

APPENDIX A. – Probe Calibration Data

Schweizerischer Kallbrierdienst Service suisse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

DT&C (Dymstec) Certificate No: EX3-3916_Mar22 Client CALIBRATION CERTIFICATE Object EX3DV4 - SN:3916 QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: March 30, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: CC2552 (20x) 09-Apr-21 (No. 217-03343) Apr-22 DAE4 SN: 660 13-Oct-21 (No. DAE4-660_Oct21) Oct-22 Reference Probe ES3DV2 SN: 3013 27-Dec-21 (No. ES3-3013_Dec21) Dec-22 Secondary Standards ID Check Date (in house) Scheduled Check Power meter E4419B SN: GB41293874 06-Apr-16 (in house check Jun-20) In house check: Jun-22 Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-20) In house check: Jun-22 Power sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) In house check: Jun-22 RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-20) In house check: Jun-22 Network Analyzer E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature Calibrated by: Aidonia Georgiadou Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: April 1, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3916_Mar22

Page 1 of 9

- Schweizerischer Kalibrierdienst S
- Service suisse d'étalonnage C
 - Servizio svizzero di taratura Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

- Calibration is Performed According to the Following Standards:
 - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the Information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3916 Mar22

Page 2 of 9

March 30, 2022

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3916

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.56	0.48	0.52	± 10.1 %
DCP (mV) ^B	99.3	101.0	99.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	147.8	±3.0 %
	1	Y	0.0	0.0	1.0		140.9	1
		Z	0.0	0.0	1.0		141.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field unlike. field value.

Certificate No: EX3-3916_Mar22

Page 3 of 9

March 30, 2022

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3916

Sensor Arrangement	Triangular
Connector Angle (°)	-91.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Callbration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX3-3916_Mar22

Page 4 of 9

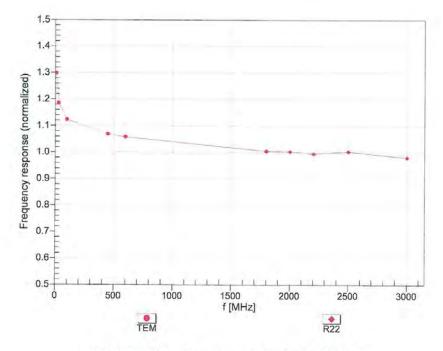
March 30, 2022

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3916

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.14	10.14	10.14	0.32	1.04	± 12.0 %
835	41.5	0.90	9.83	9.83	9.83	0.48	0.80	± 12.0 %
900	41.5	0.97	9.49	9.49	9.49	0.48	0.80	± 12.0 %
1750	40.1	1.37	8.53	8.53	8.53	0.36	0.86	± 12.0 %
1900	40,0	1.40	8.24	8.24	8.24	0.36	0.86	± 12.0 %
2450	39.2	1.80	7.71	7.71	7.71	0.34	0.90	± 12.0 %
2600	39.0	1.96	7.42	7.42	7.42	0.41	0.90	± 12.0 %
5200	36.0	4.66	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.95	4.95	4.95	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.70	4.70	4.70	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

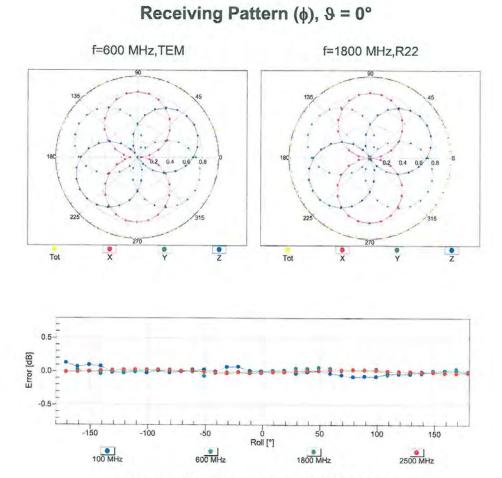
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.
^F At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: EX3-3916_Mar22

Page 5 of 9

March 30, 2022

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Certificate No: EX3-3916_Mar22

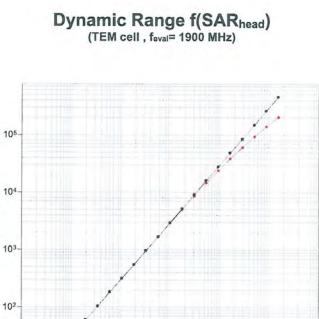
Page 6 of 9

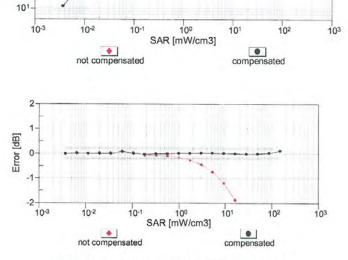
t&C

March 30, 2022

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

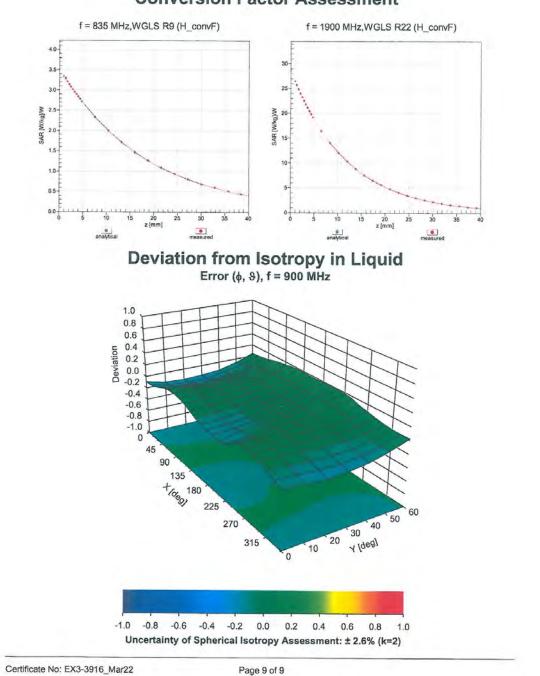
Certificate No: EX3-3916_Mar22


Page 7 of 9



Input Signal [uV]

March 30, 2022


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3916_Mar22

Page 8 of 9

March 30, 2022

Conversion Factor Assessment

APPENDIX B. – Dipole Calibration Data

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

DT&C (Dymstec)

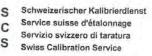
Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D750V3-1049_Jan22


Object	D750V3 - SN:1049				
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz		
Calibration date:	January 21, 2022	2			
The measurements and the uncert	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.		
Calibration Equipment used (M&TE Primary Standards	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22		
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22		
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22		
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22		
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22		
	011 00 10	04 D	D		
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22		
Reference Probe EX3DV4	SN: 7349 SN: 601	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21)	Nov-22		
Reference Probe EX3DV4 DAE4 Secondary Standards					
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 601 ID # SN: GB39512475	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 601 ID # SN: GB39512475 SN: US37292783	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Nov-22 Scheduled Check		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		

Certificate No: D750V3-1049_Jan22

Page 1 of 8

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

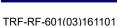
chooding.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1049_Jan22

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0,88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.45 W/kg ± 17.0 % (k=2)
CAD averaged event to and (40 -) at the state		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.36 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.71 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.80 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1049_Jan22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω - 1.9 jΩ	
Return Loss	- 29.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.1 Ω - 3.9 jΩ	
Return Loss	- 27.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: D750V3-1049_Jan22

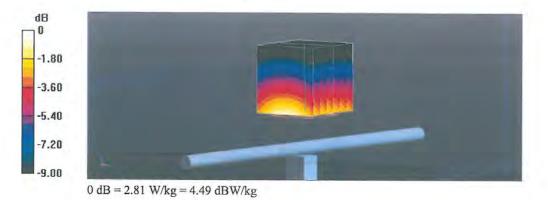
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1049

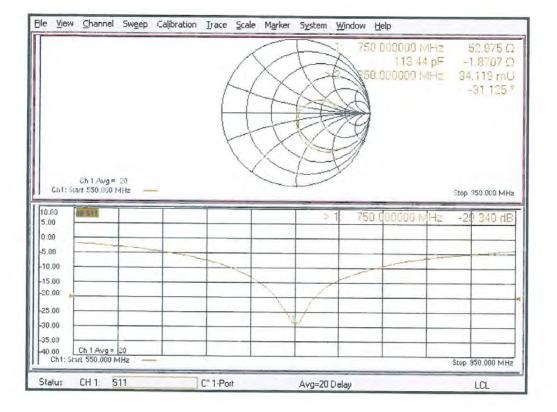

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.43 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.36 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 65.6% Maximum value of SAR (measured) = 2.81 W/kg



Certificate No: D750V3-1049_Jan22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D750V3-1049_Jan22

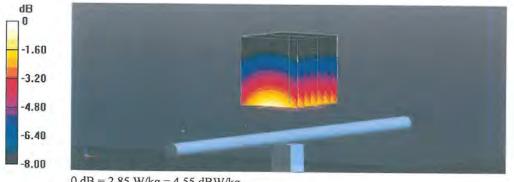
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1049

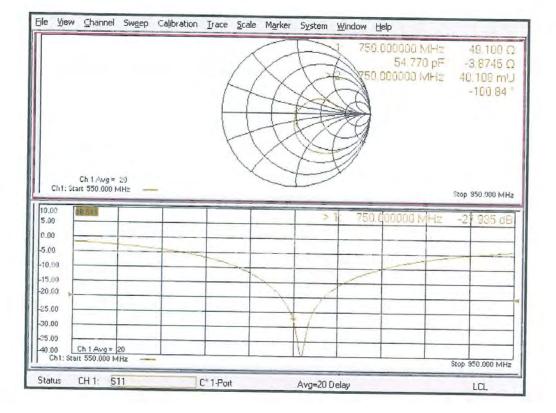

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.95 \text{ S/m}$; $\epsilon_r = 55.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.23, 10.23, 10.23) @ 750 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) •

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.71 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.44 W/kg Smallest distance from peaks to all points 3 dB below = 17.1 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 2.85 W/kg


0 dB = 2.85 W/kg = 4.55 dBW/kg

Certificate No: D750V3-1049_Jan22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D750V3-1049_Jan22

Page 8 of 8

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D835V2-4d159_May22

S

C

S

Object	D835V2 - SN:4d	159	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	May 30, 2022		
The measurements and the uncert	ainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Calibration Equipment used (M&T	1		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
ower sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
ower sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
eference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
ype-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
eference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
AE4	SN: 601	02-May-22 (No. DAE4-601_May22)	May-23
econdary Standards	ID#	Check Date (in house)	Scheduled Check
	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
ower meter E4419B	I have a second seco		In house check: Oct-2
	SN: US37292783	07-Oct-15 (in house check Oct-20)	
ower sensor HP 8481A	SN: US37292783 SN: MY41093315	07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	
ower sensor HP 8481A ower sensor HP 8481A	the second		In house check: Oct-22
ower sensor HP 8481A ower sensor HP 8481A RF generator R&S SMT-06	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: MY41093315 SN: 100972 SN: US41080477	07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-2: In house check: Oct-2: In house check: Oct-2:
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: MY41093315 SN: 100972	07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 Signature
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: MY41093315 SN: 100972 SN: US41080477 Name	07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-2: In house check: Oct-2: In house check: Oct-2:
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: MY41093315 SN: 100972 SN: US41080477 Name	07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	In house check: Oct-2 In house check: Oct-2 In house check: Oct-2
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Salibrated by:	SN: MY41093315 SN: 100972 SN: US41080477 Name Aldonia Georgiadou	07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	In house check: Oct-2 In house check: Oct-2 In house check: Oct-2

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Olossaly.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d159_May22

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.56 W/kg ± 17.0 % (k=2)
	1	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.59 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	0.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 d) of Body TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.58 W/kg

Certificate No: D835V2-4d159_May22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 3.7 jΩ	
Return Loss	- 27.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω - 7.9 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.441 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D835V2-4d159_May22

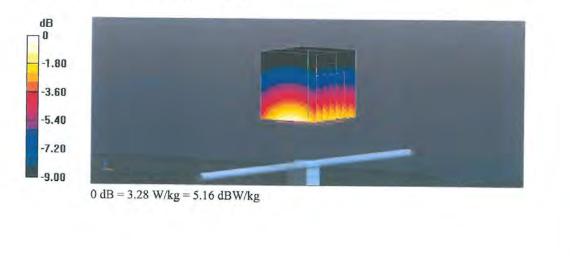
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d159

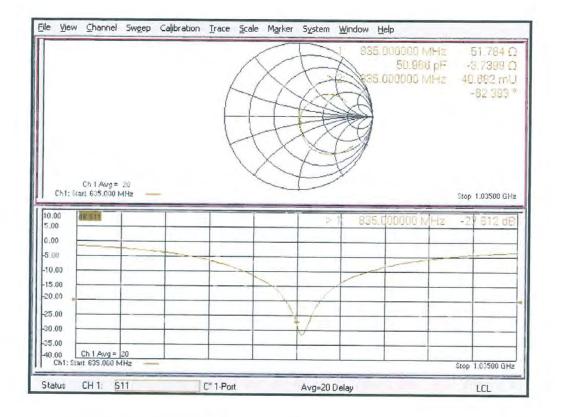

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.92 S/m; ϵ_r = 40.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.05 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.70 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 65.8% Maximum value of SAR (measured) = 3.28 W/kg



Certificate No: D835V2-4d159_May22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d159_May22

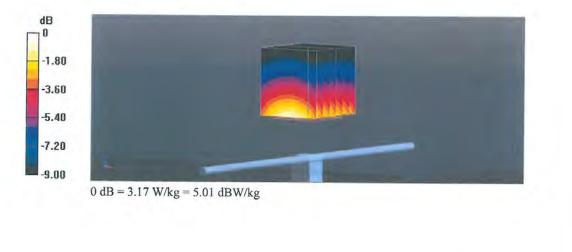
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 30.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d159

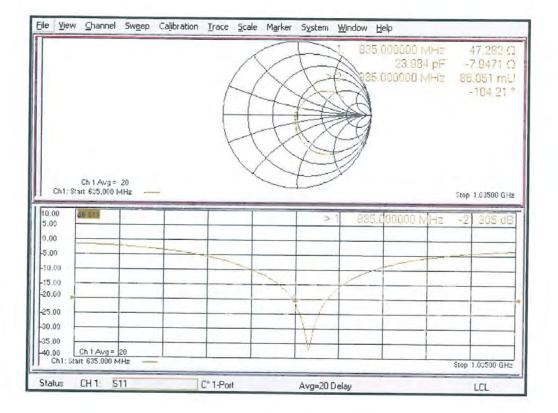

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.85, 9.85, 9.85) @ 835 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.03 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.52 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 16.2 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 3.17 W/kg



Certificate No: D835V2-4d159_May22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d159_May22

Page 8 of 8

Schweizerischer Kallbrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D1800V2-2d202_Mar22

Object	D1800V2 - SN:20	1202	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	March 25, 2022		
		onal standards, which realize the physical uni robability are given on the following pages an	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
ower sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
ower sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
ype-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
So di la construcción de la compactica de la construcción de la construcción de la con	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
Reference Probe EX3DV4	SN: 7349 SN: 601	31-Dec-21 (No. EX3-7349_Dec21) 01-Nov-21 (No. DAE4-601_Nov21)	Dec-22 Nov-22
Reference Probe EX3DV4 DAE4 Secondary Standards			
Reference Probe EX3DV4 DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22 Scheduled Check
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 601	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house)	Nov-22 Scheduled Check In house check: Oct-22
Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 601 ID # SN: GB39512475	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 601 ID # SN: GB39512475 SN: US37292783	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Nov-22
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-23
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Nov-22 Scheduled Check In house check: Oct-2: In house check: Oct-2: In house check: Oct-2: In house check: Oct-2: In house check: Oct-2:
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou	01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Nov-22 Scheduled Check In house check: Oct-2 In house check: Oct-2 In house check: Oct-2 In house check: Oct-2

Certificate No: D1800V2-2d202_Mar22

Page 1 of 8

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

C

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d202_Mar22

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm3 (10 c) of Head TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition 250 mW input power	5.03 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.02 W/kg

Certificate No: D1800V2-2d202_Mar22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω - 3.1 jΩ
Return Loss	- 29.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.2 Ω - 3.8 jΩ	
Return Loss	- 23.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.213 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

11	00000
Manufactured by	SPEAG
	a de la companya de

Certificate No: D1800V2-2d202_Mar22

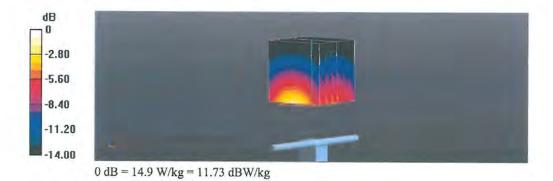
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d202

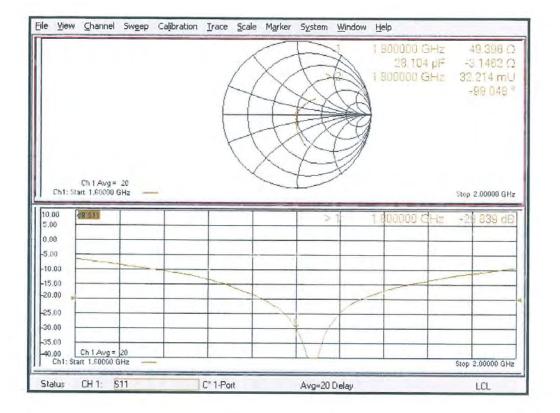

Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.63, 8.63, 8.63) @ 1800 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.63 W/kg; SAR(10 g) = 5.03 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 14.9 W/kg



Certificate No: D1800V2-2d202_Mar22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1800V2-2d202_Mar22

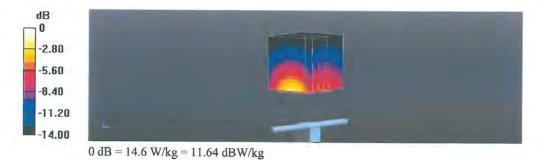
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 25.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d202

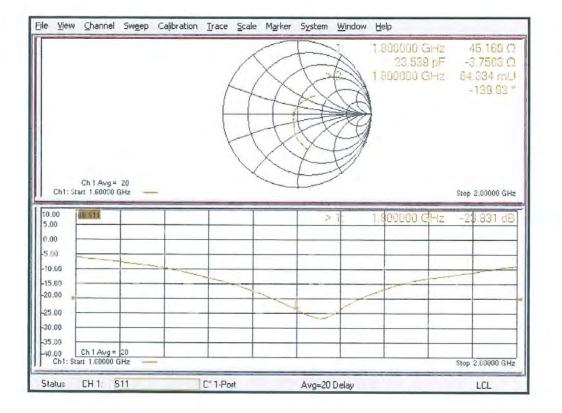

Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.51$ S/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.44, 8.44, 8.44) @ 1800 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.53 W/kg; SAR(10 g) = 5.02 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 57.2% Maximum value of SAR (measured) = 14.6 W/kg



Certificate No: D1800V2-2d202_Mar22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1800V2-2d202_Mar22

Page 8 of 8

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D1900V2-5d176_May22

Dbject	D1900V2 - SN:5d176				
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz				
alibration date:	May 30, 2022				
bis calibration certificate docume	nts the traceability to nati	ional standards, which realize the physical un	its of measurements (SI)		
		robability are given on the following pages an			
I calibrations have been conduct	ed in the closed laborator	ry facility: environment temperature $(22 \pm 3)^{\circ}$	C and humidity < 70%.		
alibration Equipment used (M&TE	E critical for calibration)				
	1.575	the second second second	and the designed of the		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
ower meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23		
ower sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23		
ower sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23		
eference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23		
ype-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23		
leference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22		
AE4	SN: 601	02-May-22 (No. DAE4-601_May22)	May-23		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
	ID # SN: GB39512475	Check Date (in house) 30-Oct-14 (in house check Oct-20)			
ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	Scheduled Check In house check: Oct-22 In house check: Oct-22		
Power meter E4419B Power sensor HP 8481A	10 11	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	In house check: Oct-22		
ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	SN: GB39512475 SN: US37292783	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A IF generator R&S SMT-06	SN: GB39512475 SN: US37292783 SN: MY41093315	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 letwork Analyzer Agilent E8358A	SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer Agilent E8358A	SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 Signature		
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 Signature		
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 letwork Analyzer Agilent E8358A Calibrated by:	SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Joanna Lleshaj	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 Signature		
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 letwork Analyzer Agilent E8358A Calibrated by:	SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22		
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Joanna Lleshaj	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 Signature		

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d176_May22

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.10 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	3 88 5	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.90 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)
SAR oversgod over 10 emi (10 e) of Redu TSI	andition	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.18 W/kg

Certificate No: D1900V2-5d176_May22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 5.6 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4 Ω + 6.5 jΩ
Return Loss	- 22.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D1900V2-5d176_May22

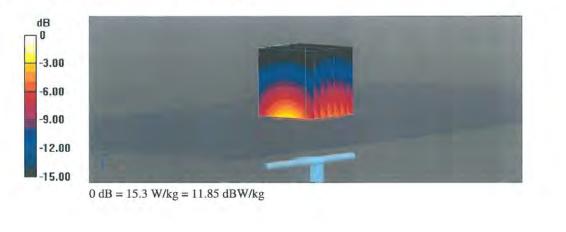
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 30.05.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d176

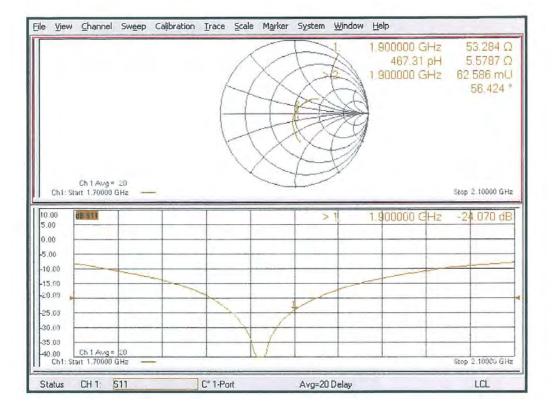

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.40 S/m; ϵ_r = 39.0; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.10 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.7% Maximum value of SAR (measured) = 15.3 W/kg



Certificate No: D1900V2-5d176_May22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d176_May22

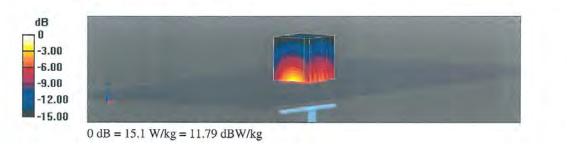
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 30.05.2022

Test Laboratory: The name of your organization

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d176

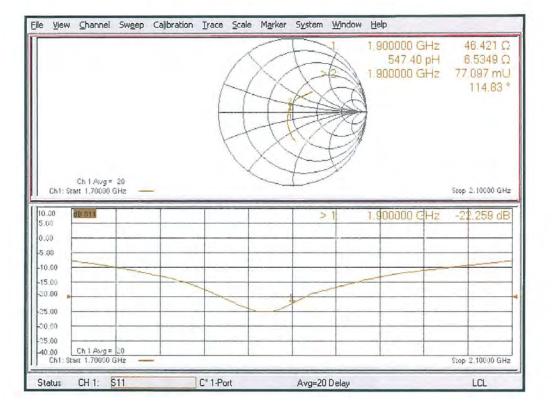

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.51 S/m; ϵ_r = 52.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.42, 8.42, 8.42) @ 1900 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.1 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.90 W/kg; SAR(10 g) = 5.18 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.5% Maximum value of SAR (measured) = 15.1 W/kg



Certificate No: D1900V2-5d176_May22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d176_May22

Page 8 of 8

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

DT&C (Dymstec)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-920_Aug22

S

С

S

	D2450V2 - SN:9	20	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	s between 0 7-3 GHz
Calibration date:	August 18, 2022		
The measurements and the uncer	tainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^\circ$ C	d are part of the certificate.
Calibration Equipment used (M&T			
Primary Standards Power meter NRP	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP-Z91	SN: 104778 SN: 103244	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	Apr-23
ower sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)		Apr-23
ype-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03527)	Apr-23
Reference Probe EX3DV4	SN: 7349	04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349 Dec21)	Apr-23 Dec-22
AE4	SN: 601	02-May-22 (No. DAE4-601_May22)	May-23
	ID#	Check Date (in house)	Scheduled Check
	1100 10	eneou bate (in nouse)	Scheduled Check
ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
ower meter E4419B ower sensor HP 8481A	SN: GB39512475 SN: US37292783		In house check: Oct-22
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A		30-Oct-14 (in house check Oct-20)	In house check: Oct-2: In house check: Oct-2:
ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: US37292783 SN: MY41093315 SN: 100972	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: US37292783 SN: MY41093315	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	In house check: Oct-2; In house check: Oct-2; In house check: Oct-2;
Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Jetwork Analyzer Agilent E8358A	SN: US37292783 SN: MY41093315 SN: 100972	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-2/ In house check: Oct-2/ In house check: Oct-2/ In house check: Oct-2/ In house check: Oct-2/

Certificate No: D2450V2-920_Aug22

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-920_Aug22

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY Version	DASY52	V52.10.4
xtrapolation	Advanced Extrapolation	
hantom	Modular Flat Phantom	
istance Dipole Center - TSL	10 mm	with Spacer
bom Scan Resolution	dx, dy, dz = 5 mm	
requency	2450 MHz ± 1 MHz	
equency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.9 W/kg ± 17.0 % (k=2)
818	1	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6,26 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.2 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		-

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.04 W/kg

Certificate No: D2450V2-920_Aug22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.4 Ω + 2.2 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.3 Ω + 4.9 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
Elostical Bolay (bha anadion)	1.104 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	ODEAC
I wanuactured by	SPEAG

Certificate No: D2450V2-920_Aug22

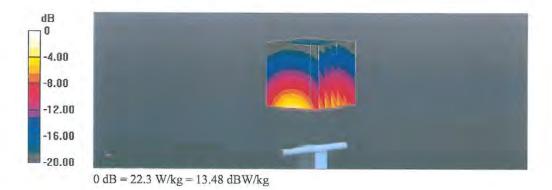
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 18.08.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920

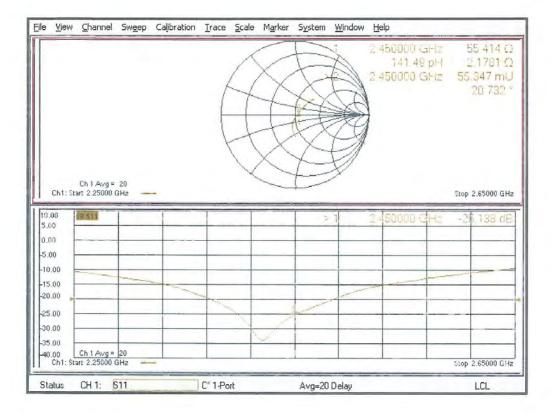

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 38$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.1 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.26 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.4% Maximum value of SAR (measured) = 22.3 W/kg



Certificate No: D2450V2-920 Aug22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-920_Aug22

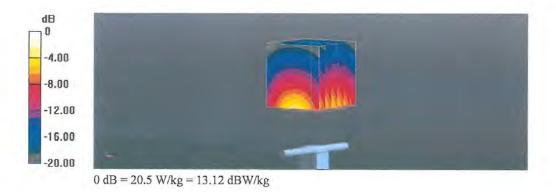
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 18.08.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920

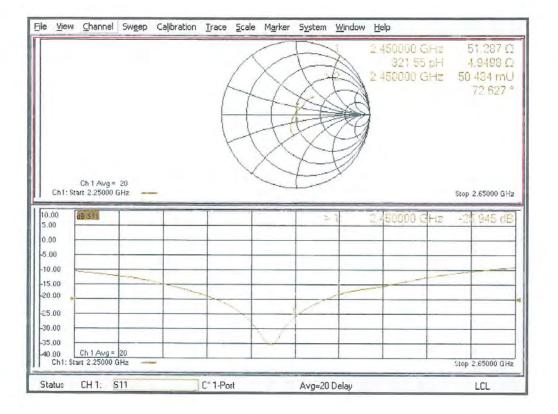

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.1 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.3 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 54% Maximum value of SAR (measured) = 20.5 W/kg



Certificate No: D2450V2-920_Aug22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-920_Aug22

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

DT&C (Dymstec) Client Certificate No: D5GHzV2-1212_Jan22 CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1212 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: January 31, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Anr-22 Reference Probe EX3DV4 SN: 3503 31-Dec-21 (No. EX3-3503_Dec21) Dec-22 DAE4 SN: 601 01-Nov-21 (No. DAE4-601_Nov21) Nov-22 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Signature Calibrated by: Aldonia Georgiadou Laboratory Technician Approved by: Sven Kuhn Deputy Manager Issued: January 31, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1212_Jan22

Page 1 of 16

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

 S
 Schweizerischer Kalibrierdienst

 C
 Service suisse d'étalonnage

 S
 Servizio svizzero di taratura

 S
 swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

wie ooury.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured; SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1212_Jan22

Page 2 of 16

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.30 W/kg

Certificate No: D5GHzV2-1212_Jan22

Page 3 of 16

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8±6%	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.33 W/kg

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.77 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	_	-

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.62 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Page 4 of 16

Head TSL parameters at 5600 MHz

t&C

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		4.07 11110/11 ± 0 %

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

Condition	
100 mW input power	8.27 W/kg
normalized to 1W	82.0 W/kg ± 19.9 % (k=2)
	100 mW input power

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1212_Jan22

Page 5 of 16

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) *C	48.9 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.07 W/kg

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1212_Jan22

Page 6 of 16

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22,0 ± 0.2) °C	48.4±6%	5.81 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition	2.14 W/kg

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	5.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1212_Jan22

Page 7 of 16

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)
	A	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.05 W/kg

Certificate No: D5GHzV2-1212_Jan22

Page 8 of 16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.2 Ω - 3.0 jΩ
Return Loss	- 30.1 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	49.1 Ω - 1.0 jΩ			
Return Loss	- 37.4 dB			

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	47.6 Ω + 0.7 jΩ		
Return Loss	- 31.9 dB		

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	50.2 Ω + 3.5 jΩ				
Return Loss	- 29.1 dB				

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.4 Ω + 3.7 jΩ			
Return Loss	- 28.1 dB			

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.6 Ω - 2.2 jΩ			
Return Loss	- 33.0 dB			

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.7 Ω + 0.8 jΩ		
Return Loss	- 35.9 dB		

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	47.1 Ω + 3.5 jΩ		
Return Loss	- 26.6 dB		

Certificate No: D5GHzV2-1212_Jan22

Page 9 of 16

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	50.3 Ω + 5.0 jΩ			
Return Loss	- 26.1 dB			

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.3 Ω + 5.8 jΩ		
Return Loss	~ 23.8 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	
lectrical Delay (one direction)	1.190 ns
and a second sec	1.190 fts

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

No. of Control of Cont	
Manufactured by	SPEAG
	OI LAG

Certificate No: D5GHzV2-1212_Jan22

Page 10 of 16

DASY5 Validation Report for Head TSL

Date: 27.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1212

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.47 S/m; ϵr = 35; ρ = 1000 kg/m3 , Medium parameters used: f = 5300 MHz; σ = 4.57 S/m; ϵr = 34.8; ρ = 1000 kg/m3 , Medium parameters used: f = 5500 MHz; σ = 4.77 S/m; ϵr = 34.5; ρ = 1000 kg/m3 , Medium parameters used: f = 5600 MHz; σ = 4.87 S/m; ϵr = 34.4; ρ = 1000 kg/m3 , Medium parameters used: f = 5600 MHz; σ = 4.87 S/m; ϵr = 34.4; ρ = 1000 kg/m3 , Medium parameters used: f = 5600 MHz; σ = 5.07 S/m; ϵr = 34.1; ρ = 1000 kg/m3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

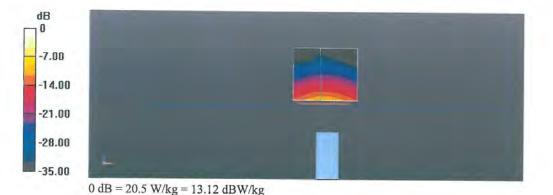
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.2% Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.53 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1212_Jan22

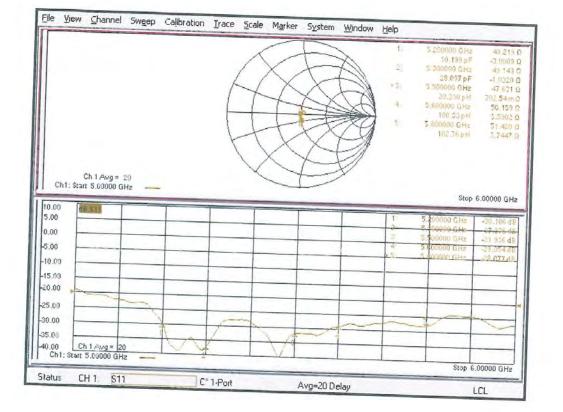

Page 11 of 16

Dt&C

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.73 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.62 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 20.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.21 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.48 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.74 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 20.4 W/kg



Certificate No: D5GHzV2-1212_Jan22

Page 12 of 16

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1212_Jan22

Page 13 of 16

DASY5 Validation Report for Body TSL

Date: 31.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1212

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ S/m; $\epsilon r = 48.9$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5300 MHz; $\sigma = 5.54$ S/m; $\epsilon r = 48.7$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5500 MHz; $\sigma = 5.81$ S/m; $\epsilon r = 48.4$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5600 MHz; $\sigma = 5.95$ S/m; $\epsilon r = 48.2$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5600 MHz; $\sigma = 5.95$ S/m; $\epsilon r = 48.2$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5800 MHz; $\sigma = 6.23$ S/m; $\epsilon r = 47.9$; $\rho = 1000$ kg/m3 Medium parameters used: f = 5800 MHz; $\sigma = 6.23$ S/m; $\epsilon r = 47.9$; $\rho = 1000$ kg/m3

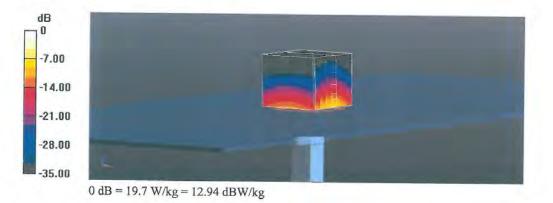
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 01.11.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.36 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.3% Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.50 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 18.0 W/kg

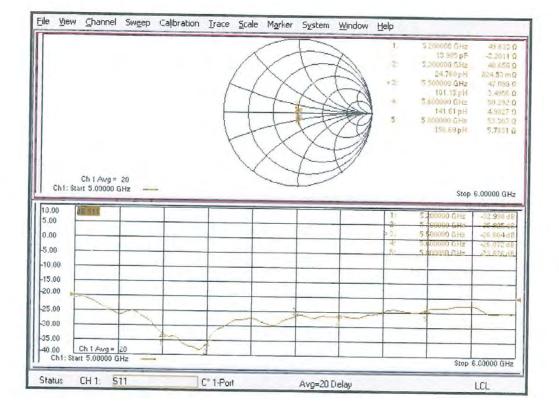
Certificate No: D5GHzV2-1212_Jan22


Page 14 of 16

Dt&C

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.00 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.14 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.98 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.15 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64% Maximum value of SAR (measured) = 19.4 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.98 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 7.46 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.3% Maximum value of SAR (measured) = 18.8 W/kg

Page 15 of 16

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1212_Jan22

Page 16 of 16

APPENDIX C. – SAR Tissue Specifications

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.9 Simulated Tissue

Ingredients	Frequency (MHz)							
(% by weight)	835		1 900		2 450		5 200 ~ 5 800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00
Salt (NaCl)	1.480	0.940	0.310	0.290	0.160	0.060	-	-
Sugar	57.90	48.21	-	-	-	-	-	-
HEC	0.250	-	-	-	-	-	-	-
Bactericide	0.180	0.100	-	-	-	-	-	-
Triton X-100	-	-	-	-	19.97	-	17.24	-
DGBE	-	-	44.45	29.48	7.990	26.54	-	-
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	-
Polysorbate (Tween) 80	-	-	-	-	-	-		20.00
Target for Dielectric Constant	41.5	55.2	40.0	53.3	39.2	52.7	-	-
Target for Conductivity (S/m)	0.90	0.97	1.40	1.52	1.80	1.95	-	-

Table C.1 Composition of the Tissue Equivalent Matter

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose	
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose	
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]			
Triton X-100(ultra pure):	Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether			

ltem	Head Tissue Simulation Liquids HSL750				
nem	Muscle (body) Tissue Simulation Liquids MSL750				
Туре No	SL AAH 075, SL AAM 075				
Manufacturer	SPEAG				
The item is composed of the following ingredients:					
H ² O	Water, 35 – 58 %				
Sucrose	Sucrose, 40 – 60 %				
NaCl	Sodium Chloride, 0 – 6 %				
Hydroxyethyl-cellulose	Medium Viscosity (CAS# 9004-62-0), < 0.3 %				
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing 5- chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1 – 0.6 %				

Table C.2 HSL/MSL750 (Head and Body liquids for 700 – 800 MHz)

APPENDIX D. – SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013.Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR	Freq.	Dete	Probe	Probe	Ducks CAL Deint		PERM.	COND.		CW Validatio	on	МС	D. Validatio	'n
System	[MHz]	Date	SN	Туре	Probe CA	Probe CAL. Point		(σ)	Sensi- tivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR
В	750	2022.04.13	3916	EX3DV4	750	Head	42.535	0.885	PASS	PASS	PASS	N/A	N/A	N/A
В	835	2022.04.13	3916	EX3DV4	835	Head	41.338	0.923	PASS	PASS	PASS	GMSK	PASS	N/A
В	1 800	2022.04.14	3916	EX3DV4	1 800	Head	40.210	1.405	PASS	PASS	PASS	GMSK	PASS	N/A
В	1 900	2022.04.14	3916	EX3DV4	1 900	Head	39.959	1.414	PASS	PASS	PASS	GMSK	PASS	N/A
В	2 450	2022.04.15	3916	EX3DV4	2 450	Head	38.687	1.846	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
В	5 200	2022.04.18	3916	EX3DV4	5 200	Head	35.996	4.732	PASS	PASS	PASS	OFDM	N/A	PASS
В	5 300	2022.04.18	3916	EX3DV4	5 300	Head	35.490	4.886	PASS	PASS	PASS	OFDM	N/A	PASS
В	5 500	2022.04.19	3916	EX3DV4	5 500	Head	35.016	5.066	PASS	PASS	PASS	OFDM	N/A	PASS
В	5 600	2022.04.19	3916	EX3DV4	5 600	Head	34.847	5.177	PASS	PASS	PASS	OFDM	N/A	PASS

Table D.1 SAR System Validation Summary

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

APPENDIX E. – Description of Test Equipment

Dt&C

E.1 SAR Measurement Setup

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. E.1.1).

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-4 770/ i7-3 770 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

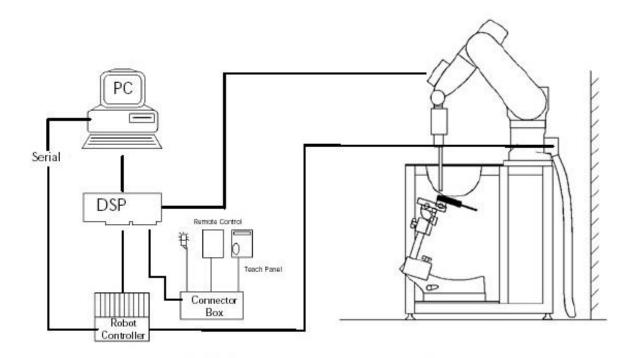


Figure E.1.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

E.2 Probe Specification

Frequency	4 MHz to 10 GHz			
Linearity	±0.2 dB(30 MHz to 10 GHz)			
Dynamic	10 µW/g to > 100	10 μW/g to > 100 mW/g		
Range	Linearity :	±0.2 dB		
Dimensions	Overall length :	337 mm		
Tip length	20 mm			
Body diameter	12 mm			
Tip diameter	2.5 mm			
Distance from probe tip to sensor center 1.0 mm				
Application	SAR Dosimetry Testing Compliance tests of mobile phones			

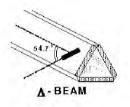


Figure E.2.1 Triangular Probe Configurations

Figure E.2.2 Probe Thick-Film Technique

DAE System

The SAR measurements were conducted with the dosimetric probe EX3DV4 designed in the classical triangular configuration (see F.2.1) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

E.3 E-Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10 %. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

σ

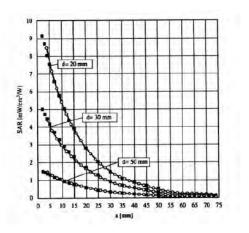
SAR =
$$C \frac{\Delta T}{\Delta t}$$

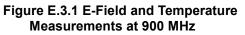
where:

where:

$$\mathsf{SAR} = \frac{\left|\mathsf{E}\right|^2 \cdot \sigma}{\rho}$$

simulated tissue conductivity,


Tissue density (1.25 g/cm³ for brain tissue)


 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field

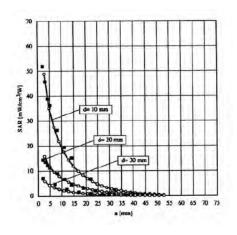


Figure E.3.2 E-Field and Temperature Measurements at 1 800 MHz

E.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i$$
 = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 U_i = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

with

E-field probes:

$$E_i = \sqrt{\frac{V_i}{Norm_i - ConvF}}$$

V.	= compensated signal of channel i (i = x,y,z)
Norm,	= sensor sensitivity of channel i (i = x,y,z)
	$\mu V/(V/m)^2$ for E-field probes
ConvF	= sensitivity of enhancement in solution
E,	= electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_{z}^{2} + E_{y}^{2} + E_{z}^{2}}$$

 $P_{pur} = \frac{E_{tot}^2}{3770}$

The primary field data are used to calculate the derived field units.

$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$ with	SAR Ε _{ιοι} σ	 = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³
---	------------------------------	---

The power flow density is calculated assuming the excitation field to be a free space field.

with P_{pwe} = equivalent power density of a plane wave in W/cm² E_{tor} = total electric field strength in V/m

E.5 SAM Twin Phantom

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. E.5.1)

Figure E.5.1 SAM Twin

SAM Twin Phantom Specification:

M Twin Phantom S	pecification:	Phantom
Construction	The shell corresponds to the specifications o (SAM) phantom defined in IEEE 1528 and IEC 6 of left and right hand phone usage as well as boo A cover prevents evaporation of the liquid. Ref complete setup of all predefined phantom pos three points with the robot. Twin SAM V5.0 has the same shell geometry a as Twin SAM V4.0, but has reinforced top struct	62209-1. It enables the dosimetric evaluation dy mounted usage at the flat phantom region. ference markings on the phantom allow the sitions and measurement grids by teaching and is manufactured from the same material
Shell Thickness	(2.0 ± 0.2) mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1 000 mm	

Specific Anthropomorphic Mannequin (SAM) Specifications:

Width: 500 mm

Height: adjustable feet

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. E.5.2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure E.5.2 Sam Twin Phantom shell

E.6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst case condition (the hand absorbs antenna output newer), the hand is emitted

worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure E.6.1 Mounting Device

E.7 Automated Test System Specifications

Positioner

Robot Repeatability No. of axis	Stäubli Unimation Corp. Robot Model: TX60L 0.02 mm 6
Data Acquisition Electro	onic (DAE) System
Processor Clock Speed Operating System Data Card	Intel Core i7-4 770 3.40 GHz Windows 7 Professional DASY5 PC-Board
Data Converter Features Software Connecting Lines	Signal, multiplexer, A/D converter. & control logic DASY5 Optical downlink for data and status info Optical uplink for commands and clock
<u>PC Interface Card</u> Function	24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot
<u>E-Field Probes</u> Model Construction Frequency Linearity	EX3DV4 S/N: 3916 Triangular core fiber optic detection system 4 MHz to 10 GHz ±0.2 dB (30 MHz to 10 GHz)
<u>Phantom</u> Phantom Shell Material Thickness	SAM Twin Phantom (V5.0) Composite (2.0 ± 0.2) mm

Figure E.7.1 DASY5 Test System