4	×	
p1AP Clrw D1[1] -21.9 20 dBm M1[1] -48.47 30 dBm M1[1] -48.47 40 dBm M1 M1 50 dBm M1 M1 50 dBm M1 M1 1 127.2667 s -48.47 dBm	Att		-	_			
20 dBm 1810.00 .30 dBm 127.26 .40 dBm 127.26 .50 dBm 1 .41 1 .50 dBm 1 .41 1 .50 dBm 1 .42 .43 .43 .44 .44 .44 .45 .44 .46 .44 .41 .44 .42 .44 .44 .44 .45 .44 .46 .44 .44 .44 .44 .44 .44 .44 .44 .44 .45 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44							
40 dBm Image: CF 5.53 GHz 30001 pts 200.0 CF 5.53 GHz 30001 pts 200.0 Marker Type Ref Trc X-value Y-value Function Function Result							-21.97 d 1810.0000 -48.47 dBr 127.2667
CF 5.53 GHz 30001 pts 200.0 Aarker Type Ref Trc X-volue Y-volue Function Function Result) dBm M1						
Marker Y-value Function Function Result M1 1 127.2667 s -48.47 dBm Function Function Result	0	Alexandra and a sub-		and the stand of the section		a descatore direk re	D1.
Marker Y-value Function Function Result M1 1 127.2667 s -48.47 dBm Function Function Result							
Type Ref Trc X-value Y-value Function Function Result M1 1 127.2667 s -48.47 dBm			30001 pt	5			200.0 s/
	ype Ref Trc			Function		Function	Result
D1 M1 1 1.81 ks -21.97 dB	D1 M1 1	127.2667 s 1.81 ks					

Date: 6.SEP.2023 13:03:08

5 Measurement uncertainty

The reported measurement uncertainty is based on a value obtained by multiplying standard uncertainty by coverage factor of k=2, and a level of confidence becomes 95 %.

3m Semi Anechoic Chamber					
Test item	Measurement uncertainty				
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB				
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB				
Radiated emission (9kHz – 30 MHz)	±3.8 dB				
Radiated emission (30 MHz – 1000 MHz)	±5.4 dB				
Radiated emission (1 GHz – 6 GHz)	±4.6 dB				
Radiated emission (6 GHz – 18 GHz)	±4.7 dB				
Radiated emission (18 GHz – 40 GHz)	±6.4 dB				
Radio Frequency	±1.3 * 10 ⁻⁸				
RF power, conducted	±0.7 dB				
Adjacent channel power	±1.5 dB				
Temperature	±0.6 °C				
Humidity	±1.2 %				
Voltage (DC)	±0.4 %				
Voltage (AC, <10kHz)	±0.2 %				

Measurement uncertainty of not listed immunity tests is considered to suffice because requirements of relevant standards are met.

Judge	Measured value and standard limit value						
PASS	Case1	1 limit value +Uncertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled. Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.					
FAIL	Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration.					
		Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.					

6 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address:5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 JapanPhone:+81-238-28-2881

Accreditation and Registration

Certificate #3686.03

VLAC Accreditation No.: VLAC-013

BSMI Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada ISED#: 4224A

VCCI Council Registration number: A-0166

Appendix A. Test Equipment

Radiated

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101731	31-Aug-2024	16-Aug-2023
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	257406	31-Mar-2024	20-Mar-2023
Double ridged guide antenna	ETS LINDGREN	3117	00218815	31-Dec-2023	19-Dec-2022
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2341)	31-Dec-2023	22-Dec-2022
Double ridged guide antenna	ETS LINDGREN	3117	00058232	30-Jun-2024	20-Jun-2023
Microwave cable	HUBER+SUHNER	Sucoflex 102/2m	MY3385/2	31-Mar-2024	16-Mar-2023
Microwave cable	HUBER+SUHNER	SUCOFLEX106/7m	41625/6	31-Dec-2023	22-Dec-2022
PC	HP	HP ProBook 450 G2	JPA524M85J	N/A	N/A
Software	ROHDE&SCHWARZ	R&S Pulse Sequencer DFS	V1.4 Build:6130	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2024	28-May-2023
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2024	28-May-2023

*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.