Report on the RF Testing of:

KYOCERA Corporation

Mobile Phone, Model: EB1173

FCC ID: JOYEB1173

In accordance with FCC Part 15 Subpart C

Prepared for: KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku

Yokohama-shi, Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-23095-0

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Japan Ltd. document control rules.

EXECUTIVE SUMMARY - Result: Complied

A sample of this product was tested and the result above was confirmed in accordance with FCC Part 15 Subpart C.

DISCLAIMER AND COPYRIGHT

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD Japan Ltd.

Client provided data, for which $T\ddot{U}V$ $S\ddot{U}D$ Japan Ltd. take no responsibility, which can affect validity of results within this report is clearly identified.

ACCREDIATION

This test report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 www.tuvsud.com/ja-jp

Contents

1	Summary of Test	3
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Modification history of the test report Standards Test methods Deviation from standards List of applied test(s) of the EUT Test information Test set up Test period	3
2	Equipment Under Test	2
2.1 2.2 2.3 2.4 2.5 2.6	EUT information Modification to the EUT Variation of family model(s) Operating channels and frequencies Operating mode Operating flow	5 6
3	Configuration of Equipment	8
3.1 3.2 3.3	Equipment usedCable(s) usedSystem configuration	8
4	Test Result	9
4.1 4.2 4.3 4.4 4.5 4.6 4.7	6dB Bandwidth / Occupied Bandwidth (99%) Maximum Peak Output Power Band Edge Compliance of RF Conducted Emissions Spurious emissions - Conducted - Spurious Emissions - Radiated - Restricted Band of Operation Transmitter Power Spectral Density AC Power Line Conducted Emissions	14 20 33 52
5	Antenna requirement	71
6	Measurement Uncertainty	
7	Laboratory Information	
	ix A. Test Equipment	
Annond	ix B. Duty Cycle	75

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-23095-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart C

1.3 Test methods

ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
15.247(a)(2)	6dB Bandwidth	Conducted	PASS	-
15.247(b)(3)	Maximum Peak Output Power	Conducted	PASS	-
15.247(d)	Band Edge Compliance of RF Conducted Emissions	Conducted	PASS	-
15.247(d)	Occurious Factoria	Conducted	PASS	-
15.205 15.209	Spurious Emissions	Radiated	PASS	-
15.247(d) 15.205 15.209	Restricted Bands of Operation	Radiated	PASS	-
15.247(e)	Transmitter Power Spectral Density	Conducted	PASS	-
15.207	AC Power Line Conducted Emissions	Conducted	PASS	-

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

27-July-2023 - 7-September-2023

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,

Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Equipment Under Test (EUT) Mobile Phone

Model number EB1173

Serial number 350614610004222, 350614610006623, 350614610006508

Trade name Kyocera

Number of sample(s) 3

EUT condition Pre-Production

Power rating Battery: DC 3.87 V

Size (W) $81.2 \text{ mm} \times (D) 17.5 \text{ mm} \times (H) 164.9 \text{ mm}$

Environment Indoor and Outdoor use

Terminal limitation -20 °C to 60 °C

Hardware version DMT1

Software version EB1173_nightly_20230713

Firmware version Not applicable

RF Specification

Protocol Bluetooth 5.3 + EDR
Frequency range 2402 MHz-2480 MHz

Number of RF Channels 40 Channels

Modulation method/Data rate GFSK (1Mbps, 2Mbps),

Long Range S2/S8 (500kbps/125kbps)

Channel separation 2 MHz

Conducted power 4.501 mW

Antenna type Internal antenna

Antenna gain -1.1 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State	Description of Modification	Modification fitted by	Date of Modification			
Model: EB1173, Se	Model: EB1173, Serial Number: 350614610004222, 350614610006623, 350614610006508					
0	As supplied by the applicant	Not Applicable	Not Applicable			

2.3 Variation of family model(s)

2.3.1 List of family model(s)

	EB1173		EB1169		EB1185		EB1205	
	Pattern1*	Pattern2	Pattern1	Pattern2	Pattern1	Pattern2	Pattern1	Pattern2
hybrid shield	without	with	with	without	with	without	without	with
Radio Function (Cellular)		4G:B2/B4/B5/B12/B41 3G:B2/B4/B5 2G:850/1900						are mounted
Radio Function (etc)		WiFi:2.4G/5G BT/NFC+FeliCa/GPS						
size		164.9 × 81.2 × 17.5 [mm]						

^{*:} Tested

The hybrid shield is a resin, so there is no EMC impact.

The hybrid shield is mounted on top of the screen (tempered glass), but the enclosure size remains unchanged.

EB1205 does not use WWAN (2G/3G/4G) functionality. However, WWAN (2G/3G/4G) components are installed.

2.3.2 Reason for selection of EUT

The applicant decided that the differences between the hybrid shield and the design had no EMC impact and selected EB1173 Pattarn1 with full function.

2.4 Operating channels and frequencies

Channel	Frequency [MHz]	Channel	Frequency [MHz]
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

2.5 Operating mode

The EUT had been tested under operating condition. There are three channels have been tested as following:

Tested Channel	Frequency [MHz]
Low	2402
Middle	2440
High	2480

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

	Tested Channel	Modulation Type	Data Rate	
Ī	Low, Middle, High	GFSK	1 Mbps	

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in Z-axis and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

2.6 Operating flow

[Tx mode]

- i) Test program setup to the Software
- ii) Select a Test mode

Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2440 MHz, Channel High: 2480 MHz

iii) Start test mode

[Rx mode]

- i) Test program setup to the Software
- ii) Select a Test mode

Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2440 MHz, Channel High: 2480 MHz

iii) Start test mode

3 Configuration of Equipment

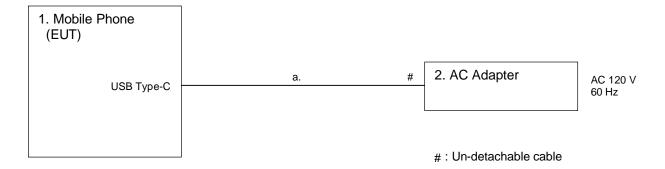
Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	EB1173	350614610004222, 350614610006623, 350614610006508	JOYEB1173	EUT
2	AC Adapter	KDDI	0602PQA	N/A	N/A	*


^{*:} AC power line Conducted Emission Test.

3.2 Cable(s) used

No.	Equipment	Length[m]	Shield	Connector	Comment
а	USB cable (for AC Adapter)	1.5	No	Plastic	*

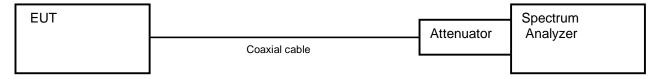
^{*:} AC power line Conducted Emission Test.

3.3 System configuration

4 Test Result

4.1 6dB Bandwidth / Occupied Bandwidth (99%)

4.1.1 Measurement procedure


[FCC 15.247(a)(2), KDB558074 D01 v05r02]

The bandwidth at 6 dB down from the highest inband spectral density is measured with spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) RBW = 100 kHz
- b) $VBW \ge 3 \times RBW$
- c) Sweep time = auto-couple
- d) Detector = peak
- e) Trace mode = max hold

- Test configuration

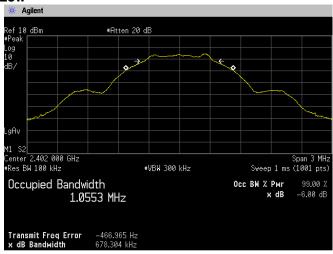
4.1.2 Limit

The minimum permissible 6dB bandwidth is 500kHz.

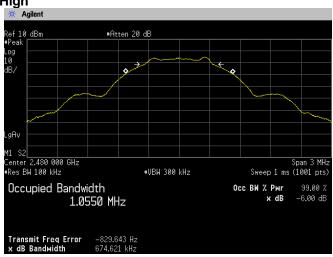
4.1.3 Measurement result

Date : 1-August-2023 Temperature : 24.2 [°C]

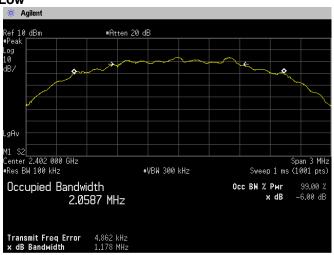
Humidity : 56.7 [%]
Test place : Shielded room No.4

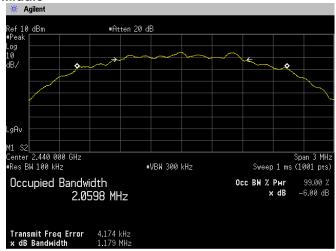

56.7 [%] Test engineer : Shielded room No.4 Nobuyuki Toda

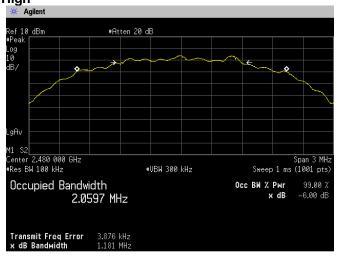
	6dB bandwidth [MHz]				
Channel			BT_LE		
	1Mbps	2Mbps	LongRange S2	LongRange S8	
Low	0.678	1.178	0.670	0.692	
Middle	0.672	1.179	0.669	0.690	
High	0.675	1.181	0.668	0.688	


4.1.4 Trace data

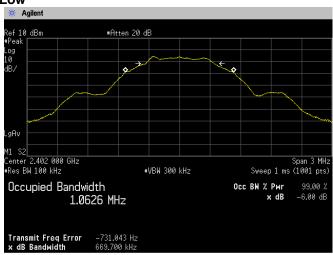
[BT_LE (1Mbps)] Channel Low

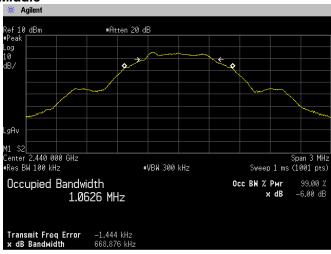

Channel Middle

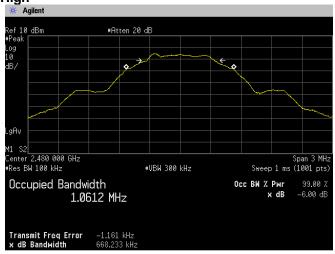




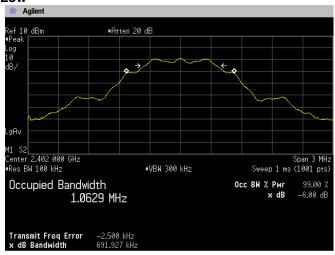
[BT_LE (2Mbps)] Channel Low

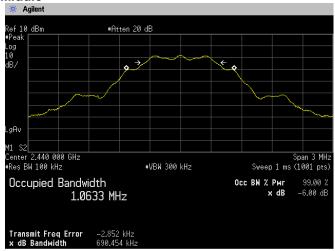

Channel Middle

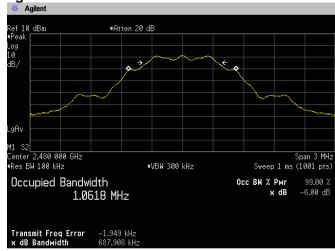




[BT_LE (LongRange S2)] Channel Low

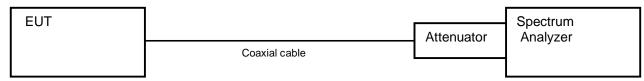

Channel Middle





[BT_LE (LongRange S8)] Channel Low

Channel Middle


4.2 Maximum Peak Output Power

4.2.1 Measurement procedure

[FCC 15.247(b)(3), KDB558074 D01 v05r02]

The peak power is measured with a power sensor connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

- Test configuration

4.2.2 Limit

1 W (1000 mW) or less

4.2.3 Measurement result

Date 2-August-2023

Temperature : 24.6 [°C] Humidity : 56.3 [%]

Test place : Shielded room No.4 Test engineer

Nobuyuki Toda

Battery Full (1Mbps)

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2402	-5.31	10.93	5.62	3.649	≦1000	PASS
Middle	2440	-4.47	10.93	6.46	4.430	≦1000	PASS
High	2480	-5.06	10.93	5.87	3.865	≦1000	PASS

Battery Full (2Mbps)

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2402	-5.24	10.93	5.69	3.706	≦1000	PASS
Middle	2440	-4.40	10.93	6.53	4.501	≦1000	PASS
High	2480	-4.98	10.93	5.95	3.938	≦1000	PASS

Battery Full (LongRange S2)

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2402	-5.28	10.93	5.65	3.676	≦1000	PASS
Middle	2440	-4.44	10.93	6.49	4.456	≦1000	PASS
High	2480	-5.01	10.93	5.92	3.905	≦1000	PASS

Battery Full (LongRange S8)

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2402	-5.29	10.93	5.65	3.669	≦1000	PASS
Middle	2440	-4.45	10.93	6.48	4.444	≦1000	PASS
High	2480	-5.03	10.93	5.90	3.887	≦1000	PASS

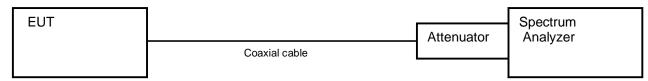
Calculation;

Reading (dBm) + Factor (dB) = Level (dBm)

10logP = Level (dBm) P = 10^(Maximum Peak Output Power / 10) (mW)

4.3 Band Edge Compliance of RF Conducted Emissions

4.3.1 Measurement procedure


[FCC 15.247(d), KDB558074 D01 v05r02]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting. (Setting suitable for measurement.)
- b) RBW = 100 kHz
- c) VBW ≥ 3 x RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

- Test configuration

4.3.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

4.3.3 Measurement result

 Date
 : 1-August-2023

 Temperature
 : 24.2 [°C]

 Humidity
 : 56.7 [%]

 Test place
 : Shielded room No.4

Test engineer

Nobuyuki Toda

[BT_LE (1Mbps)]

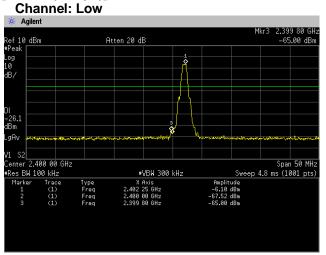
Channel	Frequency (MHz)	RF Power Level (dBm)	Band- edge Frequency (MHz)	Band- edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2402	-6.10	2399.80	-65.00	58.90	At least 20dB below from peak of RF	
High	2480	-5.36	2485.75	-69.00	63.64	At least 20dB below from peak of RF	PASS

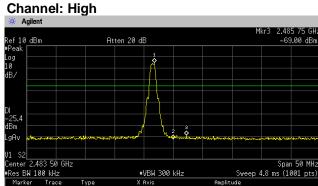
[BT_LE (2Mbps)]

Channel	Frequency (MHz)	RF Power Level (dBm)	Band- edge Frequency (MHz)	Band- edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2402	-6.80	2399.95	-37.59	30.79	At least 20dB below from peak of RF	PASS
High	2480	-5.90	2483.55	-62.99	57.09	At least 20dB below from peak of RF	PASS

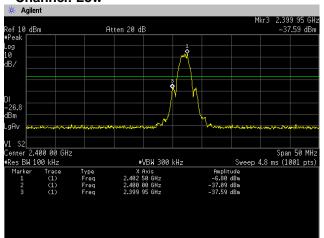
[BT_LE (LongRange S2)]

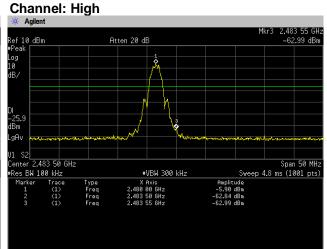
Channel	Frequency (MHz)	RF Power Level (dBm)	Band- edge Frequency (MHz)	Band- edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2402	-5.96	2399.85	-64.84	58.88	At least 20dB below from peak of RF	
High	2480	-5.66	2485.85	-68.81	63.15	At least 20dB below from peak of RF	PASS


[BT_LE (LongRange S8)]

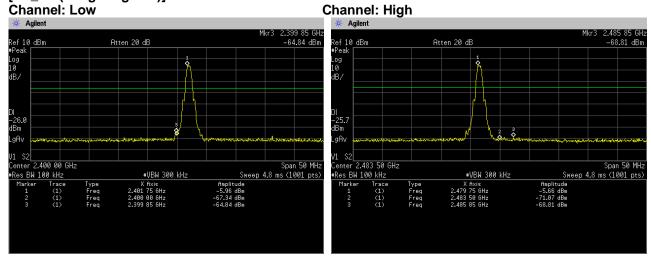

Channel	Frequency (MHz)	RF Power Level (dBm)	Band- edge Frequency (MHz)	Band- edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2402	-8.93	2399.90	-66.62	57.69	At least 20dB below from peak of RF	PASS
High	2480	-8.72	2484.50	-69.36	60.64	At least 20dB below from peak of RF	PASS

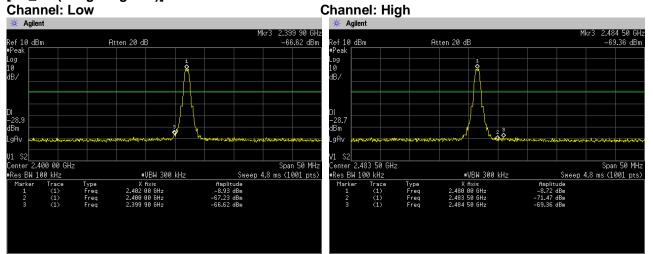
4.3.4 Trace data


[BT_LE (1Mbps)]



Type Freq Freq Freq


[BT_LE (2Mbps)] Channel: Low

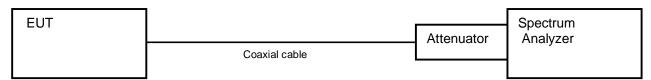


[BT_LE (LongRange S2)]

[BT_LE (LongRange S8)]

4.4 Spurious emissions - Conducted -

4.4.1 Measurement procedure


[FCC 15.247(d), KDB558074 D01 v05r02]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = wide enough to fully capture the emission being measured.
- b) RBW = 100 kHz
- c) VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

- Test configuration

4.4.2 Limit

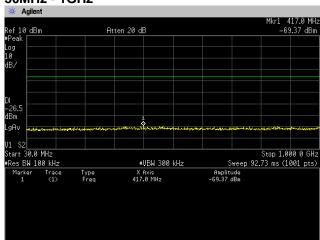
In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

4.4.3 Measurement result

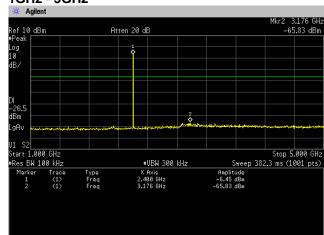
Date : 1-August-2023

Temperature : 24.2 [°C]

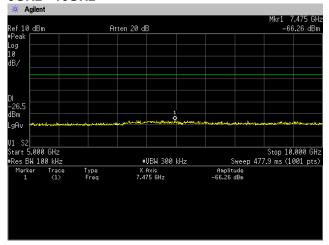
Humidity : 56.7 [%] Test engineer

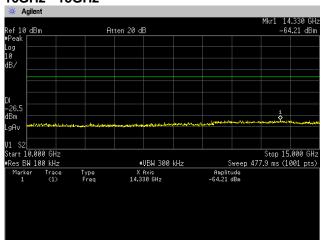

Test place : Shielded room No.4 Nobuyuki Toda

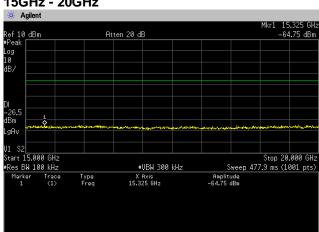
Channel	Frequency [MHz]	Limit [dB]	Results Chart	Result
Low	2402	At least 20dB below from peak of RF	See the trace Data	PASS
Middle	2440	At least 20dB below from peak of RF	See the trace Data	PASS
High	2480	At least 20dB below from peak of RF	See the trace Data	PASS



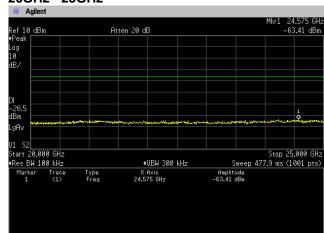
4.4.4 Trace data


[BT_LE (1Mbps)] Channel: Low 30MHz - 1GHz

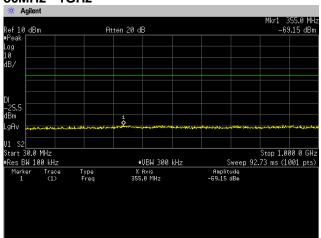

1GHz - 5GHz



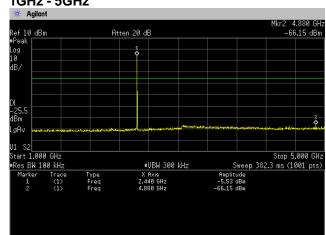
5GHz - 10GHz

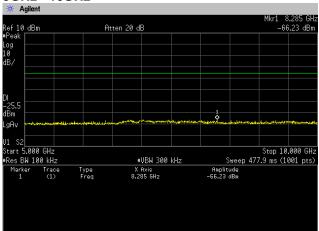


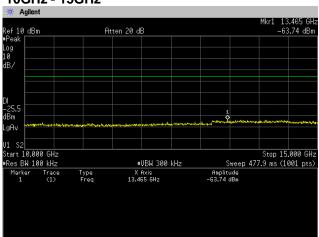
10GHz - 15GHz

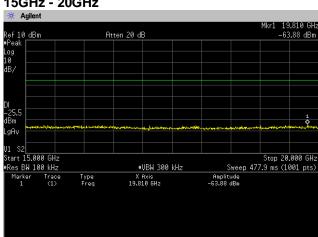


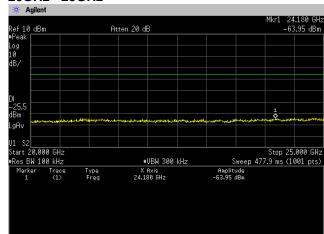
20GHz - 25GHz



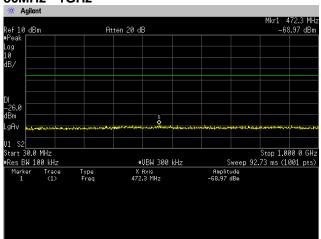

[BT_LE (1Mbps)] **Channel: Middle** 30MHz - 1GHz


1GHz - 5GHz

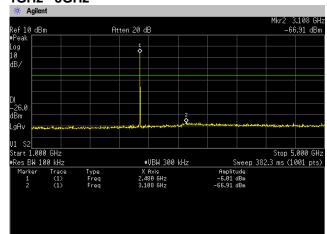

5GHz - 10GHz

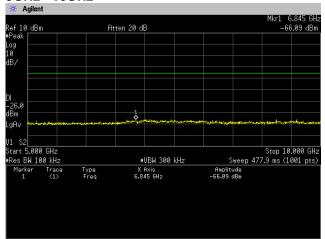

10GHz - 15GHz

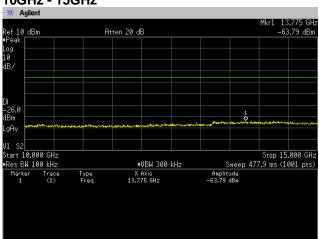
15GHz - 20GHz

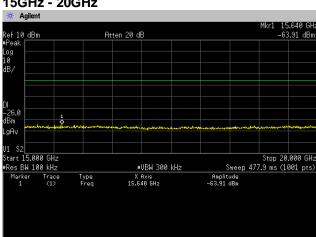


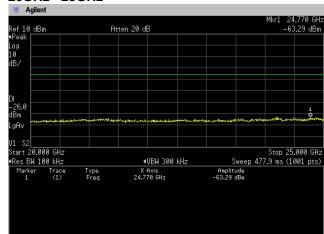
20GHz - 25GHz



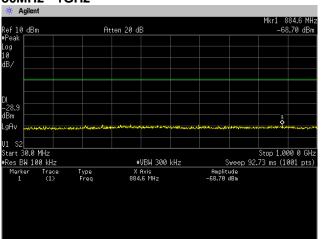

[BT_LE (1Mbps)] Channel: High 30MHz - 1GHz

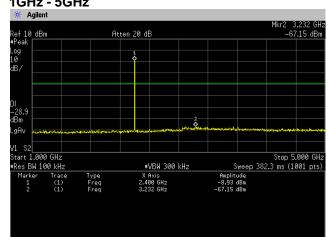

1GHz - 5GHz

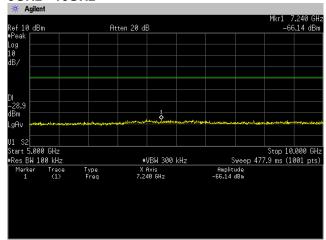

5GHz - 10GHz

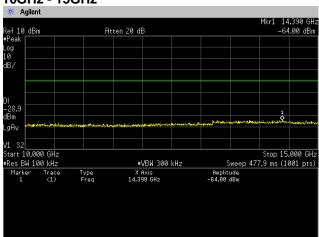


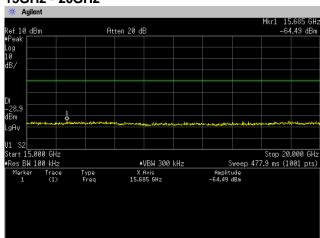
10GHz - 15GHz


15GHz - 20GHz

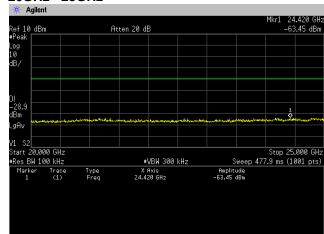



[BT_LE (2Mbps)] **Channel: Low** 30MHz - 1GHz


1GHz - 5GHz

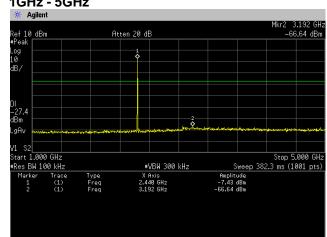


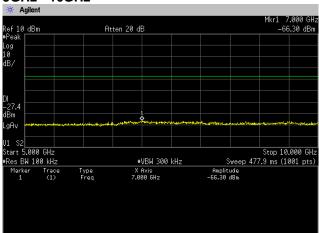
5GHz - 10GHz



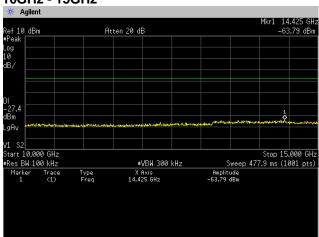
10GHz - 15GHz

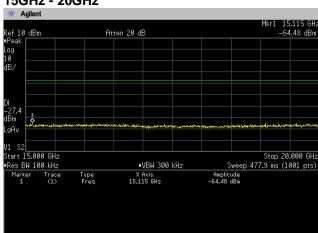
20GHz - 25GHz



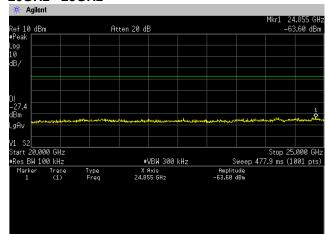

[BT_LE (2Mbps)] **Channel: Middle** 30MHz - 1GHz

Atten 20 dB Ref 10 dBm Stop 1.000 0 GHz Sweep 92.73 ms (1001 pts) Amplitude -69.33 dBm V1 S2 Start 30.0 MHz #Res BW 100 kHz Marker Trace 1 (1) *VBW 300 kHz X Axis 490.8 MHz

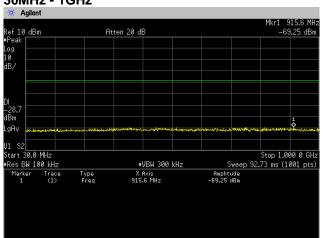

1GHz - 5GHz



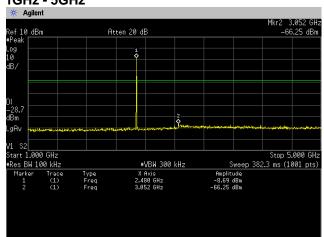
5GHz - 10GHz

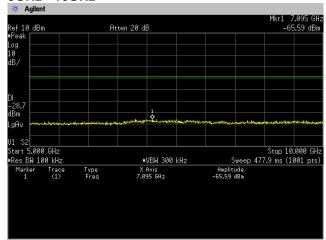


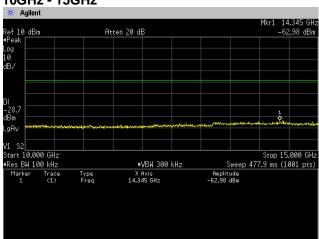
10GHz - 15GHz

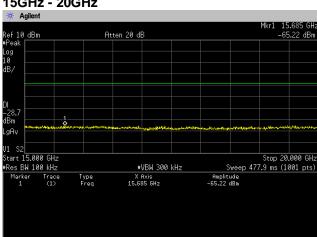


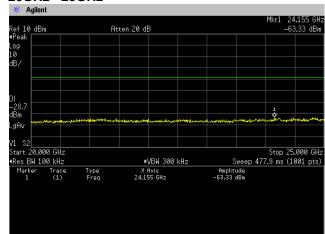
20GHz - 25GHz




[BT_LE (2Mbps)] Channel: High 30MHz - 1GHz


1GHz - 5GHz

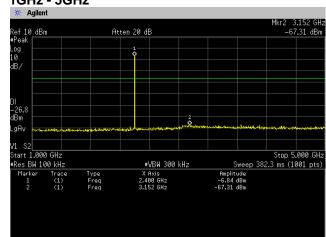

5GHz - 10GHz



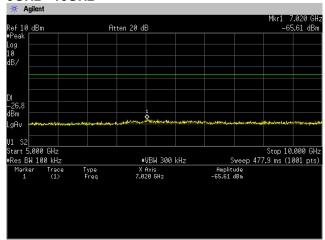
10GHz - 15GHz

15GHz - 20GHz

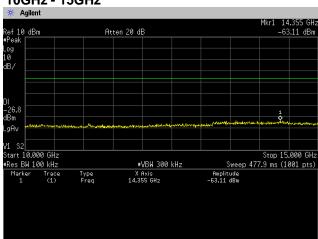
[BT_LE (LongRange S2)]

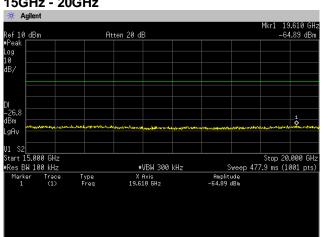

Channel: Low 30MHz - 1GHz

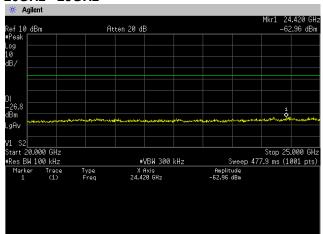
Mkr1 600.4 MHz -68.47 dBm Atten 20 dB Ref 10 dBm Stop 1.000 0 GHz Sweep 92.73 ms (1001 pts) Amplitude -68.47 dBm V1 S2 Start 30.0 MHz #Res BW 100 kHz Marker Trace 1 (1)


*VBW 300 kHz

X Axis 600.4 MHz

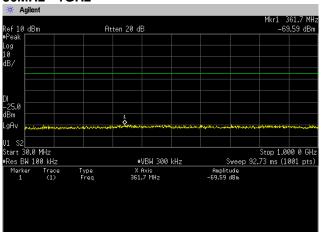

1GHz - 5GHz

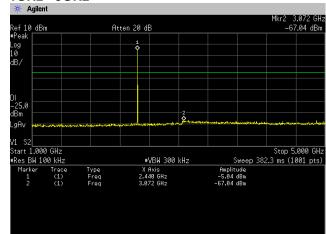

5GHz - 10GHz



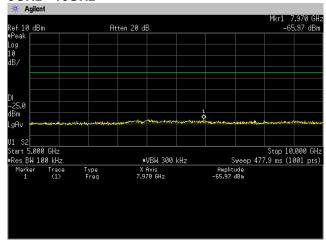
10GHz - 15GHz

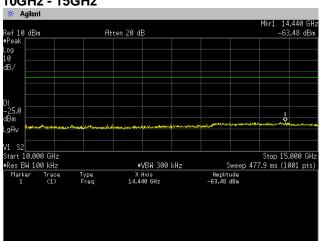
15GHz - 20GHz

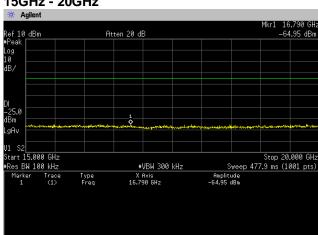


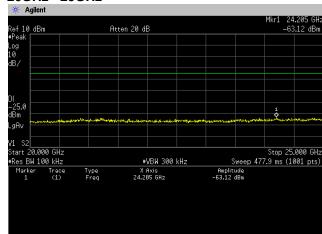


[BT_LE (LongRange S2)]

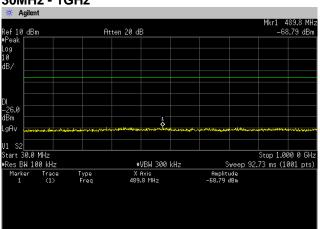

Channel: Middle 30MHz - 1GHz

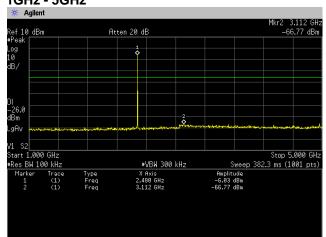

1GHz - 5GHz


5GHz - 10GHz

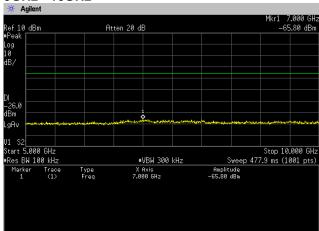

10GHz - 15GHz

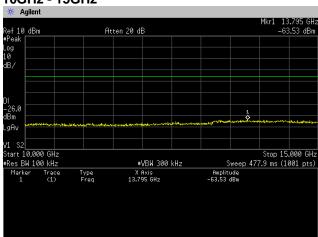
15GHz - 20GHz

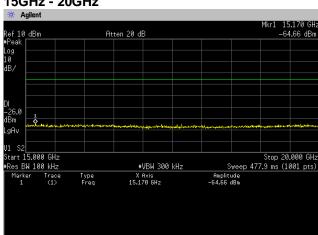

20GHz - 25GHz



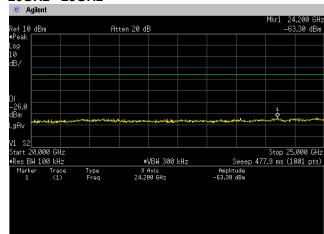
[BT_LE (LongRange S2)]


Channel: High 30MHz - 1GHz

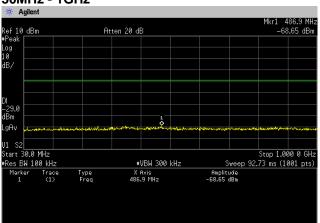

1GHz - 5GHz

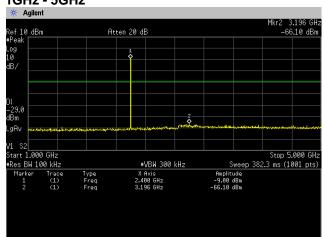


5GHz - 10GHz

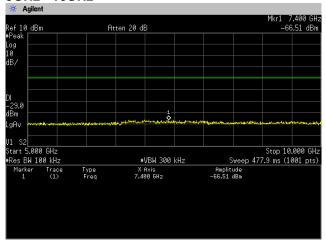


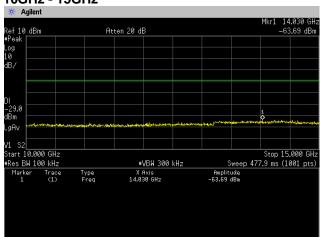
10GHz - 15GHz

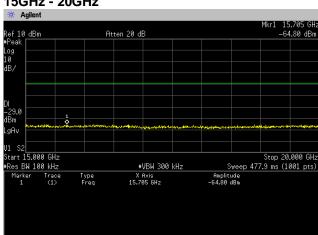

20GHz - 25GHz



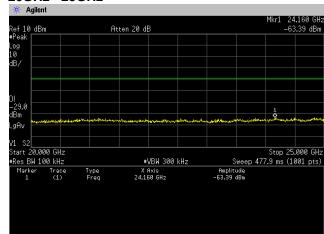
[BT_LE (LongRange S8)]


Channel: Low 30MHz - 1GHz

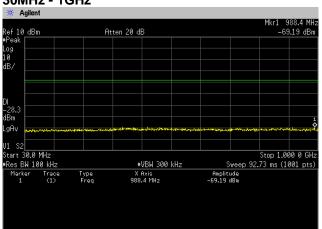

1GHz - 5GHz

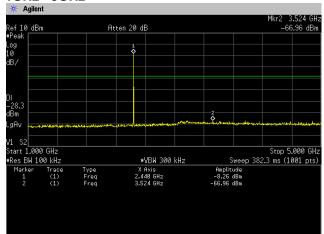


5GHz - 10GHz

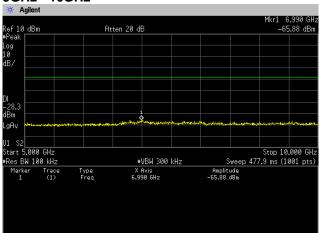


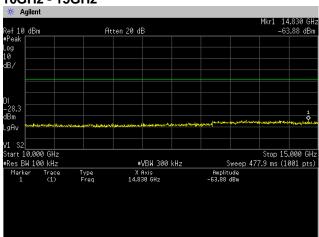
10GHz - 15GHz

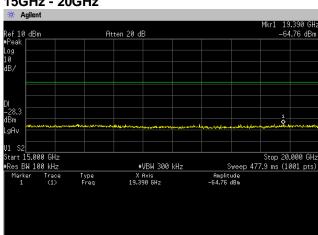

20GHz - 25GHz



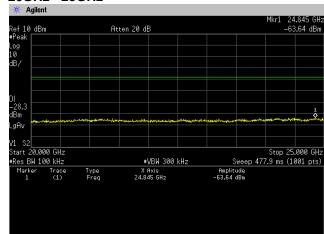
[BT_LE (LongRange S8)]


Channel: Middle 30MHz - 1GHz

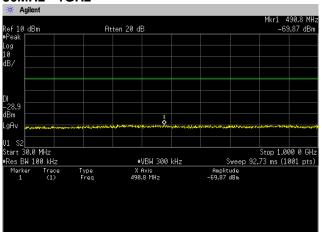

1GHz - 5GHz

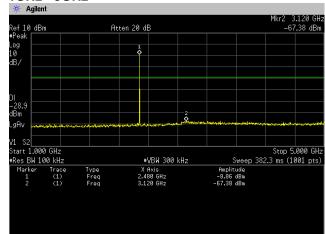


5GHz - 10GHz

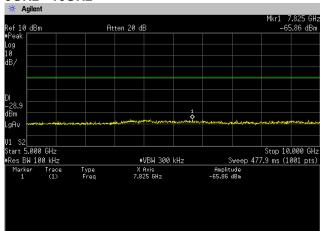


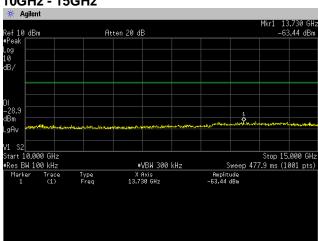
10GHz - 15GHz

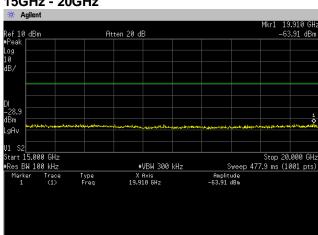

20GHz - 25GHz



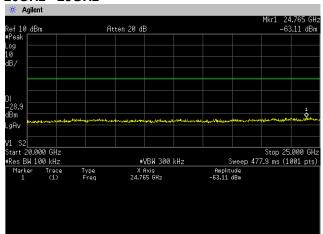
[BT_LE (LongRange S8)]


Channel: High 30MHz - 1GHz


1GHz - 5GHz



5GHz - 10GHz



10GHz - 15GHz

20GHz - 25GHz

4.5 Spurious Emissions - Radiated -

4.5.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB558074 D01 v05r02]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 9kHz to 25GHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m \times (D)1.0m \times (H)0.8m (below 1GHz)

Styrofoam table / (W)0.6m \times (D)0.6m \times (H)1.5m (above 1GHz)

Antenna distance : 3m

Test receiver setting Below 1GHz

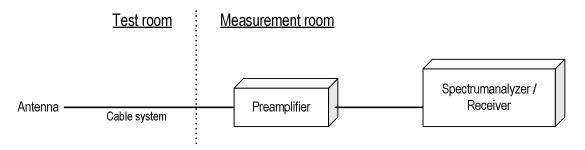
- Detector : Average (9kHz-90kHz, 110kHz-490kHz), Quasi-peak

- Bandwidth : 200Hz, 120kHz Spectrum analyzer setting : Above 1GHz

Peak
 RBW=1MHz, VBW=3MHz, Span=0Hz, Sweep=auto
 Average
 RBW=1MHz, VBW=1kHz, Span=0Hz, Sweep=auto

Display mode=Linear

Average Measurement Setting [VBW]


Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
Bluetooth 5.3 LE (1Mbps)	85.01	2.127	0.375	0.470	1kHz
Bluetooth 5.3 LE (2Mbps)	56.91	1.067	0.808	0.937	1kHz
Bluetooth 5.3 LE (Long Range S2)	90.96	4.528	0.45	0.221	1kHz
Bluetooth5.3 LE (Long Range S8)	97.43	17.05	0.45	0.059	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8 m/1.5 m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.5.2 Calculation method

[9kHz to 150kHz]

Emission level = Reading + (Ant factor + Cable system loss)

Margin = Limit - Emission level

[150kHz to 25GHz]

Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain)

Margin = Limit - Emission level

Example:

Limit @ 4804.0MHz: 74.0dBuV/m (Peak Limit) S.A Reading = 39.9dBuV Cable system loss = 8.3dB

Result = 39.9 + 8.3 = 48.2dBuV/m Margin = 74.0 - 48.2 = 25.8dB

4.5.3 Limit

Frequency	Field s	Field strength				
[MHz]	[uV/m]	[dBuV/m]	[m]			
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300			
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30			
1.705-30	30	29.5	30			
30-88	100	40.0	3			
88-216	150	43.5	3			
216-960	200	46.0	3			
Above 960	500	54.0	3			

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition modulation.

4.5.4 Test data

Date 27-July-2023

Temperature 23.3 [°C] Humidity 64.9 [%]

Test engineer

Chiaki Kanno 3m Semi-anechoic chamber Test place

17-August-2023 Date

Temperature 24.2 [°C]

Humidity 69.9 [%]

Tadahiro Seino Test place 3m Semi-anechoic chamber

17~18-August-2023 Date

Temperature 23.8 [°C]

68.5 [%] Humidity

Test place 3m Semi-anechoic chamber Chiaki Kanno

22-August-2023 Date

24.4 [°C] Temperature

Humidity Test engineer 69.1 [%]

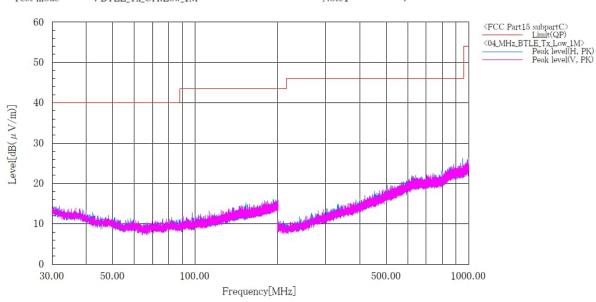
Test place 3m Semi-anechoic chamber Chiaki Kanno

Test engineer

Test engineer

[Transmission mode] [BT_LE (1Mbps)] **Channel: Low BELOW 1 GHz**

> : KYOCERA Corporation : Mobile Phone Company name


Model No. : EB1173

Serial No. : BTLE_Tx_CH:Low_1M Test mode

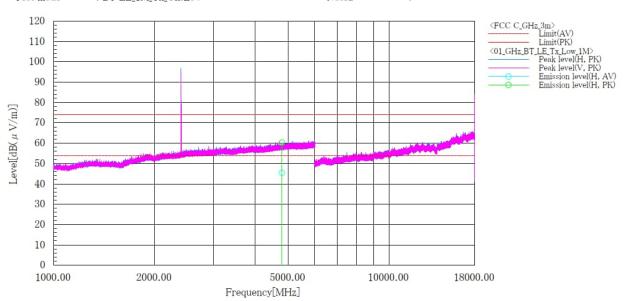
Sheet No.

: FCC Part15 subpart C : C.Kanno : 24.4 [° C], 69.1 [%] Standard Operator

Temp, Hum, Atm Note1

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



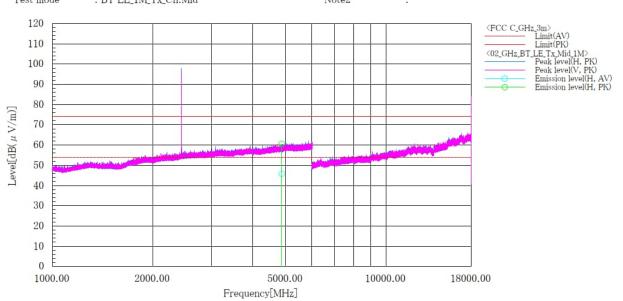
[BT_LE (1Mbps)] Channel: Low **ABOVE 1 GHz**

> : FCC Part.15 subpart C : KYOCERA Corporation Company name Standard Mobile Phone Operator

EUT Model No. : T.Seino : 24.2 [° C], 69.9 [%] : EB1173 Temp, Hum, Atm

Serial No. Note1 : BT LE_1M_Tx_Ch:Low Note2 Test mode

Final Result


No.	Frequency	Pol	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	
1	[MHz]	п	[dB(μV)]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	[dB(µV/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[deg]	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

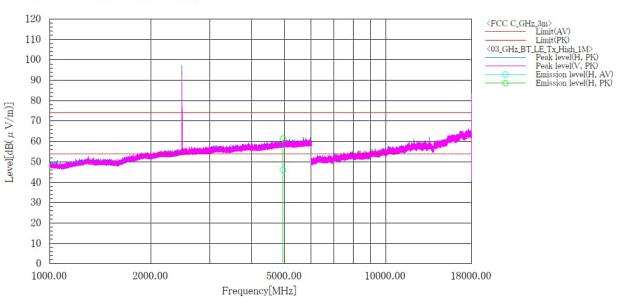
[BT_LE (1Mbps)] Channel: Middle ABOVE 1 GHz

Company name : KYOCERA Corporation Standard : FCC Part.15 subpart C EUT : Mobile Phone Operator : T.Seino Temp,Hum,Atm : 24.2 [° C], 69.9 [%]

Final Result

No. Frequency Pol Reading Reading c.f Result Result Limit Limit Margin Margin Height Angle
$$AV$$
 PK AV PK AV

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[BT_LE (1Mbps)] Channel: High **ABOVE 1 GHz**

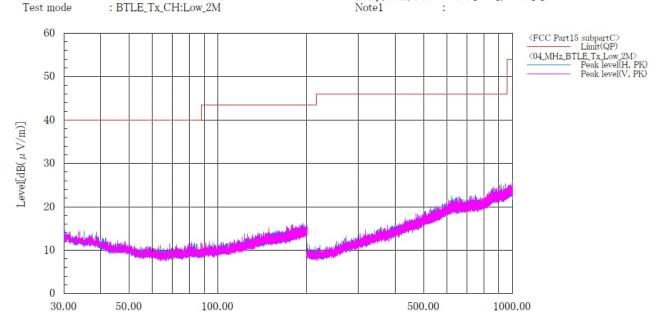
> Company name : KYOCERA Corporation Standard : FCC Part.15 subpart C EUT Model No. : T.Seino : 24.2 [°C] 69.9 [%] : Mobile Phone Operator : EB1173 : N/A Temp, Hum, Atm

Serial No. Note1

Test mode : BT LE_1M_Tx_Ch:High Note2

Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.


[BT_LE (2Mbps)] Channel: Low **BELOW 1 GHz**

> : KYOCERA Corporation Sheet No. Company name

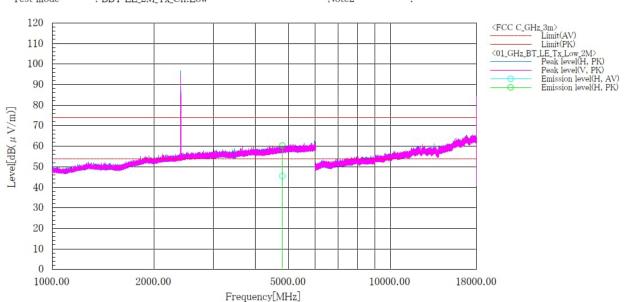
: FCC Part15 subpart C : C.Kanno : 24.4 [° C], 69.1 [%] EUT Model No. : Mobile Phone Standard

: EB1173 Operator

Serial No. Temp, Hum, Atm

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.


Frequency[MHz]

[BT_LE (2Mbps)] **Channel: Low ABOVE 1 GHz**

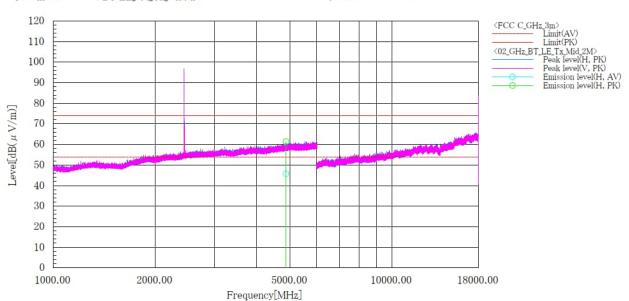
> : KYOCERA Corporation : FCC Part.15 subpart C Company name Standard : Mobile Phone : EB1173 EUT Model No. Operator Temp,Hum,Atm Note1 : T.Seino : 24.2 [°C] 69.9 [%]

Serial No. Test mode : BBT LE_2M_Tx_Ch:Low Note2

Final Result

No.	Frequency	Pol	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit AV	Limit PK	Margin AV	Margin PK	Height	Angle	
,	[MHz]	11	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	[dB(µV/m)]	$[dB(\mu V/m)]$	$\left[dB \left(\mu V/m \right) \right]$	[dB]	[dB]	[cm]	[deg]	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[BT_LE (2Mbps)] **Channel: Middle ABOVE 1 GHz**

> : KYOCERA Corporation : FCC Part.15 subpart C Standard Mobile Phone

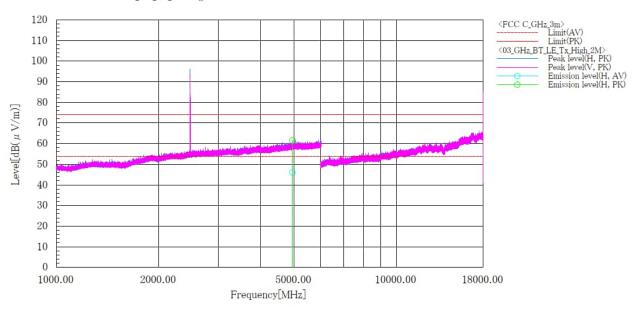
Company name EUT Model No. Operator Temp,Hum,Atm T.Seino 24.2 [°C] 69.9 [%] : EB1173

Serial No. Note1 : BT LE_2M_Tx_Ch:Mid Test mode Note2

Final Result

No.	Frequency	Pol	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle
1	[MHz] 4880.000	Н	[dB(μV)] 34.7	[dB(μV)] 50.2	[dB(1/m)] 11.1	[dB(µV/m)] 45.8	[dB(µV/m)] 61.3	[dB(µV/m)] 54.0	[dB(μV/m)] 74.0	[dB] 8. 2	[dB] 12. 7	[cm] 100.0	[deg] 193.0

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[BT_LE (2Mbps)] Channel: High **ABOVE 1 GHz**

: FCC Part.15 subpart C Company name : KYOCERA Corporation Standard : T.Seino : 24.2 [°C] 69.9 [%] Mobile Phone Operator

Temp,Hum,Atm Note1 Model No. EB1173

N/A Serial No. Note2 : BT LE_2M_Tx_Ch:High Test mode

Final Result

No.	Frequency	Pol	Reading	Reading PK	c.f	Result AV	Result	Limit	Limit PK	Margin AV	Margin	Height	Angle
1	[MHz] 4960 000	и	[dB(μV)]	[dB(μV)]	[dB(1/m)]	[dB(μV/m)]	$[dB(\mu V/m)]$	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$	[dB(μV/m)]	[dB]	[dB]	[cm]	[deg]

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[BT_LE (LongRange S2)]

Channel: Low BELOW 1 GHz

> Company name : KYOCERA Corporation

: Mobile Phone Model No.

Serial No. : N/A

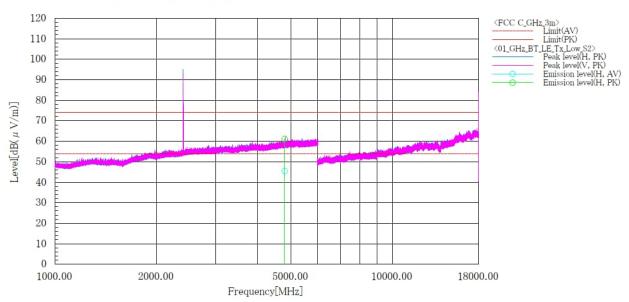
: EB1173

Sheet No.

: FCC Part15 subpart C Standard

Operator

: C.Kanno : 24.4 [° C], 69.1 [%] Temp, Hum, Atm


- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

[BT_LE (LongRange S2)]

Channel: Low ABOVE 1 GHz

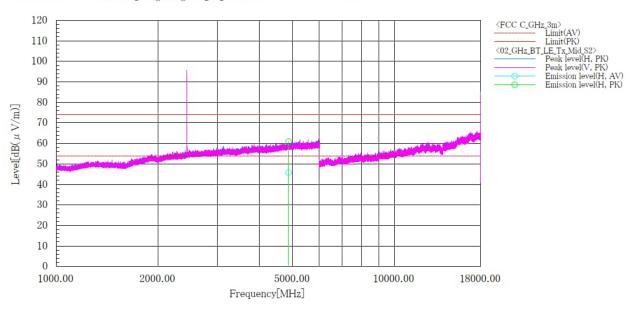
Test mode : BT LE_Long Range S2_Tx_Ch:Low Note2 :

Final Result

No.	Frequency	Po1	Reading	Reading PK	c. f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle
1	[MHz] 4804,000	Н	[dB(μV)]	[dB(μV)] 50.3	[dB(1/m)]	[dB(μV/m)] 45.6	[dB(μV/m)]	$[dB(\mu V/m)]$ 54.0	[dB(μV/m)] 74.0	[dB] 8 4	[dB]	[cm]	[deg] 195.0

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[BT_LE (LongRange S2)]


Channel: Middle **ABOVE 1 GHz**

> KYOCERA Corporation Mobile Phone : FCC Part.15 subpart C Company name EUT Standard

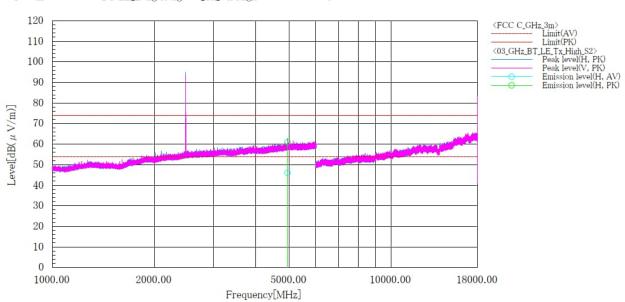
Operator

: T.Seino : 24.2 [°C] 69.9 [%] Model No. EB1173 Temp, Hum, Atm

Serial No. Note1 Test mode : BT LE_Long Range S2_Tx_Ch:Mid Note2

Final Result

No.	Frequency	Pol	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit AV	Limit PK	Margin AV	Margin PK	Height	Angle	
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]			$[dB(\mu V/m)]$		[dB]	[dB]	[cm]	[deg]	
1	4880 000	н	34 7	49 9	11 1	45.8	61 0	54 0	74 0	8 2	13 0	100 0	197 0	


- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[BT_LE (LongRange S2)]

Channel: High ABOVE 1 GHz

Serial No. : N/A Note1
Test mode : BT LE_Long Range S2_Tx_Ch:High Note2

Final Result

No.	Frequency	Po1	Reading AV	Reading PK	c.f	Result	Result PK	Limit AV	Limit PK	Margin AV	Margin PK	Height	Angle	
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]		$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[deg]	
1	4960, 000	H	34. 7	49.6	11.4	46. 1	61.0	54. 0	74. 0	7. 9	13. 0	100.0	191.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

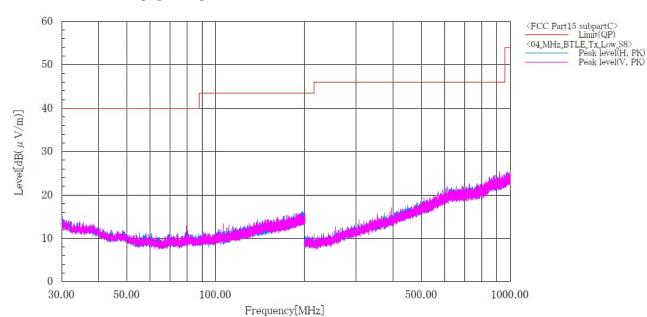
[BT_LE (LongRange S8)]

Channel: Low BELOW 1 GHz

> Company name : KYOCERA Corporation EUT Model No.

: Mobile Phone : EB1173

Serial No. : N/A Test mode


: BTLE_Tx_CH:Low_S8

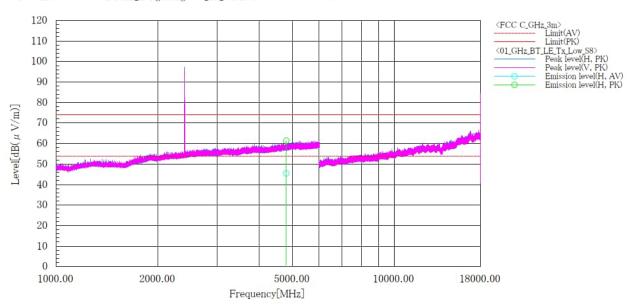
Sheet No.

Standard : FCC Part15 subpart C

Operator

: C.Kanno : 24.4 [° C], 69.1 [%] Temp,Hum,Atm Note1

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.


[BT_LE (LongRange S8)]

Channel: Low ABOVE 1 GHz

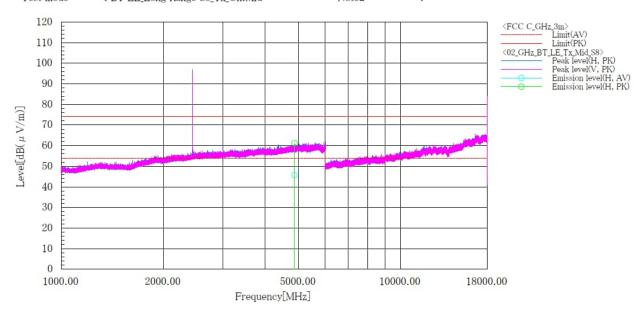
> : KYOCERA Corporation : FCC Part.15 subpart C Company name Standard Mobile Phone Operator

: C.Kanno : 23.8 [°C] 68.5 [%] Model No. : EB1173 : N/A Temp,Hum,Atm Note1 Serial No.

: BT LE_Long Range S8_Tx_Ch:Low Test mode Note2

Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[BT_LE (LongRange S8)]

Channel: Middle ABOVE 1 GHz

Company name : KYOCERA Corporation Standard : FCC Part.15 subpart C
EUT : Mobile Phone Operator : C.Kanno
Model No. : EB1173 Temp,Hum,Atm : 23.8 [°C] 68.5 [%]
Serial No. : N/A Note1 :

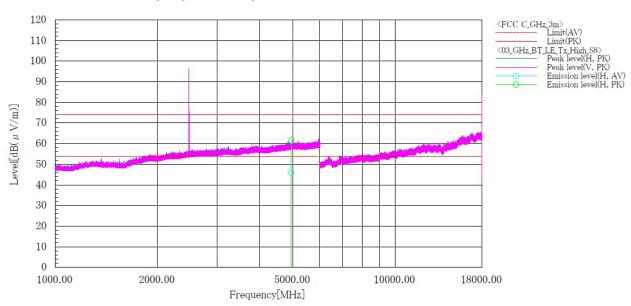
Test mode : BT LE_Long Range S8_Tx_Ch:Mid Note2

Final Result

No.	Frequency	Po1	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit AV	Limit PK	Margin AV	Margin PK	Height	Angle
1	[MHz] 4880.000	Н	[dB(μV)] 34.7	[dB(μV)] 50.0	[dB(1/m)] 11.1	[dB(μV/m)] 45.8	[dB(μV/m)] 61.1	[dB($\mu V/m$)] 54.0	$[dB(\mu V/m)]$ 74.0	[dB] 8. 2	[dB] 12. 9	[cm] 100.0	[deg] 190.0

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[BT_LE (LongRange S8)]


Channel: High **ABOVE 1 GHz**

> : KYOCERA Corporation : FCC Part.15 subpart C Company name Standard

Operator

EUT Model No. Serial No. Test mode : Mobile Phone : EB1173 : N/A : C.Kanno : 23.8 [°C] 68.5 [%] Temp, Hum, Atm Note1

: BT LE_Long Range S8_Tx_Ch:High Note2

Final Result

No.	Frequency	Po1	Reading AV	Reading PK	c.f	Result AV	Result PK	Limit AV	Limit PK	Margin AV	Margin PK	Height	Angle	
	[MHz] 4960,000	***	[dB(μV)]	[dB(μV)]	[dB(1/m)]	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$	[dB(μV/m)]	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$	[dB]	[dB]	[cm]	[deg]	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

4.6 Restricted Band of Operation

4.6.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB558074 D01 v05r02]

Test was applied by following conditions.

Test method : ANSI C63.10

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m \times (D)1.0m \times (H)0.8m (below 1GHz)

Styrofoam table / (W)0.6m \times (D)0.6m \times (H)1.5m (above 1GHz)

Antenna distance : 3m

Spectrum analyzer setting

Peak
 RBW=1MHz, VBW=3MHz, Span=Arbitrary setting, Sweep=auto
 Average
 RBW=1MHz, VBW=1kHz, Span= Arbitrary setting, Sweep=auto

Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/Ton (kHz)	Determined VBW Setting
Bluetooth 5.3 LE (1Mbps)	85.01	2.127	0.375	0.470	1kHz
Bluetooth 5.3 LE (2Mbps)	56.91	1.067	0.808	0.937	1kHz
Bluetooth 5.3 LE (Long Range S2)	90.96	4.528	0.45	0.221	1kHz
Bluetooth 5.3 LE (Long Range S8)	97.43	17.05	0.45	0.059	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8 m/1.5 m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.6.2 Limit

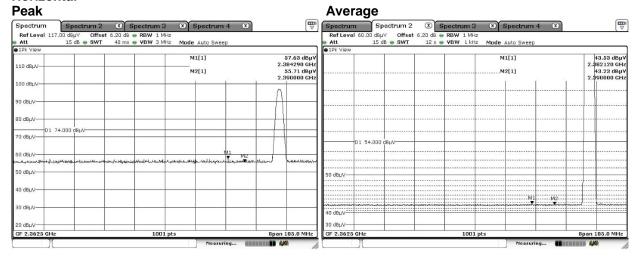
Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

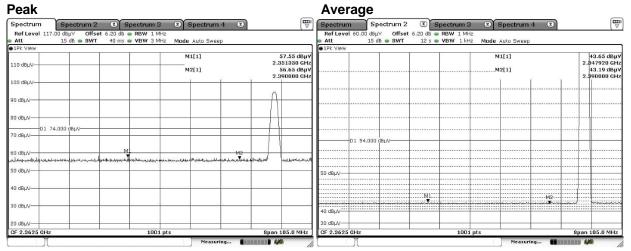
4.6.3 Measurement result

Channel	Frequency [MHz]	Results Chart	Result
Low	2402	See the Trace Data	Pass
High	2480	See the Trace Data	Pass

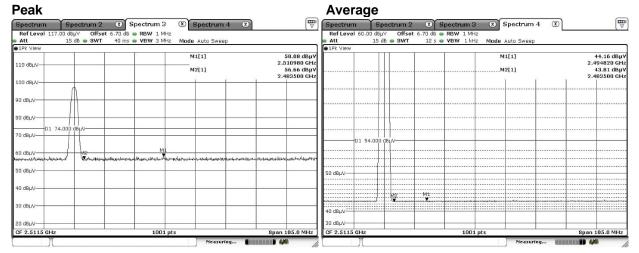
4.6.4 Test data

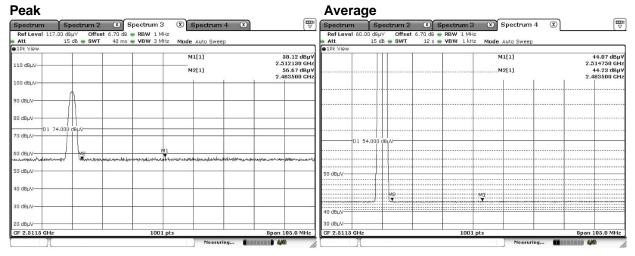
Date : 21~22-August-2023

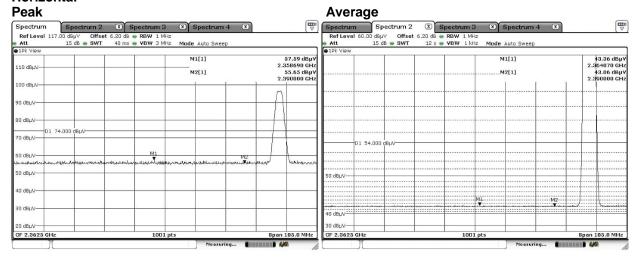

Temperature : 24.8 [°C]

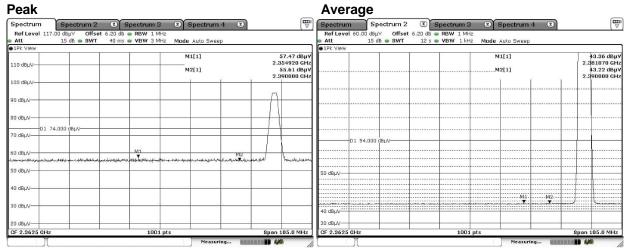

Humidity : 74.8 [%] Test engineer

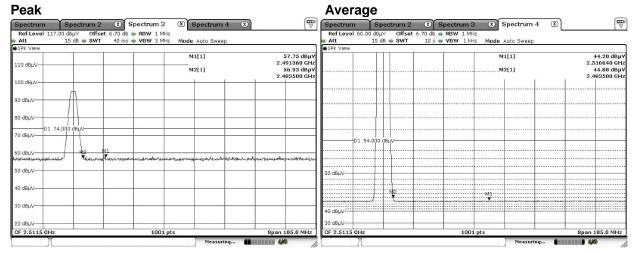
Test place : 3m Semi-anechoic chamber Chiaki Kanno

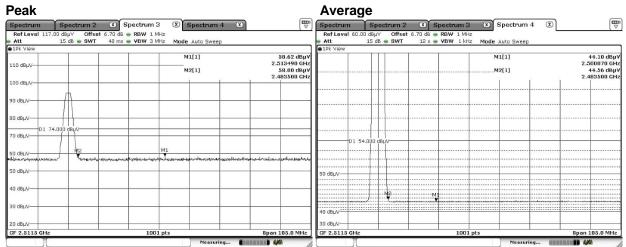

[BT_LE (1Mbps)] Channel: Low Horizontal



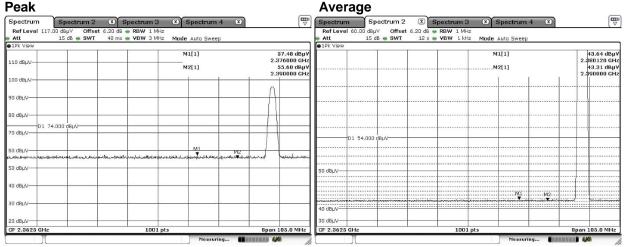

Channel: High Horizontal

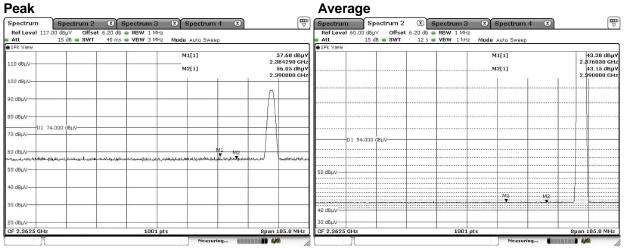



[BT_LE (2Mbps)] Channel: Low Horizontal



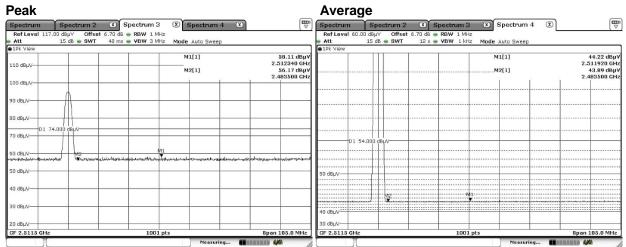
Channel: High Horizontal



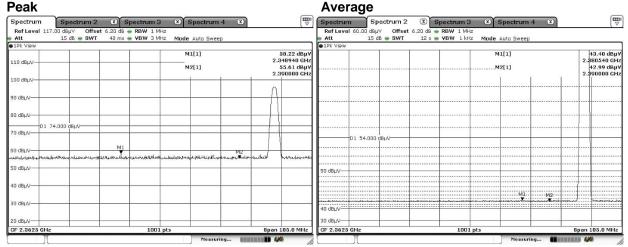


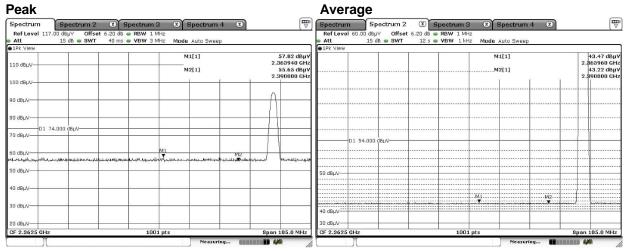
[BT_LE (LongRange S2)]

Channel: Low Horizontal



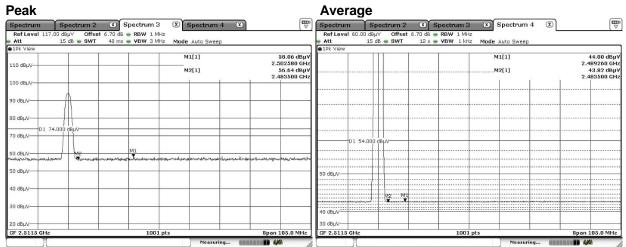
Channel: High Horizontal


Peak			Averag				G
Spectrum 2	Spectrum 3 Spectrum 4	X ()	Spectrum	Spectrum 2	Spectrum 3 X	Spectrum 4	[9
	.70 dB • RBW 1 MHz		Ref Level 60.0		O dB · RBW 1 MHz	-	
Att 15 dB • SWT	40 ms • VBW 3 MHz Mode Auto Sweep		● Att ●1Pk View	15 dB 👄 SWT	12 s • VBW 1 kHz Mode	: Auto Sweep	
Thk Alek	M1[1]	58.04 dBµV	●1PK VIBW			M1[1]	44.20 dBı
40 40 40	MILI	2.494720 GHz				MILLI	2.488950 G
.10 dBµV	M2[1]	56.64 dBµV				M2[1]	44.00 dB
		2.483500 GHz					2.483500 G
.00 dBµV							
1 1							
0 dBµV							
1 111							
0 dBµV							
D1 74.000 dBµV							
0 dBμV			61.5	1.000 dBuV			
[[[[[[[[[[[[[[[[[[[[vec		DT 24	VII 000.			
U OBUV M2	M1						
mandered themselver	la Français de menoral de magniter de como monta monte professor de como de la como de como de como de como de	respectation and proper depression with all					
0 dBµV			50 dBuV				
			50 dbp1				
0 dBµV							
				M2 M1			
0 dBuV							
			40 dBµV				
0 dBµV			30 dBµV				
F 2.5115 GHz	1001 pts	8pan 105.0 MHz	CF 2.5115 GHz		1001 pts		Span 105.0 MI



[BT_LE (LongRange S8)]

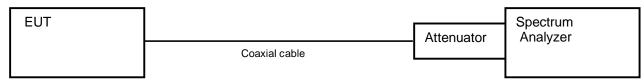
Channel: Low Horizontal



Channel: High Horizontal

'eak			Avera	ge			
Spectrum 2 Sp	ectrum 3 🗴 Spectrum 4	X T	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	[7
	RBW 1 MHz VBW 3 MHz Mode Auto Sweep		Ref Level 60 Att	0.00 dBμV Offset 6. 15 dB ⊜ SWT	70 dB • RBW 1 MHz 12 s • VBW 1 kHz	Mode Auto Sweep	
1Pk View			●1Pk View				
10 dBµV	M1[1] M2[1]	58.26 dBµV 2.488840 GHz 57.40 dBµV 2.483500 GHz				M1[1] M2[1]	44.13 dB ₁ 2.495030 GF 43.73 dB ₁ 2.483500 GF
00 dBµV							-
0 фвил							
0 dBμV							
0 dBLV M2 M1			D1	54,000 dBµV			
D dBUV	the control of the second seco	Paulady (projection for passage to desire the egong desired entered	50 dBuV				
о авил							
0 dвµV-			40 dBuV	J NZ	MIT		
0 dBµV			30 dBµV				
F 2.5115 GHz	1001 pts	8pan 105.0 MHz	CF 2.5115 GH	z	1001 pts	5	8pan 105.0 MH

4.7 Transmitter Power Spectral Density


4.7.1 Measurement procedure

[FCC 15.247(e), KDB558074 D01 v05r02]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW \geq 3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- Test configuration

4.7.2 Limit

The peak power spectral density shall not be greater than 8dBm in any 3kHz band.

4.7.3 Measurement result

Date : 1-August-2023 Temperature : 24.2 [°C]

Humidity : 56.7 [%]

Test place : Shielded room No.4

Test engineer

Nobuyuki Toda

[BT LE (1Mbps)]

<u> </u>	.cp c/1						
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2402	-21.44	10.93	-10.51	8.00	18.51	PASS
Middle	2440	-20.67	10.93	-9.74	8.00	17.74	PASS
Hiah	2480	-21.38	10.93	-10.45	8.00	18.45	PASS

[BT LE (2Mbps)]

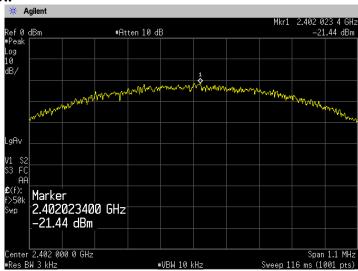
<u> </u>							
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2402	-23.93	10.93	-13.00	8.00	21.00	PASS
Middle	2440	-23.17	10.93	-12.24	8.00	20.24	PASS
High	2480	-23.84	10.93	-12.91	8.00	20.91	PASS

[BT_LE (LongRange S2)]

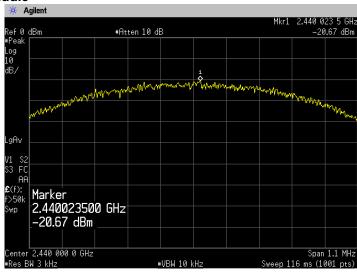
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2402	-11.72	10.93	-0.79	8.00	8.79	PASS
Middle	2440	-10.85	10.93	0.08	8.00	7.92	PASS
High	2480	-11.51	10.93	-0.58	8.00	8.58	PASS

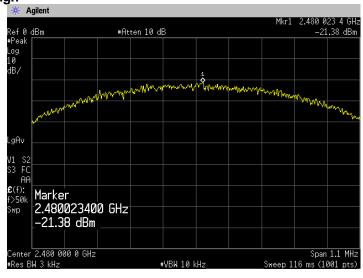
[BT LE (LongRange S8)]

TRITE (FO	igitalige co)						
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2402	-11.66	10.93	-0.73	8.00	8.73	PASS
Middle	2440	-10.84	10.93	0.09	8.00	7.91	PASS
High	2480	-11.50	10.93	-0.57	8.00	8.57	PASS

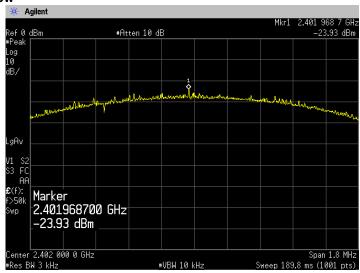

Calculation;

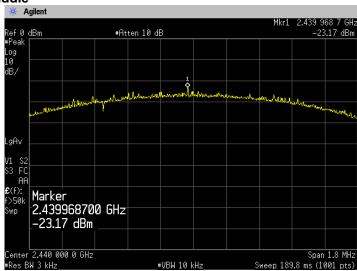
Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

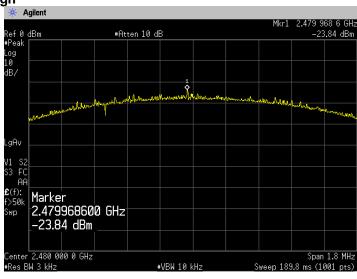



4.7.4 Trace data

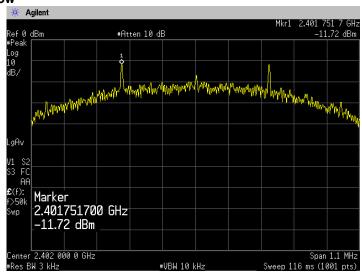
[BT_LE (1Mbps)] Channel Low

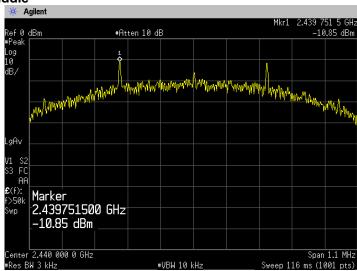

Channel Middle

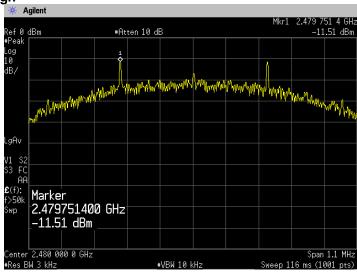




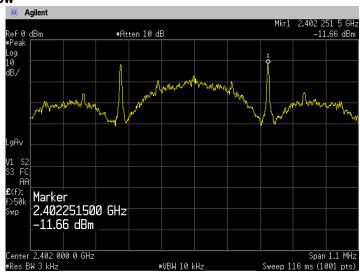
[BT_LE (2Mbps)] Channel Low

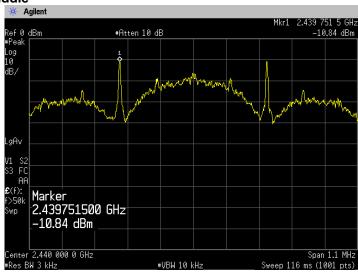

Channel Middle

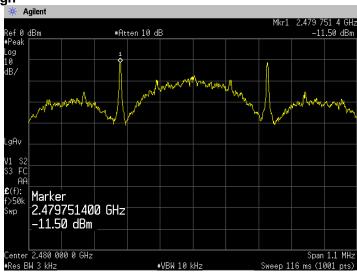




[BT_LE (LongRange S2)] Channel Low


Channel Middle





[BT_LE (LongRange S8)] Channel Low

Channel Middle

Japar

4.8 AC Power Line Conducted Emissions

4.8.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.

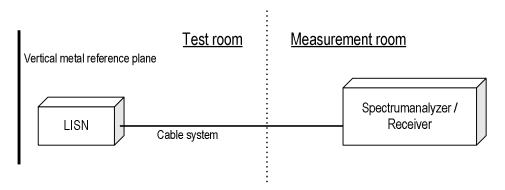
Test method : ANSI C63.10 Frequency range : 0.15 MHz to 30 MHz

Test place : 3 m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m \times (D)0.8m \times (H)0.8m Vertical Metal Reference Plane : (W)2.0 m \times (H)2.0 m 0.4 m away from EUT

Test receiver setting

- Detector : Quasi-peak, Average


- Bandwidth : 9 kHz

EUT and peripherals are connected to $50\Omega/50\mu H$ Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

4.8.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example:

Limit @ 6.770 MHz: 60.0 dBµV(Quasi-peak)

: 50.0 dBµV(Average)

(Quasi peak) Reading = $41.2 \text{ dB}\mu\text{V}$ c.f = 10.3 dB

Emission level = $41.2 + 10.3 = 51.5 \text{ dB}\mu\text{V}$

Margin = 60.0 - 51.5 = 8.5 dB

(Average) Reading = $35.0 \text{ dB}\mu\text{V}$ c.f = 10.3 dB

Emission level = $35.0 + 10.3 = 45.3 \text{ dB}\mu\text{V}$

Margin = 50.0 - 45.3 = 4.7 dB

4.8.3 Limit

Frequency	Liı	mit
[MHz]	QP [dBuV]	AV [dBuV]
0.15-0.5	66-56*	56-46*
0.5-5	56	46
5-30	60	50

^{*:} The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

4.8.4 Test data

Date 7-September-2023

Temperature 23.7 [°C] Humidity 66.5 [%]

Test engineer Tadahiro Seino Test place 3m Semi-anechoic chamber

[BT_LE]

: KYOCERA Corporation Company name Standard : FCC Part 15 Subpart C Operator Temp,Hum,Atm EUT Model No. Serial No. : T.Seino : 23.7 [° C], 66.5 [%] Mobile Phone : Mobile I : EB1173 : BT_LE_Tx_1M Note2 Test mode 80 Limit(QP) Limit(AV) Climit(AV)

 ⟨01_BT_LE_Tx_1M⟩
 Peak level(L1, PK)
 Peak level(L2, PK)
 Emission level(L1, CAV)
 Emission level(L1, CAV)
 Emission level(L2, QP)
 Emission level(L2, CAV) 70 60 50 Level[dB(μ V)] 40 0 30 20 10 0 0.150 0.500 1.000 5.000 10.000 30.000 Frequency[MHz]

Final Re	sult
----------	------

	L1									
No.	Frequency	Reading	Reading	c. f	Result	Result	Limit	Limit	Margin	Margin
	Farr- T	QP W	CAV	Cap7	QP W	CAV	QP	AV	QP	CAV
	[MHz]	$[dB(\mu V)]$		[dB]	$[dB(\mu V)]$	[dB(μV)]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]
1	0.150	46.7	22.0	10.5	57. 2	32. 5	66. 0	56.0	8.8	23. 5
2 3	0. 200	42.7	14.4	10.4	53. 1	24.8	63. 6	53.6	10.5	28.8
	0.687	31.4	21.9	10.3	41. 7	32. 2	56. 0	46.0	14. 3	13.8
4 5	1.477	27.2	18.7	10.4	37.6	29. 1	56. 0	46.0	18.4	16.9
5	3, 529	21.9	12.5	10.5	32. 4	23.0	56.0	46.0	23.6	23.0
6	6.817	26. 2	15.6	10.8	37.0	26. 4	60.0	50.0	23.0	23.6
	L2									
No.	Frequency	Reading QP	Reading CAV	c. f	Result	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
	[MHz]	$[dB(\mu V)]$		[dB]	$[dB(\mu V)]$	[dB(μV)]	[dB(μV)]	$[dB(\mu V)]$	[dB]	[dB]
1 2	0.150	47.8	23.8	10.5	58. 3	34. 3	66.0	56.0	7. 7	21.7
2	0.200	44.0	15.4	10.4	54. 4	25. 8	63. 6	53.6	9. 2	27.8
3	0,678	28.6	19.1	10.3	38. 9	29.4	56.0	46.0	17.1	16.6
4	1.477	26.7	21.2	10.4	37. 1	31.6	56.0	46.0	18.9	14.4
4 5	3, 522	22. 2	11.6	10.6	32.8	22. 2	56, 0	46.0	23. 2	23.8
6	6, 818	24. 7	14. 3	10.8	35. 5	25. 1	60.0	50.0	24. 5	24. 9
	0.020		_ 1. 0	20.0		200			_ 2. 0	_ 2

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or noncompliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.8 dB
Radiated emission (30 MHz – 1000 MHz)	±5.4 dB
Radiated emission (1 GHz – 6 GHz)	±4.6 dB
Radiated emission (6 GHz – 18 GHz)	±4.7 dB
Radiated emission (18 GHz – 40 GHz)	±6.4 dB
Radio Frequency	±1.3 * 10 ⁻⁸
RF power, conducted	±0.7 dB
Adjacent channel power	±1.5 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge	Measured value and standard limit value									
PASS	Case1	+Uncertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled.								
	-	Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.								
FAIL	Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration.								
	Case4	Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.								

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81-238-28-2881

Accreditation and Registration

A2LA

Certificate #3686.03

VLAC

Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada

ISED#: 4224A

VCCI Council

Registration number: A-0166

Appendix A. Test Equipment

Antenna port conducted test

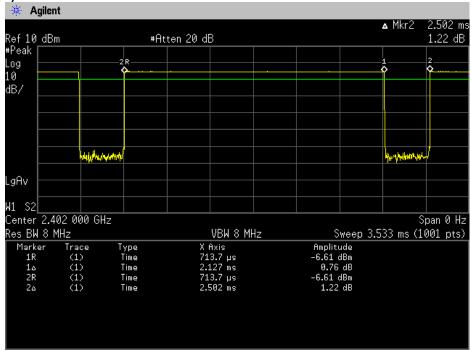
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date			
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	30-Sep-2023	05-Sep-2022			
Attenuator	HUBER+SUHNER	6810.19.A	N/A(S450)	31-Dec-2023	19-Dec-2022			
Power meter	ROHDE&SCHWARZ	NRP2	103269	31-Mar-2024	13-Mar-2023			
Power sensor	ROHDE&SCHWARZ	NRP-Z81	102467	31-Mar-2024	13-Mar-2023			

Radiated emission

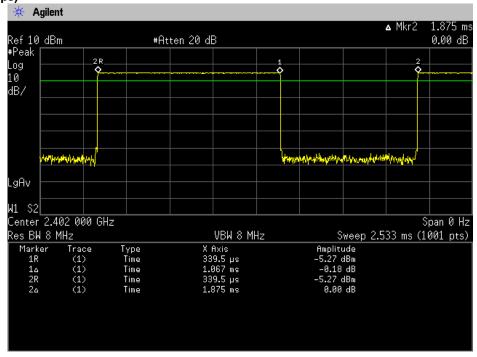
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI receiver	ROHDE&SCHWARZ	ESW44	103171	30-Sep-2023	20-Sep-2022
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101731	31-Aug-2024	16-Aug-2023
Preamplifier	SONOMA	310	372170	30-Sep-2023	28-Sep-2022
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	30-Apr-2024	21-Apr-2023
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	31-Mar-2024	15-Mar-2023
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1145	31-Jul-2024	14-Jul-2023
Log periodic antenna	Schwarzbeck	VUSLP9111B	346	30-Nov-2023	16-Nov-2022
Attenuator	TOYO Connector	NA-PJ-6/6dB	N/A(S541)	30-Sep-2023	28-Sep-2022
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2024	20-Jul-2023
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Dec-2023	22-Dec-2022
Attenuator	AEROFLEX	26A-10	081217-08	31-Dec-2023	19-Dec-2022
Double ridged guide antenna	ETS LINDGREN	3117	00052315	30-Jun-2024	22-Jun-2023
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2340)	31-Dec-2023	22-Dec-2022
Double ridged guide antenna	A.H.Systems Inc.	SAS-574	469	31-Aug-2023	19-Aug-2022
Preamplifier	TSJ	MLA-1840-B03-35	1240332	31-Aug-2023	19-Aug-2022
Notch Filter	Micro-Tronics	BRM50702	G433	30-Sep-2023	28-Sep-2022
		SUCOFLEX104/9m	800690/4	31-Oct-2023	26-Oct-2022
		SUCOFLEX104/1m	my24610/4	31-Dec-2023	19-Dec-2022
Missource colds	THIRED CHIMED	SUCOFLEX104/9m	2001099/4	31-Dec-2023	22-Dec-2022
Microwave cable	HUBER+SUHNER	SUCOFLEX104/1m	MY32976/4	31-Dec-2023	22-Dec-2022
		SUCOFLEX104/2m	SN MY28404/4	31-Dec-2023	19-Dec-2022
		SUCOFLEX104/7m	41625/6	31-Dec-2023	22-Dec-2022
Software	TOYO Technica	ES10/RE-AJ	Ver.2021.10.001	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2024	28-May-2023
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2024	28-May-2023

Conducted emission at mains port

Equipment		Model No.	Serial No.	Cal. Due	Cal. Date
Equipment	Company	woder No.	Seriai No.	Cal. Due	Cal. Date
EMI receiver	ROHDE&SCHWARZ	ESW44	103171	30-Sep-2023	20-Sep-2022
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Dec-2023	20-Dec-2022
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	30-Jun-2024	22-Jun-2023
Microwave cable	HUBER+SUHNER	SUCOFLEX104/5m	MY33601/4	31-Oct-2023	27-Oct-2022
Microwave cable	HUBER+SUHNER	SUCOFLEX104/2m	MY37268/4	31-Oct-2023	27-Oct-2022
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Dec-2023	22-Dec-2022
Software	TOYO Technica	ES10/RE-AJ	Ver.2021.10.001	N/A	N/A

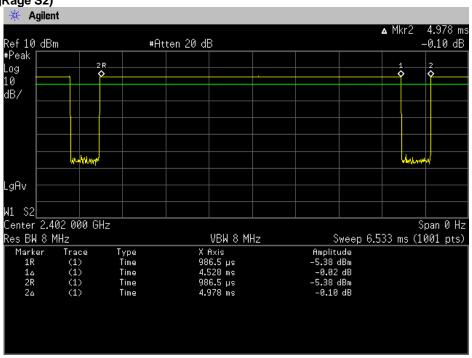

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

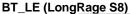
Appendix B. Duty Cycle

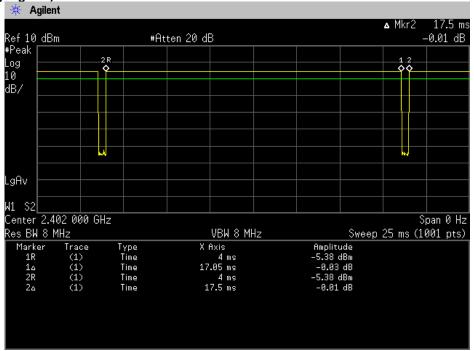

[Plot & Calculation]

BT_LE (1Mbps)

Duty Cycle = Ton / (Ton + Toff) = $2127[\mu s] / (2127[\mu s] + 375[\mu s]) = 85.01[\%]$


BT_LE (2Mbps)


Duty Cycle = Ton / (Ton + Toff) = $1067[\mu s] / (1067[\mu s] + 808[\mu s]) = 56.91[\%]$



BT_LE (LongRage S2)

Duty Cycle = Ton / (Ton + Toff) = $4528[\mu s]$ / ($4528[\mu s]$ + $450[\mu s]$) = 90.96[%]

Duty Cycle = Ton / (Ton + Toff) = $1705[\mu s] / (1705[\mu s] + 450[\mu s]) = 97.43[\%]$