Report on the RF Testing of:

KYOCERA Corporation

Mobile Phone, Model: EB1157

FCC ID: JOYEB1157

In accordance with FCC Part 15 Subpart C (15.225)

Prepared for: KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku

Yokohama-shi, Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Add value. Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-23078-0

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Japan Ltd. document control rules.

EXECUTIVE SUMMARY - Result: Complied

A sample(s) of this product was tested and the result above was confirmed in accordance with FCC Part 15 Subpart C (15.225).

DISCLAIMER AND COPYRIGHT

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD Japan Ltd.

Client provided data, for which TÜV SÜD Japan Ltd. take no responsibility, which can affect validity of results within this report is clearly identified.

ACCREDIATION

This test report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 www.tuvsud.com/ja-jp

Contents

1	Summary of Test	3
1.1 1.2	Modification history of the test report	3
1.3 1.4	Test methods Deviation from standards	-
1.4 1.5	List of applied test(s) of the EUT	
1.6	Test information	
1.7	Test set up	3
1.8	Test period	3
2	Equipment Under Test	4
2.1	EUT information	
2.2	Modification to the EUT	
2.3	Variation of family model(s)	
2.4	Operating mode	
2.5	Operating flow	
3	Configuration of Equipment	6
3.1	Equipment used	
3.2	Cable(s) used	
3.3	System configuration	
4	Test Result	7
4.1	Occupied Bandwidth	
4.2	Operation within the band 13.110-14.010MHz	
4.3	Radiated Emissions	
4.4 4.5	Frequency Tolerance	
5	Antenna requirement	
6	Measurement Uncertainty	24
7	Laboratory Information	25
Annen	div A Test Equipment	26

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-23078-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart C (15.225)

1.3 Test methods

ANSI C63.10-2013

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
2.1049 RSS-Gen 6.7	Occupied Bandwidth	Conducted	PASS	-
15.209 15.225 (a)(b)(c)(d)	Operation within the band 13.110-14.010MHz	Radiated	PASS	-
15.209 15.225 (d)	Transmitter Radiated Spurious Emissions	Radiated	PASS	-
15.225 (e)	Frequency Tolerance	Conducted	PASS	-
15.207	AC Power Line Conducted Emissions	Conducted	PASS	-

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

23-June-2023- 4-August-2023

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,

Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Equipment Under Test (EUT) Mobile Phone

Model number EB1157

Serial number 358018240001065

Trade name Kyocera

Number of sample(s) 1

EUT condition Pre-Production

Power rating Battery: DC 3.87 V

Size (W) 75 mm \times (D) 14.6 mm \times (H) 154 mm

Environment Indoor and Outdoor use

Terminal limitation -20 °C to 60 °C

Hardware version Pre-Production

Software version 0.130RI

Firmware version Not applicable

RF Specification

Frequency range 13.56MHz

Modulation method ASK

Antenna type Loop antenna

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State	Description of Modification	Modification fitted by	Date of Modification			
Model: EB1157, Serial Number: 358018240001065						
0	As supplied by the applicant	Not Applicable	Not Applicable			

2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

2.3.2 Reason for selection of EUT

Not applicable

2.4 Operating mode

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in X-axis and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

2.5 Operating flow

[Tx mode]

- i) NFC test program setup to the Software
- ii) Start test mode

3 Configuration of Equipment

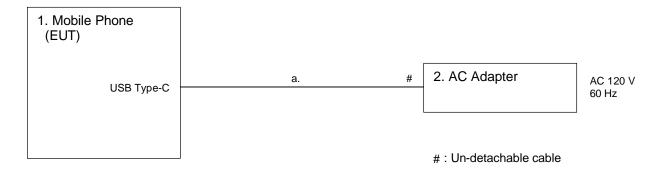
Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	EB1157	358018240001065	JOYEB1157	EUT
2	AC Adapter	KDDI	0602PQA	N/A	N/A	*


^{*:} AC power line Conducted Emission Test.

3.2 Cable(s) used

No.	Equipment	Length[m]	Shield	Connector	Comment
а	USB cable (for AC Adapter)	1.5	No	Plastic	*

^{*:}AC power line Conducted Emission Test.

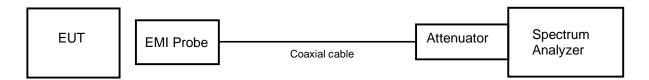
3.3 System configuration

Test Result 4

4.1 **Occupied Bandwidth**

4.1.1 Measurement procedure

[FCC 2.1049, RSS-Gen 6.7]


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to approach 1% of the selected span or less than 1%. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

The spectrum analyzer is set to;

- RBW=1kHz, VBW=3kHz, Span=100kHz, Sweep=auto, Detector=Peak, Trace mode = max hold. The EUT was set to operate with following conditions.
- 13.56MHz

The test mode of EUT is as follows.

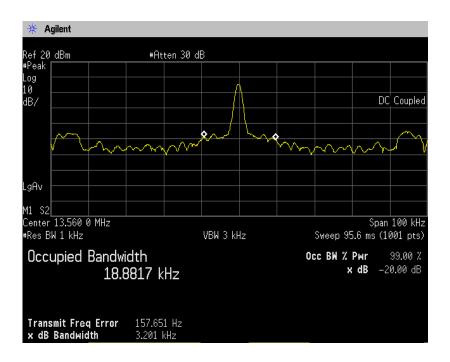
- Transmit mode
- Test configuration

4.1.2 Limit

None

4.1.3 Measurement result

Date 3-August-2023 Temperature 23.3 [°C]


Humidity 49.4 [%]

Test engineer Test place Shielded room No.4 Kazunori Saito

Frequency (MHz)	Occupied Bandwidth (kHz)
13.56	18.8817

4.1.4 Trace data

4.2 Operation within the band 13.110-14.010MHz

4.2.1 Measurement procedure

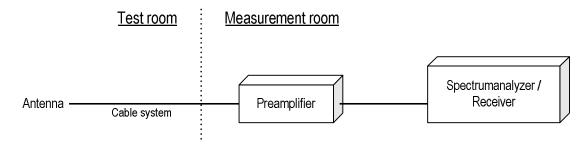
[FCC 15.209, 15.225 (a)(b)(c)(d)]

Test was applied by following conditions.

Test method : ANSI C63.10

Frequency range : 13.110MHz to 14.010MHz
Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m \times (D)1.0m \times (H)0.8m


Antenna distance : 3m

Test receiver setting

- Detector : Quasi-peak- Bandwidth : 9kHz

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Then, emission measurements frequency range 13.110MHz to 14.010MHz were performed with test receiver in above setting. The turntable and the Loop antenna are rotated by 360 degrees and stopped at azimuth of producing the maximum emission. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition.

- Test configuration

4.2.2 Calculation method

Emission level = Reading + (Ant. factor + Cable system loss – Amp. Gain) Margin = Limit – Emission level

Japan

4.2.3 Limit

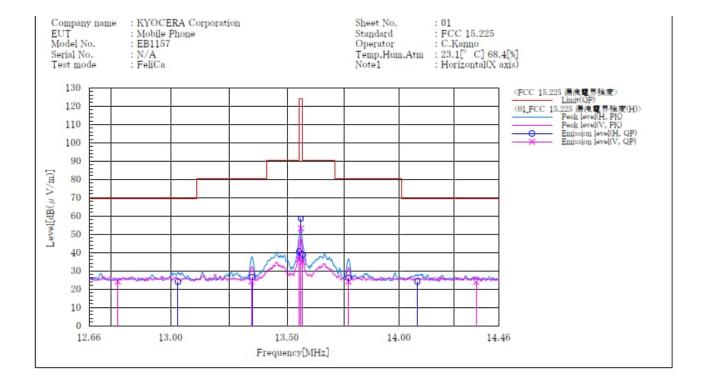
- (a) The field strength of any emissions within the band 13.553-13.567MHz shall not exceed 15,848uV/m at 30m.
- (b) Within the band 13.410-13.553MHz and 13.567-13.710MHz, the field strength of any emissions shall not exceed 334uV/m at 30m.
- (c) Within the band 13.110-13.410MHz and 13.710-14.010MHz, the field strength of any emissions shall not exceed 106uV/m at 30m.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010MHz and shall not exceed the general radiated emission limits in FCC 15.209.

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. Measurements were corrected to 30m using 40log (3/30) = -40.0dB

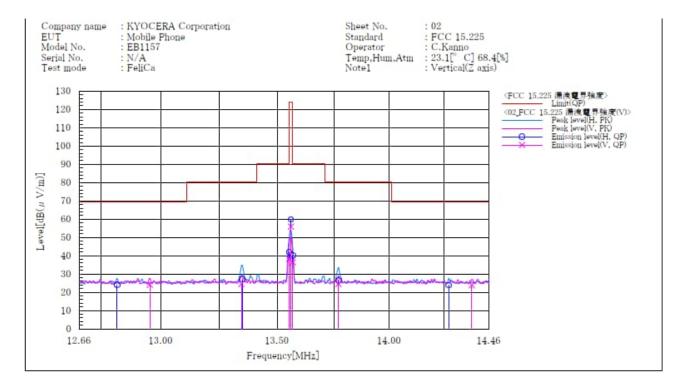
4.2.4 Test data

Date : 23-June-2023 Temperature : 23.1 [°C]


Humidity : 68.4 [%] Test engineer

Test place : 3m Semi-anechoic chamber <u>Chiaki Kanno</u>

		Le	vel			
Frequency range (MHz)	Frequency (MHz)	Measurered at 3m (dBuV/m)	Measurered at 30m (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Result
13.553-13.567	13.560	59.9	19.9	84.0	64.1	PASS
13.41-13.553	13.552	42.0	2.0	50.5	48.5	PASS
13.567-13.71	13.568	40.1	0.1	50.5	50.4	PASS
13.11-13.41	13.347	27.3	-12.7	40.5	53.2	PASS
13.71-14.01	13.771	26.5	-13.5	40.5	54.0	PASS
12.66-13.11	12.953	24.1	-15.9	29.5	45.4	PASS
14.01-14.46	14.082	24.0	-16.0	29.5	45.5	PASS


4.2.5 Trace data

Final	Result									
No.	Frequency	Po1	Reading	c.f	Result	Limit	Margin QP	Height	Angl.	Remark
	[MH=]		[dB(µV)]	[dB(1/m)]		[dB(\(V/m)]	[dB]	[cm]	[deg]	
1	13, 560	V.	59.6	-6.4	53.2	124.0	70.8	100.0	94.0	
2	13, 552	V	42.7	-6.4	36.3	90.5	54. 2	100.0	94.0	
3	13, 568	V	41.3	-6.4	34.9	90. 5	55, 6	100.0	94.0	
4	13, 345	v	30.4	-6.4	24.0	80.5	56. 5	100.0	276.0	
5	13, 771	V	30.5	-6.4	24.1	80.5	56.4	100.0	101.0	
6	12,778	V	30.5	-6.4	24.1	69. 5	45.4	100.0	27.0	
7	14, 353	V	30, 3	-6.4	23.9	69. 5	45.6	100.0	316.0	
8	13, 560	H	64.9	-6.4	58. 5	124.0	65, 5	100.0	0.0	
9	13, 552	H	47.1	-6.4	40.7	90.5	49.8	100.0	0.0	
10	13, 568	H	45.3	-6.4	38.9	90, 5	51.6	100.0	0.0	
11	13, 347	H	33.1	-6.4	26.7	80.5	53.8	100.0	3.0	
12	13, 771	H	32.6	-6.4	26.2	80.5	54. 3	100.0	2.0	
13	13,029	H	30.4	-6.4	24.0	69. 5	45, 5	100.0	204.0	
14	14.082	H	30.4	-6.4	24.0	69.5	45.5	100.0	320.0	

Japan

Fi	na1	8	6.R	u1	,

No.	Frequency	Po1	Reading	c. f	Result QP	Limit QP	Margin QP	Height	Angle	Remark
	[MH:]		[dB(µV)]	[dB(1/m)]		[dB(µV/m)]	[dB]	[cm]	[deg]	
1	13, 560	V	62.3	-6.4	55.9	124.0	68. 1	100.0	228.0	
2	13, 552	V	44.7	-6.4	38.3	90. 5	52, 2	100.0	228.0	
3	13, 568	V	42.8	-6.4	36.4	90, 5	54. 1	100.0	228.0	
4 5	13.344	V.	30.9	-6.4	24.5	80.5	56.0	100.0	82.0	
5	13.771	V	31.0	-6.4	24.6	80. 5	55, 9	100.0	89.0	
6	12, 953	V	30.5	-6.4	24.1	69. 5	45.4	100.0	234.0	
7	14.380	V	30.3	-6.4	23.9	69.5	45.6	100.0	3.0	
8	13, 560	H	66.3	-6.4	59.9	124.0	64. 1	100.0	125.0	
9	13, 552	H	48.4	-6.4	42.0	90.5	48.5	100.0	125.0	
10	13, 568	H	46. 5	-6.4	40.1	90.5	50.4	100.0	125.0	
11	13, 347	H	33. 7	-6.4	27.3	80.5	53. 2	100.0	154.0	
12	13, 771	H	32.9	-6.4	26.5	80.5	54.0	100.0	296.0	
13	12.816	H	30.4	-6.4	24.0	69. 5	45.5	100.0	176.0	
14	14. 273	H	30.3	-6.4	23.9	69.5	45.6	100.0	4.0	

4.3 Radiated Emissions

4.3.1 Measurement procedure

[FCC 15.209, 15.225 (d)]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 9kHz to 30MHz

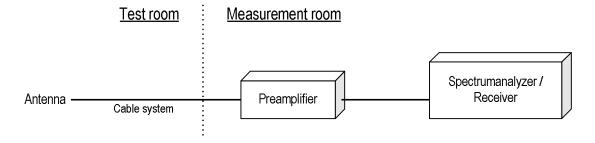
Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m \times (D)1.0m \times (H)0.8m

Antenna distance : 3m

Test receiver setting

- Detector : Average (9kHz-90kHz, 110kHz-490kHz), Quasi-peak


- Bandwidth : 200Hz, 9kHz

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site.

Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Then, emission measurements up to 30MHz were performed with test receiver in above setting. The turntable and the Loop antenna are rotated by 360 degrees and stopped at azimuth of producing the maximum emission. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition.

- Test configuration

Japan

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 30MHz to 1000MHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W)1.0m \times (D)1.0m \times (H)0.8m

Antenna distance : 3m

Test receiver setting

- Detector : Quasi-peak- Bandwidth : 120kHz

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Then, emission measurements up to 1000MHz were performed with test receiver in above setting. In order to find the maximum emissions, antenna is adjusted between 1m and 4m in height and varied its polarization (horizontal and vertical), and EUT azimuth was also varied by rotating turntable 0 to 360 degrees. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition.

- Test configuration

4.3.2 Calculation method

[9kHz to 150kHz]

Emission level = Reading + (Ant. factor + Cable system loss)

Margin = Limit - Emission level

[150kHz to 1000MHz]

Emission level = Reading + (Ant. factor + Cable system loss - Amp. Gain)

Margin = Limit - Emission level

Japan

4.3.3 Limit

Frequency	Field s	Distance	
[MHz]	[uV/m]	[dBuV/m]	[m]
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30
1.705-30	30	29.5	30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

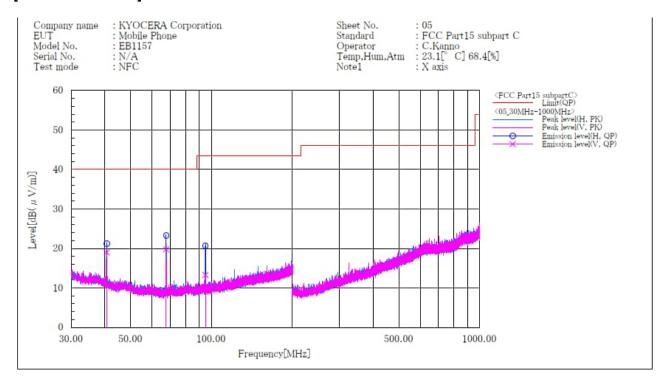
Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. Measurements were corrected to 300m using 40log (3/300) = -80.0dB Measurements were corrected to 30m using 40log (3/30) = -40.0dB

4.3.4 Test data

Date : 24-June-2023 Temperature : 23.1 [°C]

Humidity : 68.4 [%]


Test place : 3m Semi-anechoic chamber Chiaki Kanno

[9kHz to 30MHz]

	Frequency (MHz)	Reading [dBuV] At 3m	c.f [dB(1/m)]	Result [dBuV/m] At 3m	Result [dBuV/m] At 30m	Limit [dBuV/m] At 30m	Margin (dB)	Result
Ī	27.12	29.1	-5.4	23.7	-16.3	29.5	45.8	PASS

Test engineer

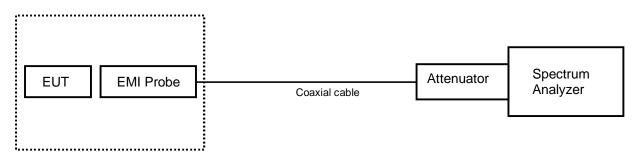
[30MHz to 1000MHz]

No.	Frequency	Pol	Reading	c. f	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		QP [dB(μV)]	[dB(1/m)]	QP [dB (μ V/m)]	[dB(µV/m)]	[dB]	[cm]	[deg]	
1	40, 680	H	35. 9	-14.7	21.2	40.0	18.8	223.0	3.0	
2	40, 680	V	33.7	-14.7	19.0	40.0	21.0	100.0	263.0	
3	67, 800	H	40.2	-16.9	23. 3	40.0	16.7	276.0	10.0	
4	67, 800	V	36.7	-16.9	19.8	40.0	20, 2	100.0	287.0	
5	94, 930	H	36.6	-15.9	20.7	43. 5	22.8	195.0	25.0	
6	94, 930	V	29.2	-15.9	13. 3	43.5	30, 2	100.0	282.0	

4.4 Frequency Tolerance

4.4.1 Measurement procedure

[FCC 15.205 (e)]


The EUT was placed of an inside of a constant temperature chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10°C intervals and the unit was allowed to stabilize at each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channels center frequency was recorded.

The EUT was set to operate with following conditions.

- 13.56MHz

The test mode of EUT is as follows.

- Transmit mode
- Test configuration

Constant Temperature Chamber

4.4.2 Limit

The Frequency tolerance of the carrier signal shall be maintained within +/- 0.01% over a temperature variation of -30 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.4.3 Test data

4.45

20

13.559827

-12.758

13.559820

Date : 3-August-2023

Temperature : 23.3 [°C] Humidity : 49.4 [%]

Test place : Shielded room No.4 Kazunori Saito

Reference Frequency: EUT Channel 13.56MHz at 20°C Limit: $\pm 0.01\% = \pm 100$ ppm = ± 0.135603 MHz Frequency Tolerance (startup) Frequency Tolerance (2mins) Frequency Tolerance (5mins) Frequency Tolerance (10mins) Measurements Measurements Measurements Measurements Power Supply Frequency (2mins) Temperature Frequency (startup) Frequency (5mins) Limit Frequency (10mins) Result [V] [°C] [MHz] [ppm] [MHz] [ppm] [MHz] [ppm] [MHz] [ppm] [ppm] 50 13.559786 13.559782 13.559791 -15.413 -15.782 -16.077 13.559781 -16.150 -13.717 40 13.559814 13.559807 -14.233 13.559805 -14.381 13.559803 -14.528 30 13.559841 -11.726 13.559832 -12.389 13.559831 -12.463 13.559825 -12.906 20 13.560000 13.559816 -13.569 13.559806 -14.307 13.559808 -14.159 3.87 10 13.559813 13.559814 13.559812 -13.864 13.559814 -13.717 -13,791 -13.717 PASS 0 13.559911 -6.563 13.559912 -6.490 13.559911 -6.563 13.559909 -6.711 ± 100 -10 13.559883 -8.628 13.559879 -8.923 13.559880 -8.850 13.559879 -8.923 -20 13.559908 -6.785 13.559908 -6.785 13.559905 -7.006 13.559905 -7.006 -6.858 -30 13.559906 -6.932 13.559907 13.559906 13.559908 -6.932 -6.785 3.29 20 13.559856 -10.619 13.559853 -10.841 13.559852 -10.914 13.559850 -11.062

Test engineer

Note. Frequency Tolerance (ppm) = (Measurements Frequency (MHz) – Reference Frequency (MHz)) / Reference Frequency (MHz) x 1000000

The primary power supply voltage rating of this EUT is 85% to 115%

-13.274

13.559816

-13.569

13.559814

-13.717

4.5 AC Power Line Conducted Emissions

4.5.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.

Test method : ANSI C63.10

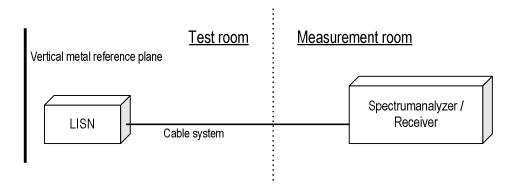
Frequency range : 0.15 MHz to 30 MHz

Test place : 3 m Semi-anechoic chamber

EUT was placed on : FRP table / (W)2.0 m \times (D)1.0 m \times (H)0.8 m Vertical Metal Reference Plane : (W)2.0 m \times (H)2.0 m 0.4 m away from EUT

Test receiver setting

- Detector : Quasi-peak, Average


- Bandwidth : 9 kHz

EUT and peripherals are connected to $50\Omega/50\mu H$ Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

4.5.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example:

Limit @ 6.770 MHz: 60.0 dBµV(Quasi-peak)

: 50.0 dBµV(Average)

(Quasi peak) Reading = $41.2 \text{ dB}\mu\text{V}$ c.f = 10.3 dB

Emission level = $41.2 + 10.3 = 51.5 \text{ dB}\mu\text{V}$

Margin = 60.0 - 51.5 = 8.5 dB

(Average) Reading = $35.0 \text{ dB}\mu\text{V}$ c.f = 10.3 dB

Emission level = $35.0 + 10.3 = 45.3 \text{ dB}\mu\text{V}$

Margin = 50.0 - 45.3 = 4.7 dB

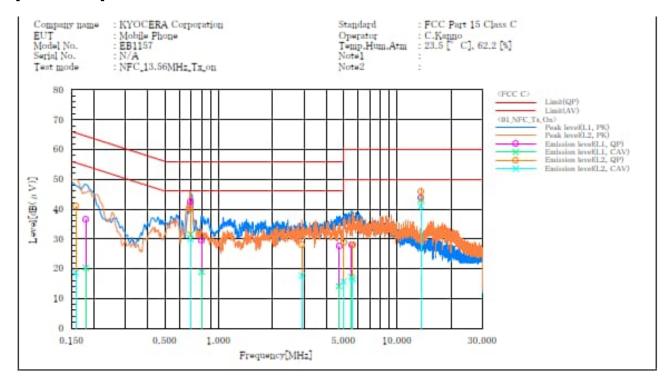
4.5.3 Limit

Frequency	Lir	mit
[MHz]	QP [dBuV]	AV [dBuV]
0.15-0.5	66-56*	56-46*
0.5-5	56	46
5-30	60	50

^{*:} The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

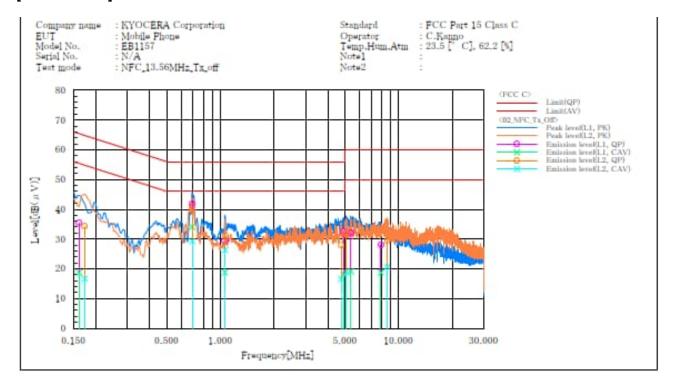
4.5.4 Measurement result

Date : 30-June-2023 Temperature : 23.5 [°C]


Humidity : 62.2 [%] Test engineer

Test place : 3m Semi-anechoic chamber Chiaki Kanno

4.5.5 Test data


[Transmit ON]

Finnl	Result									
	.1	Harris Line	D. Aller	- /	D	014	Li-te:	215-60	Marania	Managina
No.	Frequency	Heading	Reading	c.f	Result	Result.			Margin	Margin
	[MHz]	[dB(#V)]	[dB(µV)]	(dB)	(dB(μV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	(dB)	(dR)
1	0, 180	26.0	9.8	10.5	36, 5	20, 3	64, 5	54.5	28.0	34.2
1 2 3	0,696	32. 2	21.3	10. 3	42.5	31.6	56.0	46.0	13.5	14, 4
3	0, 802	19.0	8.5	10. 4	29. 4	18.9	56.0	46.0	26.6	27. 1
- 5	4, 714 5, 543	16.8 17.2	0.5	10.7	27.5 27.9	14.1	56. 0 60. 0	46.0	28.5	31. 9
4 5 6	13, 560	32. 4	31. 7	11.5	43.9	43, 2	60, 0	50.0	16.1	6.8
**	4.01, 0.000			11.0	40.0	911, 11	1111, 17	(142.4)	412. 4	44.00
1	2									
No.	Frequency	Heading	Reading CAY	c. F	We sult	Result CAV	Limit	Linit	Margin	Margin
	[MHz]	[dlt(u V)]	[dB(uV)]	[dB]	[(B(p V)]		[dB(µV)]		[48]	[dB]
1	0.158	30.6	6.1	10.5	41.1	18, 6	65, 6	[dB(μV)] 55,6	24, 5	37.0
2	0.693	29, 8	19.6	10.3	40, 1	29, 9	56, 0	46.0	15.9	16.1
1 2 3 4	2.924	17. 4	7.2	10.5	27. 9	17. 7 15. 7	56.0	46.0	28.1	28. 3
- 4	4, 993		a_0	10, 7	28, 8					30.3
5 6	5, 622 13, 560	17. 4 34. 3	5, 8	10.7	28, 1 45, 8	16. 5	60.0	50.0	31.9 14.2	33, 5 9, 0
11	14, 500	1941.15	29. 0	4.4 + 10	40. 8	41.0	60, 0	(80, 60	14.2	35, 60

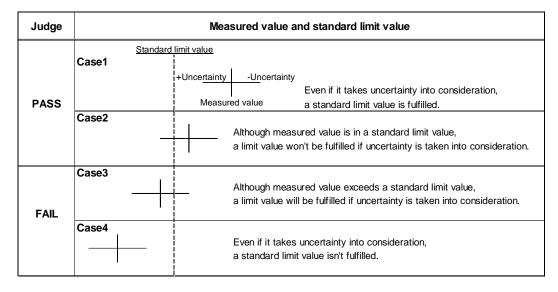
[Transmit OFF]

Final	Result									
	1 -	B 17				11	17-11	17-7-		
No.	Frequency	Rending		c.f.	Result		Limit		Margin	Margin
	MHx	[dB(#V)]	[dB(µV)]	[dB]	[B(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	(dit)	CAV [dB]
2 2	0, 161	25.0	8.2	10.5	35. 5	18, 7	65. 4	55.4	29.9	36, 7
2	0,693	31.6	23.8	10.3	41.9	34. 1	56. 0	46.0	14. 1	11.9
3	1.058	19, 1	8.3	10. 4	29.5	18, 7	56. 0	46.0	26, 5	27, 3
4.5	4. 913 5. 385	21.5	7.4	10.7	32.5 32.0	18. I 19. 2	56, 0 60, 0	46.0 50.0	23. 5	27. 9 30. 8
6	7, 936	17. 3	7.8	10.9	28. 2	18.7	60, 0	50.0	31.8	31.3
	1. 200	11.0	4. 10	40.0	4275.46	Life, 6	titl, tr	1040, 10	21.0	34.0
	2									
No.	Frequency	Reading	Brading CAY	c. f	Wesult QP	Result CAV	Limit	Linit	Margin	Margin
	[MHx]	Edit (w V) 1		[dB]	[dB(µV)]	[dlt(µV)]	[dB(#V)]		(dB)	[dB]
1	0, 173		6.1	10.5	34.3	16, 6	64. 8	54.8	30, 5	38. 2
2 3	0.693	29.5	19.0	10.3	39. #	29. 3	56, 0	46.0	16.2	16.7
3	1, 062	21.0 17.3	16.0	10.3	31.3 28.0	26. 3 16, 5	56, 0	46.0	24.7 28.0	19.7 29.5
4.	4, 748		5.8				56.0			
To .	5.076	20.9	8.0	10.7	31.6	18. 7	60.0	50.0	28, 4	31.3
61.	8,614	18. 5	9.7	11.0	29. 5	20.7	60.0	50,0	30.5	29.3

Japan

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.



6 Measurement Uncertainty

The reported measurement uncertainty is based on a value obtained by multiplying standard uncertainty by coverage factor of k=2, and a level of confidence becomes 95 %.

3m Semi Anechoic Chamber						
Test item	Measurement uncertainty					
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB					
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB					
Radiated emission (9kHz – 30 MHz)	±3.8 dB					
Radiated emission (30 MHz – 1000 MHz)	±5.4 dB					
Radiated emission (1 GHz – 6 GHz)	±4.6 dB					
Radiated emission (6 GHz – 18 GHz)	±4.7 dB					
Radiated emission (18 GHz – 40 GHz)	±6.4 dB					
Radio Frequency	±1.3 * 10 ⁻⁸					
RF power, conducted	±0.7 dB					
Adjacent channel power	±1.5 dB					
Temperature	±0.6 °C					
Humidity	±1.2 %					
Voltage (DC)	±0.4 %					
Voltage (AC, <10kHz)	±0.2 %					

Measurement uncertainty of not listed immunity tests is considered to suffice because requirements of relevant standards are met.

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81-238-28-2881

Accreditation and Registration

A2LA

Certificate #3686.03

VLAC

Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada

ISED#: 4224A

VCCI Council

Registration number: A-0166

Appendix A. Test Equipment

Antenna port conducted test

7 thtoma port conducted toot								
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date			
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	30-Sep-2023	05-Sep-2022			
Attenuator	HUBER+SUHNER	6810.19.A	N/A(S450)	31-Dec-2023	19-Dec-2022			
EMI Probe	ANRITSU	MA2601C	N/A(1753)	30-Nov-2023	08-Nov-2022			
Micro wave cable	Junkosha Inc.	MWX221/1m	N/A(S400)	31-Mar-2024	16-Mar-2023			
Low temperature and humidity chamber	Espec	PL1KP	14007261	30-Sep-2023	02-Sep-2022			

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESW44	103171	30-Sep-2023	20-Sep-2022
Preamplifier	SONOMA	310	372170	30-Sep-2023	15-Sep-2022
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	30-Apr-2024	21-Apr-2023
Attenuator	TDC	TAT-43B-06	N/A(S209)	31-Jul-2024	20-Jul-2023
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1145	31-Jul-2024	14-Jul-2023
Log periodic antenna	Schwarzbeck	VUSLP9111B	346	30-Nov-2023	16-Nov-2022
Attenuator	TOYO Connector	NA-PJ-6/6dB	N/A(S541)	30-Sep-2023	28-Sep-2022
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2024	20-Jul-2023
		SUCOFLEX104/9m	800690/4	31-Oct-2023	26-Oct-2022
		SUCOFLEX104/1m	my24610/4	31-Dec-2023	3 20-Sep-2022 3 15-Sep-2022 4 21-Apr-2023 4 20-Jul-2023 4 14-Jul-2023 3 16-Nov-2022 3 28-Sep-2022 4 20-Jul-2023 3 26-Oct-2022 3 29-Dec-2022 3 22-Dec-2022 3 22-Dec-2022 3 22-Dec-2022 3 22-Dec-2022 3 N/A N/A
Microwave cable	HUBER+SUHNER	SUCOFLEX104/9m	2001099/4	31-Dec-2023	
MICLOWAVE CADIE	HUDER+SURINER	SUCOFLEX104/1m	MY32976/4	31-Dec-2023	
		SUCOFLEX104/2m	SN MY28404/4	31-Dec-2023	19-Dec-2022
		SUCOFLEX104/7m	41625/6	31-Dec-2023	22-Dec-2022
PC	DELL	OPTIPLEX9010	00186-228-073-851	N/A	N/A
Software	TOYO Technica	ES10/RE-AJ	Ver.2023.01.001	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2024	28-May-2023

Conducted emission at mains port

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESW44	103171	30-Sep-2023	20-Sep-2022
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Dec-2023	20-Dec-2022
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	30-Jun-2024	22-Jun-2023
Microwave cable	HUBER+SUHNER	SUCOFLEX104/5m	MY33601/4	31-Dec-2023	19-Dec-2022
Microwave cable	HUBER+SUHNER	SUCOFLEX104/2m	MY37268/4	31-Oct-2023	27-Oct-2022
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Dec-2023	22-Dec-2022
PC	DELL	OPTIPLEX9010	00186-228-073-851	N/A	N/A
Software	TOYO Technica	ES10/RE-AJ	Ver.2023.01.001	N/A	N/A

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.