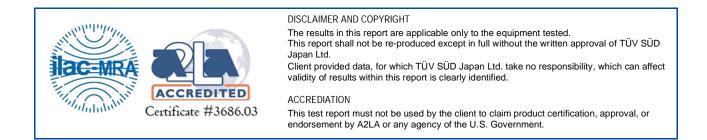
### Report on the RF Testing of:

KYOCERA Corporation Mobile Phone, Model: EB1155 FCC ID: JOYEB1155

### In accordance with FCC Part 15 Subpart C


Prepared for: KYOCERA Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314

### COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-22219-1

| SIGNATURE                            |                                                                                                                                        |                    |            |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|--|--|--|
| di                                   | oak Sugahy                                                                                                                             |                    |            |  |  |  |
| NAME                                 | JOB TITLE                                                                                                                              | RESPONSIBLE FOR    | ISSUE DATE |  |  |  |
| Hiroaki Suzuki                       | Deputy Manager of RF Group                                                                                                             | Approved Signatory | 2023.01.06 |  |  |  |
| Signatures in this approval box have | Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Japan Ltd. document control rules. |                    |            |  |  |  |

#### EXECUTIVE SUMMARY – Result: Complied A sample of this product was tested and the result above was confirmed in accordance with FCC Part 15 Subpart C.



TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 www.tuvsud.com/ja-jp

### TÜV SÜD Japan Ltd.



TÜV®



### Contents

| 1          | Summary of Test                                        | 3 |
|------------|--------------------------------------------------------|---|
| 1.1<br>1.2 | Modification history of the test report<br>Standards   | 3 |
| 1.3        | Test methods                                           |   |
| 1.4        | Deviation from standards.                              |   |
| 1.5<br>1.6 | List of applied test(s) of the EUT<br>Test information |   |
| 1.0        | Test set up                                            |   |
| 1.8        | Test period                                            |   |
| 2          | Equipment Under Test                                   |   |
| 2.1        | EUT information                                        | 5 |
| 2.2        | Modification to the EUT.                               |   |
| 2.3        | Variation of family model(s)                           |   |
| 2.4        | Operating channels and frequencies                     | 6 |
| 2.5        | Operating mode                                         | 6 |
| 2.6        | Operating flow                                         | 7 |
| 3          | Configuration of Equipment                             | 8 |
| 3.1        | Equipment used                                         | 8 |
| 3.2        | Cable(s) used                                          |   |
| 3.3        | System configuration                                   | 8 |
| 4          | Test Result                                            | 9 |
| 4.1        | 6dB Bandwidth / Occupied Bandwidth (99%)               | 9 |
| 4.2        | Maximum Peak Output Power                              |   |
| 4.3        | Band Edge Compliance of RF Conducted Emissions1        |   |
| 4.4        | Spurious emissions - Conducted                         |   |
| 4.5        | Spurious Emissions - Radiated                          |   |
| 4.6        | Restricted Band of Operation                           |   |
| 4.7        | Transmitter Power Spectral Density                     |   |
| 4.8        | AC Power Line Conducted Emissions                      |   |
| 5          | Antenna requirement8                                   |   |
| 6          | Measurement Uncertainty8                               | 3 |
| 7          | Laboratory Information8                                | 4 |
| Appendix   | x A. Test Equipment8                                   | 5 |



### 1 Summary of Test

#### 1.1 Modification history of the test report

| Document Number | Modification History                     | Issue Date              |
|-----------------|------------------------------------------|-------------------------|
| JPD-TR-22219-0  | First Issue                              | 20-December-2022        |
| JPD-TR-22219-1  | Conducted test results for EB1146 added. | Refer to the cover page |

#### 1.2 Standards

CFR47 FCC Part 15 Subpart C

#### 1.3 Test methods

ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02

#### 1.4 Deviation from standards

None

#### 1.5 List of applied test(s) of the EUT

| Test item<br>section          | Test item                                         | Condition | Result | Remark |
|-------------------------------|---------------------------------------------------|-----------|--------|--------|
| 15.247(a)(2)                  | 6dB Bandwidth                                     | Conducted | PASS   | *1     |
| 15.247(b)(3)                  | Maximum Peak Output Power                         | Conducted | PASS   | *1     |
| 15.247(d)                     | Band Edge Compliance of RF Conducted<br>Emissions | Conducted | PASS   | *1     |
| 15.247(d)                     |                                                   | Conducted | PASS   | *1     |
| 15.205<br>15.209              | Spurious Emissions                                | Radiated  | PASS   | -      |
| 15.247(d)<br>15.205<br>15.209 | Restricted Bands of Operation                     | Radiated  | PASS   | -      |
| 15.247(e)                     | Transmitter Power Spectral Density                | Conducted | PASS   | *1     |
| 15.207                        | AC Power Line Conducted Emissions                 | Conducted | PASS   | -      |

\*1 Since there is no change in Module from FCC ID: JOYEB1146, only the Radiated test items were performed. Conduction test results are listed as "JPD-TR-22191-0" of "FCC ID: JOYEB1146".

#### 1.6 Test information

None

#### 1.7 Test set up

Table-top



#### 1.8 Test period

28-October-2022 - 9-December-2022



### 2 Equipment Under Test

All information in this chapter was provided by the applicant.

### 2.1 EUT information

| Applicant                   | KYOCERA Corporation                                                         |
|-----------------------------|-----------------------------------------------------------------------------|
|                             | Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,<br>Kanagawa, Japan |
|                             | Phone: +81-45-943-6253 Fax: +81-45-943-6314                                 |
| Equipment Under Test (EUT)  | Mobile Phone                                                                |
| Model number                | EB1155                                                                      |
| Serial number               | 352034010006537, 352034010006552                                            |
| Trade name                  | Kyocera                                                                     |
| Number of sample(s)         | 2                                                                           |
| EUT condition               | Pre-Production                                                              |
| Power rating                | Battery: DC 3.87 V                                                          |
| Size                        | (W) 70 mm × (D) 161 mm × (H) 8.9 mm                                         |
| Environment                 | Indoor and Outdoor use                                                      |
| Terminal limitation         | -20 °C to 60 °C                                                             |
| Hardware version            | DMT                                                                         |
| Software version            | 0.100ML.9013.a                                                              |
| Firmware version            | Not applicable                                                              |
| RF Specification            |                                                                             |
| Protocol                    | Bluetooth 5.3 + EDR                                                         |
| Frequency range             | 2402 MHz-2480 MHz                                                           |
| Number of RF Channels       | 40 Channels                                                                 |
| Modulation method/Data rate | GFSK (1Mbps, 2Mbps),<br>Long Range S2/S8 (500kbps/125kbps)                  |
| Channel separation          | 2 MHz                                                                       |
| Conducted power             | 3.673 mW                                                                    |
| Antenna type                | Internal antenna                                                            |
| Antenna gain                | -0.5 dBi                                                                    |
|                             |                                                                             |

### 2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

| Modification State                                             | Description of Modification | Modification fitted by | Date of Modification |  |
|----------------------------------------------------------------|-----------------------------|------------------------|----------------------|--|
| Model: EB1155, Serial Number: 352034010006537, 352034010006552 |                             |                        |                      |  |



Japan

| Modification State | Description of Modification  | Modification fitted by | Date of Modification |
|--------------------|------------------------------|------------------------|----------------------|
| 0                  | As supplied by the applicant | Not Applicable         | Not Applicable       |

#### 2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

#### 2.3.2 Reason for selection of EUT

Not applicable

#### 2.4 Operating channels and frequencies

| Channel | Frequency [MHz] | Channel | Frequency [MHz] |
|---------|-----------------|---------|-----------------|
| 0       | 2402            | 20      | 2442            |
| 1       | 2404            | 21      | 2444            |
| 2       | 2406            | 22      | 2446            |
| 3       | 2408            | 23      | 2448            |
| 4       | 2410            | 24      | 2450            |
| 5       | 2412            | 25      | 2452            |
| 6       | 2414            | 26      | 2454            |
| 7       | 2416            | 27      | 2456            |
| 8       | 2418            | 28      | 2458            |
| 9       | 2420            | 29      | 2460            |
| 10      | 2422            | 30      | 2462            |
| 11      | 2424            | 31      | 2464            |
| 12      | 2426            | 32      | 2466            |
| 13      | 2428            | 33      | 2468            |
| 14      | 2430            | 34      | 2470            |
| 15      | 2432            | 35      | 2472            |
| 16      | 2434            | 36      | 2474            |
| 17      | 2436            | 37      | 2476            |
| 18      | 2438            | 38      | 2478            |
| 19      | 2440            | 39      | 2480            |

#### 2.5 Operating mode

The EUT had been tested under operating condition. There are three channels have been tested as following:

| Tested Channel | Frequency [MHz] |
|----------------|-----------------|
| Low            | 2402            |
| Middle         | 2440            |
| High           | 2480            |

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

| Tested Channel    | Modulation Type | Data Rate |
|-------------------|-----------------|-----------|
| Low, Middle, High | GFSK            | 1 Mbps    |

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.



The worst emission was found in Z-axis and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

#### 2.6 Operating flow

[Tx mode]

- i) Test program setup to the Software
- ii) Select a Test mode
- Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2440 MHz, Channel High: 2480 MHz
- iii) Start test mode

[Rx mode]

- i) Test program setup to the Software
- ii) Select a Test mode
  - Operating frequency: Channel Low: 2402 MHz, Channel Middle: 2440 MHz, Channel High: 2480 MHz
- iii) Start test mode



### **3** Configuration of Equipment

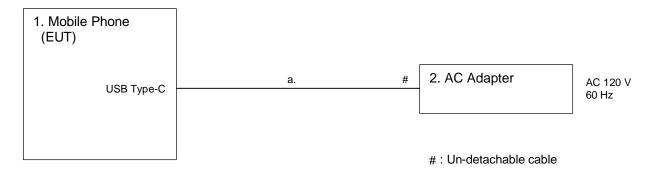
Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

#### 3.1 Equipment used

| No. | Equipment    | Company | Model No. | Serial No.                         | FCC ID/DoC | Comment |
|-----|--------------|---------|-----------|------------------------------------|------------|---------|
| 1   | Mobile Phone | KYOCERA | EB1155    | 352034010006537<br>352034010006552 | JOYEB1155  | EUT     |
| 2   | AC Adapter   | KDDI    | 0602PQA   | N/A                                | N/A        | *       |


\*:AC power line Conducted Emission Test.

#### 3.2 Cable(s) used

| No.     | Equipment                                                                                           | Length[m] | Shield | Connector | Comment |  |  |
|---------|-----------------------------------------------------------------------------------------------------|-----------|--------|-----------|---------|--|--|
| а       | USB cable (for AC Adapter)                                                                          | 1.5       | No     | Plastic   | *       |  |  |
| * * * • | * A O manual that O and that that East and East and the that the the the the the the the the the th |           |        |           |         |  |  |

\*: AC power line Conducted Emission Test.

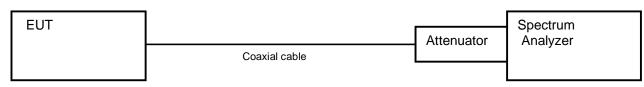
#### 3.3 System configuration





### 4 Test Result

#### 4.1 6dB Bandwidth / Occupied Bandwidth (99%)


#### 4.1.1 Measurement procedure

#### [FCC 15.247(a)(2), KDB558074 D01 v05r02]

The bandwidth at 6 dB down from the highest inband spectral density is measured with spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

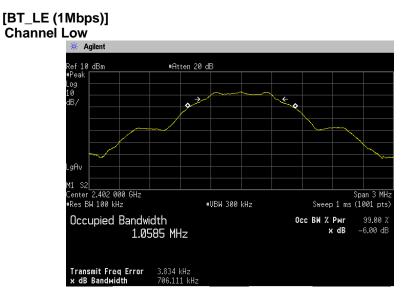
The spectrum analyzer is set to;

- a) RBW = 100 kHz
- b) VBW  $\geq$  3 x RBW
- c) Sweep time = auto-couple
- d) Detector = peak
- e) Trace mode = max hold
  - Test configuration

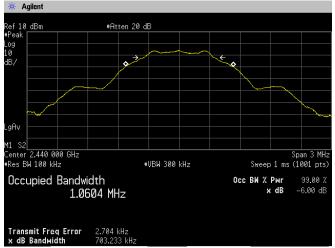


#### 4.1.2 Limit

The minimum permissible 6dB bandwidth is 500kHz.


#### 4.1.3 Measurement result

| : 18-October-2022    |                           |                                         |
|----------------------|---------------------------|-----------------------------------------|
| : 21.4 [°C]          |                           |                                         |
| : 47.0 [%]           | Test engineer             | :                                       |
| : Shielded room No.4 | -                         | Kazunori Saito                          |
|                      | : 21.4 [°C]<br>: 47.0 [%] | : 21.4 [°C]<br>: 47.0 [%] Test engineer |

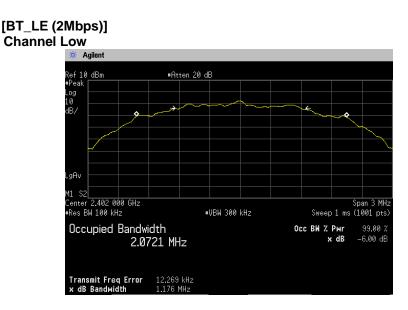

|         | 6dB bandwidth [MHz] |       |              |              |  |  |  |  |  |  |
|---------|---------------------|-------|--------------|--------------|--|--|--|--|--|--|
| Channel | BT_LE               |       |              |              |  |  |  |  |  |  |
| -       | 1Mbps               | 2Mbps | LongRange S2 | LongRange S8 |  |  |  |  |  |  |
| Low     | 0.706               | 1.176 | 0.669        | 0.672        |  |  |  |  |  |  |
| Middle  | 0.703               | 1.181 | 0.670        | 0.672        |  |  |  |  |  |  |
| High    | 0.703               | 1.181 | 0.671        | 0.671        |  |  |  |  |  |  |

\*: Tested by EB1146

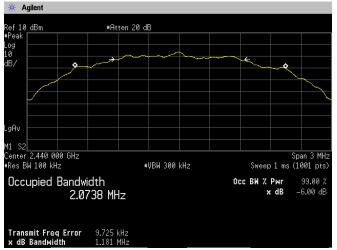
#### 4.1.4 Trace data



**Channel Middle** 



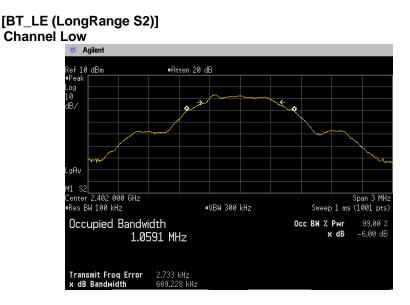


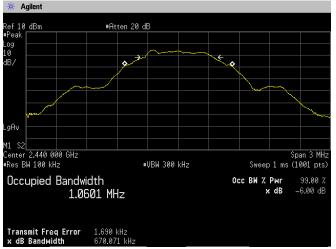








**Channel Middle** 

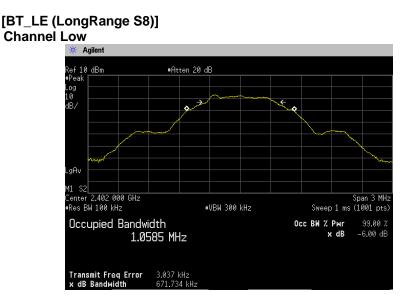




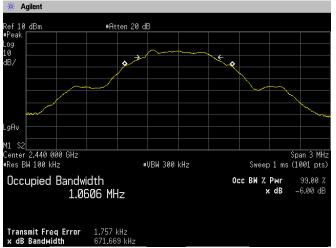




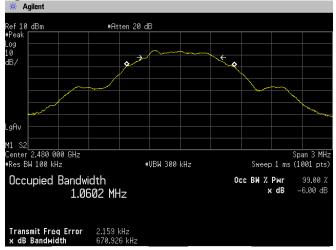




**Channel Middle** 









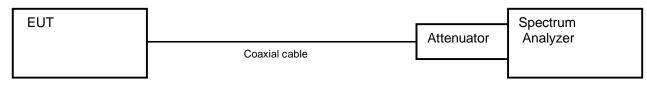

**Channel Middle** 










#### 4.2 Maximum Peak Output Power

#### 4.2.1 Measurement procedure

#### [FCC 15.247(b)(3), KDB558074 D01 v05r02]

The peak power is measured with a power sensor connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

#### - Test configuration



#### 4.2.2 Limit

1 W (1000 mW) or less



#### 4.2.3 Measurement result

| Date        | : 18-October-2022    |               |                |
|-------------|----------------------|---------------|----------------|
| Temperature | : 21.4 [°C]          |               |                |
| Humidity    | : 47.0 [%]           | Test engineer | :              |
| Test place  | : Shielded room No.4 | _             | Kazunori Saito |

#### Battery Full (1Mbps)

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Peak<br>Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|------------------|----------------|----------------|------------------------------|---------------|--------|
| Low     | 2402                         | -6.49            | 10.93          | 4.44           | 2.780                        | ≦1000         | PASS   |
| Middle  | 2440                         | -5.29            | 10.93          | 5.64           | 3.664                        | ≦1000         | PASS   |
| High    | 2480                         | -5.70            | 10.93          | 5.23           | 3.334                        | ≦1000         | PASS   |

\*: Tested by EB1146

Battery Full (2Mbps)

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Peak<br>Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|------------------|----------------|----------------|------------------------------|---------------|--------|
| Low     | 2402                         | -6.46            | 10.93          | 4.47           | 2.799                        | ≦1000         | PASS   |
| Middle  | 2440                         | -5.28            | 10.93          | 5.65           | 3.673                        | ≦1000         | PASS   |
| High    | 2480                         | -5.70            | 10.93          | 5.23           | 3.334                        | ≦1000         | PASS   |

\*: Tested by EB1146

#### Battery Full (LongRange S2)

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Peak<br>Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|------------------|----------------|----------------|------------------------------|---------------|--------|
| Low     | 2402                         | -6.47            | 10.93          | 4.46           | 2.793                        | ≦1000         | PASS   |
| Middle  | 2440                         | -5.30            | 10.93          | 5.63           | 3.656                        | ≦1000         | PASS   |
| High    | 2480                         | -5.72            | 10.93          | 5.21           | 3.319                        | ≦1000         | PASS   |

\*: Tested by EB1146

#### Battery Full (LongRange S8)

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Peak<br>Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|------------------|----------------|----------------|------------------------------|---------------|--------|
| Low     | 2402                         | -6.47            | 10.93          | 4.46           | 2.793                        | ≦1000         | PASS   |
| Middle  | 2440                         | -5.30            | 10.93          | 5.63           | 3.656                        | ≦1000         | PASS   |
| High    | 2480                         | -5.72            | 10.93          | 5.21           | 3.319                        | ≦1000         | PASS   |

\*: Tested by EB1146

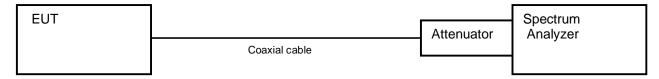
Calculation;

Reading (dBm) + Factor (dB) = Level (dBm)  $10\log P = Level (dBm)$  $P = 10^{(Maximum Peak Output Power / 10)} (mW)$ 



#### 4.3 Band Edge Compliance of RF Conducted Emissions

#### 4.3.1 Measurement procedure


#### [FCC 15.247(d), KDB558074 D01 v05r02]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting. (Setting suitable for measurement.)
- b) RBW = 100 kHz
- c) VBW ≥ 3 x RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

- Test configuration



#### 4.3.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.



#### 4.3.3 **Measurement result**

| Date        | : | 7-October-2022     |               |   |             |
|-------------|---|--------------------|---------------|---|-------------|
| Temperature | : | 23.2 [°C]          |               |   |             |
| Humidity    | : | 39.3 [%]           | Test engineer | : |             |
| Test place  | : | Shielded room No.4 | _             |   | Taiki Watan |

nabe

#### [BT\_LE (1Mbps)]

| Channel | Frequency<br>(MHz) | RF<br>Power<br>Level<br>(dBm) | Band-<br>edge<br>Frequency<br>(MHz) | Band-<br>edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)                      | Result |
|---------|--------------------|-------------------------------|-------------------------------------|---------------------------------|------------------------------|-------------------------------------|--------|
| Low     | 2402               | -7.21                         | 2399.84                             | -64.81                          | 57.60                        | At least 20dB below from peak of RF | PASS   |
| High    | 2480               | -6.40                         | 2488.46                             | -67.70                          | 61.30                        | At least 20dB below from peak of RF | PASS   |

\*: Tested by EB1146

#### [BT\_LE (2Mbps)]

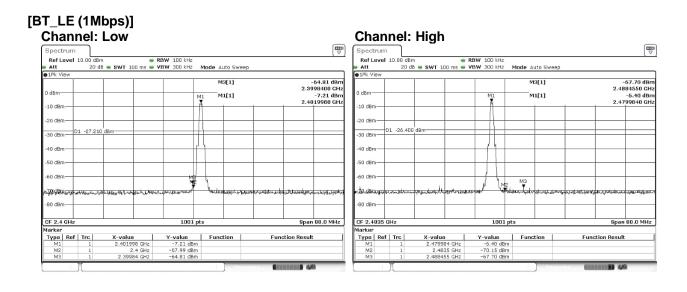
| Channel | Frequency<br>(MHz) | RF<br>Power<br>Level<br>(dBm) | Band-<br>edge<br>Frequency<br>(MHz) | Band-<br>edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)                      | Result |
|---------|--------------------|-------------------------------|-------------------------------------|---------------------------------|------------------------------|-------------------------------------|--------|
| Low     | 2402               | -7.41                         | 2399.92                             | -40.08                          | 32.67                        | At least 20dB below from peak of RF | PASS   |
| High    | 2480               | -6.69                         | 2483.58                             | -65.35                          | 58.66                        | At least 20dB below from peak of RF | PASS   |

\*: Tested by EB1146

#### [BT\_LE (LongRange S2)]

| Channel | Frequency<br>(MHz) | RF<br>Power<br>Level<br>(dBm) | Band-<br>edge<br>Frequency<br>(MHz) | Band-<br>edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)                      | Result |
|---------|--------------------|-------------------------------|-------------------------------------|---------------------------------|------------------------------|-------------------------------------|--------|
| Low     | 2402               | -6.78                         | 2399.84                             | -65.66                          | 58.88                        | At least 20dB below from peak of RF | PASS   |
| High    | 2480               | -6.33                         | 2484.14                             | -69.02                          | 62.69                        | At least 20dB below from peak of RF | PASS   |

\*: Tested by EB1146


#### [BT\_LE (LongRange S8)]

| Channel | Frequency<br>(MHz) | RF<br>Power<br>Level<br>(dBm) | Band-<br>edge<br>Frequency<br>(MHz) | Band-<br>edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)                      | Result |
|---------|--------------------|-------------------------------|-------------------------------------|---------------------------------|------------------------------|-------------------------------------|--------|
| Low     | 2402               | -10.03                        | 2399.76                             | -67.33                          | 57.30                        | At least 20dB below from peak of RF | PASS   |
| High    | 2480               | -9.19                         | 2503.48                             | -69.14                          | 59.95                        | At least 20dB below from peak of RF | PASS   |

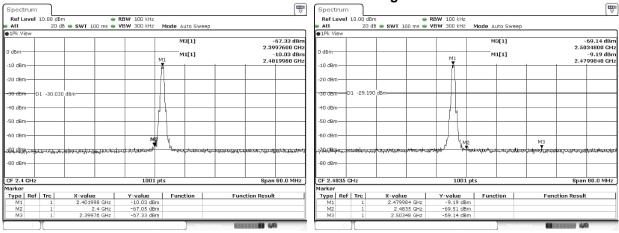
\*: Tested by EB1146



#### 4.3.4 **Trace data**



### [BT\_LE (2Mbps)]


| Channel: Low                                                                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel:                | High                             |                          |                    |                                                                                                                 |
|------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|--------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| Spectrum                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spectrum                |                                  |                          |                    |                                                                                                                 |
| Ref Level 10.00 dBm 👄 R                                                                  | RBW 100 kHz                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Level 10.00 dB      | im 🖷                             | RBW 100 kHz              |                    |                                                                                                                 |
| Att 20 dB = SWT 100 ms = V                                                               | VBW 300 kHz Mode Auto Sweep |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Att 20 (                | dB . SWT 100 ms .                | VBW 300 kHz              | Mode Auto Swee     | p                                                                                                               |
| 1Pk View                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 1Pk View              |                                  |                          |                    |                                                                                                                 |
|                                                                                          | M3[1]                       | -40.08 dBm<br>2.3999200 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                  |                          | M3[1]              | -65.35 dBn<br>2.4835800 CH                                                                                      |
| 0 dBm                                                                                    | M1 M1[1]                    | -7.41 dBm<br>2.4019980 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 dBm                   |                                  | M1                       | M1[1]              | -6.69 dBn<br>2.4799840 GH                                                                                       |
| -10 dBm-                                                                                 |                             | 2.4019980 GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -10 dBm                 |                                  |                          |                    | 2.4799040 GR                                                                                                    |
| -20 dBm                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -20 dBm                 |                                  |                          |                    |                                                                                                                 |
| -30 dBm D1 -27.410 dBm                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30 dBm D1 -26.69       | 10 dBm                           |                          |                    |                                                                                                                 |
| -40 dBm                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -40 dBm                 |                                  | NA                       |                    |                                                                                                                 |
| -50 dBm-                                                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -50 dBm                 |                                  |                          |                    |                                                                                                                 |
| -60 dBm                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -60 dBm                 |                                  |                          |                    |                                                                                                                 |
| ut28.dBM.annanonononononononononononon                                                   | manual manual               | and and an and a state of the s | NTQUERRY COMPANYCOMMENT | and a presentation of the second | unt to                   | antique al monthly | and the state of the |
| -80 dBm                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -80 dBm                 |                                  | _                        |                    |                                                                                                                 |
| CF 2.4 GHz                                                                               | 1001 pts                    | Span 80.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CF 2.4835 GHz           |                                  | 1001 pt                  | s                  | Span 80.0 MHz                                                                                                   |
| Marker                                                                                   |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marker                  |                                  |                          |                    |                                                                                                                 |
| Type         Ref         Trc         X-value           M1         1         2.401998 GHz | Y-value Function            | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type Ref Trc            | X-value<br>2.479984 GHz          | Y-value<br>-6.69 dBm     | Function           | Function Result                                                                                                 |
| M2 1 2.4 GHz<br>M3 1 2.39992 GHz                                                         | -38.04 dBm<br>-40.08 dBm    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2 1<br>M3 1            | 2.4835 GHz<br>2.48358 GHz        | -64.56 dBm<br>-65.35 dBm |                    |                                                                                                                 |
|                                                                                          | - Menn                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                  |                          |                    | 444                                                                                                             |



#### [BT\_LE (LongRange S2)] Channel: Low **Channel: High** Spectrum RefLevel 10.00 dBm • RBW 100 kHz Att 20 dB • SWT 100 ms • VBW 300 kHz Mode Auto Sweep -65.66 dBm 2.3998400 GHz -6.78 dBm 2.4017580 GHz -69.02 dBm 2.4841390 CHz -6.33 dBm 2.4797440 GHz M3[1] M3[1] dBm dBr M1[1] M1 M1[1] 10 dBm 10 dBn -20 dBm 20 dB D1 -26.780 dBri 01 -26.33 -30 dBm 30 dB( 40 dBm t0 dBr -50 dBm 50 dBm -60 dBm 60 dBn 1,43 Ayou 7.9.5月00-7月 Real production and the second adjust lat 14.4 -80 dBm 80 dBm CF 2.4 GH 80.0 MHz 1001 pt Span 80.0 MHz 1001 p CF 2.4835 GH Spa Marker Type Ref Trc M1 1 Type Ref Trc X-value 2.401758 GHz 2.4 GHz 2.39984 GHz Y-value Function Function Result X-value 2.479744 GHz 2.4835 GHz 2.484139 GHz -6.33 dBm Function Result M2 M3 -65.66 dBm -71.01 dBm -69.02 dBm M2 M3

#### [BT\_LE (LongRange S8)] Channel: Low

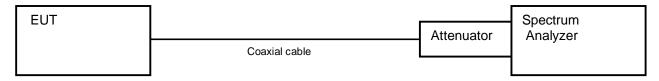
### Channel: High





#### 4.4 Spurious emissions - Conducted -

#### 4.4.1 Measurement procedure


#### [FCC 15.247(d), KDB558074 D01 v05r02]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = wide enough to fully capture the emission being measured.
- b) RBW = 100 kHz
- c)́ VBW ≥ RBW
- d) Sweep time = auto-couple
- e) Detector = peak
- f) Trace mode = max hold

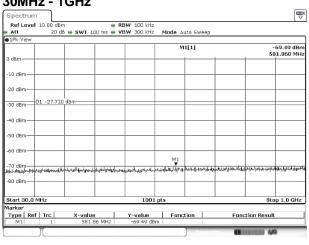
- Test configuration



#### 4.4.2 Limit

In any 100kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

#### 4.4.3 Measurement result


| Date        | : | 7-October-2022     |               |   |                |
|-------------|---|--------------------|---------------|---|----------------|
| Temperature | : | 23.2 [°C]          |               |   |                |
| Humidity    | : | 39.3 [%]           | Test engineer | : |                |
| Test place  | : | Shielded room No.4 |               |   | Taiki Watanabe |

| Frequency<br>[MHz] | Limit<br>[dB]                       | Results Chart                                                                           | Result                                                                                                                                   |
|--------------------|-------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2402               | At least 20dB below from peak of RF | See the trace Data                                                                      | PASS                                                                                                                                     |
| 2440               | At least 20dB below from peak of RF | See the trace Data                                                                      | PASS                                                                                                                                     |
| 2480               | At least 20dB below from peak of RF | See the trace Data                                                                      | PASS                                                                                                                                     |
|                    | [MHz]<br>2402<br>2440               | [MHz][dB]2402At least 20dB below from peak of RF2440At least 20dB below from peak of RF | [MHz][dB]Results Chart2402At least 20dB below from peak of RFSee the trace Data2440At least 20dB below from peak of RFSee the trace Data |

\*: Tested by EB1146

#### 4.4.4 Trace data

#### [BT\_LE (1Mbps)] Channel: Low 30MHz - 1GHz



#### 5GHz - 10GHz

| Att 20 d<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B 🖷 SWT 100 ms 🖷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBW 300 KH2             | Mode Auto Sweep                           |                          |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------|--------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | M1[1]                                     |                          | -64.26 dBn<br>6.83570 GH |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                           | 1 1                      | 6.83570 GH               |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                       |                                           |                          |                          |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                           |                          |                          |
| -30 dBm D1 -27.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                           |                          |                          |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                       |                                           |                          |                          |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                       |                                           |                          |                          |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       |                                           |                          |                          |
| under and an and a state of the | and the state of t | Work with moderated and | walayanga kan <sup>a</sup> tradike takang | workeller working when a | www.hillhauser           |
| -80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                           |                          |                          |
| Start 5.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 p                  | ts                                        | S                        | top 10.0 GHz             |
| Marker<br>Type   Ref   Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value                 | Function                                  | Function Re:             | sult                     |

### 15GHz - 20GHz

| Spectrum                                                                       |                                                          |                                            |
|--------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|
| Ref Level 10.00 dBm                                                            | <ul> <li>RBW 100 kHz</li> </ul>                          |                                            |
| Att 20 dB . SWT 100 ms                                                         | <ul> <li>VBW 300 kHz</li> <li>Mode Auto Sweep</li> </ul> | 2                                          |
| 1Pk View                                                                       |                                                          |                                            |
|                                                                                | M1[1]                                                    | -60.13 dBn<br>19.23830 GH                  |
| ) dBm                                                                          |                                                          |                                            |
| 10 dBm                                                                         |                                                          |                                            |
| 20 dBm                                                                         |                                                          |                                            |
| 30 dBm D1 -27.710 dBm                                                          |                                                          |                                            |
| 40 dBm                                                                         |                                                          |                                            |
| 50 dBm                                                                         |                                                          |                                            |
| 50 dBm                                                                         |                                                          | M1                                         |
| 50 Clerit<br>Australianski provid The australian in the factorian<br>70 Clerit | مار                                                      | weighter may ston and the held market dury |
| 30 dBm                                                                         |                                                          |                                            |
| tart 15.0 GHz                                                                  | 1001 pts                                                 | Stop 20.0 GHz                              |
| arker                                                                          | 262                                                      |                                            |
| Type Ref Trc X-value                                                           | Y-value Function                                         | Function Result                            |
| M1 1 19.2383 GF                                                                | z -60.13 dBm                                             |                                            |

#### 1GHz - 5GHz

| Spectrum    |                  |                    |                 |                           |                  |                     |                                                                                                                 |
|-------------|------------------|--------------------|-----------------|---------------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Ref Level   |                  |                    |                 | RBW 100 kHz               |                  |                     |                                                                                                                 |
| Att         | 20 d             | B 🖷 SWT 10         | 0 ms 🖷 '        | VBW 300 kHz               | Mode Auto S      | weep                |                                                                                                                 |
| 1Pk View    |                  |                    |                 |                           |                  |                     |                                                                                                                 |
|             |                  |                    |                 |                           | M2[1]            |                     | -66.17 dB                                                                                                       |
| 0 dBm       |                  |                    |                 |                           |                  |                     | 4.71030 G                                                                                                       |
| o dom       |                  |                    | M1              |                           | M1[1]            |                     | -7.71 dB<br>2.40060 GF                                                                                          |
| -10 dBm     |                  |                    |                 |                           |                  | 1                   | 2.40000 G                                                                                                       |
| -10 GD11    |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -20 dBm     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| 20 0011     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -30 dBm     | )1 -27.710       | dBm                |                 |                           |                  |                     |                                                                                                                 |
| -30 dbm     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -40 dBm     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| 40 0011     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -50 dBm     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -30 dbm     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -60 dBm     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -BU LEIN    |                  |                    |                 |                           |                  |                     | M2                                                                                                              |
| 70 dDm      |                  |                    |                 | 11.1                      |                  | والبدا بيلين وتجاري | بالم المراجع ال |
| helsenter   | elaurapentipenti | reptalings When an | ALLOW ALLANDING | the and the second second | PWPARA Analysian | and and a sector of | When and the second states the plant of the                                                                     |
| -80 dBm     |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| -80 GBIII   |                  |                    |                 |                           |                  |                     |                                                                                                                 |
|             |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| Start 1.0 G | lz               |                    |                 | 1001 p                    | ts               |                     | Stop 5.0 GH                                                                                                     |
| larker      |                  |                    |                 |                           |                  |                     |                                                                                                                 |
| Type Ref    |                  | X-value            |                 | Y-value                   | Function         | F                   | unction Result                                                                                                  |
| M1          | 1                |                    | i6 GHz          | -7.71 dBm                 |                  |                     |                                                                                                                 |
| M2          | 1                | 4.710              | 3 GHz           | -66.17 dBm                |                  |                     |                                                                                                                 |

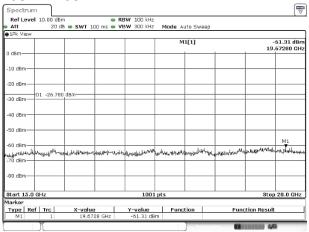
#### 10GHz - 15GHz

| 1Pk View                   |                                 |                                |                                |                                  |                                 |
|----------------------------|---------------------------------|--------------------------------|--------------------------------|----------------------------------|---------------------------------|
|                            |                                 |                                | M1[1]                          |                                  | -63.75 dBn<br>14.56290 GH       |
| 0 dBm                      |                                 |                                |                                | 1 1                              | 14.30290 GH                     |
| -10 dBm                    |                                 | _                              |                                |                                  |                                 |
| -20 dBm                    |                                 | _                              |                                |                                  |                                 |
| -30 dBm D1 -27             | .710 dBm                        |                                |                                |                                  |                                 |
| -40 dBm                    |                                 |                                |                                |                                  |                                 |
| -50 dBm                    |                                 | _                              |                                |                                  |                                 |
| -60 dBm-                   |                                 |                                |                                |                                  | M1                              |
| -70 dBm                    | re-fulins-lookethalloriett.eeut | nagenter and the second second | بالمسيران الدخالطاني والمانجين | water and a start and the second | hallander and the second second |
| -90 dBm                    |                                 | _                              |                                |                                  |                                 |
| Start 10.0 GHz             |                                 | 1001 pt                        | s                              | s                                | top 15.0 GHz                    |
| Marker<br>Type   Ref   Trc | X-value                         | Y-value                        |                                |                                  |                                 |
| M1 1                       | 14.5629 GHz                     | -63.75 dBm                     | Function                       | Function Re:                     | suit                            |

#### 20GHz - 25GHz

| Spectrum<br>Ref Level 1 |           |                     |                       | 3W 100 kHz         |                   |                                                                                                                |                                                |             | 7                     |
|-------------------------|-----------|---------------------|-----------------------|--------------------|-------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|-----------------------|
| Att<br>1Pk View         | 20 dB     | - SWT 10            | 0 ms 🖷 VI             | 300 kHz            | Mode A            | ito Sweep                                                                                                      |                                                |             |                       |
| 0 d8m-                  |           |                     |                       |                    | м                 | 1[1]                                                                                                           |                                                |             | 60.99 dB<br>.31220 GF |
| Jusn                    |           |                     |                       |                    |                   |                                                                                                                |                                                |             |                       |
| -10 dBm                 |           |                     |                       |                    |                   |                                                                                                                |                                                |             |                       |
| -20 dBm                 |           |                     |                       |                    |                   |                                                                                                                |                                                |             |                       |
| -30 dBm D:              | -27.710   | dBm                 |                       |                    |                   |                                                                                                                |                                                |             |                       |
| 40 dBm                  |           |                     |                       |                    |                   |                                                                                                                |                                                |             |                       |
| -50 dBm                 |           |                     |                       |                    |                   |                                                                                                                |                                                |             |                       |
| -60 dBm                 |           |                     |                       |                    |                   |                                                                                                                |                                                |             |                       |
| 70 dBm                  | hontonian | arten handalorealis | Mith-Martine and flat | programmer and the | barren strainfull | with a share a | qajinintraliql <sub>a</sub> n <sub>d</sub> ifa | hiter white | hailitikhebern        |
| -80 dBm                 |           |                     |                       |                    |                   |                                                                                                                |                                                |             |                       |
| Start 20.0 Gł           | łz        |                     |                       | 1001               | pts               |                                                                                                                |                                                | Stop        | p 25.0 GH             |
| larker<br>Type   Ref    | Trc       | X-value             |                       | Y-value            | Fund              | tion                                                                                                           | Fund                                           | tion Resul  | t                     |
| M1                      | 1         | 20.312              | 2 GHz                 | -60.99 dB          | m                 |                                                                                                                |                                                |             |                       |




#### [BT\_LE (1Mbps)] Channel: Middle 30MHz - 1GHz

| Ref Level 1                        | 0.00 dBm     |                |             | RBW 100 kHz   |               |                                   | U U                                                                                                             |
|------------------------------------|--------------|----------------|-------------|---------------|---------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Att                                |              |                |             | VBW 300 kHz   | Mode Auto Swe | en                                |                                                                                                                 |
| 1Pk View                           | 20 40        |                | 00 115      | DI COUTIL     | HULL AUTO SHE | op                                |                                                                                                                 |
| ) dBm                              |              |                |             |               | M1[1]         | 9                                 | -69.18 dBr<br>966.570 MH                                                                                        |
| UBIII                              |              |                |             |               |               |                                   |                                                                                                                 |
| 10 dBm                             |              |                |             |               |               |                                   |                                                                                                                 |
| 20 dBm                             |              |                |             |               |               |                                   |                                                                                                                 |
| 0 dBm                              | -26.780      | dBm            |             |               |               |                                   |                                                                                                                 |
| 40 dBm                             |              |                |             |               |               |                                   |                                                                                                                 |
| 50 dBm                             |              |                |             |               |               |                                   |                                                                                                                 |
| 50 dBm                             |              |                |             |               |               |                                   |                                                                                                                 |
| 70 dBm                             |              |                |             |               |               |                                   | M1                                                                                                              |
| specialization of the Adult of the | kiningahlisk | simple and any | hoghlingsth | whereasternet | Newselland    | migrand a strange interspectively | بعلكم بالملتحة والمعالية والمحاجة والمحاجة والمحاجة والمحاجة والمحاجة والمحاجة والمحاجة والمحاجة والمحاجة والمح |
| 90 dBm                             |              |                |             |               |               |                                   |                                                                                                                 |
| tart 30.0 M                        | 1z           |                |             | 1001 p        | ts            |                                   | Stop 1.0 GHz                                                                                                    |
| arker<br>Type   Ref                | Tec          | x-valu         | a           | Y-value       | Function      | Eunct                             | ion Result                                                                                                      |
| M1                                 | 1            |                | 57 MHz      | -69.18 dBm    | runction      | Funci                             | ion nesur                                                                                                       |

#### 5GHz - 10GHz

| 1Pk View                             |                                          |                  |                     |                                         | -64.04 dBn               |
|--------------------------------------|------------------------------------------|------------------|---------------------|-----------------------------------------|--------------------------|
|                                      |                                          |                  | M1[1]               |                                         | -64.04 dBn<br>6.95060 GH |
| 0 dBm                                |                                          |                  |                     |                                         | -                        |
| -10 dBm                              |                                          |                  |                     |                                         |                          |
| -20 dBm                              |                                          |                  |                     |                                         |                          |
| 30 dBm D1 -26.78                     | 0 dBm                                    |                  |                     |                                         |                          |
| 40 dBm                               |                                          |                  |                     |                                         |                          |
| 50 dBm                               |                                          |                  |                     |                                         |                          |
| 60 dBm                               | M                                        |                  |                     |                                         |                          |
| be the first a children with the set | in territory initiation and an encounter | welsternstealthe | hannakerakerakatan. | and the state of the state of the state | huber the holes where    |
| 00 dBm                               |                                          |                  |                     |                                         |                          |
| Start 5.0 GHz                        |                                          | 1001 p           | ts                  |                                         | Stop 10.0 GHz            |
| larker<br>Type   Ref   Trc           | X-value                                  | Y-value          | Function            | Function Re                             | cult                     |
| M1 1                                 | 6.8506 GHz                               | -64.04 dBm       | runction            | Function Re                             | Suit                     |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Att<br>.Pk Vier |               | ) dB 🖷 SWT 10             | Ju ms 🖷       | YOW 300 KH2    | MODE A       | uto Swee        | )              |              |           |
|-----------------|---------------|---------------------------|---------------|----------------|--------------|-----------------|----------------|--------------|-----------|
| PK YID          |               |                           |               |                | M            | 2[1]            |                |              | 66.73 dB  |
| dBm             |               |                           |               |                |              |                 |                | 4            | 89810 G   |
| 10111           |               |                           | M1            |                | M            | 1[1]            |                | 2            | -6.78 dB  |
| 0 dBm-          | _             |                           | <u> </u>      |                |              | -               |                | 2.           | 11000 GI  |
| 0 dBm-          |               |                           |               |                |              |                 |                |              |           |
| o dom           |               |                           |               |                |              |                 |                |              |           |
| 0 dBm-          | D1 -26.       | 780 dBm                   |               |                |              |                 |                |              |           |
| 0 dBm-          | _             |                           |               |                |              |                 |                |              |           |
| 0 dBm-          |               |                           |               |                |              |                 | _              |              |           |
| 0 dBm-          |               |                           |               |                |              |                 | _              |              | M         |
| 0 -0            |               |                           |               |                |              | a constant da l | Herebelly, 194 | Line August  |           |
| A prove         | aliperaturate | orgiteliter, arrandoriter | Per President | Inferensia and | Alixening to | Too du m        | T              |              |           |
| 0 dBm-          | _             |                           |               |                |              |                 | _              |              |           |
| art 1.(         | 1 GHz         |                           |               | 1001           | nts          |                 |                | Sto          | p 5.0 GH  |
| rker            | , and         |                           |               | 1001           |              |                 |                |              | p ole all |
|                 | Ref Trc       | X-value                   |               | Y-value        | Fund         | tion            | Fun            | ction Result |           |
| M1              | 1             | 2.44                      | 06 GHz        | -6.78 dBm      |              |                 |                |              |           |
| ype   I         |               |                           |               |                |              | tion            | Fun            | ction Result |           |

#### 10GHz - 15GHz

| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                        |                                                       |                                 |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|-------------------------------------------------------|---------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        | M1[1]                                                 |                                 | -63.87 dBr            |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                | _                      | -                                                     | 1 1                             | 14.95750 GH           |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                        |                                                       |                                 |                       |
| 20 GEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                        |                                                       |                                 |                       |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                |                        |                                                       |                                 |                       |
| D1 -26.780 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                | _                      |                                                       |                                 |                       |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                        |                                                       |                                 |                       |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |                        |                                                       |                                 |                       |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                        |                                                       |                                 |                       |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                        |                                                       |                                 |                       |
| and all and the state of the second s |                  |                        | alahoo oo baalaha ka ahaa ka ahaa ka ahaa ka ahaa aha | to to a star and a ball (Marcol | Mary I washington day |
| Mugan and a contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and modeling for | ATTO A 10 - Invited of | - In Malence Milling and Inc. of                      | Official Colline                |                       |
| -90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                        |                                                       |                                 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |                                                       |                                 |                       |
| Start 10.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 1001 pl                | 5                                                     |                                 | Stop 15.0 GHz         |
| 1arker<br>Type   Ref   Trc   X-va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Y-value                | Function                                              | Fund                            | ion Result            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9575 GHz         | -63.87 dBm             | Function                                              | Fullu                           | Ion Result            |

#### 20GHz - 25GHz

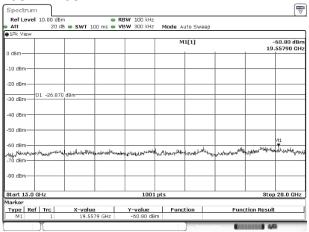
| Spectrum                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                   | (<br>                      |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|-------------------|----------------------------|
| Ref Level 10.00 dBn<br>Att 20 dE | • SWT 100 ms •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RBW 100 kHz           | Mode Auto Sweep                 |                   |                            |
| 1Pk View                         | • awi 100 ms • ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DW 300 KHZ            | Houe Auto Sweep                 |                   |                            |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | M1[1]                           | a                 | -62.03 dBm<br>20.27720 GHz |
| 0 dBm                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                   |                            |
| -10 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                   |                            |
| -20 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                   |                            |
| -30 dBm D1 -26.780               | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                 |                   |                            |
| -40 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                   |                            |
| -50 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                   |                            |
| -60 dam                          | poline in the states of the second states of the se | a dista addiested     | wa naterilan alak               | in all hitsed and | d. and the set of some h   |
| -70 dBm                          | Ultrasso Sou Paula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second second | and free of all and the all and | edite . tellinger | AMPLINE AL ANDROPOLOGICA   |
| -80 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                   |                            |
| Start 20.0 GHz                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 pt               | 5                               |                   | Stop 25.0 GHz              |
| Marker<br>Type   Ref   Trc       | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value               | Function                        | Euncti            | ion Result                 |
| M1 1                             | 20.2772 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -62.03 dBm            | runcei011                       | Functi            | on Nosure                  |
| - I.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ) Mercen                        |                   | 4/4                        |





SUD

Japan


#### [BT\_LE (1Mbps)] Channel: High 30MHz - 1GHz

| Ref L          | evel             | 10.00 dBm       |               |            | RBW 100 kHz<br>VBW 300 kHz   | Mode A                 | to Curoo |                    |                |                       |
|----------------|------------------|-----------------|---------------|------------|------------------------------|------------------------|----------|--------------------|----------------|-----------------------|
| 1Pk V          | ew               | 20 00           |               | J IIIS 🛡   | VEW SOUTHE                   | MODE A                 | TIO 2005 | þ                  |                |                       |
| 0 dBm-         |                  |                 |               |            |                              | м                      | 1[1]     |                    |                | 68.95 dBn<br>3.450 MH |
| 10 dBr         |                  |                 |               |            |                              |                        |          |                    |                |                       |
| 20 dBr         |                  |                 |               |            |                              |                        |          | _                  |                |                       |
| -30 dBr        | D                | 1 -26.870       | dBm           |            |                              |                        |          |                    |                |                       |
| 40 dBr         | n                |                 |               |            |                              |                        |          |                    |                |                       |
| 50 dBr         | n                |                 |               |            |                              |                        |          |                    |                |                       |
| 60 dBr         | n                |                 |               |            |                              |                        |          |                    |                |                       |
| 70 dBn         | ก<br>เครียงในงาณ | shuhulleteketen | Polantintalla | awy rooter | ingetterstanderenterstandere | M1<br>V<br>Langel HHER | mundedin | ulia franklik kara | hangewatertart | allows manufic        |
| 80 dBr         |                  |                 |               |            |                              |                        |          | _                  |                |                       |
| Start 3        | 10.0 M           | Hz              |               |            | 1001                         | pts                    |          |                    | Sto            | pp 1.0 GHz            |
| larker<br>Type | Ref              | Trc             | X-value       | 1          | Y-value                      | Func                   | tion     | Eupr               | tion Result    |                       |
| M1             | The I            | 1               | 563.4         | NH7        | -68.95 dBr                   |                        | cion     | 1 dite             | and the sur    |                       |

#### 5GHz - 10GHz

| •1Pk Vi   |                              | 3 🖷 SWT 100 ms 🖷                    |                             | Mode Auto Sweep                     |                                      |                          |
|-----------|------------------------------|-------------------------------------|-----------------------------|-------------------------------------|--------------------------------------|--------------------------|
|           |                              |                                     |                             | M1[1]                               |                                      | -64.53 dBn<br>6.90060 GH |
| 0 dBm—    |                              |                                     |                             |                                     | 1 1                                  |                          |
| -10 dBm   |                              |                                     |                             |                                     |                                      |                          |
| -20 dBm   |                              |                                     |                             |                                     |                                      |                          |
| -30 dBm   | D1 -26.870                   | dBm                                 | _                           |                                     |                                      |                          |
| -40 dBm   |                              |                                     |                             |                                     |                                      |                          |
| -50 dBrr  |                              |                                     |                             |                                     |                                      |                          |
| -60 dBm   |                              |                                     | M1                          |                                     |                                      |                          |
| SHORE BAR | three ories with the will be | a general contraction of the second | where me so high bearing of | aludayi ji sayalara kalera ji yayal | and the second and an and the second | medition and president   |
| -90 dBm   | c                            |                                     |                             |                                     |                                      |                          |
| Start 5   | .0 GHz                       |                                     | 1001 p                      | ts                                  |                                      | Stop 10.0 GHz            |
| larker    | Ref   Trc                    | X-value                             | Y-value                     | Function                            | Function R                           | esult                    |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Att<br>1Pk Vie | w.       | 20 u          | B 🖷 SWT 100                 | ins 🖷       | TOW SOU KHZ             | mude A     | uto Swee    | h                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|----------------|----------|---------------|-----------------------------|-------------|-------------------------|------------|-------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                |          |               |                             |             |                         | M          | 2[1]        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.46 dB             |
| 0 dBm—         |          |               |                             |             |                         |            |             |                          | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74230 GI             |
| 5 GBIII        |          |               |                             | M1          |                         | M          | 1[1]        |                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6.87 dB<br>48050 GI |
| -10 dBm        | _        |               |                             |             |                         |            |             | -                        | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10030 0              |
| -20 dBm        | _        |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                | D1       | -26.870       | dBm                         |             |                         |            |             | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| -30 dBm        |          |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 40 dBm         | _        |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |          |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 50 dBm         |          |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 60 dBm         |          |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |          |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2                   |
| 70 dBm         | de Prata | un production | and the first of the states | et it falle | hallenterrotocora       | KANTINGTON | -lo-abylite | والمعود والمعالية المراد | - and the state of | s-multi-literan      |
|                |          |               | 5 ° ° '                     |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 80 dBm         |          |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Start 1.       | 0 GH:    | 2             |                             |             | 1001 p                  | ts         |             |                          | Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p 5.0 GH             |
| larker         |          |               |                             |             |                         |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Туре           | Ref      |               | X-value                     |             | Y-value                 | Fund       | tion        | Fund                     | ction Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| M1<br>M2       |          | 1             | 2.4805                      |             | -6.87 dBm<br>-66.46 dBm |            |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

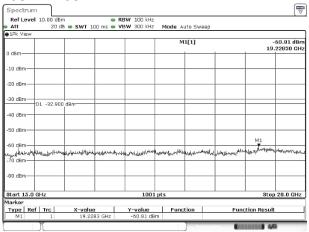
#### 10GHz - 15GHz

| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                       |                                |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|--------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | M1[1]                                 |                                | -64.17 dB                 |
| 0 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                       | 1 1                            | 2.37010 GH                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       |                                |                           |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       |                                |                           |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |                                |                           |
| D1 -26.870 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                       |                                |                           |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |                                | _                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       |                                |                           |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |                                | _                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       |                                |                           |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |                                |                           |
| 60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1                         |                                       |                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       | 2 37 3                         | 100                       |
| and a lot a state and a lot a state of the s | manager the stand with the | المالا هرار المالي مالا المراج المراج | websterner the second road how | ordigent and relationship |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       |                                |                           |
| 90 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                       |                                |                           |
| Start 10.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1001 pl                    |                                       | St                             | op 15.0 GH                |
| larker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1001 p                     |                                       | 01                             | op toto arti              |
| Type   Ref   Trc   X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y-value                    | Function                              | Function Res                   | ult                       |
| M1 1 12.3701 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z -64.17 dBm               |                                       |                                |                           |

#### 20GHz - 25GHz

| Spectrum                   |                                                       |                   |                                                                                                                                                                                                                                      |                        | ( <b>T</b>                        |
|----------------------------|-------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|
| Ref Level 10.00 dBm        | <ul> <li>RI</li> <li>SWT 100 ms</li> <li>V</li> </ul> | BW 100 kHz        |                                                                                                                                                                                                                                      |                        |                                   |
| 1Pk View                   | SWI 100 ms 🖷 V                                        | DW 300 KH2        | Mode Auto Sweep                                                                                                                                                                                                                      |                        |                                   |
|                            |                                                       |                   | M1[1]                                                                                                                                                                                                                                |                        | -61.92 dBr<br>20.32220 GH         |
| 0 dBm                      |                                                       |                   |                                                                                                                                                                                                                                      | 1 1                    | LUIDLEU                           |
| -10 dBm                    |                                                       |                   |                                                                                                                                                                                                                                      |                        |                                   |
| -20 dBm                    |                                                       |                   |                                                                                                                                                                                                                                      |                        |                                   |
| -30 dBm D1 -26.870 dBr     | n                                                     |                   |                                                                                                                                                                                                                                      |                        |                                   |
| -40 dBm                    |                                                       |                   |                                                                                                                                                                                                                                      |                        |                                   |
| -50 dBm                    |                                                       |                   |                                                                                                                                                                                                                                      |                        |                                   |
| -60 dBm                    |                                                       | n daan midadhii a | تماينيستان ترياس                                                                                                                                                                                                                     | d outoutidae o ta cele | Mallaratisturageneitiveteleger    |
| -70 dBm                    | a allowing the                                        |                   | Kanada Marina Marina<br>Marina Marina M | Labore a Minar         | and the second strategy and sheet |
| -80 dBm                    |                                                       |                   |                                                                                                                                                                                                                                      |                        |                                   |
| Start 20.0 GHz             |                                                       | 1001 pt           | 5                                                                                                                                                                                                                                    |                        | Stop 25.0 GHz                     |
| larker<br>Type   Ref   Trc | X-value                                               | Y-value           | Function                                                                                                                                                                                                                             | Functi                 | on Result                         |
| M1 1                       | 20.3222 GHz                                           | -61.92 dBm        |                                                                                                                                                                                                                                      | T under                |                                   |




#### [BT\_LE (2Mbps)] Channel: Low 30MHz - 1GHz

| Spectrum       | ı ]              |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |
|----------------|------------------|------------------------------|--------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Ref Level      | 10.00 dB         | m 🖷                          | RBW 100 kHz                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Att            | 20 d             | B 🖷 SWT 100 ms 🖷             | VBW 300 kHz                    | Mode Auto Swe           | ep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| 1Pk View       |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                |                  |                              |                                | M1[1]                   | a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -69.58 dBn<br>977.230 MH |
| 0 dBm          |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| -10 dBm        |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 20 dBm —       |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| -30 dBm —      | D1 -32.90        | ) dBm                        |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 40 dBm         |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 50 dBm-        |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 60 dBm         |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 70 dBm         | dyreyretheol (b) | Hered Muriaerable to Million | hold windeling And the life of | ownort-unit filt out we | d-designed and the state of the | M1                       |
| 00 dBm         |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Start 30.0     | MHz              |                              | 1001 pt                        | 5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 1.0 GHz             |
| larker         |                  |                              |                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Type Rel<br>M1 | f   Trc          | X-value<br>977.23 MHz        | Y-value<br>-69.58 dBm          | Function                | Function Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | esult                    |
| 1411           | 1                | 977.23 MHZ                   | -09.58 OBM                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |

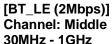
#### 5GHz - 10GHz

| 1Pk View    | (                  |                          |                                                                                                                    |          |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|-------------|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------|----------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             |                    |                          |                                                                                                                    | M        | 1[1]           |               | -63.95<br>6.19630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 0 dBm       |                    |                          |                                                                                                                    |          |                | 1             | 0.19030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | un    |
| -10 dBm—    |                    |                          |                                                                                                                    |          |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| -20 dBm-    |                    |                          |                                                                                                                    |          |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| -30 dBm-    | D1 -32.900         | dBm                      |                                                                                                                    |          |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 40 dBm-     | 01-02.000          |                          |                                                                                                                    |          |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| -50 dBm-    |                    |                          |                                                                                                                    |          |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| -60 dBm-    |                    | MI                       |                                                                                                                    |          |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| How We have | Mar My presidentic | a groathering an arriver | ،<br>۲۰۲۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲۰۱۹، ۲ | malhaman | Millentertrans | salutoriality | Alderson and a failed and a fai | w-ade |
| 00 dBm-     |                    |                          |                                                                                                                    | _        |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Start 5.0   | GHz                |                          | 10                                                                                                                 | 01 pts   |                |               | Stop 10.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GHz   |
| larker      | tef   Trc          | X-value                  | Y-value                                                                                                            | Funct    |                |               | on Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

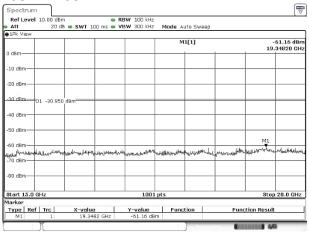

| Ref Level   | 10.00 dB     | m               |             | RBW 100 kHz               |         |               |                       |                               |            |
|-------------|--------------|-----------------|-------------|---------------------------|---------|---------------|-----------------------|-------------------------------|------------|
| Att         |              |                 |             | VBW 300 kHz               | Mode A  | uto Swee      | en.                   |                               |            |
| 1Pk View    | 201          |                 | 00 110 -    | 1011 000 1112             | HOUL A  | 410 5466      |                       |                               |            |
|             |              |                 |             |                           | M       | 2[1]          |                       |                               | 66.47 dB   |
| 0 dBm       |              |                 |             |                           |         |               |                       |                               | .39460 CH  |
|             |              |                 |             |                           | M       | 1[1]          |                       |                               | 12.90 dB   |
| -10 dBm     |              |                 | M1          |                           |         | í.            |                       | 2                             | .40060 GH  |
| -10 GBIII   |              |                 | Ţ           |                           |         |               |                       |                               |            |
| -20 dBm     |              |                 |             |                           |         |               |                       |                               |            |
| 20 0011     |              |                 |             |                           |         |               |                       |                               |            |
| -30 dBm     |              |                 |             |                           |         |               |                       |                               |            |
| -50 0011    | D1 -32.90    | 0 dBm           |             |                           |         |               |                       |                               | -          |
| -40 dBm     |              |                 |             |                           |         |               |                       |                               |            |
| TO GETT     |              |                 |             |                           |         |               |                       |                               |            |
| -50 dBm-    |              |                 |             |                           |         |               |                       |                               |            |
|             |              |                 |             |                           |         |               |                       |                               |            |
| -60 dBm     |              |                 |             |                           |         |               | _                     | M2                            |            |
|             |              |                 |             |                           |         |               |                       |                               |            |
| -70 dBm     | and the loss | Later Job allia | BULLINK PRO | n location that any other | atomhar | المنهني ويتحد | اليدخصني ببيته ومسبيه | two and a second state of the | - much the |
| wartisean   | - Alb Drown  | a Mahlhad anna  |             |                           |         | 2000 00       |                       |                               |            |
| -80 dBm-    |              |                 | -           |                           |         |               |                       |                               |            |
|             |              |                 |             |                           |         |               |                       |                               |            |
| Start 1.0 G | Hz           |                 |             | 1001 p                    | ts      |               |                       | St                            | pp 5.0 GHz |
| larker      |              |                 |             |                           |         |               |                       |                               |            |
| Type   Ref  | Trc          | X-valu          | e           | Y-value                   | Fund    | tion          | Fun                   | ction Resul                   | t          |
| M1          | 1            | 2.40            | IO6 GHz     | -12.90 dBm                |         |               |                       |                               |            |
| M2          | 1            | 4.39            | 46 GHz      | -66.47 dBm                |         |               |                       |                               |            |

#### 10GHz - 15GHz

| 1Pk View            |                   |                              |                           |                 | м                                                                                                              | 1[1]      |                          | -              | 63.88 dB            |
|---------------------|-------------------|------------------------------|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|-----------|--------------------------|----------------|---------------------|
| dBm                 |                   |                              |                           |                 |                                                                                                                | -         |                          | 14.            | 52300 GH            |
| 10 dBm              |                   |                              |                           |                 |                                                                                                                |           |                          |                |                     |
| O GETT              |                   |                              |                           |                 |                                                                                                                |           |                          |                |                     |
| 0 dBm               |                   |                              |                           |                 |                                                                                                                |           |                          |                |                     |
| 0 dBm               | 1 -32.900         | d0 m                         |                           |                 |                                                                                                                |           |                          |                |                     |
| 0 dBm               | 1 -32.900         | UBI0                         |                           |                 |                                                                                                                |           |                          |                |                     |
| iū dBm-             |                   |                              |                           |                 |                                                                                                                |           | _                        |                |                     |
| 0 dBm               |                   |                              |                           |                 |                                                                                                                |           |                          | ~~~~           | 11                  |
| U dBm               | للالاربي والمالية | n pertection has been been a | liphisture of the statest | ware many white | لله المراجعة المراجع | u/mjs://w | uldskillyrne,laboraethai | And Annilliand | htteredition of the |
| 10 dBm              |                   |                              |                           |                 |                                                                                                                |           |                          |                |                     |
| tart 10.0 G         | Hz                |                              |                           | 1001            | pts                                                                                                            |           |                          | Stop           | 15.0 GH             |
| arker<br>Type   Ref | Trc               | X-value                      | -                         | Y-value         | Func                                                                                                           | tion      | Eunr                     | tion Result    |                     |

#### 20GHz - 25GHz

| Spectrum                         |                                    |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 10.00 dBn<br>Att 20 dB | a SWT 100 ms .                     | RBW 100 kHz           | Mode Auto Sweep                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1Pk View                         | 5 • 3WI 100 ms •                   | VEW SOU KHZ           | HODE YOU SWEET                                                                                                  | ,                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  |                                    |                       | M1[1]                                                                                                           | 10                            | -62.18 dBm<br>21.62090 GH;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 dBm                            |                                    |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -10 dBm                          |                                    |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -20 dBm                          |                                    |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -30 dBm D1 -32.900               | dBm                                |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -40 dBm                          |                                    |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -50 dBm                          |                                    |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60 dBm                          | M1                                 |                       |                                                                                                                 | n falle Mille Annual an       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -70 dBm                          | ferroardial/Autoritation and other | terme annon - e - tAN | and support of the second s | heretulingen altiteliefen die | ndelling of the states of the |
| -80 dBm                          |                                    |                       |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 20.0 GHz                   |                                    | 1001 pt               | 5                                                                                                               |                               | Stop 25.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Marker<br>Type   Ref   Trc       | X-value                            | Y-value               | Function                                                                                                        | Functio                       | n Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| M1 1                             | 21.6209 GHz                        | -62.18 dBm            | Tunction                                                                                                        | Turiació                      | in the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |




| Spectrum                   |                                                            |                                                |
|----------------------------|------------------------------------------------------------|------------------------------------------------|
| Ref Level 10.00 dBm        | <ul> <li>RBW 100 kHz</li> </ul>                            |                                                |
| Att 20 dB - SWT 100 ms     | VBW 300 kHz Mode Auto St                                   | weep                                           |
| 1Pk View                   |                                                            |                                                |
|                            | M1[1]                                                      | -69.26 dBm                                     |
| 0 dBm                      |                                                            | 786.330 MH                                     |
| o dom                      |                                                            |                                                |
| -10 dBm                    |                                                            |                                                |
| 10 GB/II                   |                                                            |                                                |
| -20 dBm                    |                                                            |                                                |
| 20 GB/II                   |                                                            |                                                |
| 30.dBm                     |                                                            |                                                |
| 30.dBm D1 -30.950 dBm      |                                                            |                                                |
|                            |                                                            |                                                |
| -40 dBm-                   |                                                            |                                                |
|                            |                                                            |                                                |
| 50 dBm-                    |                                                            |                                                |
|                            |                                                            |                                                |
| -60 dBm                    |                                                            |                                                |
|                            |                                                            | M1                                             |
| -70 dBm                    | المعرودا والمرالي المالية المربعة المرابع والمراجع المراجع | อสารางการการการการการการการการการการการการการก |
| 이 것 같은 것 같아. 왜 같아.         | a holds dealined in the standard and and                   |                                                |
| -90 dBm                    |                                                            |                                                |
|                            |                                                            |                                                |
| Start 30.0 MHz             | 1001 pts                                                   | Stop 1.0 GHz                                   |
| Jarker                     | 2001 pt3                                                   | 500p 1.0 ditz                                  |
| Type   Ref   Trc   X-value | Y-value Function                                           | Function Result                                |
| M1 1 786.33 MH             |                                                            | . analdi Kasuk                                 |
| TT IT                      |                                                            |                                                |

#### 5GHz - 10GHz

| ●1Pk Vi  | ew                    |                                                  |                              |                  |                                      |                            |
|----------|-----------------------|--------------------------------------------------|------------------------------|------------------|--------------------------------------|----------------------------|
|          |                       |                                                  |                              | M1[1]            |                                      | -63.50 dBm                 |
| 0 dBm—   |                       |                                                  |                              |                  | 1 1                                  | 6.98550 GH                 |
| -10 dBn  |                       |                                                  |                              |                  |                                      |                            |
| -20 dBn  |                       |                                                  |                              |                  |                                      |                            |
| -30.dBo  | D1 -30.95             | 0 dBm                                            |                              |                  |                                      |                            |
| -40 dBn  |                       |                                                  | _                            |                  |                                      |                            |
| -50 dBn  |                       |                                                  |                              |                  |                                      |                            |
| -60 dBn  |                       |                                                  |                              |                  |                                      |                            |
| Mdratha  | الطليبية مولاحما والم | ay in the state of the state of the state of the | whole the hillest free works | water-land water | where we have been a strategy of the | halle have be will be seen |
| -90 dBn  |                       |                                                  |                              |                  |                                      |                            |
| Pt aut 5 | .0 GHz                |                                                  | 1001 p                       | -                |                                      | Stop 10.0 GHz              |
| larker   | .0 0Hz                |                                                  | 1001 p                       |                  |                                      | 3(0p 10.0 dHz              |
|          | Ref   Trc             | X-value                                          | Y-value                      | Function         | Function F                           |                            |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Att      | vel 10.00         |                         |                          | RBW 100 kHz<br>VBW 300 kHz | Mode A         | uto Sweep             |                    |                          |              |
|----------|-------------------|-------------------------|--------------------------|----------------------------|----------------|-----------------------|--------------------|--------------------------|--------------|
| 1Pk Vie  |                   |                         | 100 115                  | 1011 000 1112              | Huue a         | ato sweep             |                    |                          |              |
|          |                   |                         |                          |                            | м              | 2[1]                  |                    |                          | -65.94 dB    |
| 0 dBm—   |                   |                         |                          |                            |                |                       |                    |                          | .33870 G     |
| 0 00111  |                   |                         | M1                       |                            | м              | 1[1]                  |                    |                          | -10.95 dB    |
| -10 dBm  |                   |                         | MI                       |                            |                |                       | 1                  | 2                        |              |
|          |                   |                         |                          |                            |                |                       |                    |                          |              |
| -20 dBm  | -                 |                         |                          | -                          |                |                       |                    |                          |              |
|          |                   |                         |                          |                            |                |                       |                    |                          |              |
| -30 dBm  | D1 -30            | .950 dBm                | _                        |                            |                |                       |                    |                          |              |
|          |                   |                         |                          |                            |                |                       |                    |                          |              |
| 40 dBm   |                   |                         |                          |                            |                |                       |                    |                          |              |
| -50 dBm  |                   |                         |                          |                            |                |                       |                    |                          |              |
|          |                   |                         |                          |                            |                |                       |                    |                          |              |
| -60 dBm  |                   |                         |                          |                            |                |                       |                    | M2                       |              |
|          |                   |                         |                          |                            |                | 5                     |                    | w l                      |              |
| -70 dBm  | المعمومة المحالية | na thread in a strength | unin tout +              |                            | when the state | للحور الفقاعورات والع | والتحجير المتعادية | edia falla conservations | a second but |
|          | S                 | 1.1                     |                          |                            |                |                       |                    |                          |              |
| -80 dBm  |                   |                         |                          |                            |                |                       |                    |                          |              |
| Start 1. | 0 GHz             |                         |                          | 1001 p                     | ts             |                       |                    | St                       | op 5.0 GH    |
| larker   |                   |                         |                          | In                         |                |                       |                    |                          |              |
| Type     |                   |                         | alue                     | Y-value                    | Func           | tion                  | Fund               | ction Resul              | t            |
| M1<br>M2 | 1                 |                         |                          |                            |                |                       |                    |                          |              |
| M1       |                   |                         | 2.4406 GHz<br>4.3387 GHz | -10.95 dBm<br>-65.94 dBm   |                |                       |                    |                          |              |

#### 10GHz - 15GHz

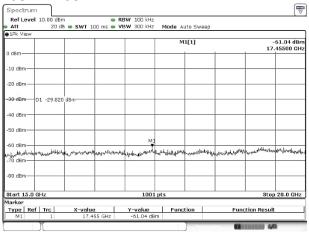
| 1Pk View                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -63.91 dB            |
|---------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| dBm-                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.19730 G           |
| dBm                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 10 dBm-                   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 20 dBm                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 0.dBmD1 -30.              | 950_dBm                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| O dBm                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| i0 dBm-                   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| ið fið Brn                |                               | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | instal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| U dBm                     | horgyphensintendentedestation | hallander of the second s | han shining to an initial for the state of t | , and the stand for the stand of the stand o | unity.uk www.wytheat |
| 10 dBm                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| tart 10.0 GHz             |                               | 1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 15.0 GH         |
| arker<br>Type   Ref   Trc | X-value                       | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Docult               |

#### 20GHz - 25GHz

| Spectrum                                                               |                         |                                       | ĺ                                                                         |
|------------------------------------------------------------------------|-------------------------|---------------------------------------|---------------------------------------------------------------------------|
| Ref Level 10.00 dBm ·                                                  | RBW 100 kHz             |                                       |                                                                           |
| Att 20 dB                                                              | VBW 300 kHz             | Mode Auto Sweep                       |                                                                           |
|                                                                        |                         | M1[1]                                 | -62.57 d<br>20.11740 (                                                    |
| I dBm                                                                  |                         |                                       |                                                                           |
| 10 dBm-                                                                |                         |                                       |                                                                           |
| 20 dBm                                                                 |                         |                                       |                                                                           |
| 30.dBm D1 -30.950 dBm                                                  |                         |                                       |                                                                           |
| 40 dBm                                                                 |                         |                                       |                                                                           |
| 50 dBm                                                                 |                         |                                       |                                                                           |
| dBm-                                                                   |                         |                                       |                                                                           |
| n hannen angelannen hannen fan heitige hereller heterskilde.<br>70 dBm | Aprildecethelither from | triplation,abilitationingiperoination | aylangar algerran an langerran and an |
| 90 dBm                                                                 |                         |                                       |                                                                           |
| Start 20.0 GHz                                                         | 1001 pl                 | ts                                    | Stop 25.0 G                                                               |
| arker<br>Type   Ref   Trc   X-value                                    | Y-value                 | Function                              | Function Result                                                           |
| M1 1 20.1174 GHz                                                       | -62.57 dBm              | Function                              | Function Result                                                           |

Japan




#### [BT\_LE (2Mbps)] Channel: High 30MHz - 1GHz

|                                  | 10.00 dBm  |                                   | RBW 100 kHz              |                                                    |                              |                           |
|----------------------------------|------------|-----------------------------------|--------------------------|----------------------------------------------------|------------------------------|---------------------------|
| Att                              |            | . SWT 100 ms                      |                          | Mode Auto Swee                                     | 0                            |                           |
| 1Pk View                         | 20 00      | - 3441 100 ms                     | TOR SOO KILL             | HODE AUTO DWEE                                     | p                            |                           |
|                                  |            |                                   |                          | M1[1]                                              | a a                          | -69.58 dBr<br>634.190 MH  |
| dBm-                             |            |                                   |                          |                                                    |                              |                           |
| 10 dBm                           |            |                                   |                          |                                                    |                              |                           |
| 20 dBm                           |            |                                   |                          |                                                    |                              |                           |
| 90-dBm                           | D1 -29.820 | dBm                               |                          |                                                    |                              |                           |
| 40 dBm                           |            |                                   |                          |                                                    |                              |                           |
| 50 dBm                           |            |                                   | _                        |                                                    |                              |                           |
| 60 dBm                           |            |                                   |                          |                                                    |                              |                           |
|                                  |            |                                   |                          | M1                                                 |                              |                           |
| 70 dBm<br>Mix/MiNUX/Mi<br>90 dBm | MANALUMA   | ogðhelmetenturgerðelgerð aferreið | halaladimentionshed give | <b>ส</b> ุรีย <sub>าส</sub> งสังสุขามีการใจไปไปเปล | entralidesi nyarata natarata | nikipi-yalayontohonandada |
| io upili                         |            |                                   |                          |                                                    |                              |                           |
| tart 30.0                        | MHz        | I                                 | 1001 pt                  | s                                                  |                              | Stop 1.0 GHz              |
| arker                            |            |                                   |                          |                                                    |                              |                           |
| Type Ref                         |            | X-value                           | Y-value                  | Function                                           | Function R                   | esult                     |
| M1                               | 1          | 634.19 MHz                        | -69.58 dBm               |                                                    |                              |                           |

#### 5GHz - 10GHz

| 1Pk View     | 1                        |                                      | _                          | M1[1]         |            | -64.26 dBr       |
|--------------|--------------------------|--------------------------------------|----------------------------|---------------|------------|------------------|
|              |                          |                                      |                            | milil         |            | 6.94560 GH       |
| 0 dBm        |                          |                                      |                            |               |            | _                |
| -10 dBm—     |                          |                                      |                            |               |            |                  |
| 20 dBm—      |                          |                                      |                            |               |            |                  |
| 90 dBm       | D1 -29.820               | ) dBm                                |                            |               |            |                  |
| 40 dBm—      |                          |                                      |                            |               |            |                  |
| 50 dBm-      |                          |                                      |                            |               |            |                  |
| 60 dBm—      |                          |                                      | M1                         |               |            |                  |
| WOYOOD AND   | linguisted as the second | gert-fleshterstelsen son son de asse | When the second and second | hamphantuling | mandrawana | والتهم والمحاصلة |
| 90 dBm—      |                          |                                      |                            |               |            |                  |
| Start 5.0    | GHz                      |                                      | 1001 p                     | ts            |            | Stop 10.0 GHz    |
| larker       |                          |                                      |                            |               |            |                  |
| Type R<br>M1 | ef Trc                   | 5.9456 GHz                           | -64.26 dBm                 | Function      | Function R | asult            |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Ref L       | evel     | 10.00 dE | m                       |                     | RBW 100 kHz           |                |          |                   |                   |            |
|-------------|----------|----------|-------------------------|---------------------|-----------------------|----------------|----------|-------------------|-------------------|------------|
| Att         |          | 20       | B SWT                   | 100 ms 👄            | VBW 300 kHz           | Mode           | Auto Swe | ep                |                   |            |
| 1Pk Vi      | ew       |          |                         |                     |                       |                |          |                   |                   |            |
|             |          |          |                         |                     |                       |                | M2[1]    |                   |                   | -65.79 dB  |
|             |          |          |                         |                     |                       |                |          |                   | 4                 | .91010 G   |
| 0 dBm—      |          |          |                         |                     |                       |                | M1[1]    |                   |                   | -9.82 dB   |
|             |          |          |                         | м                   | 1                     |                |          |                   |                   | 2.48050 GI |
| -10 dBr     |          |          |                         |                     |                       |                |          |                   |                   |            |
|             |          |          |                         |                     |                       |                |          |                   |                   |            |
| -20 dBm     | -        |          |                         |                     |                       |                |          |                   |                   |            |
|             |          |          | 1                       |                     |                       |                |          |                   |                   |            |
| -30 dBm     |          | 1 -29.82 | U dBm-                  |                     |                       |                |          |                   |                   |            |
| -40 dBm     |          |          |                         |                     |                       |                |          |                   |                   |            |
| -+0 CBH     |          |          |                         |                     |                       |                |          |                   |                   |            |
| -50 dBm     |          |          |                         |                     |                       |                |          |                   |                   |            |
| -30 GBH     |          |          |                         |                     |                       |                |          |                   |                   |            |
| -60 dBm     |          |          |                         |                     |                       |                |          |                   |                   |            |
| -00 GBH     | · – –    |          |                         |                     |                       |                |          |                   |                   | M          |
| -70 dBm     |          |          |                         |                     | and the mainte        |                |          | LIL NATER LANDARD | MAR MARINE MALINE | all' want  |
| which where | and were | vitable  | المعديقية وكالاتداء ولا | to star and figures | and static stations   | for law to the | IN AL AL |                   |                   |            |
| -80 dBm     | _        |          |                         |                     |                       |                |          |                   |                   |            |
| -00 GEN     | ·        |          |                         |                     |                       |                |          |                   |                   |            |
|             |          |          | -                       |                     |                       |                |          |                   |                   |            |
| Start 1     | .0 GH    | z        |                         |                     | 1001                  | pts            |          |                   | St                | op 5.0 GH  |
| larker      |          |          |                         |                     |                       |                |          |                   |                   |            |
| Type        | Ref      |          | X-valu                  |                     | Y-value               |                | unction  | Fu                | nction Resu       | t          |
| M1<br>M2    |          | 1        |                         | 805 GHz<br>101 GHz  | -9.82 dB<br>-65.79 dB |                |          |                   |                   |            |
| - M2        |          | 1        | 4.9                     | TOT GHZ             | -05.79 OB             |                |          |                   |                   |            |

#### 10GHz - 15GHz

| 1Pk View            |           |         |                     |                                                   |                           |                  |
|---------------------|-----------|---------|---------------------|---------------------------------------------------|---------------------------|------------------|
|                     |           |         |                     | M1[1]                                             |                           | -64.51 dB        |
| ) dBm               |           |         |                     | -                                                 | 1 1                       | 14.55290 CH      |
| 10 dBm              |           |         |                     |                                                   |                           |                  |
| 20 dBm              |           |         |                     |                                                   |                           |                  |
| 90-dBm D            | 1 -29.820 | dBm     |                     |                                                   |                           |                  |
| +0 dBm              |           |         | _                   |                                                   |                           |                  |
| 50 dBm              |           |         | _                   |                                                   |                           |                  |
| 60 dBm              | Mulumbert | water   | มและสารการสารการสาร | ۲۰۰۹<br>ماریخانی از مانیان از ۲۰۰۹ میلیان از ۲۰۰۹ | gulgerennerskynarheneners | Inspective minut |
| 90 dBm              |           |         |                     |                                                   |                           |                  |
| tart 10.0 G         | Hz        |         | 1001 pt             | s                                                 |                           | Stop 15.0 GH     |
| arker<br>Type   Ref | Trc       | X-value | Y-value             | Function                                          | Function Re               | wilt             |

#### 20GHz - 25GHz

| Spectrum                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                  |                                                                                                                 | (m)<br>V                       |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|
| Ref Level 10.00 dBn<br>Att 20 dB | n 👄 🖷 🖶<br>B 🖷 SWT 100 ms 🖷 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88W 100 kHz           | Mode Auto Sweep                  |                                                                                                                 |                                |
| 1Pk View                         | 5 🖷 SWT 100 ms 🖷 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BW 300 KH2            | Mode Auto Sweep                  |                                                                                                                 |                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | M1[1]                            | 10 3                                                                                                            | -61.48 dBm<br>20.25720 GH      |
| 0 dBm                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                  |                                                                                                                 |                                |
| -10 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                  |                                                                                                                 |                                |
| -20 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                  |                                                                                                                 |                                |
| -30 dBm D1 -29.820               | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                  |                                                                                                                 |                                |
| -40 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                  |                                                                                                                 |                                |
| -50 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                  |                                                                                                                 |                                |
| -60 0000                         | gergringegradenskyrgegelaanskildenskildenski                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ul                    |                                  |                                                                                                                 |                                |
| -70 dBm                          | and a second of the second of | dour the share of the | nt-ain-thanna ang abay pan-baran | white we we have a second s | Mappine Tourist Cartat Artesis |
| -80 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                  |                                                                                                                 |                                |
| Start 20.0 GHz                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1001 p                | ts                               |                                                                                                                 | Stop 25.0 GHz                  |
| Marker<br>Tupo   Pof   Tro       | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y-value               | Function                         | Euno                                                                                                            | tion Bosult                    |
| M1 1                             | 20.2572 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -61.48 dBm            | Function                         | Fund                                                                                                            | tion Result                    |
|                                  | 20.2572 GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -01.48 UBM            | - Mirasu                         |                                                                                                                 | 4,44                           |



#### [BT\_LE (LongRange S2)] Channel: Low 30MHz - 1GHz

| Ref Lev   | el 10.00 dB                 |                                        | RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                 |                     |
|-----------|-----------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|---------------------|
| Att       |                             | B 🖷 SWT 100 ms 📟                       | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mode Auto Sweep                | p                               |                     |
| 1Pk Viev  | v                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1[1]                          |                                 | -68.32 dBr          |
| dBm       |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 4 4                             | 892.920 MH          |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
| 0 dBm-    | _                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
| 20 dBm-   |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
| 0 dBm-    | D1 -28.74                   | 0 dBm                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
| 0 dBm-    |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
| i0 dBm-   | -                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
| 0 dBm-    | _                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 | M1                  |
| 0 dBm-    | a last strate to be         | Marsh martine and martine              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the star is the star which | Land Land Million II at trade   | un de la companya   |
| reduction | Philippine and Conservation | enter all and the second second second | We wanted a state of the state | a Actific And an Amount        | What free to a substration of a | di min di bulli cum |
| 0 dBm-    | _                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
| tart 30   | 0 MHz                       |                                        | 1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                              |                                 | Stop 1.0 GHz        |
| arker     |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                 |                     |
|           | Ref   Trc                   | X-value                                | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function                       | Function Re                     | esult               |
| M1        | 1                           | 892.92 MHz                             | -68.32 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                 |                     |

#### 5GHz - 10GHz

| Ref Level 10.00 d | 3m 👄                                     | RBW 100 kHz        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
|-------------------|------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
|                   | dB 🖷 SWT 100 ms 🖷                        | VBW 300 kHz        | Mode Auto Swee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p                                     |                 |
| 1Pk View          |                                          |                    | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | -64.41 dBn      |
| 0 dBm             |                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 6.65580 GH      |
| -10 dBm           |                                          | _                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
| -20 dBm           |                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
| -30 dBm D1 -28.7  | 40 dBm                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | _               |
| -40 dBm           |                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
| -50 dBm           |                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
| -60 dBm           |                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
| worden uluman     | 110-110-110-1-10-10-10-10-10-10-10-10-10 | we washing species | and and the states of the stat | house million of the long is said for | munderurscoling |
| -90 dBm           |                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
| Start 5.0 GHz     |                                          | 1001 p             | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Stop 10.0 GHz   |
| larker            |                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                 |
| Type Ref Trc      | X-value<br>6.6558 GHz                    | -64.41 dBm         | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function R                            | esult           |
|                   | 5.5550 GHz                               | 0.1112 0011        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 4,40            |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Ref Lev   | el 10.00    | dBm                               |          | RBW 100 kHz                |                      |                                     |                                            |
|-----------|-------------|-----------------------------------|----------|----------------------------|----------------------|-------------------------------------|--------------------------------------------|
| Att       | 20          | dB 🖷 SWT                          | 100 ms 🖷 | VBW 300 kHz                | Mode Auto            | Sweep                               |                                            |
| 1Pk Viev  | v           |                                   |          |                            |                      |                                     |                                            |
|           |             |                                   |          |                            | M2[1]                | 1                                   | -66.44 dB                                  |
|           |             |                                   |          |                            |                      |                                     | 4.64640 G                                  |
| 0 dBm—    |             |                                   |          |                            | M1[1]                | 1                                   | -8.74 dB                                   |
|           |             |                                   | M1       |                            |                      |                                     | 2.40060 G                                  |
| -10 dBm-  |             |                                   |          |                            |                      |                                     |                                            |
|           |             |                                   |          |                            |                      |                                     |                                            |
| -20 dBm-  |             |                                   |          |                            |                      |                                     |                                            |
|           |             | 740 dBm                           |          |                            |                      |                                     |                                            |
| -30 dBm-  | D1 -28.     | /4U dBm                           |          |                            |                      |                                     |                                            |
|           |             |                                   |          |                            |                      |                                     |                                            |
| -40 dBm-  | -           |                                   |          |                            |                      |                                     |                                            |
|           |             |                                   |          |                            |                      |                                     |                                            |
| -50 dBm-  | -           |                                   |          |                            |                      |                                     |                                            |
|           |             |                                   |          |                            |                      |                                     |                                            |
| -60 dBm-  | -           |                                   |          |                            |                      |                                     | M2                                         |
|           |             |                                   | 25 22    |                            | 100.000              |                                     |                                            |
| 70 dBm    | aloughu dre | الواحرى بوروادا وروابوا والاردوار | MAN WARD | and the man and the second | Control Street Barry | الكالإ طاباته الباتي فهرمتهم حليتها | nd you have been and a state of the second |
|           |             |                                   |          |                            |                      |                                     |                                            |
| -80 dBm-  | _           |                                   | _        |                            |                      |                                     |                                            |
|           |             |                                   |          |                            |                      |                                     |                                            |
| Start 1.0 | GHz         |                                   | 1        | 1001 p                     | ts                   |                                     | Stop 5.0 GH                                |
| larker    |             |                                   |          |                            | 6-2-                 |                                     |                                            |
|           | Ref   Trc   | X-va                              | lue      | Y-value                    | Function             |                                     | unction Result                             |
| M1        | 1           |                                   | 4006 GHz | -8.74 dBm                  |                      |                                     |                                            |
| M2        | 1           |                                   | 6464 GHz | -66.44 dBm                 |                      |                                     |                                            |

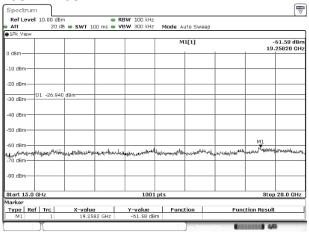
#### 10GHz - 15GHz

| Ref Level 10.00 dBm       |                            | RBW 100 kHz                  |                                  |                              |                          |
|---------------------------|----------------------------|------------------------------|----------------------------------|------------------------------|--------------------------|
| Att 20 dB<br>1Pk View     | 🖷 SWT 100 ms 📟             | VBW 300 kHz                  | Mode Auto Swee                   | ep                           |                          |
| dBm                       |                            |                              | M1[1]                            |                              | -64.35 dB<br>10.53700 GF |
| dom                       |                            |                              |                                  |                              |                          |
| 10 dBm                    |                            |                              |                                  |                              |                          |
| 20 dBm                    |                            |                              |                                  |                              |                          |
| 00 dBm D1 -28.740         | dBm                        |                              |                                  |                              |                          |
| 10 dBm                    |                            |                              |                                  |                              |                          |
| i0 dBm-                   |                            |                              |                                  |                              |                          |
| 50 dBm - 1/1              | ~                          |                              |                                  |                              |                          |
| o dem                     | here much be any public th | all announ total a space and | nut beginner and an of the state | hispolitekanskarolekonstarle | ubdiser-shippleserablese |
| 90 dBm                    |                            |                              |                                  |                              |                          |
| tart 10.0 GHz             |                            | 1001 pt                      | 5                                |                              | Stop 15.0 GH             |
| arker<br>Type   Ref   Trc | X-value                    | Y-value                      | Function                         | Function                     | Result                   |
| M1 1                      | 10.537 GHz                 | -64.35 dBm                   | , and the                        | Function                     | The state                |

### 20GHz - 25GHz

| Spectrum            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         | [ <b>9</b>               |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|-------------------------|--------------------------|
| Ref Level 10.00 dBr |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBW 100 kHz    |                                  |                         |                          |
|                     | B 🖷 SWT 100 ms 📟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBW 300 kHz    | Mode Auto Swee                   | p                       |                          |
| 1Pk View            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | M1[1]                            |                         | -62.31 dB<br>21.72580 GI |
| I dBm               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         | 21.72580 0               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| 10 dBm              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _              |                                  | _                       |                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| 20 dBm              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| 0 dBm D1 -28.74     | ) dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                  |                         |                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| 40 dBm              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| 50 dBm              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| 50 dBm              | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                  |                         |                          |
| Admin MAIn          | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | La contration  | s .                              | 0.8.5 V                 | 2.12 22.4                |
| 70 dBm              | interviet have made and the state of the sta | and the second | the and the second second second | hold we we the here and | san for the second stand |
| o abin              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| 0 dBm               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                  |                         |                          |
| tart 20.0 GHz       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 -         | ·                                |                         | 0100 05 0 011            |
| arker               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 p         | 115                              |                         | Stop 25.0 GH             |
| Type   Ref   Trc    | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value        | Function                         | Function                | Posult                   |
| M1 1                | 21.7258 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -62.31 dBm     | ranscion                         | runction                | i no son                 |




#### [BT\_LE (LongRange S2)] Channel: Middle 30MHz - 1GHz

| Att         | .0.00 dBn<br>20 dB | s <b>SWT</b> 100 ms       | RBW 100 kHz<br>VBW 300 kHz  | Mode Auto Swee   | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|-------------|--------------------|---------------------------|-----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1Pk View    |                    |                           |                             | M1[1]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -69.09 dBn        |
|             |                    |                           |                             | MILI             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 771.790 MH        |
| dBm         |                    |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 10 dBm      |                    |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 20 dBm —    |                    |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 30 dBm      | -26.940            | dBm                       | _                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| +0 dBm      |                    |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 50 dBm      |                    |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 50 dBm      |                    |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|             |                    |                           |                             |                  | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 70 dBm      | rensinghaby        | hor rubble line all horis | adden all works and the lot | muniteduritation | shallow have been a standard and the sta | estile states and |
| 90 dBm —    |                    |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| tart 30.0 M | Hz                 |                           | 1001 pl                     | 5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 1.0 GHz      |
| arker       | - 1                |                           |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| M1 N1       | 1                  | X-value<br>771.79 MHz     | Y-value<br>-69.09 dBm       | Function         | Function Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sult              |

#### 5GHz - 10GHz

| Ref Level 10.00 dB         |                                  | RBW 100 kHz                |                                |                                      | `                        |
|----------------------------|----------------------------------|----------------------------|--------------------------------|--------------------------------------|--------------------------|
| Att 20 d                   | B 🖷 SWT 100 ms 📟                 | VBW 300 kHz                | Mode Auto Swee                 | p                                    |                          |
| DEK VIBW                   |                                  |                            | M1[1]                          |                                      | -64.94 dBn<br>6.93560 GH |
| 0 dBm                      |                                  |                            | 1                              | 1 1                                  |                          |
| -10 dBm                    |                                  |                            |                                |                                      |                          |
| -20 dBm                    |                                  |                            |                                |                                      |                          |
| -30 dBm D1 -26.94          | dBm                              |                            |                                |                                      |                          |
| -40 dBm                    |                                  |                            |                                |                                      |                          |
| -50 dBm                    |                                  |                            |                                |                                      |                          |
| -60 dBm                    |                                  | MI                         |                                |                                      |                          |
| BORDER MARINE              | a watalatina analaladi maahallaw | white districtly share the | ilinuition or the best for the | ويغل معاطعة ويحمد ومعاطعة والمستعطعا | and and a manufacture    |
| -90 dBm                    |                                  |                            |                                |                                      |                          |
| Start 5.0 GHz              |                                  | 1001 p                     | ts                             |                                      | Stop 10.0 GHz            |
| Marker<br>Type   Ref   Trc | X-value                          | Y-value                    | Function                       | Function R                           | locult                   |
| M1 1                       | 6.9356 GHz                       | -64.94 dBm                 | Function                       | Function R                           | esuit                    |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Att                      | vel 10.0    |           | SWT       |              | RBW 100 kHz<br>VBW 300 kHz | Mode      | Auto Swee | 20                         |                        |                 |
|--------------------------|-------------|-----------|-----------|--------------|----------------------------|-----------|-----------|----------------------------|------------------------|-----------------|
| 1Pk Vie                  | w           |           |           |              |                            |           |           |                            |                        |                 |
|                          |             |           |           |              |                            | 1         | 42[1]     |                            |                        | 66.79 dB        |
| 0 dBm—                   |             |           |           |              |                            |           |           |                            | 4.                     | 65030 CI        |
| o obiii                  |             |           |           | M1           |                            |           | M1[1]     |                            |                        | -6.94 dB        |
| -10 dBm-                 |             |           |           | Ť            |                            |           | í.        | 1                          | Z.                     | 44060 G         |
| -TO ODITI-               |             |           |           |              |                            |           |           |                            |                        |                 |
| -20 dBm-                 |             |           |           |              |                            |           |           |                            |                        |                 |
| all durin                |             |           |           |              |                            |           |           |                            |                        |                 |
| -30 dBm-                 | D1 -2       | 6.940     | dBm-      |              |                            |           |           |                            |                        |                 |
| oo aam                   |             |           |           |              |                            |           |           |                            |                        |                 |
| -40 dBm-                 | _           |           |           |              |                            |           | _         |                            |                        |                 |
|                          |             |           |           |              |                            |           |           |                            |                        |                 |
| -50 dBm-                 | _           |           |           | _            | _                          |           |           |                            |                        |                 |
|                          |             |           |           |              |                            |           |           |                            |                        |                 |
| -60 dBm-                 | _           |           |           |              | _                          |           | _         |                            |                        |                 |
|                          |             |           |           |              |                            |           |           |                            |                        | M2              |
| 70 dBm                   |             | di na i   |           | when they we | anti-atomakon ikan olar    | anadatati | househow  | فيدادنها والدانية والمتحدث | landistan a conference | A Wallson Josep |
| in all the second second | nandrandhai | helandors | Wheelshin | Antender     |                            |           |           | ~                          |                        |                 |
| -80 dBm-                 | _           |           |           |              |                            |           |           | _                          |                        |                 |
|                          |             |           |           |              |                            |           |           |                            |                        |                 |
| Start 1.                 | D CH2       |           |           |              | 1001                       | nte       |           |                            | Qt /                   | p 5.0 GH        |
| larker                   | o an ic     | _         |           |              | 1001                       | pes       |           |                            |                        | p ole all       |
|                          | Ref   Tro   | - 1       | X-val     |              | Y-value                    | Eur       | ction     | Eun                        | ction Result           |                 |
| M1                       |             | 1         |           | 406 GHz      | -6.94 dB                   |           | celon     | 1 dil                      | celon result           |                 |
| M2                       |             | 1         |           | 503 GHz      | -66.79 dB                  |           |           |                            |                        |                 |

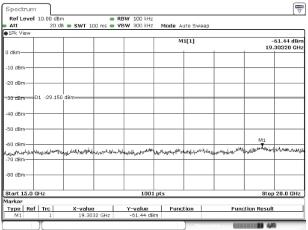
#### 10GHz - 15GHz

| 1Pk View       |             |                     |                                | M1[1]                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -64.37 dB     |
|----------------|-------------|---------------------|--------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                |             |                     |                                | witil                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.90760 GH   |
| ) dBm          |             |                     |                                |                                     | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 10 dBm         |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 20 dBm         |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 30 dBm D       | 1 -26.940   | dBm                 |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| +0 dBm         |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 50 dBm         |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 50 dBm         |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                |             |                     |                                |                                     | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1.1         |
| 98-10-10 March | When a flat | angener washing and | warner while the second of the | or the work of the first started by | a free and de the provide a state of the sta | new hours     |
|                |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 90 dBm         |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| tart 10.0 G    | Hz          |                     | 1001 p                         | ts                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 15.0 GHz |
| arker          |             |                     |                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Type   Ref     | Trc         | X-value             | Y-value                        | Function                            | Function Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sult          |

#### 20GHz - 25GHz

| Att 20 dB SWT 100 ms VBW 300 kHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spectrum |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|
| 1Pk View         M1[1]         -62.10 d           0 dBm         20.34720 i           -10 dBm         20.34720 i           -10 dBm         20.34720 i           -20 dBm         20.34720 i           -20 dBm         20.34720 i           -30 dBm         20.34720 i           -40 dBm         20.34720 i           -50 dBm         20.34720 i           -60 dBm         20.34720 i           -70 dBm         20.34720 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                     | RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | to Ewoon      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| 0 dBm 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34720 1 20.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 20 U          |                     | 5 - VBW 500 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MODE AU                        | to Sweep      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1                             | [1]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 62.19 dBn<br>34720 GH |
| 20 dBm<br>01 -26.940 /Bm<br>40 dBm<br>50 dBm | J dBm    |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| -30 dBm01 -26.040 dBm<br>-40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -10 dBm  |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| 30 dBm<br>40 dBm<br>50 dBm<br>60 dBM<br>40mp-vertiss-เมลงส์สนุกระศ.เมลงส์หนูกระศ.เมลาในการปละการปละไปหนูกระโลกไปและการการปละปฏะประการการปละปฏะประการปละปฏะประการ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 dBm   |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| 50 ปีชา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -30 dBm  | 01 -26.940    | dBm                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| 60 <u>ระทั่งวิ</u><br>ปะการศึกลี<br>70 ธัยการแกรดระสมสัสกรรรมสาร์แกรดระสมสาร์แกรดสารการสมกรรมสารการการการการการการการการการการการการกา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 dBm   |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -50 dBm  |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -60 dBm  | ~             | 10 10               | de la deba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. 17 1. 17                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 5                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -70 dBm  | nywatekejejek | alethere for states | Man Bally of Parally provided in the second s | angereter and the state of the | the been when | har and a state of the second s | liedpacy-bland | han all here and      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| Start 20.0 GHz 1001 pts Stop 25.0 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Hz            |                     | 100:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 pts                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stop           | 25.0 GHz              |
| larkor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |               |                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                       |
| Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         20.3472 GHz         -62.19 dBm         -62.19 dBm <td< td=""><td></td><td></td><td></td><td></td><td></td><td>ion</td><td>Fund</td><td>tion Result</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | ion           | Fund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Result    |                       |




#### [BT\_LE (LongRange S2)] Channel: High 30MHz - 1GHz

| Ret Level              | 10.00 dBr           | n                                    | RBW 100 kHz                      | Mode Auto Swee         |                           |                          |
|------------------------|---------------------|--------------------------------------|----------------------------------|------------------------|---------------------------|--------------------------|
| 1Pk View               | 20 0                | 5 • 5 • 100 ms •                     | VDW 300 KHZ                      | MODE AUTO SWEE         | έþ                        |                          |
| ) dBm                  |                     |                                      |                                  | M1[1]                  | 5 7                       | -69.48 dBn<br>925.870 MH |
| UBIII                  |                     |                                      |                                  |                        |                           |                          |
| 10 dBm                 |                     |                                      |                                  |                        |                           |                          |
| 20 dBm                 |                     |                                      |                                  |                        |                           |                          |
| 30 dBm 0               | 1 -29.150           | ) dBm                                |                                  |                        |                           |                          |
| 40 dBm                 |                     |                                      |                                  |                        |                           |                          |
| 50 dBm-                |                     |                                      |                                  |                        |                           |                          |
| 60 dBm                 |                     |                                      |                                  |                        |                           |                          |
| 70 dBm                 |                     |                                      |                                  |                        |                           | M1<br>Y                  |
| n Hi-muhlini<br>90 dBm | entrelle-austrelle- | hereiniketterijolovaatsallaatsusyiks | bendetedad-ghebraholdskilleforme | ulkardingelandigheiden | d-alistikenspetertikerson | hannen hannen halve      |
| JU UBIII               |                     |                                      |                                  |                        |                           |                          |
| Start 30.0 M           | Hz                  |                                      | 1001 pl                          | 5                      |                           | Stop 1.0 GHz             |
| larker                 |                     |                                      |                                  |                        |                           |                          |
| M1 N1                  | 1                   | 925.87 MHz                           | -69.48 dBm                       | Function               | Function R                | esuit                    |

#### 5GHz - 10GHz

|                           |                               |                    | M1[1]               |                                    | -64.60 dBr<br>6.39610 CH |
|---------------------------|-------------------------------|--------------------|---------------------|------------------------------------|--------------------------|
| dBm                       |                               |                    |                     |                                    |                          |
| 10 dBm                    |                               |                    |                     |                                    |                          |
| 20 dBm                    |                               |                    |                     |                                    |                          |
| 30 dBm D1 -29.1           | 50 dBm                        |                    |                     |                                    |                          |
| 40 dBm                    |                               |                    |                     |                                    |                          |
| 50 dBm                    |                               |                    |                     |                                    |                          |
| 60 dBm                    | M1                            |                    |                     |                                    |                          |
| Hereletter and the party  | performante and and the offer | all and a show and | werkennedterharturg | way with here with the surfleering | معالموارج ومحطك الغريسين |
| 90 dBm                    |                               |                    |                     |                                    |                          |
| start 5.0 GHz             |                               | 1001 p             | ts                  |                                    | Stop 10.0 GHz            |
| arker<br>Type   Ref   Trc | X-value                       | Y-value            | Function            | Function Re                        |                          |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

|                 | vel 10.00 |          |               |                 |          | 100 kHz                  |              |              |                                                                                                                |              |                |
|-----------------|-----------|----------|---------------|-----------------|----------|--------------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------|--------------|----------------|
| Att<br>1Pk Vier |           | 20 dB 🖷  | SWT 1         | 30 ms 🖷         | VBW      | 300 kHz                  | Mode A       | uto Swee     | ρ                                                                                                              |              |                |
| TEK AIG         |           |          |               |                 |          |                          | M            | 2[1]         |                                                                                                                |              | -66.45 dB      |
|                 |           |          |               |                 |          |                          |              |              |                                                                                                                | 4            | 79420 G        |
| 0 dBm—          | _         |          |               |                 |          |                          | M            | 1[1]         |                                                                                                                |              | -9.15 dB       |
|                 |           |          |               | M               | 1        |                          |              |              |                                                                                                                | 2            | .48050 G       |
| -10 dBm-        |           |          |               |                 | -        |                          |              |              |                                                                                                                |              |                |
| -20 dBm-        |           |          |               |                 |          |                          |              |              |                                                                                                                |              |                |
| -20 ubrii-      |           |          |               |                 |          |                          |              |              |                                                                                                                |              |                |
| -30 dBm-        | D1 -29    | 0.150 dB | m             |                 |          |                          |              |              |                                                                                                                |              |                |
| oo aam          |           |          |               |                 |          |                          |              |              |                                                                                                                |              |                |
| 40 dBm-         | _         |          |               |                 | _        |                          |              |              |                                                                                                                |              |                |
|                 |           |          |               |                 |          |                          |              |              |                                                                                                                |              |                |
| -50 dBm-        | _         |          |               |                 | -        |                          |              |              | _                                                                                                              |              |                |
|                 |           |          |               |                 |          |                          |              |              |                                                                                                                |              |                |
| -60 dBm-        |           |          |               |                 | -        |                          |              |              | -                                                                                                              |              | M2             |
|                 |           |          |               |                 |          |                          |              | 1.5. 8       | and a stiller at                                                                                               | and had      | henter         |
| A-MAANY         | AM Month  | mound    | hout the Part | allowed and the | Pollogen | restricted in the second | and maintain | Post & Barry | مهرو خالفان والمحصور والمعالية والمعالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية | Marker       | AND COLOR OF A |
|                 |           | · ·      |               |                 |          |                          |              |              |                                                                                                                |              |                |
| -80 dBm-        |           |          |               |                 |          |                          |              |              |                                                                                                                |              |                |
| Start 1.        | ) GHz     |          |               |                 |          | 1001                     | ots          |              |                                                                                                                | Ste          | op 5.0 GH      |
| larker          |           |          |               |                 |          |                          |              |              |                                                                                                                |              |                |
| Type            | Ref   Trc | 1        | X-value       | . 1             | Y        | -value                   | Fund         | tion         | Fun                                                                                                            | ction Result | t              |
| M1              | 1         |          | 2.48          | 05 GHz          |          | -9.15 dBm                |              |              |                                                                                                                |              |                |
| M2              | 1         |          | 4.79          | 42 GHz          |          | -66.45 dBm               | n            |              |                                                                                                                |              |                |

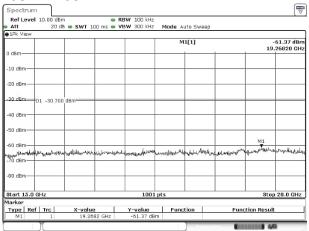
#### 10GHz - 15GHz

| Ref Level 10.00 dBm<br>Att 20 dB • SWT 100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> <li>Mode Auto</li> </ul> | 5weep                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1[:                                                                    | 1] -63.75 dB<br>14.91760 Gi                                                                                     |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                                 |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                 |
| 10 08/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                                 |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                                                                                                                 |
| 30 dBm D1 -29.150 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                                 |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                 |
| -+0 GBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                 |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                                                                                                                 |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                 |
| hour deven for all have been and an and a for the second | may be when the second share build the public source                    | decontrolling and a spectrum and a manual of the second second second second second second second second second |
| , o della                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                                                 |
| -80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |                                                                                                                 |
| Start 10.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1001 pts                                                                | Stop 15.0 GH                                                                                                    |
| larker<br>Type   Ref   Trc   X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y-value Functio                                                         | n Function Result                                                                                               |
| M1 1 14.9176 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         | in Function Result                                                                                              |

#### 20GHz - 25GHz

| Spectrum           |                                |                |                                  |                        | [1                                   |
|--------------------|--------------------------------|----------------|----------------------------------|------------------------|--------------------------------------|
| Ref Level 10.00 dB | m - F<br>B - SWT 100 ms - V    | BW 100 kHz     | Mode Auto Sweep                  |                        |                                      |
| 1Pk View           | 10 - SWI 100 ms - V            | BW 300 KH2     | MODE AUTO Sweep                  |                        |                                      |
|                    |                                |                | M1[1]                            | 6 6                    | -62.24 di<br>20.27720 G              |
| 0 dBm              |                                |                |                                  |                        |                                      |
| -10 dBm            |                                |                |                                  |                        |                                      |
| -20 dBm            |                                |                |                                  |                        |                                      |
| -30 dBm D1 -29.15  | 0 dBm                          |                |                                  |                        |                                      |
| -40 dBm            |                                |                |                                  |                        |                                      |
| -50 dBm            |                                |                |                                  |                        |                                      |
| -60 den            |                                |                | 10 1 40 1 10 1 4 1               |                        |                                      |
| -70 dBm            | noridhidanosily. Advited and a | L-RANGERINGS - | verselynalther thomas laver they | veral and a subsection | Manylacipalistiken französiglerskäri |
| -90 dBm            |                                |                |                                  |                        |                                      |
| Start 20.0 GHz     |                                | 1001 p         | ts                               |                        | Stop 25.0 GF                         |
| larker             |                                |                | 1                                |                        |                                      |
| Type Ref Trc       | X-value<br>20.2772 GHz         | -62.24 dBm     | Function                         | Func                   | tion Result                          |
| M1 1               | 20.2772 GHz                    | -62.24 dBm     | At prove (                       |                        | 4,44                                 |




#### [BT\_LE (LongRange S8)] Channel: Low 30MHz - 1GHz

|                     | 10.00 dBr           |                                              | RBW 100 kHz                   |                              |                                           |                          |
|---------------------|---------------------|----------------------------------------------|-------------------------------|------------------------------|-------------------------------------------|--------------------------|
| Att                 | 20 d                | 8 🖷 SWT 100 ms 🖷                             | VBW 300 kHz                   | Mode Auto Swee               | p                                         |                          |
| 1Pk View            |                     |                                              |                               | M1[1]                        |                                           | -68.70 dBr<br>977.230 MH |
| dBm-                |                     |                                              |                               |                              |                                           |                          |
| 10 dBm              |                     |                                              |                               |                              |                                           |                          |
| 20 dBm              |                     |                                              |                               |                              |                                           |                          |
| 30 dBm              | 01 -30.700          | ) dBm                                        |                               |                              |                                           |                          |
| +0 dBm              |                     |                                              |                               |                              |                                           |                          |
| 50 dBm-             |                     |                                              |                               |                              |                                           |                          |
| 0 dBm               |                     |                                              |                               |                              |                                           |                          |
|                     |                     |                                              |                               |                              |                                           | MI                       |
| 10 dBm              | dun her fish in the | alliel with the second started at the second | nanhaanan 1641 hinten jalaraa | howard warder with the shall | and the second state of the second second | noundlinework            |
| 90 dBm              |                     |                                              |                               |                              |                                           |                          |
| tart 30.0 M         | đHz                 |                                              | 1001 pt                       | s                            |                                           | Stop 1.0 GHz             |
| arker<br>Type   Ref | Trc                 | X-value                                      | Y-value                       | Function                     | Function Re                               | cult                     |
|                     |                     | A VOIDE                                      | -68.70 dBm                    | runction                     | r unction Re                              | suit                     |

#### 5GHz - 10GHz

|                                     | n<br>B 🖷 SWT 100 ms 🖷                                                                                            | RBW 100 kHz<br>VBW 300 kHz | Mode Auto Swee               | p                                     |                          |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|---------------------------------------|--------------------------|
| 1Pk View                            |                                                                                                                  |                            | M1[1]                        |                                       | -64.34 dBn<br>6.75570 CH |
| 0 dBm                               |                                                                                                                  |                            |                              | 1 1                                   | 6.75570 GH               |
| -10 dBm                             |                                                                                                                  |                            |                              |                                       |                          |
| -20 dBm                             |                                                                                                                  |                            |                              |                                       |                          |
| -30 dBm                             | ) dBm                                                                                                            |                            |                              |                                       |                          |
| -40 dBm                             |                                                                                                                  |                            |                              |                                       |                          |
| -50 dBm                             |                                                                                                                  |                            |                              |                                       |                          |
| -60 dBm                             | Mi                                                                                                               | _                          |                              |                                       |                          |
| -years and the second states of the | where a state and the second states of the second | M. Hould serve have        | were, and the strated of the | where which the selling of the second | inspiratellinetal        |
| -80 dBm                             |                                                                                                                  |                            |                              |                                       |                          |
| Start 5.0 GHz                       |                                                                                                                  | 1001 p                     | ts                           |                                       | Stop 10.0 GHz            |
| Marker<br>Type   Ref   Trc          | X-value                                                                                                          | Y-value                    | Function                     | Function Re                           |                          |
| Type Ref Trc<br>M1 1                | 6.7557 GHz                                                                                                       | -64.34 dBm                 | Function                     | Function Re                           | suit                     |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Ref Le   | vel : | LO.00 dBr    |              | 100 ms •    | RBW 100 k      |         | lodo i  | uto Cuion       |                |                |                       |
|----------|-------|--------------|--------------|-------------|----------------|---------|---------|-----------------|----------------|----------------|-----------------------|
| 1Pk Vie  | 9W    | 20 U         | D - SWI      | 100 ms 📟    | VDW 300 F      | In 2 In | IOOE A  | uto Swee        | p              |                |                       |
| -        |       |              |              |             |                |         | M       | 2[1]            |                |                | 67.01 dB              |
| 0 dBm—   |       |              |              |             |                |         |         |                 |                |                | .68630 G              |
| 5 6511   |       |              |              | M1          |                |         | м       | 1[1]            |                |                | -10.70 dE<br>.40060 G |
| -10 dBm  | _     |              |              | MI          |                |         |         |                 |                | 2              |                       |
|          |       |              |              |             |                |         |         |                 |                |                |                       |
| -20 dBm  | -     |              |              |             | -              | _       |         |                 | _              | -              | -                     |
|          |       |              |              |             |                |         |         |                 |                |                |                       |
| 30 dBm   | -D:   | 1 -30.700    | dBm          |             |                |         | _       |                 | _              |                |                       |
|          |       |              |              |             |                |         |         |                 |                |                |                       |
| 40 dBm   | -     |              |              |             |                | _       |         |                 | _              |                |                       |
| 50 dBm   |       |              |              |             |                |         |         |                 |                |                |                       |
| SU GBII  |       |              |              |             |                |         |         |                 |                |                |                       |
| -60 dBm  | _     |              |              |             | _              | _       |         |                 |                |                |                       |
|          |       |              |              |             |                |         |         |                 |                |                | M2                    |
| 70 dBm   |       | Luket als    | a the date   | ARCH & MUSH | appartment and | UNALIM  | apravel | - Market Market | evenineis/work | h which dramat | and so you            |
|          |       | abut we have | A ADDRESS OF |             | 1              | 1. 1    |         |                 | ~              |                |                       |
| 80 dBm   | -     |              |              |             |                | _       |         |                 | _              |                |                       |
|          |       |              |              |             |                |         |         |                 |                |                |                       |
| Start 1. | 0 GH  | z            |              |             | 10             | 001 pts |         |                 |                | Sto            | op 5.0 GH             |
| larker   |       |              |              |             |                |         |         |                 |                |                |                       |
| Type     | Ref   |              | X-va         |             | Y-valu         |         | Func    | tion            | Fun            | ction Result   | t                     |
| M1       |       | 1            |              | 4006 GHz    | -10.70         |         |         |                 |                |                |                       |
| M2       |       | 1            | 4.           | 6863 GHz    | -67.01         | . aem   |         |                 |                |                |                       |

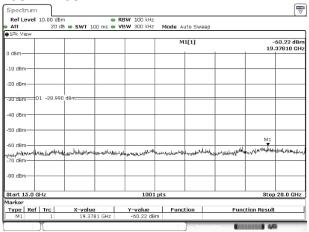
#### 10GHz - 15GHz

| Spectrun            |                 |                      |                  |                            |              |         |                                  |               |                       |
|---------------------|-----------------|----------------------|------------------|----------------------------|--------------|---------|----------------------------------|---------------|-----------------------|
| Ref Leve            | 1 10.00 dBr     |                      |                  | RBW 100 kHz<br>VBW 300 kHz | Mode Au      | to Ewor |                                  |               |                       |
| 1Pk View            | 20 0            | 9 - 9 WI 1           | Ju ins 🖝         | VDW 300 KHZ                | HUUP AL      | to swee | P                                |               |                       |
| 0 d8m               |                 |                      |                  |                            | M            | [1]     | 1                                |               | 64.44 dBr<br>96750 CH |
| U UBIII             |                 |                      |                  |                            |              |         |                                  |               |                       |
| -10 dBm             |                 |                      |                  |                            |              |         | _                                |               |                       |
| -20 dBm             |                 |                      |                  | _                          |              |         | _                                |               |                       |
| -30 dBm             | D1 -30.700      | dBm                  |                  |                            |              |         |                                  |               |                       |
| -40 dBm             |                 |                      |                  |                            |              |         |                                  |               |                       |
| -50 dBm-            |                 |                      |                  |                            |              |         |                                  |               |                       |
| -60 dBm             |                 |                      |                  |                            |              |         | _                                |               |                       |
| -70 dBm             | gradenal adjust | ondenskanski, Assold | -markalane given | boom/bachternapue          | urhhrubyhnur | ymrudha | alilety and a real of the second | timiterrecept | Humanshahuhuh         |
| -90 dBm             |                 |                      |                  |                            |              |         |                                  |               |                       |
| Start 10.0          | GHz             |                      |                  | 1001                       | pts          |         |                                  | Stop          | 15.0 GHz              |
| larker<br>Type   Re | f   Trc         | X-value              | - 1              | Y-value                    | Funct        | ion     | Eun                              | ction Result  |                       |
| M1                  | 1               |                      | 75 GHz           | -64.44 dB                  |              | -       |                                  |               |                       |
|                     |                 |                      |                  |                            |              | 50 m m  |                                  |               | 2                     |

#### 20GHz - 25GHz

| Spectrum               |                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
|------------------------|-------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| Ref Level 10.00<br>Att |                                                 | RBW 100 kHz<br>ms VBW 300 kHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| 1Pk View               | 5 UB - SWI 100                                  | THIS W YOW SOU KHZ            | MODE AUTO SWEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,             |                                                                                                                 |
|                        |                                                 |                               | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <i>2</i>   | -62.83 dBn<br>20.01750 GH                                                                                       |
| ) dBm                  |                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| 10 dBm                 |                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| 20 dBm                 |                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| 30 dBm D1 -30          | 1.700 dBm                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| 40 dBm                 |                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| 50 dBm                 |                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| 60 dBm                 | 2. 7                                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 510 - 45 - 62                                                                                                   |
| 70 dBm                 | เป็นแหล่งหลังสู่หลังสู่หลังสู่หลังสู่ไม่สุดที่ไ | Mannoblachalyinginorth        | and the second s | usilikansensi | used the property of the second se |
| 00 dBm                 |                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                 |
| Start 20.0 GHz         |                                                 | 1001                          | pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Stop 25.0 GHz                                                                                                   |
| larker                 |                                                 | 1                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | -                                                                                                               |
| Type Ref Trc<br>M1 1   |                                                 | Y-value<br>GHz -62.83 dB      | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Function      | Result                                                                                                          |




#### [BT\_LE (LongRange S8)] Channel: Middle 30MHz - 1GHz

|                     | 10.00 dBr           |                                           | RBW 100 kHz                   |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|---------------------|-------------------------------------------|-------------------------------|----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Att<br>1Pk View     | 20 d                | B 🖶 SWT 100 ms 🖷                          | VBW 300 KHz                   | Mode Auto Swee       | 2p                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| dBm                 |                     |                                           |                               | M1[1]                | 9 P                              | -69.20 dBr<br>923.930 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| dbiii               |                     |                                           |                               |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .0 dBm              |                     |                                           |                               |                      | _                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20 dBm              |                     |                                           |                               |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| o dem D             | 1 -28.99(           | ) dBm                                     |                               |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 dBm               |                     |                                           |                               |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| i0 dBm              |                     |                                           |                               |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 dBm               |                     |                                           |                               |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 dBm               |                     |                                           |                               |                      |                                  | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WWWWWWWWW           | and a second second | าดสูปหนังรู้ปนุณหมัดสาวมุรสไปหล่างสู่และ- | rtrhaticaethdowithattenedical | AUNU-WARDAN PLANGTER | angelligeterreturgerer/livedberu | and he and the second |
| U GBM               |                     |                                           |                               |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| tart 30.0 M         | Hz                  | 1                                         | 1001 p                        | 5                    |                                  | Stop 1.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| arker<br>Type   Ref | Teo                 | X-value                                   | Y-value                       | Function             | Function R                       | locult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| M1 M1               | 1                   | 923.93 MHz                                | -69.20 dBm                    | Function             | Function R                       | esuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 5GHz - 10GHz

| Ref Level 10.00 dB           Att         20 (           1Pk View | 18 🖷 SWT 100 ms 🖷                           | RBW 100 kHz<br>VBW 300 kHz | Mode Auto Sweep  | p                             |                          |
|------------------------------------------------------------------|---------------------------------------------|----------------------------|------------------|-------------------------------|--------------------------|
|                                                                  |                                             |                            | M1[1]            |                               | -64.17 dBr<br>6.71080 GH |
| 0 dBm                                                            |                                             |                            |                  |                               |                          |
| -10 dBm                                                          |                                             |                            |                  |                               |                          |
| -20 dBm                                                          |                                             |                            |                  |                               |                          |
| 30 dBm D1 -28.99                                                 | 0 dBm=====                                  |                            |                  |                               |                          |
| 40 dBm                                                           |                                             |                            |                  |                               |                          |
| -50 dBm                                                          |                                             |                            |                  |                               |                          |
| 60 dBm                                                           | MI                                          |                            |                  |                               |                          |
| Worlden Man Ultraterston                                         | here with the set with the polyter term was | way for the shad           | unneder Hubacime | way an interest of the second | Ubracklerienal to autoba |
| -90 dBm                                                          |                                             |                            |                  |                               |                          |
| Start 5.0 GHz                                                    |                                             | 1001 p                     | ts               |                               | Stop 10.0 GHz            |
| larker<br>Type   Ref   Trc                                       | X-value                                     | Y-value                    | Function         | Function R                    | locult                   |
| M1 1                                                             | 6.7108 GHz                                  | -64.17 dBm                 | Function         | Function                      | esuit                    |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Ref Lev        | el 10.00 d | Bm                            |           | RBW 100 kHz                    |              |                  |      |              |               |
|----------------|------------|-------------------------------|-----------|--------------------------------|--------------|------------------|------|--------------|---------------|
| Att            | 20         | dB . SWT 10                   | 0 ms 🖷    | VBW 300 kHz                    | Mode A       | uto Swee         | ep : |              |               |
| 1Pk View       |            |                               |           |                                |              |                  |      |              |               |
|                |            |                               |           |                                | M            | 2[1]             |      |              | 66.45 dB      |
| 0 dBm          |            |                               |           |                                |              |                  |      |              | 68630 CI      |
| 0 0Bm-         |            |                               | M1        |                                | M            | 1[1]             |      |              | -8.99 dB      |
|                |            |                               | T NIL     |                                |              | í.               |      | 2.           | 44060 GI      |
| -10 dBm—       |            |                               |           |                                |              |                  |      |              |               |
| 00 JD          |            |                               |           |                                |              |                  |      |              |               |
| -20 dBm-       |            |                               |           |                                |              |                  |      |              |               |
|                | D1 -28.9   | 00 d0m                        |           |                                |              |                  |      |              |               |
| -30 dBm-       | -DI -20.9  | 90 ubm                        |           |                                |              |                  |      |              |               |
| -40 dBm-       |            |                               |           |                                |              |                  |      |              |               |
| -+0 CBm-       |            |                               |           |                                |              |                  |      |              |               |
| -50 dBm-       |            |                               |           |                                |              |                  |      |              |               |
| -30 GBIII-     |            |                               |           |                                |              |                  |      |              |               |
| -60 dBm-       |            |                               |           |                                |              |                  |      |              |               |
| -00 GBIII-     |            |                               |           |                                |              |                  |      |              | M2            |
| 70 dBm         |            |                               |           | underson and the second second |              | and a linda of a |      | bardastaille | melioppinites |
| abran material | Humbert    | pitte a pitte a state perform | of PTINUM | no ha na ann an an an an       | (Deno-entre- | dida di an       |      |              |               |
| -80 dBm-       |            |                               |           |                                |              |                  |      |              |               |
| 00 0011        |            |                               |           |                                |              |                  |      |              |               |
|                |            |                               |           |                                |              |                  |      |              |               |
| Start 1.0      | GHz        |                               |           | 1001 p                         | ts           |                  |      | Sto          | p 5.0 GH      |
| larker         |            |                               |           |                                |              |                  |      |              |               |
| Type R         |            | X-value                       |           | Y-value                        | Fund         | tion             | Fund | tion Result  |               |
| M1<br>M2       | 1          |                               | 36 GHz    | -8.99 dBm<br>-66.45 dBm        |              |                  |      |              |               |
| 14/2           | 1          | 4.08                          | 10 GHZ    | -00.45 OBM                     |              |                  |      |              |               |

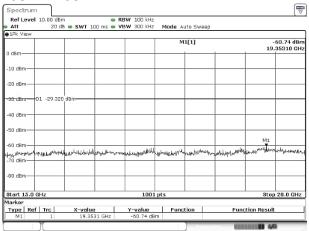
#### 10GHz - 15GHz

| a e swr 100 ms e                         | RBW 100 kHz<br>VBW 300 kHz            | Mode Auto Sweep            |                                                                                            |                                                          |
|------------------------------------------|---------------------------------------|----------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 5 • 3W1 100 ms •                         | TOR SOO KIL                           | Hude Auto Sweet            |                                                                                            |                                                          |
|                                          |                                       |                            |                                                                                            |                                                          |
|                                          |                                       | M1[1]                      | a a                                                                                        | -63.87 dBr<br>14.62290 GH                                |
|                                          |                                       |                            |                                                                                            |                                                          |
|                                          |                                       |                            |                                                                                            |                                                          |
| dBm                                      |                                       |                            |                                                                                            |                                                          |
| usm                                      |                                       |                            |                                                                                            |                                                          |
|                                          |                                       |                            |                                                                                            |                                                          |
|                                          |                                       |                            |                                                                                            |                                                          |
|                                          |                                       |                            |                                                                                            | Influence Munastres                                      |
| an a | eritestikustation, australiteitestika | an an interingenticitation | PUROTIVITY TO A SALAN                                                                      | shikani, fura ipraylar.                                  |
|                                          |                                       |                            |                                                                                            |                                                          |
|                                          | 1001 pl                               | 5                          |                                                                                            | Stop 15.0 GHz                                            |
| X-value                                  | Y-value                               | Function                   | Functio                                                                                    | on Result                                                |
| 14.6229 GHz                              | -63.87 dBm                            |                            |                                                                                            |                                                          |
|                                          | X-value                               | ດ                          | ອັດມູສະຊາເປລະໄຊແລະເຊດຈາກອາຊີແລະເປັນອາຊີແລະອາຊີ<br>1001 pts<br>X-volue   Y-volue   Function | ກາງກາງກາງສະດີແຫຼງກາງກາງກາງກາງກາງກາງກາງກາງກາງກາງກາງກາງກາງ |

#### 20GHz - 25GHz

| Spectrum                         |                                                                                                                 |                               |                        |                       | ( <del>**</del>            |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|-----------------------|----------------------------|
| Ref Level 10.00 dBm<br>Att 20 dB | • SWT 100 ms • 1                                                                                                | RBW 100 kHz                   | Mode Auto Sweer        |                       |                            |
| 1Pk View                         | • awi 100 ms • ·                                                                                                | BW 300 KHZ                    | House Yorn 2meet       | ,                     |                            |
|                                  |                                                                                                                 |                               | M1[1]                  |                       | -62.19 dBm<br>20.34720 GHz |
| 0 dBm                            |                                                                                                                 |                               |                        |                       |                            |
| -10 dBm                          |                                                                                                                 |                               |                        |                       |                            |
| -20 dBm                          |                                                                                                                 |                               |                        |                       |                            |
| -30 dBm D1 -28.990               | dBm                                                                                                             |                               |                        |                       |                            |
| -40 dBm                          |                                                                                                                 |                               |                        |                       |                            |
| -50 dBm                          |                                                                                                                 |                               |                        |                       |                            |
| -60 dBm                          | 101 at 164 1                                                                                                    | a                             | a 36                   |                       |                            |
| -70 dBm                          | energial frank of the providence of the second s | references the second and the | ilailyetinenenenenenen | way gave the opposite | hownerserver               |
| -80 dBm                          |                                                                                                                 |                               |                        |                       |                            |
| Start 20.0 GHz                   |                                                                                                                 | 1001 pt                       | 5                      |                       | Stop 25.0 GHz              |
| Marker<br>Type   Ref   Trc       | X-value                                                                                                         | Y-value                       | Function               | Euno                  | ion Result                 |
| M1 1                             | 20.3472 GHz                                                                                                     | -62.19 dBm                    | Function               | Funci                 | IUII NESUL                 |
|                                  |                                                                                                                 |                               | At a set               |                       | 111111 4 <b>3</b> 4        |




#### [BT\_LE (LongRange S8)] Channel: High 30MHz - 1GHz

| Ref Leve                  | 10.00 dB        | m 👄<br>18 🖷 SWT 100 ms 🖷                   | RBW 100 kHz              | Mode Auto Swee         |                                         |                          |
|---------------------------|-----------------|--------------------------------------------|--------------------------|------------------------|-----------------------------------------|--------------------------|
| 1Pk View                  | 200             |                                            | TOH SOO KIL              | HOLE AUTO DWEE         | P.                                      |                          |
| I dBm                     |                 |                                            |                          | M1[1]                  | 4                                       | -69.21 dBr<br>965.600 MH |
| GBIII                     |                 |                                            |                          |                        |                                         |                          |
| 10 dBm                    |                 |                                            |                          |                        |                                         |                          |
| 20 dBm                    |                 |                                            |                          |                        |                                         |                          |
| 30 dBm                    | D1 -29.32       | 0 dBm-                                     |                          |                        |                                         |                          |
| +0 dBm                    |                 |                                            |                          |                        |                                         |                          |
| 50 dBm-                   |                 |                                            |                          |                        |                                         |                          |
| 50 dBm-                   |                 |                                            |                          |                        |                                         |                          |
| 70 dBm                    |                 |                                            |                          |                        |                                         | M1                       |
| م الم الم الم الم الم الم | drantial/7m/4la | an Ineventional interestion of the section | rhoused-wildler-videdars | Chyladioliohaicerthilk | erer felfingene grin nes genoes an alle | สารเกิดสารคลายความ       |
| 90 dBm                    |                 |                                            |                          |                        |                                         |                          |
| tart 30.0                 | MHz             |                                            | 1001 pt                  | 5                      |                                         | Stop 1.0 GHz             |
| arker<br>Type   Re        | f Trc           | X-value                                    | Y-value                  | Function               | Function R                              | sult                     |
| M1                        | 1               | 965.6 MHz                                  | -69.21 dBm               | ranstion               | , unction M                             |                          |

#### 5GHz - 10GHz

| Ref Level 10.00 dBn     |                           | RBW 100 kHz     |                |                                   |                          |
|-------------------------|---------------------------|-----------------|----------------|-----------------------------------|--------------------------|
| Att 20 de<br>1Pk View   | 8 🖷 SWT 100 ms 🖷          | ARM 300 KHS     | Mode Auto Swee | p                                 |                          |
|                         |                           |                 | M1[1]          |                                   | -65.05 dBn<br>6.97050 GH |
| 0 dBm                   |                           |                 |                |                                   |                          |
| -10 dBm                 |                           |                 |                |                                   |                          |
| -20 dBm                 |                           |                 |                |                                   |                          |
| -30 dBm D1 -29.320      | dBm-                      |                 |                |                                   |                          |
| -40 dBm                 |                           |                 |                |                                   |                          |
| -50 dBm                 |                           |                 |                |                                   |                          |
| -60 dBm                 |                           | M               |                |                                   |                          |
| Mondern Manuar Jakustah | primerships of the second | Helindranterior | -              | a share in the second property is | nunutametiteritet        |
| -80 dBm                 |                           |                 |                |                                   |                          |
| Start 5.0 GHz           |                           | 1001 p          | ts             |                                   | Stop 10.0 GHz            |
| larker                  |                           |                 |                |                                   |                          |
| M1 1                    | X-value<br>6.9705 GHz     | -65.05 dBm      | Function       | Function R                        | esult                    |

#### 15GHz - 20GHz



#### 1GHz - 5GHz

| Att      | ver 1t | .00 dBr  | n<br>B 🖷 SWT 1    | 00 mc =       |       | # 100 kHz             | Mode         | uto Cuipor |                             |                           |                                         |
|----------|--------|----------|-------------------|---------------|-------|-----------------------|--------------|------------|-----------------------------|---------------------------|-----------------------------------------|
| 1Pk Vie  | w      | 20 u     | 5 <b>- 5</b> WI 1 | uu ms 🖷       | ٧D    | N 300 KH2             | MODE A       | uto Sweep  |                             |                           |                                         |
|          |        |          |                   | 1             |       |                       | M            | 2[1]       |                             |                           | 66.12 dB                                |
| 0 dBm—   |        |          |                   |               |       |                       |              |            |                             | 4.                        | 95800 GI                                |
| U UBIII- |        |          |                   | м             | 1     |                       | M            | 1[1]       |                             |                           | -9.32 dB                                |
| -10 dBm  | _      |          |                   |               | ŕ     |                       |              | -          | -                           | 2.                        | 48050 G                                 |
|          |        |          |                   |               |       |                       |              |            |                             |                           |                                         |
| -20 dBm  | _      |          |                   |               |       |                       |              |            |                             |                           |                                         |
| -30 dBm  | D1     | -29.320  | 1 dBm             |               |       |                       |              |            |                             |                           |                                         |
| 50 0011  | -      |          |                   |               |       |                       |              |            |                             |                           |                                         |
| 40 dBm   | _      |          |                   |               | -     |                       |              |            | _                           |                           |                                         |
| -50 dBm  |        |          |                   |               |       |                       |              |            |                             |                           |                                         |
| SU CEIT  |        |          |                   |               |       |                       |              |            |                             |                           |                                         |
| -60 dBm  | _      |          |                   |               |       |                       |              |            |                             |                           |                                         |
|          |        |          |                   |               |       |                       |              |            |                             |                           | - C - C - C - C - C - C - C - C - C - C |
| 70 dBm   | n      | ومروادية | Walk Marker and   | - Latter buch | Wnite | allow and the provide | Printeradory | butthe     | have a level and the second | distantine transfel likes | (U)WMMAN                                |
|          | 20 C   |          | ST - 25           |               |       |                       |              |            |                             |                           |                                         |
| -80 dBm  |        |          |                   |               |       |                       |              |            |                             |                           |                                         |
| Start 1. | 0 GHz  |          |                   |               |       | 1001                  | ots          |            |                             | Sto                       | p 5.0 GH                                |
| larker   |        |          |                   |               | _     |                       |              |            |                             |                           |                                         |
| Type     | Ref    | frc      | X-valu            | e             |       | Y-value               | Fund         | tion       | Fund                        | tion Result               |                                         |
| M1       |        | 1        |                   | 05 GHz        |       | -9.32 dBm             |              |            |                             |                           |                                         |
| M2       |        | 1        | 4.9               | 58 GHz        |       | -66.12 dBm            | 1            |            |                             |                           |                                         |

#### 10GHz - 15GHz

| 1Pk View             |                   |                                 |                             |                                  |                  |                              |
|----------------------|-------------------|---------------------------------|-----------------------------|----------------------------------|------------------|------------------------------|
|                      |                   |                                 |                             | M1[1]                            |                  | -64.26 dB                    |
| 0 dBm                |                   |                                 |                             | 1 1                              |                  | 10.64690 GF                  |
|                      |                   |                                 |                             |                                  |                  |                              |
| 10 dBm               |                   |                                 |                             |                                  |                  |                              |
| 20 dBm —             |                   |                                 |                             |                                  |                  |                              |
| 30 dBm               | D1 -29.320        | dBm                             |                             |                                  |                  |                              |
| 40 dBm               | · · · · · ·       |                                 |                             |                                  |                  |                              |
| 50 dBm-              |                   |                                 |                             |                                  |                  |                              |
| 60 dBm —             | M1                |                                 |                             |                                  |                  | . 26                         |
| 10 dBm               | patt basedersport | longebechik perjak bergi selamb | handeraletaletration itsite | hand whether a second figures of | MUNICHANGANACHAN | hadedan ann an allan hafrair |
| 90 dBm               |                   |                                 |                             |                                  |                  |                              |
| Start 10.0           | GHz               |                                 | 100                         | 1 pts                            |                  | Stop 15.0 GH                 |
| larker<br>Type   Rei | (I mark)          | X-value                         | 1                           | 1                                | 1 5              | iction Result                |
| M1 M1                | Trc               | 10.6469 GH                      | Y-value<br>1z -64.26 d      | Function                         | Fur              | iction Result                |

#### 20GHz - 25GHz

| Spectrum                   |                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | ( <del>"</del>                               |
|----------------------------|-------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Ref Level 10.00 dBr        | n<br>B <b>e SWT</b> 100 ms <b>e</b> | TOP IT 200 MILE         | Martin Line Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                                              |
| 1Pk View                   | b 🖷 SWI 100 ms 📟                    | VBW 300 KH2             | Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                              |
|                            |                                     |                         | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                | -62.29 dBr<br>20.33720 GH                    |
| 0 dBm                      |                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                              |
| -10 dBm                    |                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                              |
| -20 dBm                    |                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                              |
| 30 dBm D1 -29.320          | dBm                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                              |
| 40 dBm                     |                                     | _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                              |                                              |
| -50 dBm                    |                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                              |
| -60 dB/1                   |                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a shite a                                                                                                      | hivedgelakeerstersterstersterkelige          |
| -70 dBm                    | danna an Alfredder Annes anda       | hind a stallage and the | all the same of the source of | and a second | and service to a fair the association of the |
| -90 dBm                    |                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                              |
| Start 20.0 GHz             |                                     | 1001 p                  | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | Stop 25.0 GHz                                |
| larker<br>Type   Ref   Trc | X-value                             | Y-value                 | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eup                                                                                                            | ction Result                                 |
| M1 1                       | 20.3372 GHz                         | -62.29 dBm              | , and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Tune                                                                                                         | and the soft                                 |



#### 4.5 Spurious Emissions - Radiated -

#### 4.5.1 Measurement procedure

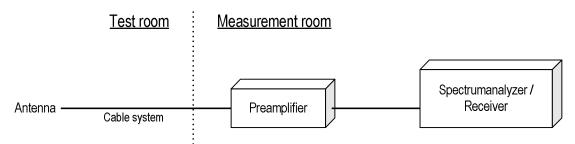
#### [FCC 15.247(d), 15.205, 15.209, KDB558074 D01 v05r02]

Test was applied by following conditions.

| Test method<br>Frequency range<br>Test place<br>EUT was placed on<br>Antenna distance                  | : | ANSI C63.10<br>9kHz to 25GHz<br>3m Semi-anechoic chamber<br>Styrofoam table / (W)1.0m × (D)0.8m × (H)0.8m (below 1GHz)<br>Styrofoam table / (W)0.6m × (D)0.6m ×(H)1.5m (above 1GHz)<br>3m                                                                      |
|--------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test receiver setting<br>- Detector<br>- Bandwidth<br>Spectrum analyzer setting<br>- Peak<br>- Average | : | Below 1GHz<br>Average (9kHz-90kHz, 110kHz-490kHz), Quasi-peak<br>200Hz, 120kHz<br>Above 1GHz<br>RBW=1MHz, VBW=3MHz, Span=0Hz, Sweep=auto<br>RBW=1MHz, VBW=3kHz (1Mbps), 10kHz (2Mbps),<br>1kHz (LongRange S2, S8), Span=0Hz, Sweep=auto<br>Display mode=Linear |

#### Average Measurement Setting [VBW]

| Mode                                | Duty Cycle<br>(%) | T <sub>on</sub><br>(us) | T <sub>off</sub><br>(us) | 1/T <sub>on</sub><br>(kHz) | Determined VBW Setting |
|-------------------------------------|-------------------|-------------------------|--------------------------|----------------------------|------------------------|
| Bluetooth 5.3 LE (1Mbps)            | 60.86             | 381                     | 245                      | 2.625                      | 3kHz                   |
| Bluetooth 5.3 LE (2Mbps)            | 31.36             | 196                     | 429                      | 5.102                      | 10kHz                  |
| Bluetooth 5.3 LE (Long<br>Range S2) | 56.44             | 1061                    | 819                      | 0.943                      | 1kHz                   |
| Bluetooth5.3 LE (Long<br>Range S8)  | 82.47             | 3101                    | 659                      | 0.322                      | 1kHz                   |


Although these tests were performed other than open area test site,

adequate comparison measurements were confirmed against 30 m open are test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.



- Test configuration



#### 4.5.2 Calculation method

[9kHz to 150kHz] Emission level = Reading + (Ant factor + Cable system loss) Margin = Limit – Emission level

[150kHz to 25GHz] Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain) Margin = Limit – Emission level

Example:

Limit @ 4804.0MHz: 74.0dBuV/m (Peak Limit) S.A Reading = 39.9dBuV Cable system loss = 8.3dB Result = 39.9 + 8.3 = 48.2dBuV/m Margin = 74.0 - 48.2 = 25.8dB

#### 4.5.3 Limit

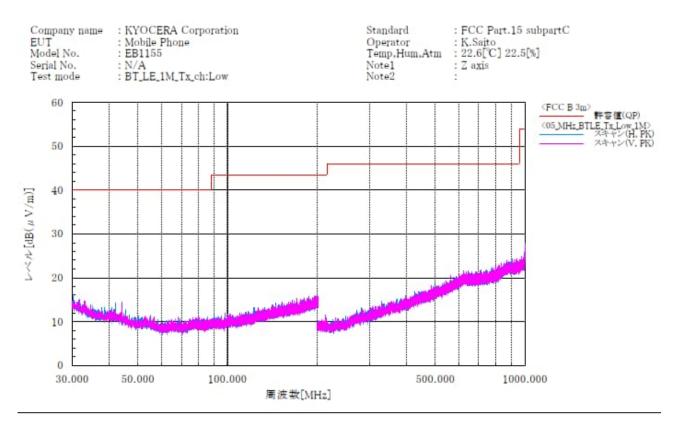
| Frequency   | Field s         | Distance      |     |  |
|-------------|-----------------|---------------|-----|--|
| [MHz]       | [uV/m]          | [dBuV/m]      | [m] |  |
| 0.009-0.490 | 2400 / F [kHz]  | 20logE [uV/m] | 300 |  |
| 0.490-1.705 | 24000 / F [kHz] | 20logE [uV/m] | 30  |  |
| 1.705-30    | 30              | 29.5          | 30  |  |
| 30-88       | 100             | 40.0          | 3   |  |
| 88-216      | 150             | 43.5          | 3   |  |
| 216-960     | 200             | 46.0          | 3   |  |
| Above 960   | 500             | 54.0          | 3   |  |

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level [dBuV/m] = 20log Emission [uV/m]

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition modulation.



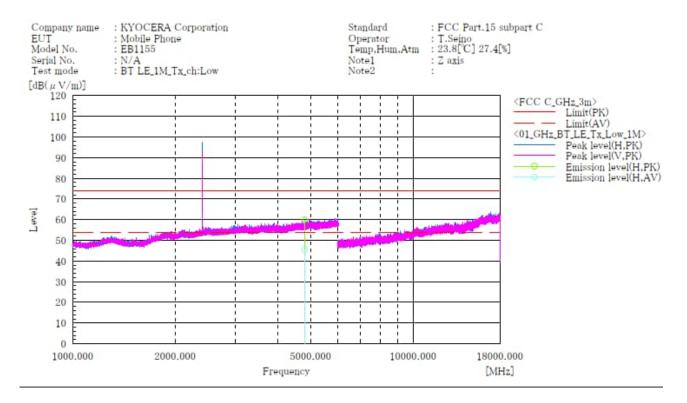

#### 4.5.4 Test data

| Date<br>Temperature<br>Humidity<br>Test place | <ol> <li>28~29-October-2022</li> <li>23.8 [°C]</li> <li>27.4 [%]</li> <li>3m Semi-anechoic chamber</li> </ol> | Test engineer : | Tadahiro Seino |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| Date<br>Temperature<br>Humidity<br>Test place | <ul> <li>29-October-2022</li> <li>23.2 [°C]</li> <li>29.4 [%]</li> <li>3m Semi-anechoic chamber</li> </ul>    | Test engineer : | Chiaki Kanno   |
| Date<br>Temperature<br>Humidity<br>Test place | <ul> <li>28-November-2022</li> <li>22.6 [°C]</li> <li>22.5 [%]</li> <li>3m Semi-anechoic chamber</li> </ul>   | Test engineer : | Kazunori Saito |
| Date<br>Temperature<br>Humidity<br>Test place | : 29-November-2022<br>: 22.5 [°C]<br>: 25.9 [%]<br>: 3m Semi-anechoic chamber                                 | Test engineer : | Kazunori Saito |



#### [Transmission mode] [BT\_LE (1Mbps)] Channel: Low BELOW 1 GHz




Final Result

Note:

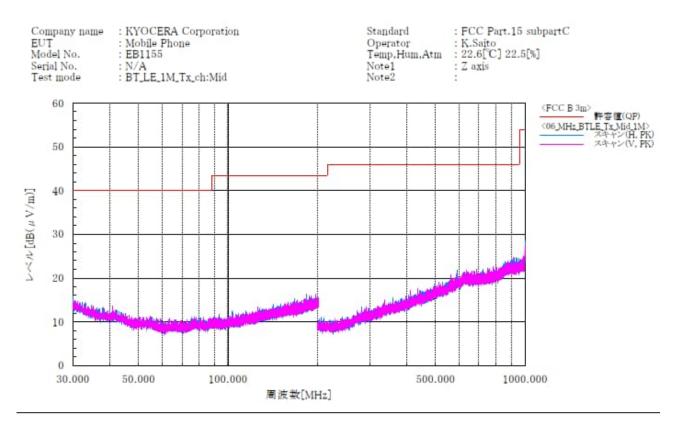
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (1Mbps)] Channel: Low ABOVE 1 GHz



Final Result

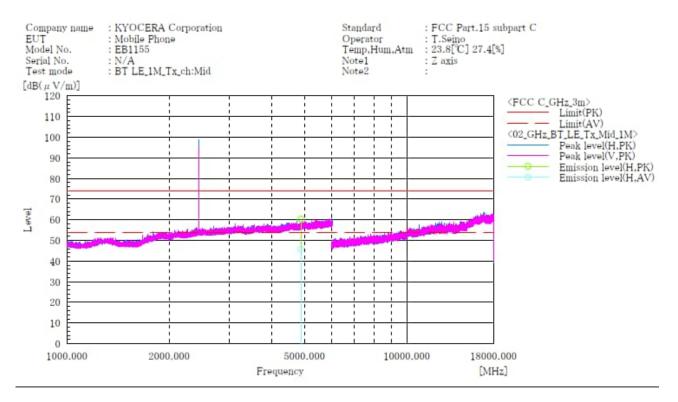

| No. | Frequency         | (p) | Reading          | Reading          | c.f               | Result             | Result                  | Limit              | Limit                    | Margin        | Mergin      | Height        | Angl* | Remark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|-------------------------|--------------------|--------------------------|---------------|-------------|---------------|-------|--------|
| 1   | [MHz]<br>4804.000 | H   | [dB(µV)]<br>49.9 | [dB(µV)]<br>35.4 | [dB(1/m)]<br>10.2 | [dB(µV/n)]<br>60.1 | $[dB(\mu V/m)]$<br>45.6 | [dB(µV/n)]<br>74.0 | AV<br>[dB(µV/m)]<br>54.0 | [dB]<br>13, 9 | [dB]<br>8,4 | [cm]<br>100,0 | 207.0 |        |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (1Mbps)] Channel: Middle BELOW 1 GHz



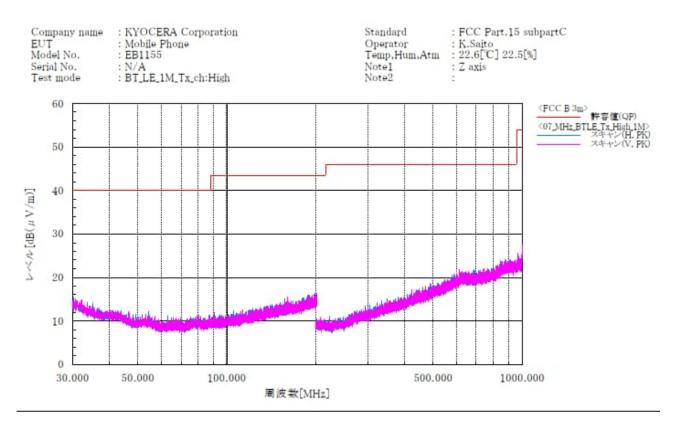

Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (1Mbps)] Channel: Middle ABOVE 1 GHz



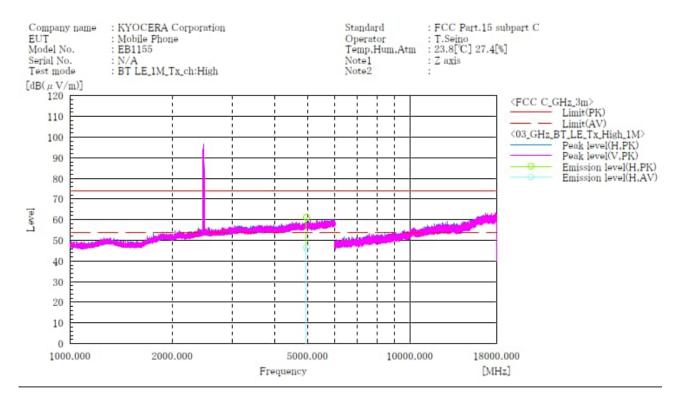

Final Result

| No. | Frequency         | (P) | Reading                | Reading                | c. 1              | Result                                              | Result                   | Limit                   | Linit                                   | Margin        | Margin            | Height        | Angle R | emark |
|-----|-------------------|-----|------------------------|------------------------|-------------------|-----------------------------------------------------|--------------------------|-------------------------|-----------------------------------------|---------------|-------------------|---------------|---------|-------|
| 1   | [MH:]<br>4880,000 | Н   | PK<br>[dB(µV)]<br>50,0 | AV<br>[dB(µV)]<br>35,4 | [dB(1/m)]<br>10.4 | $\begin{bmatrix} dB(\mu V/m) \\ 60.4 \end{bmatrix}$ | AV<br>[dB(μV/m)]<br>45.8 | $[dB(\mu V/n)]$<br>74.0 | Limit<br>AV<br>[dB( $\mu$ V/m)]<br>54.0 | [dB]<br>[3, 6 | AV<br>[dB]<br>8,2 | [cm]<br>100.0 | 203.0   |       |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



### [BT\_LE (1Mbps)] Channel: High BELOW 1 GHz




Final Result

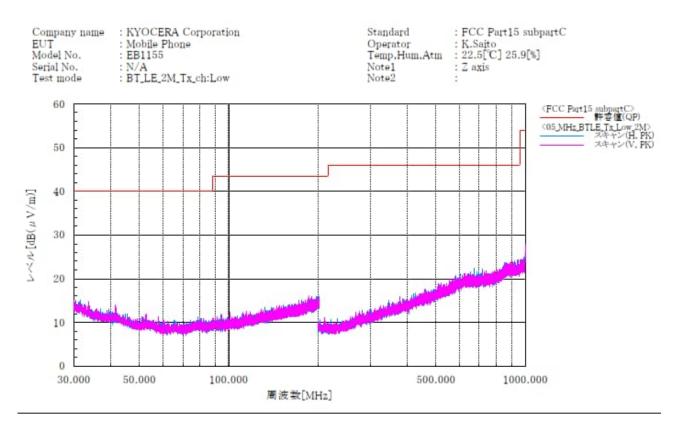
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (1Mbps)] Channel: High ABOVE 1 GHz



Final Result

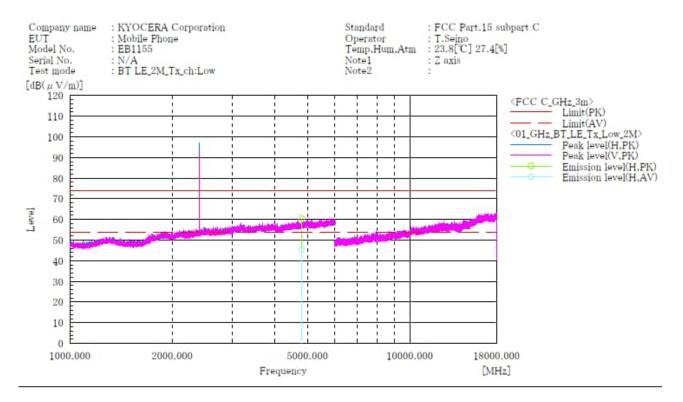

| No. | Frequency         | (P) | Reading          | Reading          | c. f              | Result             | Result             | Limit.<br>PK       | Limit                    | Mergin       | Mergin      | Height        | Angl# | Remark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------------|--------------|-------------|---------------|-------|--------|
| 1   | [MHz]<br>4960,000 | Н   | [dB(µV)]<br>50.2 | [dB(µV)]<br>35.4 | [dB(1/m)]<br>11.0 | [dB(µV/m)]<br>61.2 | [dB(µV/m)]<br>46.4 | [dB(µV/n)]<br>74.0 | AV<br>[dB(μV/m)]<br>54.0 | [4B]<br>12.8 | [dB]<br>7.6 | [cm]<br>119.0 | 206,0 |        |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (2Mbps)] Channel: Low BELOW 1 GHz




Final Result

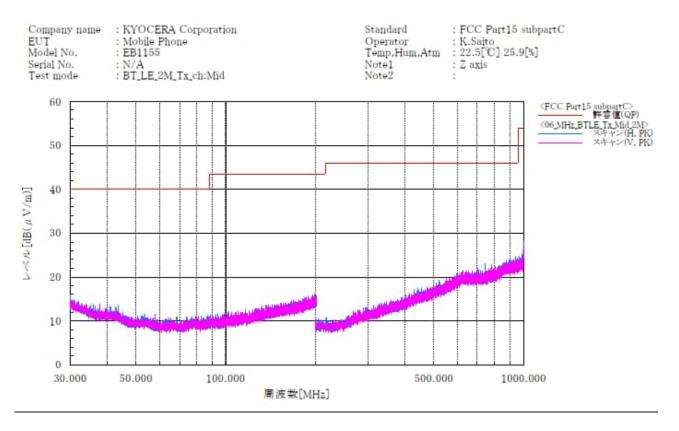
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (2Mbps)] Channel: Low ABOVE 1 GHz



Final Result

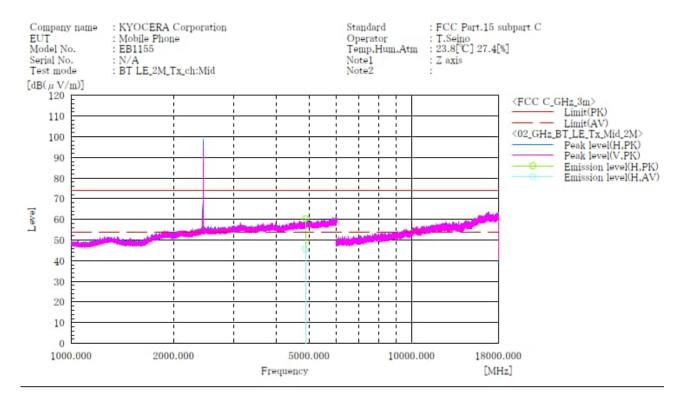

| No. | Frequency         | (P) | Reading          | Reading          | c. f              | Result             | Result             | Limit<br>PK        | Limit                             | Margin       | Margin<br>AV | Height         | Angle | Remark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|-----------------------------------|--------------|--------------|----------------|-------|--------|
| 1   | [MH:]<br>4804.000 | H   | [dB(µV)]<br>50.0 | [dB(µV)]<br>35.4 | [dB(1/m)]<br>10.2 | [dB(µV/m)]<br>60.2 | [dB(µV/m)]<br>45.6 | [dB(µV/m)]<br>74.0 | Limit<br>AV<br>[dB(µV/m)]<br>54.0 | [dB]<br>13.8 | [dB]<br>8.4  | [cm]<br>100, 0 | 208.0 |        |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (2Mbps)] Channel: Middle BELOW 1 GHz




Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (2Mbps)] Channel: Middle ABOVE 1 GHz



Final Result

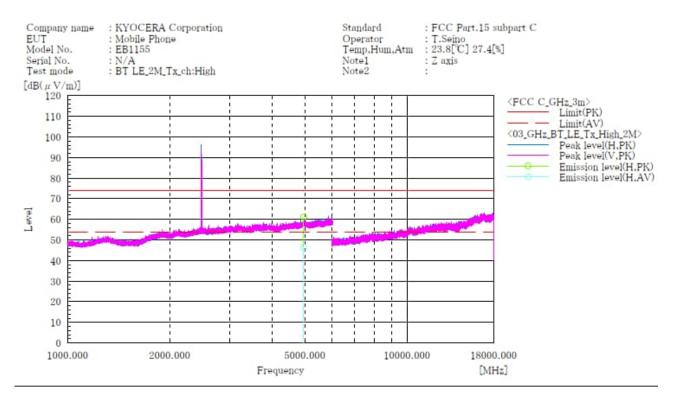
| No. | Frequency         | (P) | Reading                | Reading                | c. f              | Result              | Result                   | Limit              | Linit                    | Margin             | Margin      | Height        | Angle | Remark |
|-----|-------------------|-----|------------------------|------------------------|-------------------|---------------------|--------------------------|--------------------|--------------------------|--------------------|-------------|---------------|-------|--------|
| 1   | [MH:]<br>4880,000 | Н   | PK<br>[dB(µV)]<br>50.1 | AV<br>[dB(µV)]<br>35,3 | [dB(1/m)]<br>10.4 | [dB(µV/m)]<br>60, 5 | AV<br>[dB(µV/m)]<br>45.7 | [dB(µV/n)]<br>74.0 | AV<br>[dB(µV/m)]<br>54.0 | PK<br>[dB]<br>[3.5 | [dB]<br>8.3 | [cm]<br>100.0 | 202.0 |        |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (2Mbps)] Channel: High BELOW 1 GHz



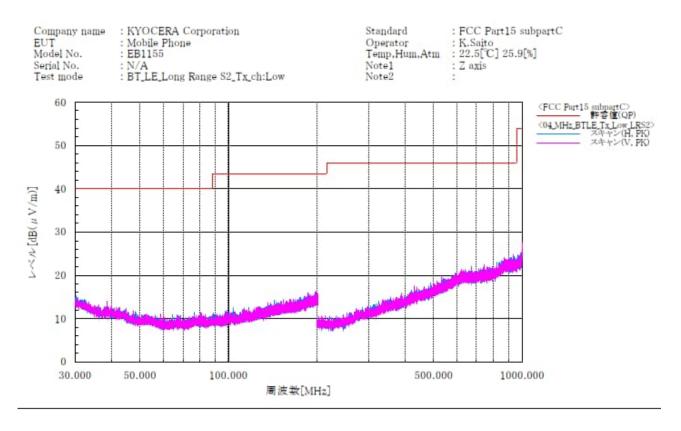

Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (2Mbps)] Channel: High ABOVE 1 GHz



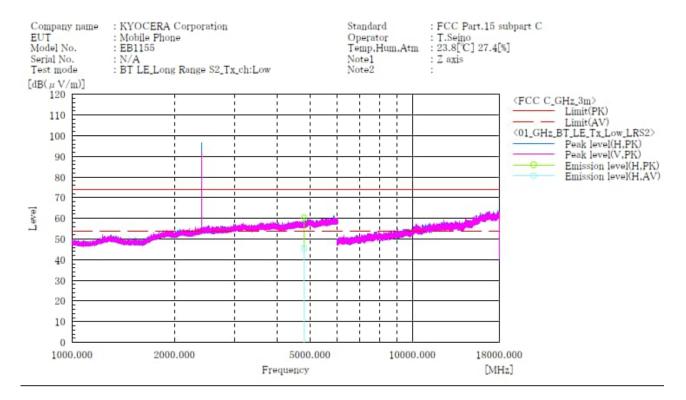

Final Result

| No. | Frequency         | (P) | Reading       | Reading       | C. 1      | Result          | Result          | Limit           | Linit                    | Margin | Mergin | Height | Angle | Remark |
|-----|-------------------|-----|---------------|---------------|-----------|-----------------|-----------------|-----------------|--------------------------|--------|--------|--------|-------|--------|
|     |                   |     | PK            | AV            |           | PK              | AV              | PK              | AV                       | PK     | AV     |        |       |        |
|     | [MHz]<br>4960,000 |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $[dB(\mu V/n)]$ | AV<br>[dB(μV/m)]<br>54.0 | [dB]   | [dB]   | [cm]   | C 1   |        |
| 1   | 4960,000          | H   | 50, 2         | 35. 4         | 11.0      | 61.2            | 46.4            | 74.0            | 54.0                     | 12.8   | 7.6    | 116.0  | 205.0 |        |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



### [BT\_LE (LongRange S2)] Channel: Low BELOW 1 GHz




Final Result

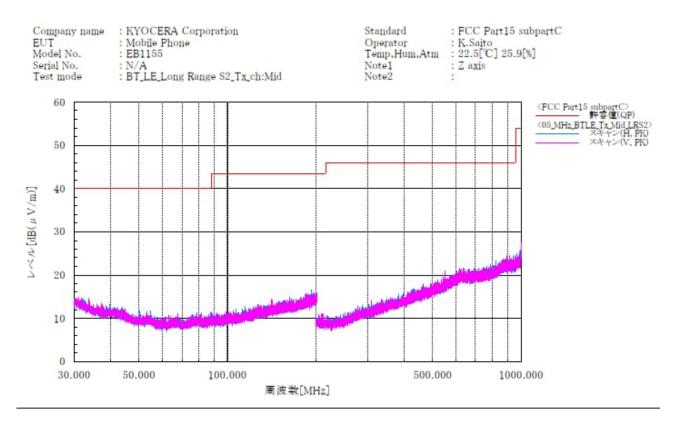
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (LongRange S2)] Channel: Low ABOVE 1 GHz



Final Result

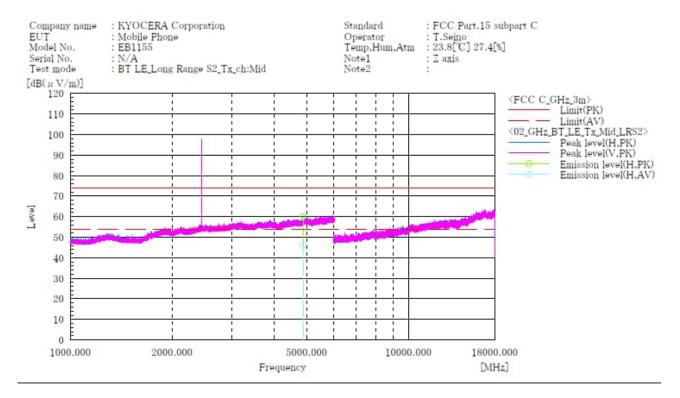

| No. | Execution         | (P) | Reading          | Reading          | c. f              | Result             | Result             | Limit              | Limit                    | Margin       | Margin      | Height         | Angle  | Remark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------------|--------------|-------------|----------------|--------|--------|
| 1   | [MH:]<br>4804.000 | Н   | [dB(µV)]<br>50.0 | [dB(µV)]<br>35.4 | [dB(1/m)]<br>10.2 | [dB(µV/n)]<br>60.2 | [dB(µV/m)]<br>45.6 | [dB(µV/n)]<br>74.0 | AV<br>[dB(µV/m)]<br>54.0 | [dB]<br>13.8 | [dB]<br>8,4 | [cm]<br>100, 0 | 205, 0 |        |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (LongRange S2)] Channel: Middle BELOW 1 GHz



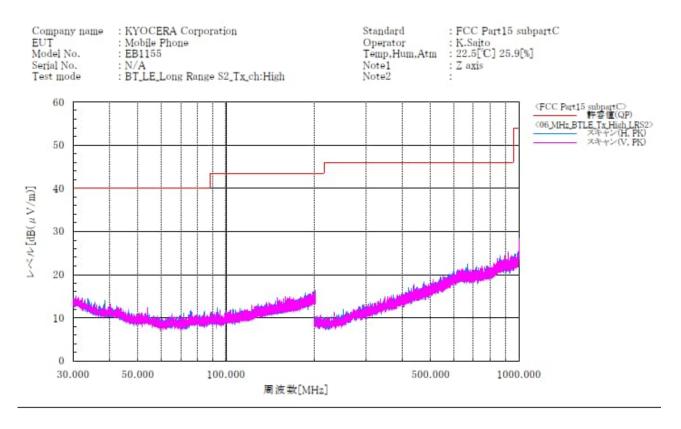

Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (LongRange S2)] Channel: Middle ABOVE 1 GHz



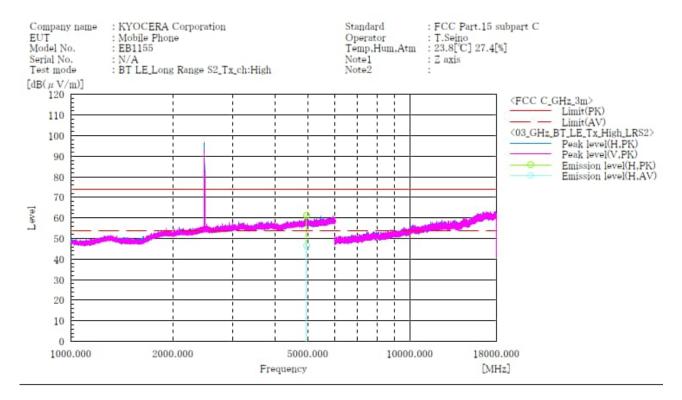

Final Result

| No. | Frequency         | (P) | Reading | Rending | c. f        | Result | Result | Limit | Linit                    | Margin | Mergin | Height | Angle | Remark |
|-----|-------------------|-----|---------|---------|-------------|--------|--------|-------|--------------------------|--------|--------|--------|-------|--------|
|     | Der. 7            |     | PK      | AV      | Em (a /.).1 | PK     | AV     | PK    | AV                       | PK     | AV     | r 1    |       |        |
| 1   | [MHz]<br>4880,000 | Н   | 49.7    | 35.4    | 10.4        | 60.1   | 45.8   | 74.0  | AV<br>[dB(μV/m)]<br>54.0 | 13.9   | 8.2    | 100.0  | 203.0 |        |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



### [BT\_LE (LongRange S2)] Channel: High BELOW 1 GHz




Final Result

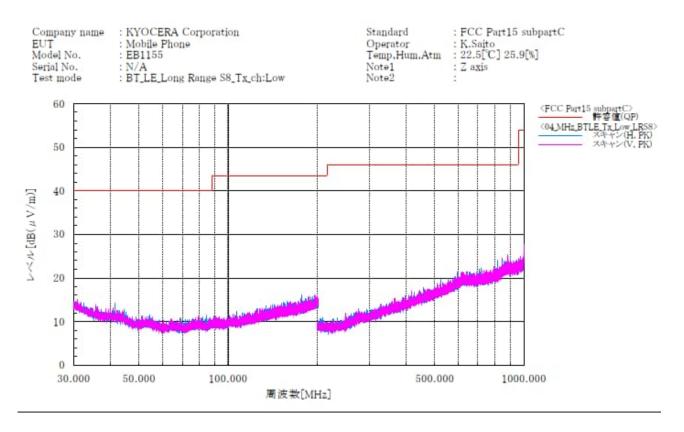
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (LongRange S2)] Channel: High ABOVE 1 GHz



Final Result

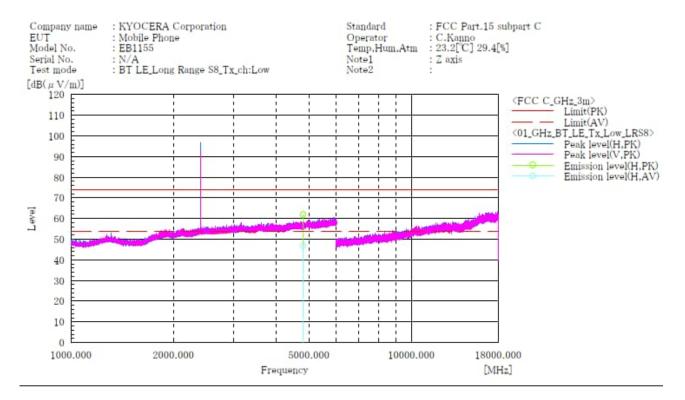

| No. | Frequency         | (p) | Reading          | Reading          | c. f              | Result             | Result             | Limit<br>PK        | Linit                             | Margin       | Margin      | Height        | Angl# | Remark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|-----------------------------------|--------------|-------------|---------------|-------|--------|
| 1   | [MHz]<br>4960,000 | Н   | [dB(µV)]<br>50.3 | [dB(µV)]<br>35,5 | [dB(1/m)]<br>11.0 | [dB(µV/m)]<br>61.3 | [dB(µV/m)]<br>46.5 | [dB(µV/n)]<br>74.0 | Limit<br>AV<br>[dB(µV/m)]<br>54.0 | [dB]<br>12.7 | [dB]<br>7.5 | [cm]<br>100.0 | 208,0 |        |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (LongRange S8)] Channel: Low BELOW 1 GHz




Final Result

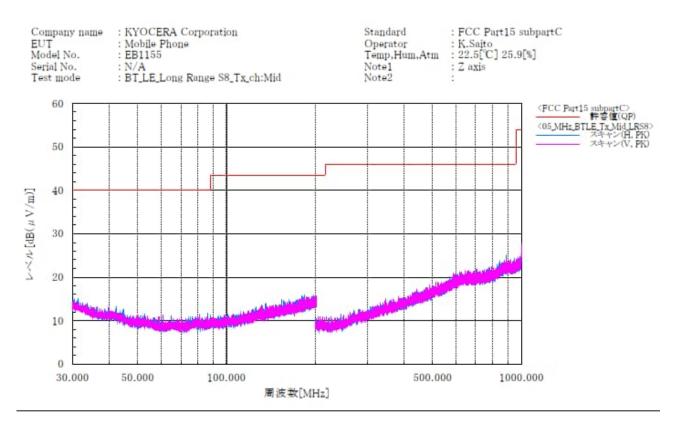
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (LongRange S8)] Channel: Low ABOVE 1 GHz



Final Result

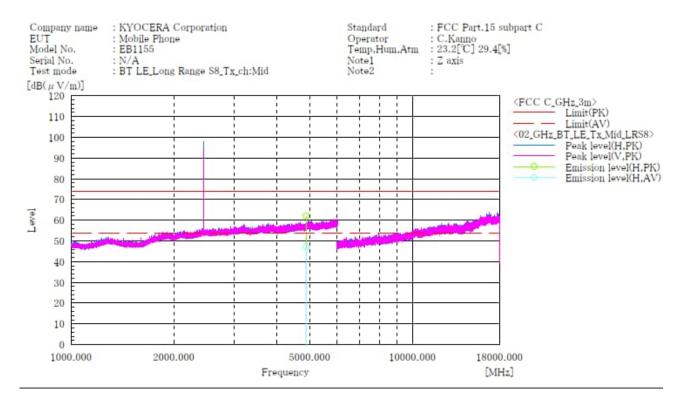

| No. | Fredneticy        | (P) | Reading          | Reading          | c. f              | Result             | Result             | Limit              | Limit                                   | Margin       | Margin      | Height         | Angle Remark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|-----------------------------------------|--------------|-------------|----------------|--------------|
| 1   | [MH:]<br>4804.000 | H   | [dB(µV)]<br>51.7 | [dB(µV)]<br>36,8 | [dB(1/m)]<br>10.2 | [dB(µV/m)]<br>61.9 | [dB(µV/m)]<br>47.0 | [dB(µV/n)]<br>74.0 | Limit<br>AV<br>[dB( $\mu$ V/m)]<br>54.0 | [dB]<br>12.1 | [dB]<br>7.0 | [cm]<br>[00, 0 | 213.0        |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (LongRange S8)] Channel: Middle BELOW 1 GHz




Final Result

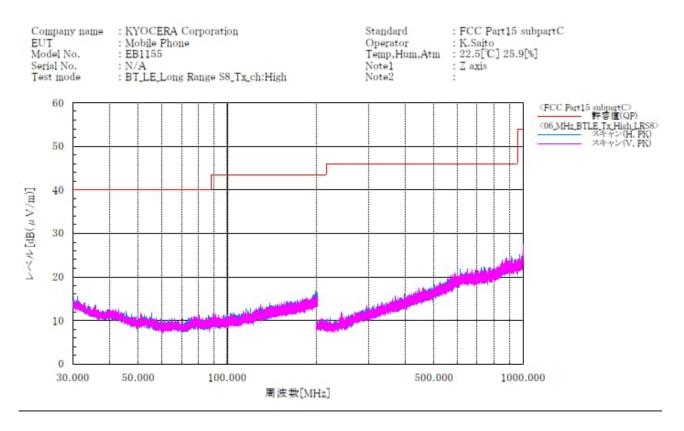
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.



### [BT\_LE (LongRange S8)] Channel: Middle ABOVE 1 GHz



Final Result

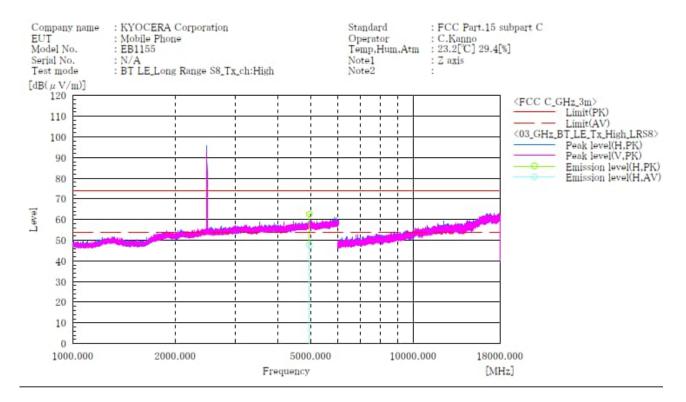

| No. | Frequency         | (P) | Reading          | Reading          | c. f              | Result             | Result             | Limit              | Limit                                                                           | Margin       | Margin      | Height         | Angle Re | emark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|---------------------------------------------------------------------------------|--------------|-------------|----------------|----------|-------|
| 1   | [MH:]<br>4880,000 | H   | [dB(µV)]<br>51,6 | [dB(µV)]<br>36.8 | [dB(1/n)]<br>10.4 | [dB(µV/m)]<br>62.0 | [dB(µV/m)]<br>47.2 | [dB(µV/n)]<br>74.0 | $\begin{bmatrix} \text{Limit} & AV \\ AV \\ [dB(\mu V/m)] & 54.0 \end{bmatrix}$ | [dB]<br>12.0 | [dB]<br>6.8 | [cm]<br>100, 0 | 213.0    |       |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [BT\_LE (LongRange S8)] Channel: High BELOW 1 GHz




Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz at the 3 meters distance.

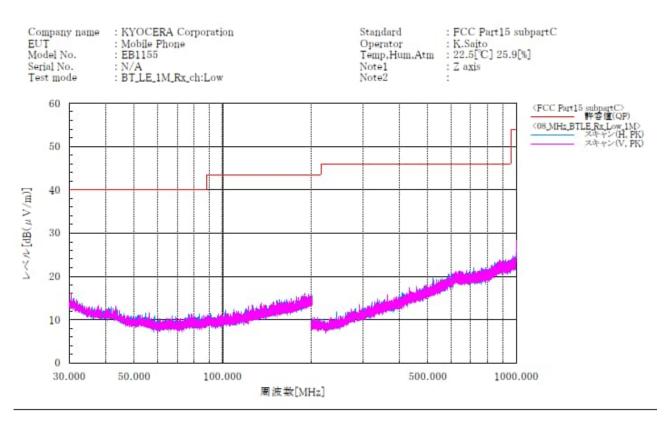


### [BT\_LE (LongRange S8)] Channel: High ABOVE 1 GHz



Final Result

| No. | Frequency         | (P) | Reading          | Reading          | c. f              | Result             | Result             | Limit<br>PK        | Limit | Margin       | Mergin      | Height         | Angl* | Remark |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|-------|--------------|-------------|----------------|-------|--------|
| 1   | [MHz]<br>4960,000 | H   | [dB(µV)]<br>51.7 | [dB(µV)]<br>36.8 | [dB(1/m)]<br>11.0 | [dB(µV/n)]<br>62.7 | [dB(µV/m)]<br>47.8 | [dB(µV/n)]<br>74.0 |       | [dB]<br>11.3 | [dB]<br>6.2 | [cm]<br>100, 0 | 205.0 |        |

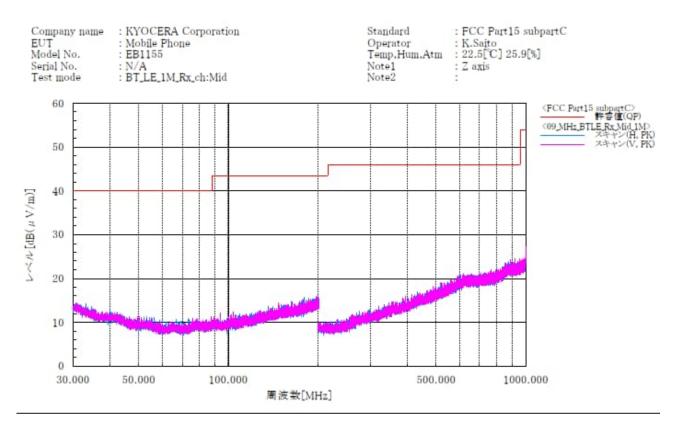

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]



### [Receive mode]

### Channel: Low BELOW 1 GHz

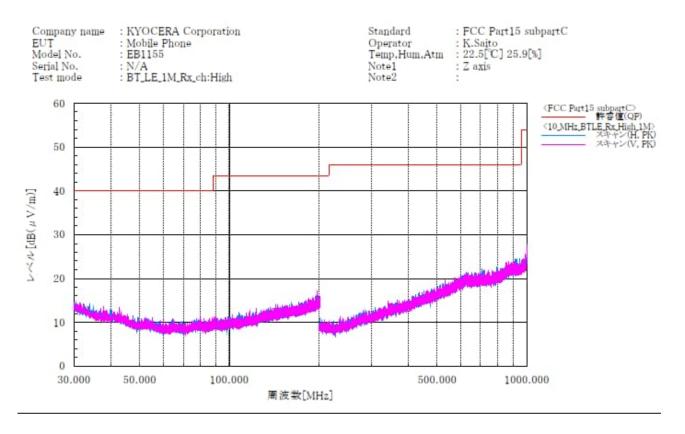



Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.



### Channel: Middle BELOW 1 GHz




Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.



### Channel: High BELOW 1 GHz



Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 30MHz and 1GHz to 25GHz at the 3 meters distance.



## 4.6 Restricted Band of Operation

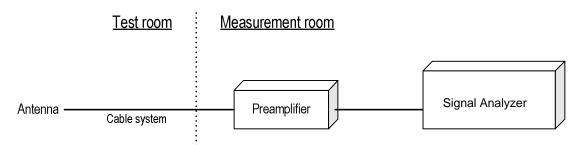
### 4.6.1 Measurement procedure

### [FCC 15.247(d), 15.205, 15.209, KDB558074 D01 v05r02]

Test was applied by following conditions.

| Test method<br>Test place<br>EUT was placed on<br>Antenna distance | :: | ANSI C63.10<br>3m Semi-anechoic chamber<br>Styrofoam table / (W)1.0m × (D)0.8m × (H)0.8m (below 1GHz)<br>Styrofoam table / (W)0.6m × (D)0.6m ×(H)1.5m (above 1GHz)<br>3m     |
|--------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectrum analyzer setting<br>- Peak<br>- Average                   | :  | RBW=1MHz, VBW=3MHz, Span=Arbitrary setting, Sweep=auto<br>RBW=1MHz, VBW=3kHz (1Mbps), 10kHz (2Mbps),<br>1kHz (LongRange S2, S8), Span=0Hz, Sweep=auto<br>Display mode=Linear |

### Average Measurement Setting [VBW]


| Mode                                | Duty Cycle<br>(%) | T <sub>on</sub><br>(us) | T <sub>off</sub><br>(us) | 1/Ton<br>(kHz) | Determined VBW Setting |
|-------------------------------------|-------------------|-------------------------|--------------------------|----------------|------------------------|
| Bluetooth 5.3 LE (1Mbps)            | 60.86             | 381                     | 245                      | 2.625          | 3kHz                   |
| Bluetooth 5.3 LE (2Mbps)            | 31.36             | 196                     | 429                      | 5.102          | 10kHz                  |
| Bluetooth 5.3 LE (Long<br>Range S2) | 56.44             | 1061                    | 819                      | 0.943          | 1kHz                   |
| Bluetooth 5.3 LE (Long<br>Range S8) | 82.47             | 3101                    | 659                      | 0.322          | 1kHz                   |

Although these tests were performed other than open area test site,

adequate comparison measurements were confirmed against 30 m open are test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna, Double ridged guide antenna and Broad-band horn Antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane. The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

### - Test configuration





## 4.6.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

## 4.6.3 Measurement result


| Channel | Frequency [MHz] | Results Chart      | Result |
|---------|-----------------|--------------------|--------|
| Low     | 2402            | See the Trace Data | Pass   |
| High    | 2480            | See the Trace Data | Pass   |

### 4.6.4 Test data

| Date        | : | 6-December-2022          |               |   |                |
|-------------|---|--------------------------|---------------|---|----------------|
| Temperature | : | 22.6 [°C]                |               |   |                |
| Humidity    | : | 30.5 [%]                 | Test engineer | : |                |
| Test place  | : | 3m Semi-anechoic chamber |               |   | Tadahiro Seino |



### [BT\_LE (1Mbps)] Channel: Low Horizontal



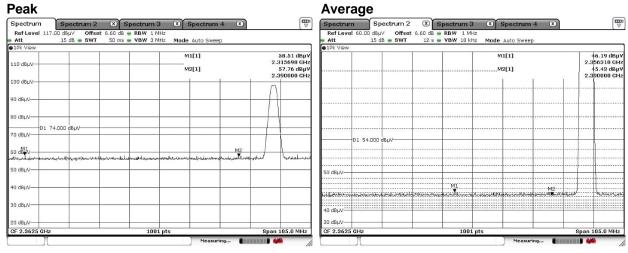
### Vertical Peak

| Peak           |                         |                 |                        |              |             |             |             |                           | Avera             | ige      |             |      |                    |        |           |      |                      |                          |
|----------------|-------------------------|-----------------|------------------------|--------------|-------------|-------------|-------------|---------------------------|-------------------|----------|-------------|------|--------------------|--------|-----------|------|----------------------|--------------------------|
| Spectrum       | Spectrum 2              | × 5             | pectrum 3              | × ×          | Spectrum    | 4 🗴         |             |                           | Spectrum          | s        | pectrum 2   | ×    | Spectrum 3         | ×s     | pectrum   | 4 ×  |                      |                          |
| Ref Level 117. |                         | et 6.60 dB 🗧    |                        |              |             |             |             |                           | Ref Level         |          |             |      | BBW 1 MHz          |        |           |      |                      |                          |
| Att            | 15 dB 🖷 SWT             | 50 ms 🖷         | VBW 3 MI               | Hz Mode      | Auto Swee   | p           |             |                           | Att               | 15       | ib 🖷 SWT    | 12 s | BW 3 kHz           | Mode A | uto Sweep |      |                      |                          |
| 1Pk View       |                         |                 |                        |              |             |             |             |                           | ●1Pk View         |          |             |      |                    |        |           |      |                      |                          |
|                |                         |                 |                        | м            | 1[1]        |             |             | 58.71 dBµ∀<br>.384710 GHz |                   |          |             |      |                    | M1     | [1]       |      |                      | 44.95 dBp<br>2.360090 GH |
| 110 dBµV       |                         |                 |                        | м            | 2[1]        |             | 2.          | 56.20 dBµV                |                   |          |             |      |                    |        | [1]       |      |                      | 44.26 dBµ                |
|                |                         |                 |                        |              | -1-1        |             | 2           | 390000 GHz                |                   |          | 1           | 1    |                    |        | 1         |      |                      | 2.390000 GH              |
| 100 dBµV       |                         | -               |                        |              |             | -           |             |                           |                   |          |             |      |                    |        |           | 6    |                      |                          |
|                |                         |                 |                        |              |             |             |             | 1 I                       |                   |          |             |      |                    |        |           |      |                      |                          |
| 0 dBµV         |                         |                 |                        |              |             |             | A           |                           |                   |          |             |      |                    |        |           |      |                      |                          |
|                |                         |                 |                        |              |             |             | 1           |                           |                   |          | 1           | 1    |                    |        |           |      |                      | 1                        |
| O dBµV         |                         |                 |                        |              |             |             |             |                           |                   |          |             |      |                    |        |           |      |                      |                          |
| 01.7           | .000 dBuV               |                 |                        |              |             |             |             |                           |                   |          |             |      |                    |        |           |      |                      |                          |
| 70 dBµV        | .000 ubpv               |                 |                        |              |             |             |             |                           |                   |          |             |      |                    |        |           |      |                      |                          |
|                |                         |                 | ·                      |              |             |             |             | 1 I                       | 0                 | 1 54,000 | dBµV        |      | -                  |        |           |      |                      | -                        |
| 60 dBuV        |                         |                 |                        |              |             | M1          |             | 1                         |                   |          |             |      |                    |        |           |      |                      |                          |
|                | water and plan being an | altrip remained | and agent water marker | Automationha | webber with | alwardnathe | underforder | Roapphalaseler            |                   |          |             |      |                    |        |           |      |                      |                          |
|                |                         |                 |                        |              |             |             |             |                           |                   |          |             |      |                    |        |           |      |                      | ····}·····               |
| 50 dBµV        |                         |                 |                        |              |             |             |             |                           | 50 dBµV-          |          |             |      |                    |        |           |      |                      | -                        |
|                |                         |                 |                        |              |             |             |             |                           |                   |          |             |      |                    |        |           | [    |                      |                          |
| 40 dBμV        |                         |                 |                        |              |             |             |             |                           |                   |          |             |      |                    |        |           |      |                      |                          |
|                |                         |                 |                        |              |             |             |             |                           | re-intrastructure |          | A town town |      | an were southing a |        |           | in 2 | -                    |                          |
| 30 dBµV        | -                       |                 |                        |              | -           |             |             |                           | 40 dBµV           |          |             |      |                    |        |           |      |                      |                          |
|                |                         |                 |                        |              |             |             |             |                           | +0 uBµV           |          |             |      |                    |        |           |      |                      |                          |
| 20 dBµV        |                         |                 | -                      |              |             | -           |             |                           | 30 dBµV           |          |             |      | -                  |        |           |      |                      | _                        |
| CF 2.3625 GHz  |                         |                 | 1001                   | pts          |             |             | Span        | 105.0 MHz                 | CF 2.3625 (       | Hz       | -           |      | 1001 p             | ts     |           |      | Sp                   | an 105.0 MHz             |
| 1              |                         |                 |                        |              | Measur      | ing .       |             |                           | -                 | T        |             |      |                    |        | Measuri   |      | THE R. LANSING MICH. | 444                      |



### Channel: High Horizontal

|                                                                                                                 |                                                                                                                        |                                          | Averag        | -           |                     |                 | <b>`</b>                 |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|-------------|---------------------|-----------------|--------------------------|
| Spectrum 🍸 Spectrum 2 🛛 🛛                                                                                       | ) Spectrum 3 🛞 Spectrum 4 (                                                                                            | x) 🕎                                     | Spectrum      | Spectrum 2  | Spectrum 3          | Spectrum 4      | 8) (T                    |
|                                                                                                                 | dB 🖷 RBW 1 MHz                                                                                                         |                                          | Ref Level 60. |             | 6.90 dB 🖶 RBW 1 MHz |                 |                          |
|                                                                                                                 | ms 🖷 YBW 3 MHz 🛛 Mode Auto Sweep                                                                                       |                                          | Att           | 15 dB 🖷 SWT | 12 s 👜 YBW 3 kHz    | Mode Auto Sweep |                          |
| 1Pk View                                                                                                        |                                                                                                                        |                                          | ●1Pk View     |             |                     | 100202          |                          |
|                                                                                                                 | M1[1]                                                                                                                  | 58.84 dBµV<br>2.513180 GHz               |               |             |                     | M1[1]           | 45.30 dBµ<br>2.501640 GH |
| 110 dBµV                                                                                                        | M2[1]                                                                                                                  | 56.50 dBµV<br>2.483500 GHz               |               |             |                     | M2[1]           | 44.75 dBµ<br>2.483500 GH |
| 00 dBµV                                                                                                         |                                                                                                                        | 2.463300 GH2                             |               |             |                     | 1 1             | 2.465500 GH              |
|                                                                                                                 |                                                                                                                        |                                          |               |             |                     |                 |                          |
| 90 dBµV                                                                                                         |                                                                                                                        |                                          |               |             |                     |                 |                          |
|                                                                                                                 |                                                                                                                        |                                          |               |             |                     |                 |                          |
| 10 dBµV                                                                                                         |                                                                                                                        |                                          |               |             |                     |                 |                          |
| D1 74.000 dBuV                                                                                                  |                                                                                                                        |                                          |               |             |                     |                 |                          |
| 0 dBµV                                                                                                          |                                                                                                                        |                                          |               |             |                     |                 |                          |
|                                                                                                                 |                                                                                                                        |                                          | D1 5          | 54.000 dBµV |                     |                 |                          |
| 0 dBµV M2                                                                                                       | M1                                                                                                                     |                                          | ••••••        |             |                     |                 |                          |
| man the state of the second | خالية ويعقد ومعادي والمعادية | herbisteliters. Ithan Shill boundary man |               |             |                     |                 |                          |
| 50 dBuV                                                                                                         |                                                                                                                        |                                          |               |             |                     |                 |                          |
|                                                                                                                 |                                                                                                                        |                                          | 50 dBµV-      |             |                     |                 |                          |
| O dBuV                                                                                                          |                                                                                                                        | t                                        |               |             |                     |                 |                          |
|                                                                                                                 |                                                                                                                        |                                          |               |             | V V                 |                 |                          |
| 30 dBuV                                                                                                         |                                                                                                                        |                                          |               |             |                     |                 |                          |
|                                                                                                                 |                                                                                                                        |                                          | 40 dBµV       |             |                     |                 |                          |
| 20 dBuV                                                                                                         |                                                                                                                        |                                          | 30 dBµV       |             |                     |                 |                          |
| CF 2.5115 GHz                                                                                                   | 1001 pts                                                                                                               | Span 105.0 MHz                           | CF 2.5115 GHz |             | 1001 p              |                 | Span 105.0 MHz           |
| W                                                                                                               |                                                                                                                        |                                          | GI LIGITO GHE |             | 1001 p              |                 | apan 103.0 MHz           |


### Vertical Peak

| Spectrum                           | Spectrum 2         | 🛞 Sp          | ectrum 3           | ×           | Spectrum       | 4 ×         |               |                                          | Spectrum        | ı s      |
|------------------------------------|--------------------|---------------|--------------------|-------------|----------------|-------------|---------------|------------------------------------------|-----------------|----------|
| Ref Level 11                       |                    | et 6.90 dB 👄  |                    |             |                |             |               |                                          | Ref Level       |          |
| Att 🛛                              | 15 dB 🖷 SWT        | 40 ms 🖷       | YBW 3 MH           | iz Mode     | Auto Swee      | р           |               |                                          | Att             | 15       |
| ●1Pk View                          |                    |               |                    |             |                |             |               |                                          | ●1Pk View       |          |
| 110 dBµV                           |                    |               |                    |             | 1[1]<br>2[1]   |             | 2.513<br>56.5 | 17 dBµV<br>390 GHz<br>51 dBµV<br>500 GHz |                 |          |
| 100 dBµV                           |                    |               |                    |             |                |             |               |                                          |                 |          |
| 90 dBµV                            |                    |               |                    |             |                |             |               | -                                        |                 |          |
| 80 dBµV                            |                    |               |                    |             |                |             |               |                                          |                 |          |
| 70 dBµV                            | 74.000 dBµV        |               |                    |             |                |             |               |                                          |                 | 01 54.00 |
| 60 dBµV                            | M2                 |               |                    | M1          |                |             |               |                                          |                 |          |
| والمحجم المغال معرومة الهور وأغلته | loved hypersection | colorismenter | con-halotophilatel | Alubaranara | -dramerstrawas | Marsinhaman |               | international and                        |                 |          |
| 50 dBµV                            |                    |               |                    |             |                |             |               |                                          | 50 dBµV         |          |
| 40 dBµV                            |                    |               |                    |             |                | -           |               |                                          |                 |          |
| 30 dBuV                            |                    |               |                    |             | -              |             |               |                                          | 0.1464/04-042-4 | unuu na  |
| 50 0000                            |                    |               |                    |             |                |             |               |                                          | 40 dBµV         |          |
| 20 dBµV                            |                    | + +           |                    |             |                |             |               |                                          | 30 dBµV         |          |
| CF 2.5115 GHz                      |                    |               | 1001               | pts         |                |             | Span 105      | 0 MHz                                    | CF 2.5115       | GHz      |

| Spectrum           | Spectrum 2     | Spectrum 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 🛞 Spectrur                  | n4 🗵            | l∰                         |
|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|----------------------------|
| Ref Level 60.0     | OdBuV Offset   | 6.90 dB 曼 RBW 1 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | z                             |                 |                            |
| Att .              | 15 dB 🖷 SWT    | 12 s 🖷 VBW 3 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode Auto Swee              | эр              |                            |
| ●1Pk View          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
| 2                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                         |                 | 44.92 dBp1                 |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 | 2.496710 GH                |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2[1]                         |                 | 44.50 dBµ                  |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 | 2.483500 GH                |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             | 1               |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
| CLEEK A Providence | and the second | server as a server | and a second second second    | ne hormoneer    |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 | 1                          |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1               |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
| D1 5               | 4.000 dBuV     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
| 01 5               | 1.000 ubuv     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 | 1                          |
| 50 dBµV            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    | M2             | M1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                 |                            |
| 5ACT 100000 000000 | aar Kaaaaa     | nanna Jacan Maraana ar a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eastorn, son apabolic sectors | 01011000001-010 | annierscologischere street |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
| 40 dBµV            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
|                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
| 30 dBµV            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |                            |
| CF 2.5115 GHz      |                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pts                           |                 | Span 105.0 MHz             |



### [BT\_LE (2Mbps)] Channel: Low Horizontal



#### Vertical Peak

| Spectrum         Spectrum         3         Spectrum         4         0           Level         117.00 dBµ/         Offset         6.60 dB         RBW         1 MHz         15 dB         SWT         50 ms         VBW         3 MHz         Mode         Auto Sweep           View         View         50 ms         VBW         3 MHz         Mode         Auto Sweep | Spectrum Spectrum 2 (3) Spectrum 3 (3) Spectrum 4 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (The second seco |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 dB 🖷 SWT 50 ms 🖷 YBW 3 MHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                             | Ref Level 60.00 dBµV Offset 6.60 dB 🖷 RBW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                             | Att 15 dB SWT 12 s VBW 10 kHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                             | e1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M1[1] 58.20 de<br>2.314110 C                                                                                                                                                                                                                                                                                                                                                | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.44 dBµ<br>2.328090 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| JBLV 2.314110 C<br>M2[1] 56.90 dE                                                                                                                                                                                                                                                                                                                                           | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.52 dBp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.390000 0                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.390000 Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JBµV-                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| βμν-                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BUV-                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D1 74.000 dBµV                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| βμν                                                                                                                                                                                                                                                                                                                                                                         | D1 54.000 dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W M2 M2                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3μ//                                                                                                                                                                                                                                                                                                                                                                        | 50 dBµV-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3μν                                                                                                                                                                                                                                                                                                                                                                         | M1<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                             | energian and have been been been and a straight of a straight and a straight and a straight of the | Histon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3µV                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                             | 40 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3μV                                                                                                                                                                                                                                                                                                                                                                         | 30 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .3625 GHz 1001 pts Span 105.0 Mi                                                                                                                                                                                                                                                                                                                                            | CF 2.3625 GHz 1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Span 105.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

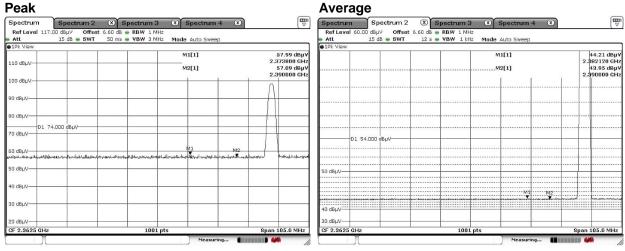



46.70 dBμV 2.546530 GHz 45.91 dBμV 2.483500 GHz

M1-

Span 105.0 MHz

### Channel: High Horizontal




### Vertical Peak

|                      | V -        |                           |                           | -              |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-             | <u> </u>     | Contraction of the local division of the loc |                | -                       | -      | <u>(</u>                 |                                         |
|----------------------|------------|---------------------------|---------------------------|----------------|----------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|--------|--------------------------|-----------------------------------------|
| Spectrum             | Spectrum : |                           | pectrum 3                 |                | Spectrun                   | 14 🙁              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spectrur       |              | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Spectrum 3              |        | Spectrum 4               | 4 🗴                                     |
| Ref Level 117        |            | et 6.90 dB (              |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref Leve       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ■ RBW 1 M               |        |                          |                                         |
| Att                  | 15 dB 🖷 SW | r 40 ms i                 | BW 3 MH                   | z Mod          | e Auto Swe                 | ер                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Att            | 1            | 5 dB 🖷 SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 9           | <b>• VBW</b> 10 k       | Hz Mod | e Auto Sweep             |                                         |
| 1Pk View             |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ●1Pk View      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
|                      |            |                           |                           | ,              | M1[1]                      |                   | 58.24 dBµV<br>2.507720 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        | M1[1]                    |                                         |
| 110 dBµV             |            |                           |                           | ,              | M2[1]                      |                   | 2.507720 GH2<br>56.74 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        | M2[1]                    |                                         |
|                      |            |                           |                           | ,              |                            |                   | 2.483500 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        | ""TTT                    |                                         |
| 100 dBµV             | -          | -                         | · · ·                     |                | 1                          | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        | T I                      |                                         |
|                      |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | ******       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| 90 dBµV              | m          |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
|                      | JIN .      |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| 80 dBµV              |            |                           |                           |                |                            | 2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| 1922                 | (1)        |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
|                      | 4.000 dBµV |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         | •••••• |                          |                                         |
| 70 dBµV              |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | D1 54.0      | n deux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                         |        | _                        |                                         |
|                      | 111        |                           | M1                        |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| 60 dBµV              | 142        |                           |                           | 44.6           |                            |                   | and a second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| - Detto-of-addressed | THE THREE  | March 199 - Carlos Carlos | - postation of the second | erostalista de | and the stand of the stand | Terres and Google | Policie and a failed an |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          | • • • • • • • • • • • • • • • • • • • • |
| 50 dBµV              |            | -                         |                           |                | -                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 dBµV-       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
|                      |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 0000        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| 40 dBµV              |            |                           |                           |                |                            | · ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              | N/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                         |        |                          |                                         |
| in any i             |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | distantication | antipat-akar | ····· Botcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | handpoologiand | ke-undervisitutedere au | anti-  | Antheorem and the second | ntickica accordiant                     |
| 20 10 11             |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| 30 dBµV              |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40 dBµV        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
|                      |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| 20 dBµV              |            |                           |                           |                |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 dBµV        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                         |        |                          |                                         |
| CF 2.5115 GHz        |            | 140                       | 1001                      | pts            | 27                         |                   | Span 105.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CF 2.5115      | GHz          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.5           | 100                     | 1 pts  |                          |                                         |



## [BT\_LE (LongRange S2)] Channel: Low Horizontal



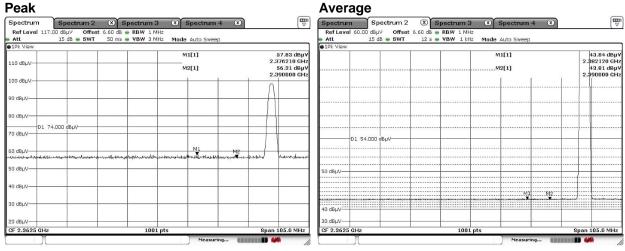
### Vertical Peak

| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ref Level 60.<br>Att | 15 dB 🖷 SWT | Spectrum 3     Spectrum 3     Social and the second s |                            | 8  | 44.21 di<br>2.378970 (<br>43.89 di<br>2.390000 ( |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|--------------------------------------------------|
| t 15 db 8 SWT 50 ms 9 VBW 3 MHz Mode Auto Sweep<br>k View<br>db W<br>db W | Att     IPk View     | 15 dB 🖷 SWT | 12 s 🖝 VBW 1 kH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | z Mode Auto Sweep<br>M1[1] |    | 2.378970 0<br>43.89 di                           |
| k View  K View  MI[1]  S8.26 dBµV  dBµV  M2[1]  S6.28 dBµ  2.346940 CH; S6.28 dBµ  2.30000 CH; S8.26 dBµV  0.1 74.000 dBµV  0.1 74.000 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ●1Pk View            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1[1]                      |    | 2.378970 0<br>43.89 di                           |
| dBLV         M1[1]         59.26 dBµX           dBLV         M2[1]         2.396940 0CH           dBLV         M2[1]         2.390900 0CH           dBLV         M2[1]         2.390900 CH           dBLV         M2[1]         2.390900 CH           dBLV         M2[1]         0.000 CH           dBLV         M2[1]         0.0000 CH           dBLV         M2[1]         0.00000 CH           dBLV         M2[1]         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    | 2.378970 0<br>43.89 di                           |
| dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    | 2.378970 0<br>43.89 di                           |
| M2[1]         S6.2.9 dipy           d6µV         2.390000 CH:           //BµV            //BµV            01.74.000 dbµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    | 43.89 dE                                         |
| dBµV 2.390000 CH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| авµv-<br>звµv-<br>цаµv-<br>рал 74.000 авµv-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| /был-<br>D1 74.000 dbµл-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| /был-<br>D1 74.000 dbµл-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| /был-<br>D1 74.000 dbµл-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| D1 74.000 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| D1 74.000 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| 18µV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01.5                 | 54.000 dBuV |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01.                  | 54,000 dbpv |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    | 11                                               |
| 18μV M1 M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| h in the design of the design of the second of the second of the second of the design of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| JBUV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 dBµV-             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 UBH0              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| 18µV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1                         | M2 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *************        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | X  |                                                  |
| JBµV-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 dBµV              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| JBLV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 dBµV              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |                                                  |
| 2.3625 GHz 1001 pts Span 105.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CF 2.3625 GHz        | z           | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pts                        |    | Span 105.0 M                                     |



### Channel: High Horizontal

| and the formation of the second se | ~          |           |                                                   | ~~~~                        |                            | (mm)                                                       |                   | age         |          |        |               |             |           |            |            | (                       |
|-----------------------------------------------------------------------------------------------------------------|------------|-----------|---------------------------------------------------|-----------------------------|----------------------------|------------------------------------------------------------|-------------------|-------------|----------|--------|---------------|-------------|-----------|------------|------------|-------------------------|
| Spectrum                                                                                                        | Spectrum   | 2 🛞 Sp    | ectrum 3                                          | Spectrum 4                  | ×                          |                                                            | Spectrum          | n Sp        | ectrum 2 | 🙁 Sr   | bectrum 3     | × S         | pectrum   | 4 🕱        |            | <b>.</b>                |
| Ref Level 117.                                                                                                  |            |           | RBW 1 MHz                                         | -                           |                            |                                                            |                   | 60.00 dBµ'  |          |        | RBW 1 MHz     |             |           |            |            |                         |
| Att                                                                                                             | 15 dB 🖷 SW | T 40 ms 🖷 | VBW 3 MHz                                         | Mode Auto Sweep             |                            |                                                            | Att               | 15 d        | B 🖶 SWT  | 12 s 🖷 | VBW 1 kHz     | Mode A      | uto Sweep | i.         |            |                         |
| 1Pk View                                                                                                        |            |           |                                                   | Sector Sector Con           |                            |                                                            | ●1Pk View         |             |          |        |               |             |           |            |            |                         |
|                                                                                                                 |            |           |                                                   | M1[1]                       |                            | 58.84 dBµV<br>2.492410 GHz                                 |                   |             |          |        |               | M1          | [1]       |            |            | 44.68 dBµ\<br>522510 GH |
| 110 dBµV                                                                                                        |            |           |                                                   | M2[1]                       |                            | 56.50 dBµV                                                 |                   |             |          |        |               |             | [1]       |            |            | 44.26 dBu               |
|                                                                                                                 |            |           |                                                   | (INT T                      |                            | 2.483500 GHz                                               |                   |             |          |        |               |             | 1.1       |            |            | 183500 GH               |
| LOO dBµV                                                                                                        |            |           |                                                   | <u> </u>                    |                            |                                                            |                   |             |          |        |               | T.          |           |            | 1          |                         |
|                                                                                                                 | 小          |           |                                                   |                             |                            |                                                            |                   | ********    |          | *****  | ************* | **********  |           |            | ********** |                         |
| O dBuV                                                                                                          |            |           |                                                   |                             |                            |                                                            |                   |             |          |        |               |             |           |            |            |                         |
|                                                                                                                 | Th         |           |                                                   |                             |                            |                                                            |                   | **********  |          |        |               |             |           | ********** |            |                         |
| O dBµV                                                                                                          | -111       |           |                                                   |                             |                            |                                                            |                   |             |          |        |               |             |           |            |            | L                       |
| 321.14222141                                                                                                    | 111        |           |                                                   |                             |                            |                                                            |                   |             |          |        |               |             |           |            |            | 1                       |
|                                                                                                                 | .000 dBµV  |           |                                                   |                             |                            |                                                            |                   |             |          |        | ••••••        |             |           |            |            |                         |
| 'Ο dBμV                                                                                                         |            |           |                                                   |                             |                            |                                                            |                   | D1 54.000 d | But      |        |               |             |           | ·          |            |                         |
|                                                                                                                 |            | M1        |                                                   |                             |                            |                                                            |                   | 01 01000    |          |        |               |             |           |            |            | C                       |
| 50 dBµV                                                                                                         | M2         | -         | 100 10 20 10 20                                   | elsther our charlestrong of |                            | A                                                          |                   |             |          |        |               |             |           |            |            |                         |
| children alle and                                                                                               | w were and |           | ist in the second states of the second states and | and the second second       | when the second states and | han an han han faith an an han han han han han han han han |                   |             |          |        |               |             |           |            |            |                         |
| 50 dBµV                                                                                                         |            | _         |                                                   |                             |                            |                                                            | 50 dBuV           |             |          |        |               |             |           |            |            | 1                       |
|                                                                                                                 |            |           |                                                   |                             |                            |                                                            | SU UBHV           |             |          |        |               |             |           |            |            |                         |
| 10 dBuV                                                                                                         |            |           |                                                   |                             |                            |                                                            |                   |             |          |        |               |             |           |            |            |                         |
| 0 0000                                                                                                          |            |           |                                                   |                             |                            |                                                            |                   |             | M2       |        |               |             | 1         |            |            | <b></b>                 |
|                                                                                                                 |            |           |                                                   |                             |                            |                                                            | Section Concerned | record      |          |        |               | www.escoret |           | ******     |            |                         |
| 30 dBµV                                                                                                         |            |           |                                                   |                             |                            |                                                            | 40 dBuV           |             |          |        |               |             |           |            |            |                         |
|                                                                                                                 |            |           |                                                   |                             |                            |                                                            | 10 appv           |             |          |        |               |             |           |            |            |                         |
| 20 dBµV                                                                                                         |            | + +       |                                                   |                             |                            |                                                            | 30 dBµV           |             |          |        |               |             |           | -          |            |                         |
| F 2.5115 GHz                                                                                                    |            |           | 1001 pt                                           | 5                           |                            | Span 105.0 MHz                                             | CF 2.5115         | GHz         |          |        | 1001 p        | its         |           |            | Span       | 105.0 MHz               |
| 71                                                                                                              |            |           |                                                   | Measurin                    |                            |                                                            |                   | Y           |          |        |               |             | Measuri   |            |            |                         |


### Vertical Peak

| Spectrum             | Spectrum 2                     | 🗶 Spe                      | ctrum 3 🛛 🕱          | Spectrum        | 4 × |                                                          | Spectrum       |  |  |  |
|----------------------|--------------------------------|----------------------------|----------------------|-----------------|-----|----------------------------------------------------------|----------------|--|--|--|
| Ref Level 117<br>Att | 7.00 dBµV Offse<br>15 dB 🖷 SWT | t 6.90 dB 👄 1<br>40 ms 🖷 1 |                      | de Auto Swee    | p   |                                                          | Ref Level 60.0 |  |  |  |
| 1Pk View             |                                |                            |                      |                 |     |                                                          | 1Pk View       |  |  |  |
| 110 dBµV             | M1[1                           |                            |                      |                 |     | 58.87 dBμV<br>2.539720 GHz<br>57.28 dBμV<br>2.483500 GHz |                |  |  |  |
| 100 dBµV             |                                |                            |                      |                 |     |                                                          |                |  |  |  |
| 90 dBµV              |                                |                            |                      |                 |     |                                                          |                |  |  |  |
| 80 dBµV              |                                |                            |                      |                 |     |                                                          |                |  |  |  |
| 70 dBµV              | 74.000 dBµV                    |                            |                      |                 |     |                                                          | 01 5           |  |  |  |
| 50 dBµV              | M2                             | henry de de ser            | Alter and the later. | na much ture du | M1  | howmaniclaterable                                        |                |  |  |  |
| 50 dBµV              |                                |                            |                      |                 |     |                                                          | 50 dBµV        |  |  |  |
| 40 dBµV              |                                |                            |                      |                 |     |                                                          | 50 0000        |  |  |  |
| 30 dBµV              |                                |                            |                      | -               |     |                                                          | 40 dBµV        |  |  |  |
| 20 dBµV              |                                |                            |                      |                 |     |                                                          | 30 dBµV        |  |  |  |
| CF 2.5115 GHz        |                                |                            | 1001 pts             |                 |     | Span 105.0 MHz                                           | CF 2.5115 GHz  |  |  |  |

| Spectrum       | Spectr      | um 2     | × S      | pectrum 3                                                                                                        | × ×               | Spectrum      | 4 🗴         |            | [ <del>₩</del> |
|----------------|-------------|----------|----------|------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-------------|------------|----------------|
| Ref Level 60.0 | 00 dBµV     | Offset 6 | .90 dB 👄 | RBW 1 MH                                                                                                         | z                 |               |             |            |                |
| Att            | 15 dB 🖷     | SWT      | 12 s 🖷   | VBW 1 kH                                                                                                         | z Mode            | Auto Sweep    |             |            |                |
| 1Pk View       |             |          |          |                                                                                                                  |                   |               |             |            |                |
| 2              |             |          |          |                                                                                                                  | M                 | 1[1]          |             |            | 44.58 dBµ\     |
|                |             |          |          |                                                                                                                  |                   |               |             | 2.4        | 93250 GH       |
|                |             |          |          |                                                                                                                  | M                 | 2[1]          |             |            | 44.27 dBµ\     |
|                |             |          |          |                                                                                                                  |                   |               |             |            | 83500 CH       |
|                |             |          |          |                                                                                                                  |                   | 1             |             |            | 1              |
|                |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          |          | and the second |                   |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               |             |            | 1              |
|                |             |          |          |                                                                                                                  | CONTRACTOR STREET |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               | *****       |            | 1              |
|                |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               |             |            | 1              |
| 01.5           | 4.000 dBuV- |          |          |                                                                                                                  |                   |               | 2           |            |                |
| 010            |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               |             | ********** |                |
|                |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               |             |            |                |
| 50 dBµV        |             |          |          |                                                                                                                  |                   | 1             |             |            | 1              |
| 50 UBHV-       |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          |          |                                                                                                                  |                   |               |             |            |                |
|                |             |          | 41       |                                                                                                                  |                   |               |             |            | 1              |
|                | ····        |          | -toretor | ******                                                                                                           |                   | 199-01-00-000 | *********** |            |                |
| 10 10 11       |             |          |          |                                                                                                                  |                   |               |             |            |                |
| 40 dBµV        |             |          |          |                                                                                                                  |                   |               |             |            |                |
| 30 dBµV        |             |          |          |                                                                                                                  |                   |               |             |            |                |
| 30 UBHV        |             |          |          |                                                                                                                  |                   |               |             |            |                |



## [BT\_LE (LongRange S8)] Channel: Low Horizontal



### Vertical Peak

| Peak                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | Average        | e                   |                     |                                |                          |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|---------------------|---------------------|--------------------------------|--------------------------|
| Spectrum Spectrum 2                             | Spectrum 3 8 5                                                                                                  | pectrum 4 🙁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | Spectrum       | Spectrum 2 🛞        | Spectrum 3          | Spectrum 4 (X)                 | ີ 🖫                      |
| Ref Level 117.00 dBµV Offset                    | 6.60 dB 🖷 RBW 1 MHz                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | Ref Level 60.0 | odBµV Offset 6.60 d | B 🖶 RBW 1 MHz       |                                |                          |
| Att 15 dB 🖷 SWT                                 | 50 ms 🖷 VBW 3 MHz 🛛 Mode                                                                                        | Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | Att            | 15 dB 🖷 SWT 12      | s 🖶 VBW 1 kHz       | Mode Auto Sweep                |                          |
| 1Pk View                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | ●1Pk View      |                     |                     |                                |                          |
|                                                 | м                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.00 dBµV<br>.384080 GHz |                |                     |                     | M1[1]                          | 44.13 dBµ<br>2.372360 GH |
| 10 dBµV                                         | M                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56.33 dBµV                |                |                     |                     | M2[1]                          | 43.81 dBµ                |
|                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .390000 GHz               |                |                     |                     |                                | 2.890000 CH              |
| 00 dBµV                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
|                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
| ) dBµV                                          |                                                                                                                 | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                |                     | and a second second | and party constraints from and |                          |
|                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
| 0 dBµV                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
| D1 74.000 dBuV                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                | 1 1                      |
| 0 dBµV                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
|                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 I                       | D1 54          | .000 dBµV           |                     |                                |                          |
| i0 dBµV                                         |                                                                                                                 | M2 M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                         |                |                     |                     |                                |                          |
| Burning and a construction of the second states | and the state of the second | manufampershare the hards of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | undurstranshill           |                |                     |                     |                                |                          |
|                                                 |                                                                                                                 | and the second sec |                           |                |                     |                     |                                |                          |
| 0 dBµV                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 50 dBµV-       |                     |                     |                                |                          |
|                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
| ) dBµV                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
|                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                |                     |                     |                                |                          |
| 0 dBµV                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                         | 40 dBuV        |                     |                     |                                |                          |
|                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 40 08µV        |                     |                     |                                |                          |
| 0 dBµV                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                         | 30 dBµV        |                     |                     |                                |                          |
| F 2.3625 GHz                                    | 1001 pts                                                                                                        | Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.0 MHz                 | CF 2.3625 GHz  |                     | 1001 pt             | s                              | Span 105.0 MHz           |
| - W                                             |                                                                                                                 | Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 141                       | 7              |                     |                     |                                |                          |



### Channel: High Horizontal

| trum Spectrum 2 (3) Spectrum 3 (3) Spectrum 4 (8)<br>Level 117.00 dBµV Offset 6.90 dB                                                                                                                                                                                                                                                                                                                                        | Spectrum          |             |                     |                 |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|---------------------|-----------------|--------------------------|
| Level 117.00 dBuy Offset 6.90 dB      RBW 1 MHz                                                                                                                                                                                                                                                                                                                                                                              |                   | Spectrum 2  | Spectrum 3          | Spectrum 4      | ∞ 🖫                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref Level 60.0    |             | 6.90 dB 🖷 RBW 1 MHz |                 |                          |
| 15 dB 🖷 SWT 40 ms 🖷 YBW 3 MHz Mode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                | e Att             | 15 dB 🖷 SWT | 12 s 🖷 YBW 1 kHz    | Mode Auto Sweep |                          |
| View                                                                                                                                                                                                                                                                                                                                                                                                                         | e1Pk View         |             |                     |                 |                          |
| M1[1] 58.93<br>2.50751                                                                                                                                                                                                                                                                                                                                                                                                       |                   |             |                     | M1[1]           | 44.80 dBµ<br>2.513910 GH |
| 2,50751<br>BµV M2[1] 56.81<br>2,40355                                                                                                                                                                                                                                                                                                                                                                                        | dBµV              |             |                     | M2[1]           | 44.44 dBµ<br>2.483500 GH |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |             |                     |                 |                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |             |                     |                 |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |             |                     |                 |                          |
| 01 7+.000 dbuV                                                                                                                                                                                                                                                                                                                                                                                                               |                   |             |                     |                 |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 4.000 dBµV  |                     |                 |                          |
| N M2 M1                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |             |                     |                 |                          |
| nionalitanosement Waterenerikining and a state and a | leadedbar         |             |                     |                 |                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 dBµV           |             |                     |                 |                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |             |                     |                 |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | chadman and the   | Me Me       |                     | ₩1.<br>▼        |                          |
| N-                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 dBµV           |             |                     |                 |                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 dBµV           | -           |                     |                 |                          |
| 5115 GHz 1001 pts Span 105.0                                                                                                                                                                                                                                                                                                                                                                                                 | MHz CF 2.5115 GHz |             | 1001 p              | its             | Span 105.0 MHz           |

### Vertical Peak

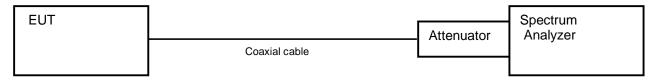
| Spectrum             | Spectrum 2                     | Spectrum                                  | 3 🕱    | Spectrum 4            |                  |                 | ₩ S  | pectrum              |
|----------------------|--------------------------------|-------------------------------------------|--------|-----------------------|------------------|-----------------|------|----------------------|
| Ref Level 117<br>Att | .00 dBµV Offsel<br>15 dB - SWT | 6.90 dB 👄 RBW 1<br>40 ms 🖷 VBW 3          |        | Auto Sweep            |                  |                 |      | Ref Level 60.<br>Att |
| 1Pk View             |                                |                                           |        |                       |                  |                 | •    | 1Pk View             |
| 110 dBµV             |                                |                                           |        | 11[1]                 |                  | 2.51643         | dBµV |                      |
| 100 dBµV             |                                |                                           |        |                       |                  |                 |      |                      |
| 90 dBµV              |                                |                                           |        |                       |                  |                 |      |                      |
| 80 dBµV              |                                |                                           |        |                       |                  |                 |      |                      |
| 70 dBµV              | 4.000 dBµV                     |                                           |        |                       |                  |                 |      | D1 1                 |
| 60 dBµV              | M2                             | فاعتوا المعراط الإدماد المعتولة والمعاركة | M1     | المعاجد بمصدر بالدالة | hikos ik akasint | المتلفظ والمحاط |      |                      |
| 50 dBµV              |                                |                                           |        |                       |                  |                 |      | 0 dBµV               |
| 40 dBµV              |                                |                                           |        |                       |                  |                 |      |                      |
| 121-101201022-10     |                                |                                           |        |                       |                  |                 |      |                      |
| 30 dBµV              |                                |                                           |        |                       |                  |                 | 4    | 0 dBµV               |
| 20 dBµV              |                                |                                           |        |                       |                  |                 |      | O dBµV               |
| CF 2.5115 GHz        |                                | 10                                        | 01 pts |                       |                  | Span 105.0      | MHz  | F 2.5115 GHz         |

| Spectrum      | Spectrum 2  | Spectrum 3          | × S    | pectrum 4 | L (X) |        |                         |
|---------------|-------------|---------------------|--------|-----------|-------|--------|-------------------------|
| Ref Level 60. |             | 6.90 dB 👄 RBW 1 MHz |        |           |       |        |                         |
| Att           | 15 dB 📟 SWT | 12 s 🖷 VBW 1 kHz    | Mode A | uto Sweep |       |        |                         |
| 1Pk View      |             |                     |        |           |       |        |                         |
| 1             |             |                     | M1     | [1]       |       |        | 44.70 dBµ\              |
|               |             |                     | 140    | 643       |       |        | 01950 GHz<br>44.26 dBµV |
|               | +           |                     | M2     | [1]       |       |        | 44.26 UBP               |
|               |             |                     | - î    | 1         |       |        |                         |
|               |             |                     |        |           |       | ****** |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
| D1 5          | 54.000 dBµV |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
| 50 dBµV       |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
|               | and Me      |                     |        |           |       |        |                         |
|               |             |                     |        |           |       |        |                         |
| 40 dBµV       |             |                     |        |           |       |        |                         |
| 30 dBµV       | -           |                     |        |           |       |        |                         |
| CF 2.5115 GHz |             | 1001                |        |           |       |        | 105.0 MHz               |



### 4.7 Transmitter Power Spectral Density

#### 4.7.1 Measurement procedure


#### [FCC 15.247(e), KDB558074 D01 v05r02]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW ≥ 3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration



### 4.7.2 Limit

The peak power spectral density shall not be greater than 8dBm in any 3kHz band.



### 4.7.3 Measurement result

| Date<br>Temperature | : | 18-October-2022<br>21.4 [°C] |                |   |                |
|---------------------|---|------------------------------|----------------|---|----------------|
| Humidity            | ÷ | 47.0 [%]                     | Test engineer  | : |                |
| Test place          | : | Shielded room No.4           | i eet engineer | - | Kazunori Saito |

# [BT\_LE (1Mbps)]

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------|-----------------|--------|
| Low     | 2402                         | -21.61           | 10.93          | -10.68         | 8.00           | 18.68           | PASS   |
| Middle  | 2440                         | -20.38           | 10.93          | -9.45          | 8.00           | 17.45           | PASS   |
| High    | 2480                         | -20.88           | 10.93          | -9.95          | 8.00           | 17.95           | PASS   |

\*: Tested by EB1146

## [BT\_LE (2Mbps)]

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------|-----------------|--------|
| Low     | 2402                         | -23.77           | 10.93          | -12.84         | 8.00           | 20.84           | PASS   |
| Middle  | 2440                         | -22.57           | 10.93          | -11.64         | 8.00           | 19.64           | PASS   |
| High    | 2480                         | -23.05           | 10.93          | -12.12         | 8.00           | 20.12           | PASS   |

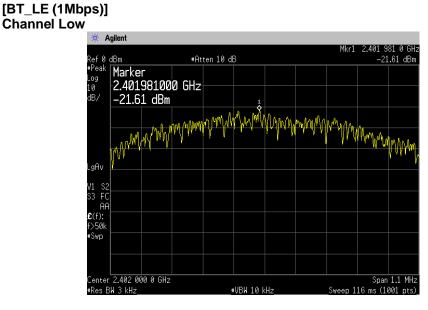
\*: Tested by EB1146

## [BT\_LE (LongRange S2)]

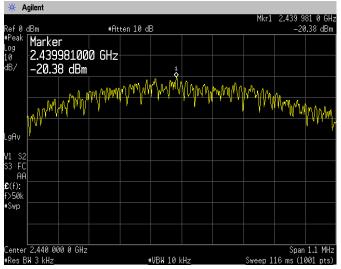
| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------|-----------------|--------|
| Low     | 2402                         | -12.96           | 10.93          | -2.03          | 8.00           | 10.03           | PASS   |
| Middle  | 2440                         | -11.74           | 10.93          | -0.81          | 8.00           | 8.81            | PASS   |
| High    | 2480                         | -12.26           | 10.93          | -1.33          | 8.00           | 9.33            | PASS   |

\*: Tested by EB1146

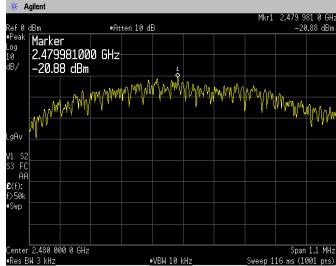
# [BT\_LE (LongRange S8)]


| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------|-----------------|--------|
| Low     | 2402                         | -12.92           | 10.93          | -1.99          | 8.00           | 9.99            | PASS   |
| Middle  | 2440                         | -11.70           | 10.93          | -0.77          | 8.00           | 8.77            | PASS   |
| High    | 2480                         | -12.23           | 10.93          | -1.30          | 8.00           | 9.30            | PASS   |

\*: Tested by EB1146

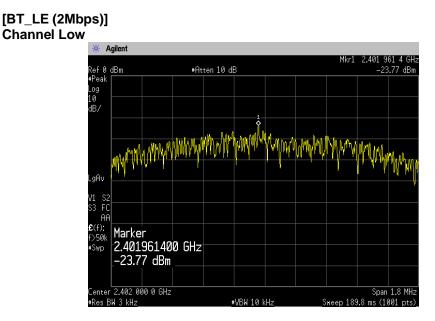

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

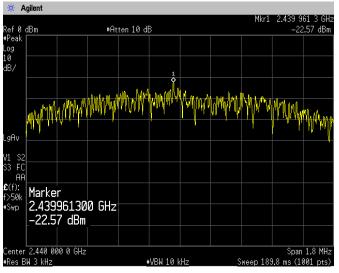

## 4.7.4 Trace data

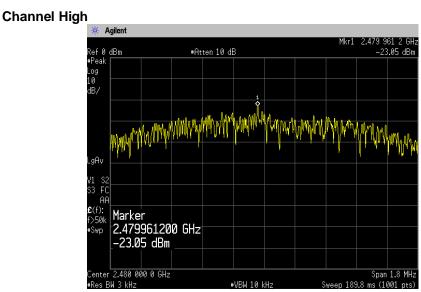


#### **Channel Middle**

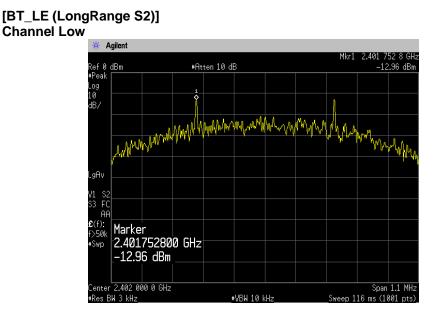



#### **Channel High**

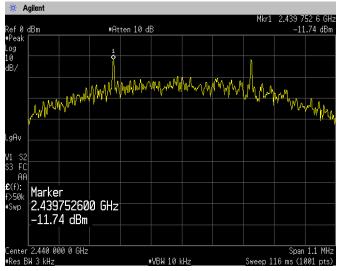


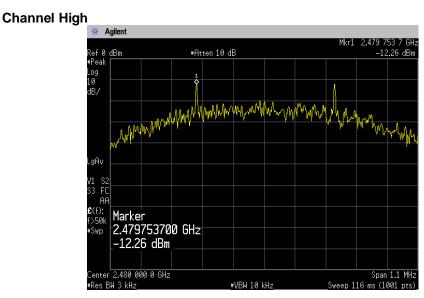





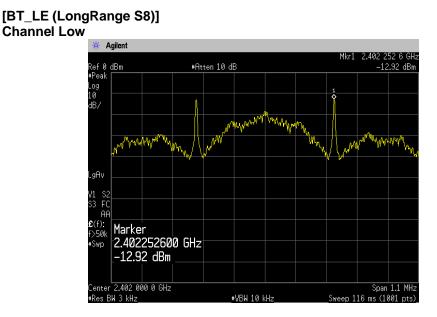





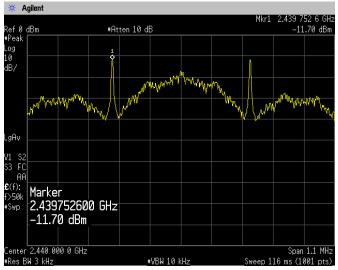



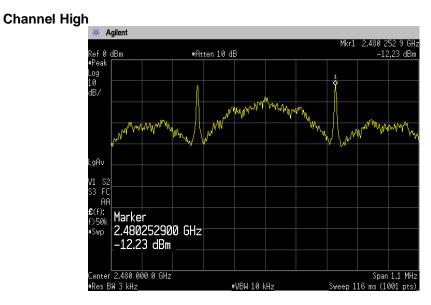






**Channel Middle** 













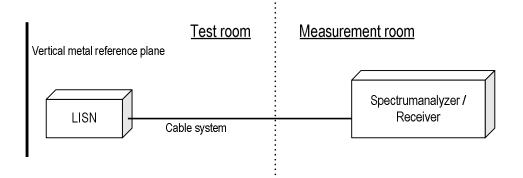



## 4.8 AC Power Line Conducted Emissions

### 4.8.1 Measurement procedure

## [FCC 15.207]

Test was applied by following conditions.


| Test method<br>Frequency range<br>Test place<br>EUT was placed on<br>Vertical Metal Reference Plane<br>Test receiver setting | : | ANSI C63.10<br>0.15 MHz to 30 MHz<br>3 m Semi-anechoic chamber<br>Styrofoam table / (W)1.0m × (D)0.8m × (H)0.8m<br>(W)2.0 m × (H)2.0 m 0.4 m away from EUT |
|------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Detector<br>- Bandwidth                                                                                                    |   | Quasi-peak, Average<br>9 kHz                                                                                                                               |

EUT and peripherals are connected to  $50\Omega/50\mu$ H Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in  $50\Omega$ .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration





### 4.8.2 Calculation method

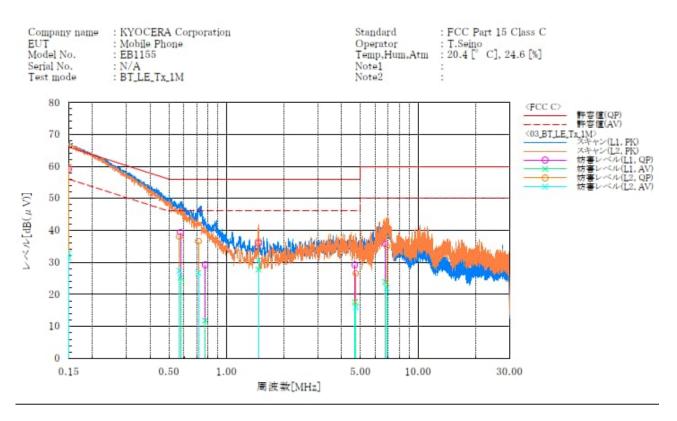
Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example:

Limit @ 6.770 MHz:  $60.0 dB\mu V(Quasi-peak)$ :  $50.0 dB\mu V(Average)$ (Quasi peak) Reading =  $41.2 dB\mu V$  c.f = 10.3 dBEmission level =  $41.2 + 10.3 = 51.5 dB\mu V$ Margin = 60.0 - 51.5 = 8.5 dB(Average) Reading =  $35.0 dB\mu V$  c.f = 10.3 dBEmission level =  $35.0 + 10.3 = 45.3 dB\mu V$ Margin = 50.0 - 45.3 = 4.7 dB

#### 4.8.3 Limit

| Frequency | Li        | mit       |
|-----------|-----------|-----------|
| [MHz]     | QP [dBuV] | AV [dBuV] |
| 0.15-0.5  | 66-56*    | 56-46*    |
| 0.5-5     | 56        | 46        |
| 5-30      | 60        | 50        |


\*: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.



#### 4.8.4 Test data

| Date :<br>Temperature :<br>Humidity :<br>Test place : | 9-December-2022<br>20.4 [°C]<br>24.6 [%]<br>3m Semi-anechoic chamber | Test engineer | :<br>Tadahiro Seino |
|-------------------------------------------------------|----------------------------------------------------------------------|---------------|---------------------|
| Test place .                                          |                                                                      |               |                     |

# [BT\_LE]



| _ |      |    | -         |      |
|---|------|----|-----------|------|
| Ŧ | 1118 | 11 | Res       | ult. |
| ٠ | **** | •  | W. or Co. |      |

|     | L1        |               |               |              |               |                |                  |               |              | N            |        |
|-----|-----------|---------------|---------------|--------------|---------------|----------------|------------------|---------------|--------------|--------------|--------|
| No. | Frequency |               | Reading       | c. f         | Result        | Result         | Limit            | Limit         | Margin       |              | Remark |
|     |           | QP            | AV            |              | QP .          | AV             | QP               | AV            | QP           | AV           |        |
|     | [MH=]     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB]         | $[dB(\mu V)]$ | $[dB(\mu V)]$  | $[dB(\mu V)]$    | $[dB(\mu V)]$ | [dB]         | [dB]         |        |
| 1   | 0.150     |               | 20.7          | 10.6         | 59.2          | 31.3           | 66.0             | 56.0          | 6.8          | 24.7         |        |
| 2   | 0.577     |               | 14.8          | 10.4         | 39.4          | 25.2           | 56.0             | 46.0          | 16.6         | 20.8         |        |
| 3   | 0.774     |               | 1.4           | 10.4         | 29.2          | 11.8           | 56.0             |               | 26.8         | 34.2         |        |
| 4   | 1.472     |               | 17.2          | 10.5         | 36.0          | 27. 7          | 56.0             | 46.0          | 20.0         | 18.3         |        |
| 5   | 4.693     |               | 6.9           |              |               | 17.6           | 56.0             |               | 26.8         | 28.4         |        |
| 6   |           |               |               | 10.7         |               |                |                  |               |              |              |        |
| 0   | 6,766     | 24.9          | 13.0          | 10.9         | 35.8          | 23.9           | 60. 0            | 50.0          | 24.2         | 26.1         |        |
|     |           |               |               |              |               |                |                  |               |              |              |        |
|     | L2        |               |               |              |               |                |                  |               |              |              |        |
| No. | Frequency |               | AV            | c.f          | Result<br>QP  | AV             | QP               | Limit<br>AV   | Margin<br>QP | Margin<br>AV | Remark |
|     | [MHz]     |               | [dB(µV)]      | [dB]         | $[dB(\mu V)]$ | LdB( u V)]     |                  | $[dB(\mu V)]$ |              | [dB]         |        |
| 1   | 0.150     | 49.3          | 22. 2         | 10.6         | 59, 9         | 32.8           | [dB(µV)]<br>66.0 | 56.0          | 6.1          | 23.2         |        |
| 2   |           |               |               |              |               |                |                  |               |              |              |        |
|     | 0 560     | . 27 6        | 17.0          | 10.4         | 38 0          | 27.4           | 56 0             | 46 0          | 18 0         | 19.6         |        |
|     | 0.569     |               | 17.0          | 10.4         | 38.0          | 27.4           |                  | 46.0          | 18.0         | 18.6         |        |
| 3   | 0.713     | 26, 2         | 16.3          | 10.4         | 36, 6         | 26, 7          | 56.0             | 46.0          | 19.4         | 19.3         |        |
| 3   | 0,713     | 26.2          | 16.3<br>20.1  | 10.4<br>10.5 | 36, 6         | 26, 7<br>30, 6 | 56.0<br>56.0     | 46.0          | 19.4<br>19.5 | 19.3<br>15.4 |        |
| 3   | 0.713     | 26, 2         | 16.3          | 10.4         | 36, 6         | 26, 7          | 56.0             | 46.0          | 19.4         | 19.3         |        |
| 3   | 0,713     | 26.2          | 16.3<br>20.1  | 10.4<br>10.5 | 36, 6         | 26, 7<br>30, 6 | 56.0<br>56.0     | 46.0          | 19.4<br>19.5 | 19.3<br>15.4 |        |



# 5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.



# 6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

| Test item                                  | Measurement uncertainty |
|--------------------------------------------|-------------------------|
| Conducted emission, AMN (9 kHz – 150 kHz)  | ±3.7 dB                 |
| Conducted emission, AMN (150 kHz – 30 MHz) | ±3.3 dB                 |
| Radiated emission (9kHz – 30 MHz)          | ±3.2 dB                 |
| Radiated emission (30 MHz – 1000 MHz)      | ±5.5 dB                 |
| Radiated emission (1 GHz – 6 GHz)          | ±5.0 dB                 |
| Radiated emission (6 GHz – 18 GHz)         | ±4.6 dB                 |
| Radiated emission (18 GHz – 40 GHz)        | ±6.4 dB                 |
| Radio Frequency                            | ±1.3 * 10 <sup>-8</sup> |
| RF power, conducted                        | ±0.7 dB                 |
| Adjacent channel power                     | ±1.5 dB                 |
| Temperature                                | ±0.6 °C                 |
| Humidity                                   | ±1.2 %                  |
| Voltage (DC)                               | ±0.4 %                  |
| Voltage (AC, <10kHz)                       | ±0.2 %                  |

| Measured value and standard limit value |                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Case1                                   | Imit value         +Uncertainty       -Uncertainty         Even if it takes uncertainty into consideration,         Measured value       a standard limit value is fulfilled.         Although measured value is in a standard limit value,         a limit value won't be fulfilled if uncertainty is taken into consideration. |  |  |  |  |
| Case3                                   | Although measured value exceeds a standard limit value,<br>a limit value will be fulfilled if uncertainty is taken into consideration.<br>Even if it takes uncertainty into consideration,                                                                                                                                       |  |  |  |  |
|                                         | Case1                                                                                                                                                                                                                                                                                                                            |  |  |  |  |



# 7 Laboratory Information

Testing was performed and the report was issued at:

# TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81-238-28-2881

# Accreditation and Registration A2LA

Certificate #3686.03

VLAC Accreditation No.: VLAC-013

BSMI Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada ISED#: 4224A

VCCI Council Registration number: A-0166



# Appendix A. Test Equipment

### **Radiated emission**

| Equipment                   | Company              | Model No.         | Serial No.        | Cal. Due    | Cal. Date   |
|-----------------------------|----------------------|-------------------|-------------------|-------------|-------------|
| EMI Receiver                | ROHDE&SCHWARZ        | ESCI              | 100765            | 30-Sep-2023 | 14-Sep-2022 |
| EMI receiver                | ROHDE&SCHWARZ        | ESW44             | 103171            | 30-Sep-2023 | 20-Sep-2022 |
| Spectrum analyzer           | Agilent Technologies | E4440A            | US44302655        | 30-Sep-2023 | 05-Sep-2022 |
| Spectrum analyzer           | ROHDE&SCHWARZ        | FSV40             | 101731            | 31-Jul-2023 | 19-Jul-2022 |
| Preamplifier                | SONOMA               | 310               | 372170            | 30-Sep-2023 | 28-Sep-2022 |
| Loop antenna                | ROHDE&SCHWARZ        | HFH2-Z2           | 100515            | 30-Apr-2023 | 18-Apr-2022 |
| Attenuator                  | TOYO Connector       | NA-PJ-6           | N/A(S507)         | 28-Feb-2023 | 03-Feb-2022 |
| Biconical antenna           | Schwarzbeck          | VHBB9124/BBA9106  | 1145              | 30-Jun-2023 | 28-Jun-2022 |
| Log periodic antenna        | Schwarzbeck          | VUSLP9111B        | 345               | 30-Nov-2022 | 08-Nov-2021 |
|                             |                      |                   | 346               | 30-Nov-2023 | 16-Nov-2022 |
| Attenuator                  | TOYO Connector       | NA-PJ-6/6dB       | N/A(S541)         | 30-Sep-2023 | 28-Sep-2022 |
| Attenuator                  | TAMAGAWA.ELEC        | CFA-10/3dB        | N/A(S503)         | 31-Jul-2023 | 14-Jul-2022 |
| Preamplifier                | TSJ                  | MLA-100M18-B02-40 | 1929118           | 31-Dec-2022 | 22-Dec-2021 |
| Attenuator                  | AEROFLEX             | 26A-10            | 081217-08         | 31-Dec-2022 | 22-Dec-2021 |
| Double ridged guide antenna | ETS LINDGREN         | 3117              | 00052315          | 30-Jun-2023 | 22-Jun-2022 |
| Attenuator                  | HUBER+SUHNER         | 6803.17.B         | N/A(2340)         | 31-Dec-2022 | 23-Dec-2021 |
| Double ridged guide antenna | A.H.Systems Inc.     | SAS-574           | 469               | 31-Aug-2023 | 19-Aug-2022 |
| Preamplifier                | TSJ                  | MLA-1840-B03-35   | 1240332           | 31-Aug-2023 | 19-Aug-2022 |
| Notch Filter                | Micro-Tronics        | BRM50702          | G433              | 30-Sep-2023 | 28-Sep-2022 |
| Microwave cable             | HUBER+SUHNER         | SUCOFLEX104/9m    | MY30037/4         | 31-Dec-2022 | 22-Dec-2021 |
|                             |                      | SUCOFLEX104/1m    | my24610/4         | 31-Dec-2022 | 22-Dec-2021 |
|                             |                      | SUCOFLEX104/8m    | SN MY30033/4      | 31-Dec-2022 | 22-Dec-2021 |
|                             |                      | SUCOFLEX104/1m    | MY32976/4         | 31-Dec-2022 | 22-Dec-2021 |
|                             |                      | SUCOFLEX104/2m    | SN MY28404/4      | 31-Dec-2022 | 22-Dec-2021 |
|                             |                      | SUCOFLEX104/7m    | 41625/6           | 31-Dec-2022 | 22-Dec-2021 |
| PC                          | DELL                 | DIMENSION E521    | 75465BX           | N/A         | N/A         |
| Software                    | TOYO Corporation     | EP5/RE-AJ         | 0611193/V6.0.140  | N/A         | N/A         |
| PC                          | DELL                 | OPTIPLEX9010      | 00186-228-073-851 | N/A         | N/A         |
| Software                    | TOYO Technica        | ES10/RE-AJ        | Ver.2021.10.001   | N/A         | N/A         |
| Absorber                    | RIKEN                | PFP30             | N/A               | N/A         | N/A         |
| 3m Semi an-echoic Chamber   | TOKIN                | N/A               | N/A(9002-NSA)     | 31-May-2023 | 28-May-2022 |
| 3m Semi an-echoic Chamber   | TOKIN                | N/A               | N/A(9002-SVSWR)   | 31-May-2023 | 28-May-2022 |

# Conducted emission at mains port

| Equipment                            | Company                            | Model No.      | Serial No.        | Cal. Due    | Cal. Date   |
|--------------------------------------|------------------------------------|----------------|-------------------|-------------|-------------|
| EMI receiver                         | ROHDE&SCHWARZ                      | ESW44          | 103171            | 30-Sep-2023 | 20-Sep-2022 |
| Attenuator                           | HUBER+SUHNER                       | 6810.01.A      | N/A (S411)        | 31-Dec-2022 | 22-Dec-2021 |
| Line impedance stabilization network | Kyoritsu Electrical<br>Works, Ltd. | TNW-407F2      | 12-17-110-2       | 30-Jun-2023 | 15-Jun-2022 |
| Microwave cable                      | HUBER+SUHNER                       | SUCOFLEX104/5m | MY33601/4         | 31-Oct-2023 | 27-Oct-2022 |
| Microwave cable                      | HUBER+SUHNER                       | SUCOFLEX104/2m | MY37268/4         | 31-Oct-2023 | 27-Oct-2022 |
| Coaxial cable                        | HUBER+SUHNER                       | RG214/U/10m    | N/A (S194)        | 31-Dec-2022 | 22-Dec-2021 |
| PC                                   | DELL                               | OPTIPLEX9010   | 00186-228-073-851 | N/A         | N/A         |
| Software                             | TOYO Technica                      | ES10/RE-AJ     | Ver.2021.10.001   | N/A         | N/A         |

\*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.