Report on the RF Testing of:

KYOCERA Corporation

Mobile Phone, Model: EB1157

FCC ID: JOYEB1157

In accordance with FCC Part 24 Subpart E

Prepared for: **KYOCERA** Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku

Yokohama-shi, Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-23084-0

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Japan Ltd. document control rules.

EXECUTIVE SUMMARY - Result: Complied

A sample(s) of this product was tested and the result above was confirmed in accordance with FCC Part 24 Subpart E.

DISCLAIMER AND COPYRIGHT

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD

Client provided data, for which TÜV SÜD Japan Ltd. take no responsibility, which can affect validity of results within this report is clearly identified.

This test report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81 (0) 238 28 2881 www.tuvsud.com/ja-jp

Contents

1	Summary of Test	3
1.1 1.2	Modification history of the test report	3 3
1.3	Test methods	
1.4	Deviation from standards	
1.5	List of applied test(s) of the EUT	
1.6	Test information	
1.7 1.8	Test set up Test period	
_	·	
2	Equipment Under Test	4
2.1	EUT information	4
2.2	Modification to the EUT	
2.3	Variation of family model(s)	5
2.4	Description of test mode	5
3	Configuration of Equipment	6
3.1	Equipment used	6
3.2	System configuration	
4	Test Result	7
4.1	Equivalent Isotropic Radiated Power	7
4.2	Peak to Average Ratio	
4.3	Occupied Bandwidth	
4.4	Band Edge Spurious and Harmonic at Antenna Terminals	
4.5	Radiated Emissions and Harmonic Emissions	
4.6	Frequency Stability	24
5	Measurement Uncertainty	26
6	Laboratory Information	27
Apper	ndix A. Test Equipment	28
LL G.		

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-23084-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 24 Subpart E

1.3 Test methods

KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI/TIA/EIA 603-E-2016 ANSI C63.26-2015

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
2.1046	Conducted Output Power	Conducted	PASS	*1
24.232(c)	Equivalent Isotropic Radiated Power	Radiated	PASS	-
24.232(d)	Peak to Average Ratio	Conducted	PASS	-
24.238(a) 2.1049	Occupied Bandwidth	Conducted	PASS	-
24.238(a) 2.1051	Band Edge Spurious and Harmonic at Antenna Terminal	Conducted	PASS	-
24.238(a) 2.1053	Radiated emissions and Harmonic Emissions	Radiated	PASS	-
24.235 2.1055	Frequency Stability	Conducted	PASS	-

^{*1:} Refer to RF Exposure Report (Test Report_SAR)

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

21-June-2023 - 27-July-2023

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,

Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Equipment Under Test (EUT) EB1157

Model number 358018240001222, 358018240001032, 358018240001040

Serial number Kyocera

Trade name 3

Number of sample(s) Pre-Production

EUT condition Battery: DC 3.87 V

Power rating (W) 75 mm \times (D) 14.6 mm \times (H) 154 mm

Size Indoor and Outdoor use

Environment EB1157

Terminal limitation -20°C to 60°C

Hardware version Pre-Production

Software version 0.130RI

Firmware version Not applicable

RF Specification

Frequency of Operation Up Link

GSM1900: 1850.2-1909.8 MHz

Down Link

GSM1900: 1930.2-1989.8 MHz

Modulation type GSM1900: GMSK

Emission designator GSM1900: 244KGXW

Equivalent Isotropic Radiated

Power (E.I.R.P)

GSM1900: 0.741 W (28.7dBm)

Antenna type Internal antenna
Antenna gain GSM1900: -0.9 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State	Description of Modification	Modification fitted by	Date of Modification		
Model: EB1157, Serial Number: 358018240001222, 358018240001032, 358018240001040					
0	As supplied by the applicant	Not Applicable	Not Applicable		

2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

2.3.2 Reason for selection of EUT

Not applicable

2.4 Description of test mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Band	Modulation	Bandwidth [MHz]	Channel	Frequency [MHz]
GSM1900	GMSK	-	512, 661, 810	1850.2, 1880.0, 1909.8

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in X-axis and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

3 Configuration of Equipment

Numbers assigned to equipment on the diagram in "3.2 System configuration" correspond to the list in "3.1 Equipment used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	EB1157	358018240001222, 358018240001032,	JOYEB1157	EUT
'	Wobile Friorie	KTOCEKA	EBITO	358018240001032,	JOTEBITO	

3.2 System configuration

1. Mobile Phone (EUT)	

4 Test Result

4.1 Equivalent Isotropic Radiated Power

4.1.1 Measurement procedure

[FCC 24.232(c)]

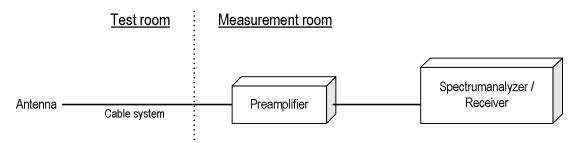
<Step 1>

The EUT and support equipment are placed on 0.6 meter x 0.6 meter surface, 1.5 meter height (Above 1GHz) styrene foam table. Radiated emission measurements are performed at 3 meter distance with the broadband antenna (double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission.

The bandwidth of the spectrum analyzer is set to 1 MHz. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission.

<Step 2>

The substitution antenna is replaced by the transmitter antenna (EUT).


The frequency of the signal generator is adjusted to the measurement frequency.

Level of the signal generator is adjusted to the level that is obtained from step 1, and record the emission level of signal generator.

The spectrum analyzer is set to;

- a) Span = 1.5 times the OBW
- b) RBW = 1-5% of the expected OBW, not to exceed 1 MHz
- c) VBW \geq 3 x RBW
- d) Number of sweep points ≥ 2 x span / RBW
- e) Sweep time = auto-couple
- f) Detector = RMS (power averaging)
- g) If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
- h) If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

- Test configuration

4.1.2 Calculation method

Result (EIRP) = Ant. Input - Cable loss + Antenna Gain Margin = Limit - Result (EIRP)

Example:

Limit @ $1880 \, \text{MHz}$: $33.0 \, \text{dBm}$ Ant. Input = $25.0 \, \text{dBm}$ Cable loss = $1.1 \, \text{dB}$ Ant. Gain = $4.7 \, \text{dBi}$ Result = $25.0 - 1.1 + 4.7 = 28.6 \, \text{dBm}$ Margin = $33.0 - 28.6 = 4.4 \, \text{dB}$

4.1.3 Limit

2 W (33 dBm)

4.1.4 Test data

Date : 24-July-2023

Temperature : 24.6 [°C]

Humidity : 47.3 [%] Test engineer
Test place : 3m Semi-anechoic chamber

Chiaki Kanno

Date : 24-July-2023

Temperature : 23.4 [°C] Humidity : 68.9 [%]

Humidity : 68.9 [%] Test engineer :

[GSM1900 - X-axis]

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBd]	Result [dBm]	Result [W]	Limit [dBm]	Margin [dB]
Н	1850.2	-52.8	25.5	1.6	4.6	28.5	0.708	33.0	4.5
Н	1880.0	-52.4	24.6	1.6	4.6	27.6	0.575	33.0	5.4
Н	1909.8	-51.9	25.7	1.6	4.6	28.7	0.741	33.0	4.3

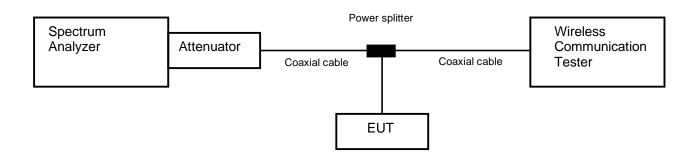
4.2 Peak to Average Ratio

4.2.1 Measurement procedure

[FCC 24.232(d)]

The peak to average ratio was measured with a spectrum analyzer connected to the antenna terminal.

The spectrum analyzer is set to;


[GSM1900]

- a) Span = 5 MHz
- b) RBW = 1 MHz
- c) VBW \geq 3 x RBW
- d) Detector = Peak / Average
- e) Sweep time = auto-couple
- f) Trace mode=Max hold

[WCDMA Band II, LTE Band II]

- a) Power Stat CCDF mode
- b) Set resolution / measurement bandwidth ≥ signal's occupied bandwidth.
- c) Set the number of counts to a value that stabilizes the measured CCDF curve.
- d) Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1ms.
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst duration.
- e) Record the maximum PAPR level associated with a probability of 0.1%.

- Test configuration

4.2.2 Limit

13 dB or less

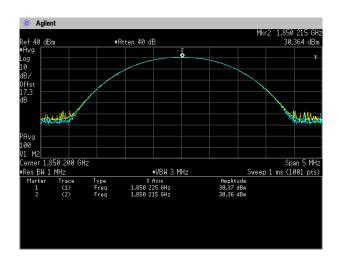
4.2.3 **Measurement result**

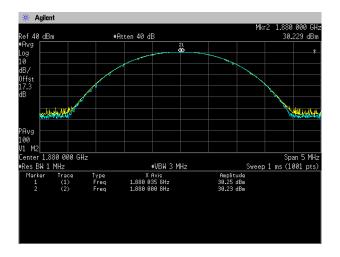
26-July-2023 Date

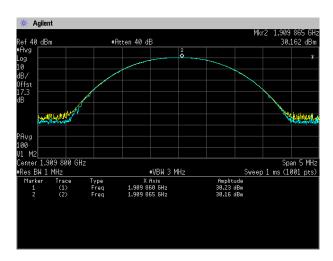
Temperature : 23.6 [°C] Humidity : 55.9 [%]

Test engineer

Test place : Shielded room No.4 Kazunori Saito


Band	Channel	Frequency [MHz]	Peak to Average Power Ratio [dB]	Limit [dB]
	512	1850.2	0.01	
GSM1900	661	1880.0	0.02	13.0
	810	1909.8	0.07	


4.2.4 Trace data

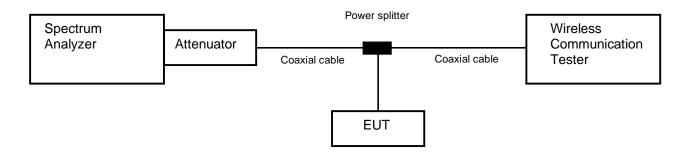

[GSM1900]

Channel: 512

Channel: 661

4.3 Occupied Bandwidth

4.3.1 Measurement procedure


[FCC 24.238(a), 2.1049]

The Occupied bandwidth was measured with a spectrum analyzer connected to the antenna terminal.

The spectrum analyzer is set to;

- a) RBW = 1-5% of the expected OBW & VBW \geq 3 x RBW
- b) Detector = Peak
- c) Trace mode = Max hold
- d) Sweep time = auto-couple

- Test configuration

Test engineer

4.3.2 Limit

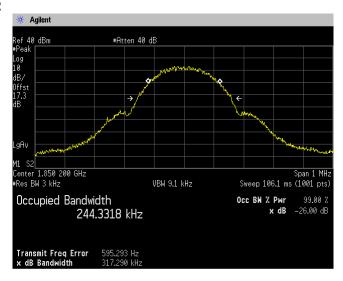
None

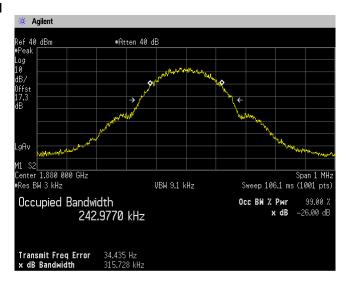
4.3.3 Measurement result

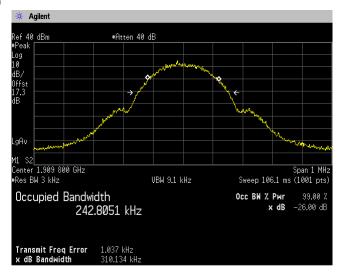
Date : 26-July-2023 Temperature : 23.6 [°C]

Humidity : 55.9 [%]

Test place : Shielded room No.4 <u>Kazunori Saito</u>


Band	Channel	Frequency [MHz]	Test Result [kHz]	
	512	1850.2	244.3318	
GSM1900	661	1880.0	242.9770	
	810	1909.8	242.8051	


4.3.4 Trace data


[GSM1900]

Channel: 512

Channel: 661

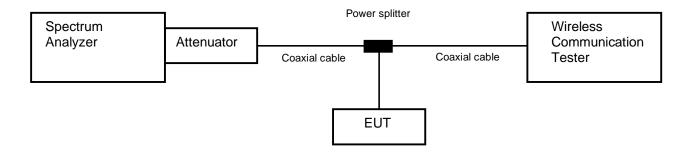
4.4 Band Edge Spurious and Harmonic at Antenna Terminals

4.4.1 Measurement procedure

[FCC 24.238(a), 2.1051]

The band edge spurious and harmonic was measured with a spectrum analyzer connected to the antenna terminal.

The spectrum analyzer is set to;


<Band Edge>

- a) Span was set large enough so as to capture all out of band emissions near the band edge
- b) RBW ≥ 1% of the emission bandwidth or 2% of the emission bandwidth
- c) VBW \geq 3 x RBW
- d) Detector = RMS
- e) Trace mode = Max hold
- f) Sweep time = auto-couple
- g) Number of sweep point ≥ 2 x span / RBW

<Spurious Emissions>

- a) RBW = $1MHz \& VBW \ge 3 \times RBW$
- b) Detector = Peak
- c) Trace mode = Max hold
- d) Sweep time = auto-couple
- e) Number of sweep point ≥ 2 x span / RBW

- Test configuration

4.4.2 Limit

-13 dBm or less

4.4.3 Measurement result

 Date
 : 26-July2023

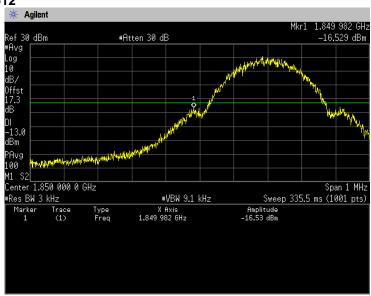
 Temperature
 : 23.6 [°C]

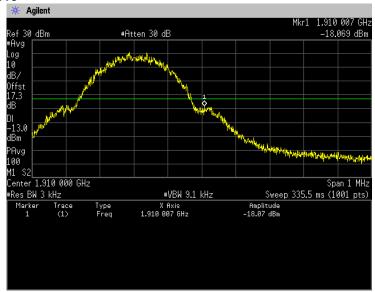
 Humidity
 : 55.9 [%]

 Test place
 : Shielded room No.4

Test engineer

Kazunori Saito

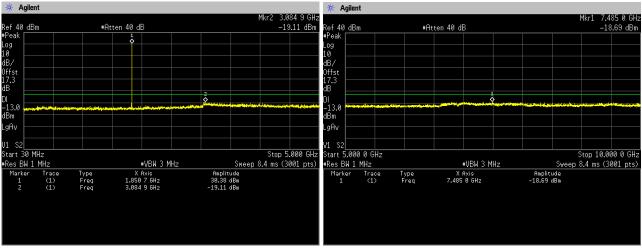

Band	Channel	Frequency [MHz]	Limit [dBm]	Results	
CCM1000	512	1850.2	-13.0	See the trace data	PASS
GSM1900	810	1909.8	-13.0	See the trace data	PASS



4.4.4 Trace data

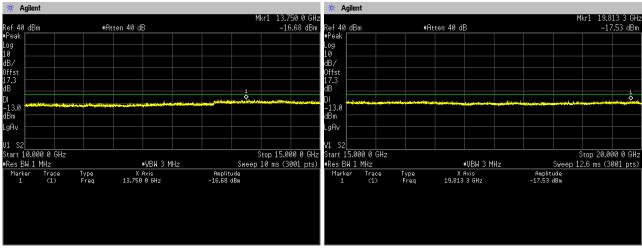
[GSM1900] (Band Edge)

Channel: 512

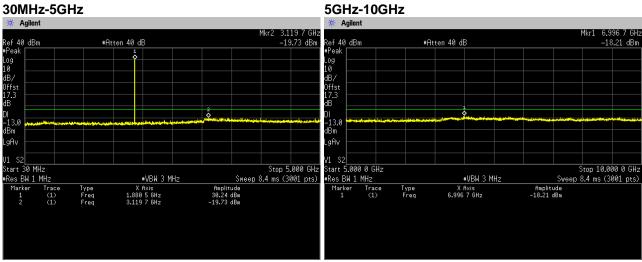


(Spurious Emissions)

Note: Conducted spurious test was measured in the worst case of conducted output power.

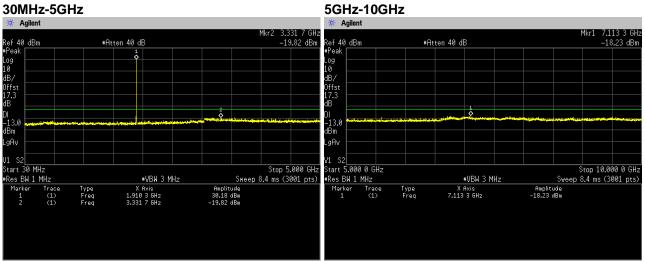

Channel: 512 30MHz-5GHz

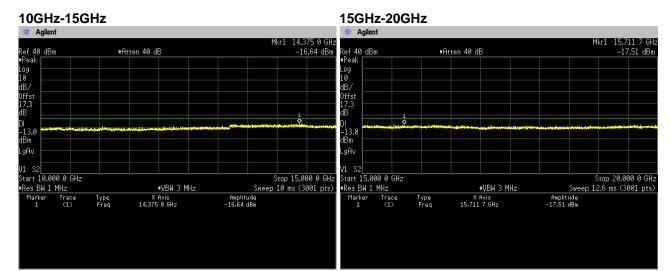
5GHz-10GHz




10GHz-15GHz

15GHz-20GHz





4.5 Radiated Emissions and Harmonic Emissions

4.5.1 Measurement procedure

[FCC 24.238(a), 2.1053]

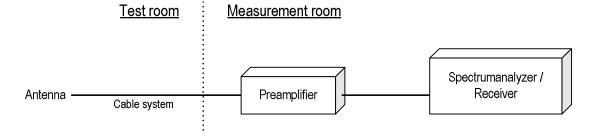
<Step 1>

The EUT and support equipment are placed on 1.0 meter x 1.0 meter surface, 0.8 meter height (Below or equal 1GHz) or 0.6 meter x 0.6 meter surface, 1.5 meter height (Above 1GHz) styrene foam table. Radiated emission measurements are performed at 3 meter distance with the broadband antenna (Biconical antenna, Log periodic antenna and double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission.

The bandwidth of the spectrum analyzer is set to 1 MHz. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission. The frequency is investigated up to 20 GHz.

<Step 2>

The substitution antenna is replaced by the transmitter antenna (EUT).


The frequency of the signal generator is adjusted to the measurement frequency.

Level of the signal generator is adjusted to the level that is obtained from step 1, and record the emission level of signal generator.

The spectrum analyzer is set to;

- a) RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW ≥ 3 x RBW
- b) Detector = Peak
- c) Trace mode = Max hold
- d) Sweep time = auto-couple

- Test configuration

4.5.2 Calculation method

Result (EIRP) = Ant. Input - Cable loss + Antenna Gain Margin = Limit - Result (EIRP)

Example:

Limit @ 3760.0 MHz: -13.0 dBm

Ant. Input = -55.6 dBm Cable loss = 1.6 dB Ant. Gain = 9.2 dBi

Result = -55.6 - 1.6 + 9.2 = -48.0 dBm Margin = -13.0 - (-48.0) = 35.0 dB

4.5.3 Limit

-13 dBm or less

4.5.4 Test data

Date : 21-June-2023

Temperature : 24.0 [°C]

Humidity : 49.4 [%] Test engineer :

Test place : 3m Semi-anechoic chamber <u>Chiaki Kanno</u>

Date : 23-June-2023

Temperature : 22.1 [°C]

Humidity : 60.8 [%] Test engineer

Test place : 3m Semi-anechoic chamber Tadahiro Seino

Date : 24-June-2023

Temperature : 23.4 [°C]

Humidity : 68.9 [%]

Test place : 3m Semi-anechoic chamber <u>Chiaki Kanno</u>

Test engineer

[GSM1900 - X-axis]

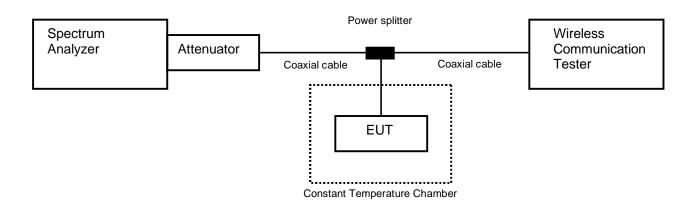
Channel: 512

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3700.4	-56.5	-55.9	1.6	8.3	-49.3	-13.0	36.3

Channel: 661

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3760.0	-56.8	-56.3	1.7	8.2	-49.8	-13.0	36.8

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3819.6	-56.6	-56.1	1.7	8.1	-49.7	-13.0	36.7


4.6 Frequency Stability

4.6.1 Measurement procedure

[FCC 24.235, 2.1055]

The EUT was placed of an inside of an constant temperature chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10°C intervals and the unit was allowed to stabilize at each measurement. The frequency drift was measured with the normal Temperature and voltage tolerance and it is presented as the ppm unit.

- Test configuration

4.6.2 Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

4.6.3 Measurement result

 Date
 : 27-July-2023

 Temperature
 : 23.5 [°C]

 Humidity
 : 53.0 [%]

 Test place
 : Shielded room No.4

Test engineer

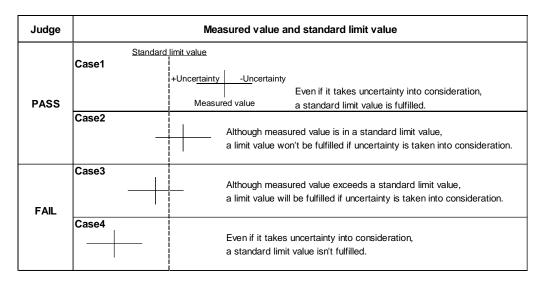
Kazunori Saito

[GSM1900] Channel: 661

Power Supply [V]	Temperature [ºC]	Measurements Frequency [Hz]	Frequency Tolerance [ppm]	Result
	25(Ref.)	1,880,000,028	0.00000	Pass
	50	1,880,000,040	0.00594	Pass
	40	1,880,000,042	0.00728	Pass
	30	1,880,000,031	0.00113	Pass
3.80	20	1,880,000,027	-0.00095	Pass
3.00	10	1,880,000,030	0.00096	Pass
	0	1,880,000,039	0.00543	Pass
	-10	1,880,000,047	0.00984	Pass
	-20	1,880,000,049	0.01077	Pass
	-30	1,880,000,063	0.01829	Pass
3.42	25	1,880,000,039	0.00544	Pass
4.18	25	1,880,000,029	0.00031	Pass

Calculation;

Frequency Tolerance (ppm) = Measurements Frequency (Hz) - Reference Frequency (Hz) / Reference Frequency (Hz) x 1000000



5 Measurement Uncertainty

The reported measurement uncertainty is based on a value obtained by multiplying standard uncertainty by coverage factor of k=2, and a level of confidence becomes 95 %.

3m Semi Anechoic Chamber					
Test item	Measurement uncertainty				
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB				
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB				
Radiated emission (9kHz – 30 MHz)	±3.8 dB				
Radiated emission (30 MHz – 1000 MHz)	±5.4 dB				
Radiated emission (1 GHz – 6 GHz)	±4.6 dB				
Radiated emission (6 GHz – 18 GHz)	±4.7 dB				
Radiated emission (18 GHz – 40 GHz)	±6.4 dB				
Radio Frequency	±1.3 * 10 ⁻⁸				
RF power, conducted	±0.7 dB				
Adjacent channel power	±1.5 dB				
Temperature	±0.6 °C				
Humidity	±1.2 %				
Voltage (DC)	±0.4 %				
Voltage (AC, <10kHz)	±0.2 %				

Measurement uncertainty of not listed immunity tests is considered to suffice because requirements of relevant standards are met.

6 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81-238-28-2881

Accreditation and Registration

A2LA

Certificate #3686.03

VLAC

Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada

ISED#: 4224A

VCCI Council

Registration number: A-0166

Appendix A. Test Equipment

Antenna port conducted test

Alterna port conadcted test								
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date			
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	30-Sep-2023	05-Sep-2022			
Attenuator	HUBER+SUHNER	6810.19.A	N/A(S450)	31-Dec-2023	19-Dec-2022			
Microwave cable	Junkosha Inc.	MWX221/1m	N/A(S400)	31-Mar-2024	16-Mar-2023			
Power divider	Keysight	11636B	MY51359874	30-Sep-2023	28-Sep-2022			
Wideband Radio Frequency Tester	ROHDE&SCHWARZ	CMW500	116338	31-Aug-2023	04-Aug-2022			
Temperature and humidity chamber	ESPEC	PL1KP	14007261	30-Sep-2023	02-Sep-2022			

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESW44	103171	30-Sep-2023	20-Sep-2022
Preamplifier	SONOMA	310	372170	30-Sep-2023	15-Sep-2022
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1145	30-Jun-2023	28-Jun-2022
Log periodic antenna	Schwarzbeck	VUSLP9111B	346	30-Nov-2023	16-Nov-2022
Attenuator	TOYO Connector	NA-PJ-6/6dB	N/A(S541)	30-Sep-2023	28-Sep-2022
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2023	14-Jul-2022
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Dec-2023	22-Dec-2022
Attenuator	AEROFLEX	26A-10	081217-08	31-Dec-2023	19-Dec-2022
Double ridged guide antenna	ETS LINDGREN	3117	00052315	30-Jun-2024	22-Jun-2023
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2340)	31-Dec-2023	22-Dec-2022
Double ridged guide antenna	A.H.Systems Inc.	SAS-574	469	31-Aug-2023	19-Aug-2022
Preamplifier	TSJ	MLA-1840-B03-35	1240332	31-Aug-2023	19-Aug-2022
Band rejection filter	Micro-Tronics	BRC50720	014	31-Dec-2023	20-Dec-2022
Signal generator	ROHDE&SCHWARZ	SMB100A	177525	31-Dec-2023	16-Dec-2022
RF power amplifier	R&K	CGA020M602-2633R	B40240	30-Jun-2024	21-Jun-2023
Attenuator	HUBER+SUHNER	6820.19.A	N/A(2399)	30-Sep-2023	28-Sep-2022
Microwave cable	HUBER+SUHNER	SUCOFELX102/2m	31648	31-Mar-2024	16-Mar-2023
Dipole antenna	Schwarzbeck	VHAP	1020	31-Jul-2023	05-Jul-2022
Dipole antenna	Schwarzbeck	UHAP	994	31-Jul-2023	05-Jul-2022
Double ridged guide antenna	ETS LINDGREN	3117	00218815	31-Dec-2023	19-Dec-2022
Wideband Radio Frequency Tester	ROHDE&SCHWARZ	CMW500	126079	31-Aug-2023	15-Aug-2022
Wideband Radio Frequency Tester	ROHDE&SCHWARZ	CMW500	116338	31-Aug-2023	04-Aug-2022
		SUCOFLEX104/9m	800690/4	31-Oct-2023	26-Oct-2022
		SUCOFLEX104/1m	my24610/4	31-Dec-2023	19-Dec-2022
Microwave cable	LILIDED CHUNED	SUCOFLEX104/9m	2001099/4	31-Dec-2023	22-Dec-2022
Microwave capie	HUBER+SUHNER	SUCOFLEX104/1m	MY32976/4	31-Dec-2023	22-Dec-2022
		SUCOFLEX104/2m	SN MY28404/4	31-Dec-2023	19-Dec-2022
		SUCOFLEX104/7m	41625/6	31-Dec-2023	22-Dec-2022
PC	DELL	OPTIPLEX9010	00186-228-073-851	N/A	N/A
Software	TOYO Technica	ES10/RE-AJ	Ver.2023.01.001	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2024	28-May-2023
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2024	29-May-2023

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.