TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042 Tel: 031-321-2664. Fax: 031-321-1664

1. Report No.: DREFCC2211-0193

2. Client / Applicant

Name: KYOCERA Corporation

· Address : Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan

3. Use of Report: Grant of Certification

4. Product Name / Model Name : Mobile Phone / EB1155

(FCC ID: JOYEB1155)

5. Test Standard: ANSI C63.4:2014

FCC Part 15 Subpart B

(Other Class B digital devices & peripherals)

6. Date of Test: Nov. 10, 2022

7. Location of Test: Permanent Testing Lab

☐ On Site Testing

(Address: Refer to the attached)

8. Testing Environment: Temperature 19 °C, Humidity 45 % R.H.

9. Test Result: Refer to the attached Test Result

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. KS Q ISO / IEC 17025 and KOLAS accreditation.

This laboratory is not accredited for the test results marked. " * "

Tested by Reviewed by Affirmation

> Name: JunSeo Park

Name: HyungJun Kim

The above test report is the accredited test result by Korea Laboratory Accreditation Scheme, which signed the ILAC-MRA.

Nov. 17, 2022

DT&C Co., Ltd.

Accredited by KOLAS, Republic of KOREA

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

CONTENTS

Report No.: DREFCC2211-0193

1. General Remarks	3
2. Test Laboratory	3
3. General Information of EUT	4
4. EUT Operations and Test Configurations	5
4.1 Principle of Configuration Selection	
4.2 EUT Operation Mode	
4.3 Test Configuration Mode	5
4.4 Supported Equipment	6
4.5 EUT In/Output Port	6
4.6 Test Voltage and Frequency	6
5. Test Summary	7
6. Test Environment	7
7. Test Results : Emission	8
7.1 Conducted Disturbance	8
7.2 Radiated Disturbance	9
0 Pavisian History	21

1. General Remarks

This report contains the result of tests performed by:

DT&C Co., Ltd.

42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042 http://www.dtnc.net

Tel: +82-31-321-2664 Fax: +82-31-321-1664

2. Test Laboratory

Address of Laboratory

	Branch site	42, Yurim-ro 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea (Ujeong-dong)
	Satellite facilities-1	42, Yurim-ro 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea (Mirae-dong)
\boxtimes	Satellite facilities-2	38, Yurim-ro 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea (Changui-dong, Yeoljeong-dong)
	Satellite facilities-3	28, Baengnyeong-ro 20beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea (Key Industries Certification Center, Technology Convergence Center)

DT&C Co., Ltd. has been accredited / filed / authorized by the agencies listed in the following table;

Certificate	Nation	Agency	Code	Remark
	Korea	KOLAS	393	ISO/IEC 17025
Accreditation	South Africa	SABS	0006	ISO/IEC 17025
	Ghana	NCA	NCA agreement 23rd,Oct,2018	-
	USA	FCC	KR0034	Designation
	Canada	IC	KR0034	Designation
Site Filing	Japan	VCCI	C-11427, R-13385, R-14076, R-14180, R-14496, T-11442, G-10338, G-10754, G-10815, G-20051	Registered
	Korea KC		KR0034	Designation
Certification	Germany	TUV	CARAT 089112 0009 Rev.00	ISO/IEC 17025
	Russia	RMRS	22.03.01.01196.296	ISO/IEC 17025

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

3. General Information of EUT

	<u></u>
A 11	KYOCERA Corporation
Applicant	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,
	Kanagawa, Japan
Manufacturer	KYOCERA Corporation
Manufacturer	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan
	KYOCERA Corporation
Factory	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,
lactory	Kanagawa, Japan
Product Name	Mobile Phone
1 Toddot Hamo	Modile 1 Holle
Model Name	EB1155
Add Model Name	None
Add Model difference	None
Software Version	0.110YO.9017.a
Hardware Version	Pre-Production
Maximum Internal Frequency	2.2 GHz
Rated Power	DC 3.87 V
FCC ID	JOYEB1155
Remarks	None

Related Submittal(s) / Grant(s) **Original submittal only**

TRF-EM-150(00)190502 Pages: 4 / 21

4. EUT Operations and Test Configurations

4.1 Principle of Configuration Selection

Emission:

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use. For each testing mode different configurations were used, Refer to the individual tests.

4.2 EUT Operation Mode

No.	Mode	Description		
1	FM	FM receiving mode(VHF)		

4.3 Test Configuration Mode

No.	Mode	Description	
1	FM	EUT is connected to the Broadcast Test Center and is receiving radio frequency. and continuously output audio signal. EUT is connected to the USB C to 3.5 mm. USB C to 3.5 mm is connected to the Earphone.	

4.4 Supported Equipment

Used*	Product Type	Manufacturer	Model	Remarks
AE	Earphone	N/A	N/A	N/A
AE	USB C to 3.5 mm	N/A	N/A	N/A

^{*}Abbreviations:

AE - Auxiliary/Associated Equipment, or

SIM - Simulator

4.5 EUT In/Output Port

Name	Type*	Cable Max. >3m	Cable Shielded	Cable Back shell	Remarks
USB C to 3.5 mm	I/O	0.1	Shielded	Plastic	N/A

*Abbreviations:

AC = AC Power Port DC = DC Power Port I/O = Signal Input or Output Port GND = Ground

t N/E = Non-Electrical

TP = Telecommunication Ports

4.6 Test Voltage and Frequency

Case	Voltage (V)	Frequency (Hz)	Phases	Remarks
1	DC 3.8	-	-	Battery

5. Test Summary

Test Items	Applied Standards	Results			
Conducted Disturbance	ANSI C63.4:2014	N/A (Note 1)			
Radiated Disturbance	ANSI C63.4:2014	C			
C=Comply N/C=Not Comply	y N/T=Not Tested N/A=Not Applicable				
Note 1) This test was not required because EUT was	Note 1) This test was not required because EUT was used power from battery.				

The data in this test report are traceable to the national or international standards.

-Conducted Disturbance

Frequency [MHz]	Phase	Result [dBµV]	Detector	Limit [dBµV]	Margin [dB]
-	-	-	-	-	-

-Radiated Disturbance

Frequency [MHz]	Pol.	Result [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]
880.880	Н	28.32	Quasi - Peak	46.00	17.68

6. Test Environment

Test Items	Test date	Temp.	Humidity	Pressure	
	(YYYY-MM-DD)	(℃)	(% R.H.)	(kPa)	
Radiated Disturbance	2022-11-10	19	45	-	

7. Test Results: Emission

7.1 Conducted Disturbance

ANSI C63.4	Mains terminal disturbance voltage Result								
Method: The AMN placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane. This distance was between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment were at least 0,8 m from the AMN. All power was connected to the system through Artificial Mains Network (AMN). Conducted voltage measurements on mains lines were made at the output of the AMN. The measuring port of the LISN for EUT was connected to spectrum analyzer. Using conducted emission test software, the emissions were scanned with peak detector mode. After scanning over the frequency range, suspected emissions were selected to perform final measurement. When performing final measurement, the receiver was used which has Quasi-Peak detector and CISPR Average detector. For (0.15 ~ 30) MHz frequency range, Quasi-Peak detector with 10 kHz RBW and 30 kHz VBW was used. By varying the configuration of the test sample and the cable routing it was attempted to maximize the emission.									
Fully configured samp		Frequency range on each si	de of line	Measurement I	Point				
er the following frequency range		150 kHz to 30 MHz		Mains					
EUT mode		Test configuration mode		N/A					
(Refer to clau		EUT Operation mode		N/A					
(Neier to class	1363 4)	Power interface mode		N/A					
		Limits - Class A							
Frequency (MHz)		Limit	dΒμV						
requeries (initiz)		Quasi-Peak		Average					
0.15 to 0.50		79		66					
0.50 to 30		73		60					
		Limits - Class B							
Fraguency (MH=)		Limit	dΒμV						
Frequency (MHz)		Quasi-Peak		Average					
0.15 to 0.50		66 to 56		56 to 46					
0.50 to 5		56	46						
5 to 30		60		50					

Measurement Instrument									
Description	Model	Manufacturer	Identifier	Cal. Date	Cal. Due				
-	-	-	-	-	-				

Calculation

_	
	N : Neutral phase, L1 : Live phase
	C.FACTOR(dB): Pulse Limiter(dB) + Cable loss(dB) + Insertion loss of LISN(dB)
	Result(dBμV) : Reading Value(dBμV) + C.FACTOR(dB)
	Margin(dB) : Limit(dBμV) - Result(dBμV)

Mains terminal disturbance voltage _Measurement data								
Test configuration mode N/A EUT Operation mode N/A								
Test voltage (V)	N/A	Test Frequency (Hz)	N/A					

This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-EM-150(00)190502 Pages: 8 / 21

7.2 Radiated Disturbance

ANSI C63.4		Radiated d	listurbanc	e 30 MF	lz – XX GHz		Result
the receive antenna measurements were height from 1 to 4 m where applicable. Fo (RBW = 120 kHz Ba	Hz and 3 located a then per . All frequer final mound individth) = 1 MHz	B meter above 1GHz. at various heights in he formed by rotating the uencies were investigated easurement below 1 of the state of the state of the state of the the state of the state	The EUT was corizontal and e EUT 360° ated in both GHz frequencesuremer	as rotated d vertical and adju horizonta ncy range nt above 1	d 360° about its azimu polarities. Final Isting the receive anter al and vertical antenna e, Quasi-Peak detector I GHz frequency range	th with nna polarity, with	Comply
FUT made		Test configu	ration mod	de	1	1	
EUT mode (Refer to clauses 4	`	EUT Opera	ation mode		1	1	
(Neier to Clauses 4	,	Power inte	rface mode)	1	1	
		Radiated Disturb	ance belov	v 1 000 N	1Hz		
Fragueney rongs			Qu	asi-peak	limit dBμV/m		
Frequency range		Clas	ss A		Clas	ss B	
(MHz)		3 m distance 10 m distance 3 m distance					
30 to 88		49.1	49.1 39.1 40				
88 to 216		53.5 43.5		5	43.5		
216 to 960		56.4 46.4		4	46		
960 to 1 000		59.5 49.5		5	54		
According to 15.109(g), as a comply with the standards(C				shown a	bove, digital devices n	nay be sh	own to
Frequency range			Qu	asi-peak	limit dBμV/m		
(MHz)		Class A (10	m distance)	Class B (10	m distar	ice)
30 to 230		4	0		3	0	
230 to 1 000		4	7		3	7	
Radiated	l Disturb	ance for above 1 00	00 MHz at a	measur	ement distance of 3	m	
Frequency range		Peak limi	t dBµV/m		Average lir	nit dBµV	/m
(GHz)		Class A	Class	s B	Class A	CI	ass B
1 to 40		80	74		60		54
The test from	equency	range of Radiated [Disturbance	e measur	ements are listed be	low.	
Highest frequency or on which the de	vice ope	rates or tunes (MHz		Upp	er frequency of mea (MHz)	suremer	t range
	Below 1				1 000		
	108 – 5			2 000			
	500 – 1	000		5 000			
	Above 1	000		5 th harmonic of the highest frequency or 40 GHz, whichever is lower			

Measurement Instrument											
Description	Model	Manufacturer	Identifier	Cal. Date	Cal. Due						
MEASUREMENT SOFTWARE	EMI-R VER. 2.00.0177	TSJ	N/A	N/A	N/A						
LOW NOISE PRE AMPLIFIER	MLA-100K01-B01-26	TSJ	1252741	2022.02.08	2023.02.08						
EMI TEST RECEIVER	ESU40	ROHDE&SCHWARZ 100525		2021.11.30	2022.11.30						
TRILOG BROADBAND TEST-ANTENNA	VULB9160	SCHWARZBECK	9160-3363	2022.09.29	2024.09.29						
6 dB ATTENUATOR	2708A	HP	23831	2022.09.29	2024.09.29						
PRE AMPLIFIER	8449B	H.P	3008A00887	2022.08.24	2023.08.24						
BROAD-BAND HORN ANTENNA	BBHA 9120D	SCHWARZBECK	9120D-1014	2022.08.02	2023.08.02						
HORN ANTENNA	EM-6969	ELECTRO-METRICS	156	2021.12.23	2022.12.23						
PREAMPLIFIER	MLA-0618-B03-34	TSJ	1785642	2021.12.21	2022.12.21						
BROADCAST TEST CENTER	втс	ROHDE&SCHWARZ	100253	2022.02.08	2023.02.08						

(NOTE: THE MEASUREMENT ANTENNAS WERE CALIBRATED IN ACCORDANCE TO THE REQUIREMENTS OF C63.5-2017.)

Calculation

Result(dBuV/m) : Reading Value(dBuV) + Cable loss(dB) - Pre amplifier gain(dB) + Ant. Factor(dB)

Margin : Limit(dBuV/m) - Result(dBuV/m)

Pages: 10 / 21

Radiated disturbance at (30 ~ 1 000) MHz _Measurement data								
Test configuration mode	1	EUT Operation mode	1					
Test voltage (V)	Battery	Test Frequency (Hz)	-					
F	CC Part 15 Su	ıbpart B						

Date 2022-11-10

Order No. DTNC2210-10869

Power Supply Battery

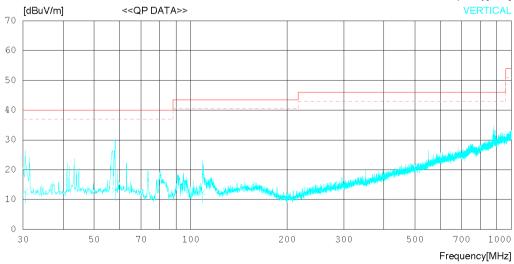
19 'C FM 45 % R.H. Temp/Humi

Test Condition

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

Antenna Factor Antenna Factor


1. ANT_EMC-309_VULB9160_3363_with ATT_2022-09-29
Cable Loss


1. C1_ANT TO BOTTOM_UNDER_2022.02.18

2. C2_AMP TO BOTTOM_UNDER_2022.02.18

3. C3_AMP TO RECEIVER_UNDER_2022.02.18

Pre Amp Gain
1. EMC-110_AMP_MLA-100K01-B01-26_1252741_2022.02.08

Date 2022-11-10

DTNC2210-10869 Order No. Power Supply Temp/Humi Test Condition Battery 19 'C 45 % R.H. FM

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

Antenna Factor

1. ANT_EMC-309_VULB9160_3363_with ATT_2022-09-29
Cable Loss

1. C1_ANT TO BOTTOM_UNDER_2022.02.18

2. C2_AMP TO BOTTOM_UNDER_2022.02.18

3. C3_AMP TO RECEIVER_UNDER_2022.02.18
Pre Amp Gain

1. EMC-110_AMP_MLA-100K01-B01-26_1252741_2022.02.08

No.	. FREQ	READING OP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	HORI	ZONTAL								
1 2 3	58.009 80.682 880.880	20.90 21.10 19.60	17.80 13.43 29.10	1.17 1.31 5.92	26.65 26.78 26.30	9.06	40.00 40.00 46.00	26.78 30.94 17.68	352 227 134	187 113 45
	VERT	ICAL								
4 5 6	30.485 58.130 108.932	21.50 20.90 21.60	17.00 17.79 16.27	0.85 1.17 1.55	26.70 26.65 26.92	13.21	40.00 40.00 43.50	27.35 26.79 31.00	321 223 134	207 302 244

Radiated disturbance at (1 ~ 6) GHz _Peak Measurement data								
Test configuration mode	1	EUT Operation mode	1					
Test voltage (V)	Battery	Test Frequency (Hz)	-					

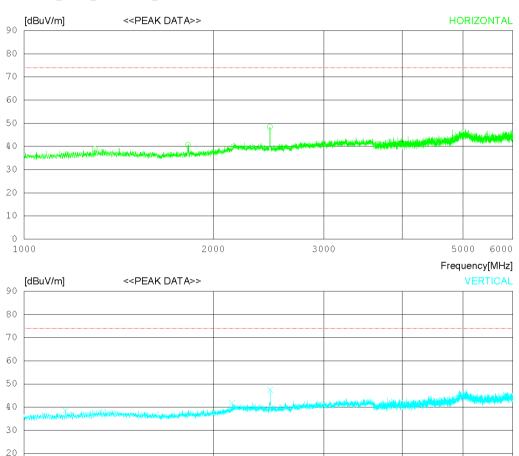
Date 2022-11-10

DTNC2210-10869 Order No. Power Supply Temp/Humi Battery 19 'C

45 % R.H.

Test Condition ĖΜ

Memo


LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Peak)

Antenna Factor
1. ANT_9120D_1014_22.08.02
Cable Loss
1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15
2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15
3. #29_C3_Amp to Receiver_3m_1-18G_2022-09-15
Pre Amp Gain
4. AMP_20440D_2008400887_2023_08_24

10

1000

1. AMP_8449B_3008A00887_2022.08.24

3000

2000

5000

Frequency[MHz]

6000

Date 2022-11-10

Order No. DTNC2210-10869
Power Supply Battery
Temp/Humi 19 'C 45 % R.H.
Test Condition FM

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Peak)

Antenna Factor
1. ANT_9120D_1014_22.08.02
Cable Loss
1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15
2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15
3. #29_C3_Amp to Receiver_3m_1-18G_2022-09-15
Pre Amp Gain
1. AMP_8449B_3008A00887_2022.08.24

No.	. FREQ	READING PEAK	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	HORIZ	CONTAL								
2	1295.000 1822.500 2462.500	46.20 2	25.45	3.90 4.41 5.10	35.83 35.36 35.15	39.03 40.70 48.48	74.0 74.0 74.0	34.97 33.3 25.52	214 309 222	358 358 80
	VERTI	CAL								
5	1164.375 2143.750 2463.125	44.20 2	27.85	3.65 4.76 5.10	35.95 35.19 35.15	38.56 41.62 47.48	74.0 74.0 74.0	35.44 32.38 26.52	335 231 305	275 100 0

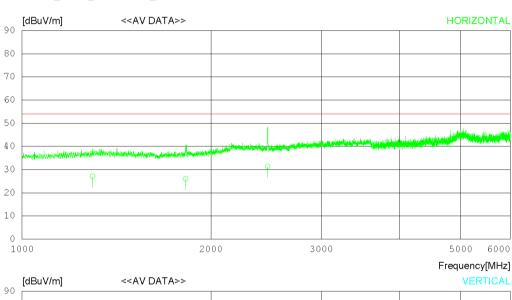
Radiated disturbance at (1 ~ 6) GHz _Average Measurement data								
Test configuration mode	1	EUT Operation mode	1					
Test voltage (V)	Battery	Test Frequency (Hz)	•					

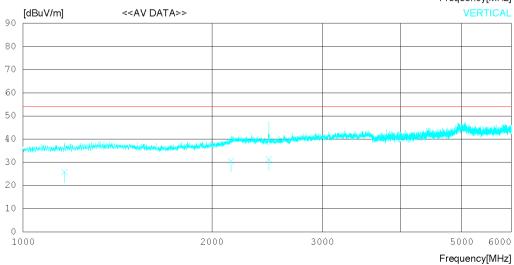
Date 2022-11-10

Pages: 15 / 21

Order No. DTNC2210-10869 Power Supply Temp/Humi Battery 19 'C 45 % R.H. Test Condition ĖΜ

Memo


LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Average)


Antenna Factor

1. ANT_9120D_1014_22.08.02
Cable Loss

1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15
2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15
3. #29_C3_Amp to Receiver_3m_1-18G_2022-09-15
Pre Amp Gain
4. AMD_20440D_2008400887_2020_08.24

1. AMP_8449B_3008A00887_2022.08.24

Date 2022-11-10

DTNC2210-10869 Order No. Power Supply Temp/Humi Test Condition Battery 19 'C 45 % R.H. FM

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Average)

Antenna Factor

1. ANT_9120D_1014_22.08.02
Cable Loss

1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15

2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15

3. #29_C3_Amp to Receiver_3m_1-18G_2022-09-15

Pre Amp Gain

1. AMP_8449B_3008A00887_2022.08.24

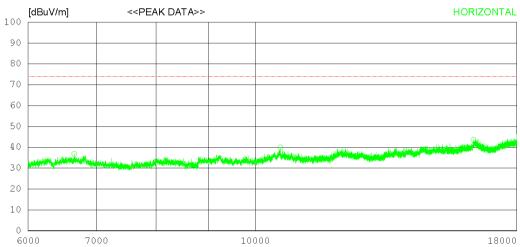
No	. FREQ	READING CAV	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	HORIZ	CONTAL								
2	1294.973 1822.366 2461.338	31.60	26.16 25.44 27.42	3.90 4.41 5.10	35.83 35.30 35.15	5 26.09	54.00 54.00 54.00	26.87 27.91 22.63	321 114 350	78 110 34
	VERTI	CAL -								
4 5 6	1163.982 2143.622 2463.205	33.10	25.46 27.85 27.43	3.65 4.76 5.10	35.95 35.15 35.15	30.52	54.00 54.00 54.00	28.24 23.48 22.62	216 223 217	78 275 110

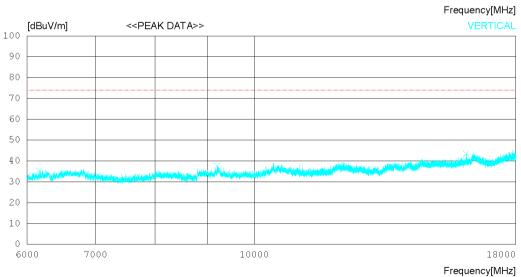
Radiated disturbance a	Radiated disturbance at (6 ~ 18) GHz _Peak Measurement data					
Test configuration mode	1	EUT Operation mode	1			
Test voltage (V)	Battery	Test Frequency (Hz)	-			

Date 2022-11-10

Order No. DTNC2210-10869

Power Supply Temp/Humi Battery 19 'C 45 % R.H.


Test Condition ĖΜ


Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Peak)

Antenna Factor 1. EMC-233-A_EM-6969_156_2021.12.23

1. EMC-233-A_EM-6969_136_2021.12.23 Cable Loss 1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15 2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15 Pre Amp Gain 1. EMC-233-M_MLA-0618-B03-34_2021.12.21

Date 2022-11-10

Order No. Power Supply Temp/Humi Test Condition DTNC2210-10869 Battery 19 'C FM 45 % R.H.

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Peak)

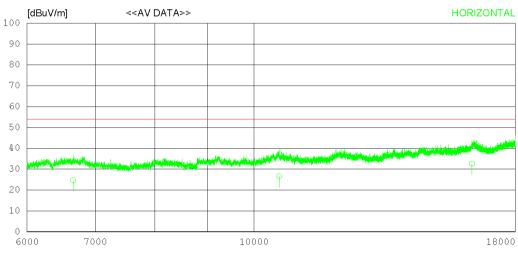
Antenna Factor
1. EMC-233-A_EM-6969_156_2021.12.23
Cable Loss
1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15
2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15
Pre Amp Gain
1. EMC-233-M_MLA-0618-B03-34_2021.12.21

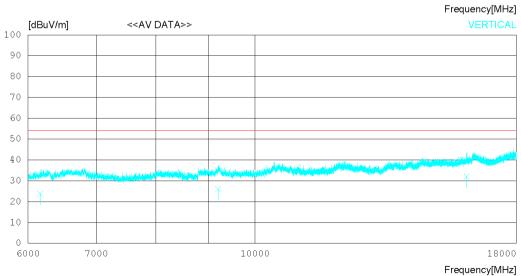
No	. FREQ	READING PEAK	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m] [dB]	[cm]	[DEG]
	HORI	ZONTAL								
1 2 3		37.103 50 36.003 50 30.903	32.60	7.91 9.89 13.32	39.36 38.54 37.19	36.85 39.95 43.68	74.0 74.0 74.0	37.15 34.05 30.32	100 132 117	84 0 121
	VERT	ICAL								
4 5 6	6165.750 9199.500 16096.50		31.80	7.68 9.89 13.12	39.74 38.47 37.34	35.31 37.62 43.48	74.0 74.0 74.0	38.69 36.38 30.52	224 117 305	0 328 358

Radiated disturbance at	(6 ~ 18) GH	6 ~ 18) GHz _Average Measurement data 1			
Test configuration mode	1	EUT Operation mode	1		
Test voltage (V)	Battery	Test Frequency (Hz)	-		

Date 2022-11-10

Order No. DTNC2210-10869 Power Supply Temp/Humi Battery 19 'C


45 % R.H. Test Condition ĖΜ


Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Average)

Antenna Factor 1. EMC-233-A_EM-6969_156_2021.12.23

1. EMC-233-A_EM-6969_136_2021.12.23 Cable Loss 1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15 2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15 Pre Amp Gain 1. EMC-233-M_MLA-0618-B03-34_2021.12.21

Date 2022-11-10

DTNC2210-10869 Order No. Power Supply Temp/Humi Test Condition Battery 19 'C 45 % R.H. FM

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Average)

Antenna Factor
1. EMC-233-A_EM-6969_156_2021.12.23
Cable Loss
1. #27_C1_Ant to Bottom_3m_1-18G_2022-09-15
2. #28_C2_Bottom to Amp(Filter,Receiver)_3m_1-18G_2022-09-15
Pre Amp Gain
1. EMC-233-M_MLA-0618-B03-34_2021.12.21

	No.	. FREQ	READING CAV	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
		[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
		HORIZ	CONTAL								
	2	6655.335 10577.60 16323.09	0 22.70	31.20 32.60 36.65	7.91 9.89 13.32	39.36 38.54 37.19	26.65	54.00 54.00 54.00	29.35 27.35 21.42	132 301 224	335 43 360
VERTICAL											
	5	6165.307 9199.214 16096.08	22.80	31.37 31.80 36.20	7.68 9.89 13.12	39.74 38.47 37.34	7 26.02	54.00 54.00 54.00	30.09 27.98 21.92	321 234 227	77 230 134

9. Revision History

Date	Description	Revised By	Reviewed By
Nov. 17. 2022	Initial report	JunSeo Park	HyungJun Kim

⁻End of test report-