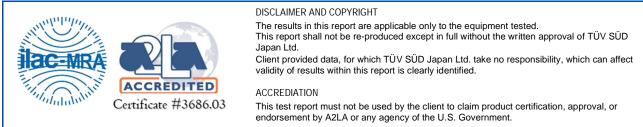
Report on the RF Testing of:

KYOCERA Corporation Mobile Phone, Model: EB1135 FCC ID: JOYEB1135

In accordance with FCC Part15 Subpart C


Prepared for: KYOCERA Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-22104-2

SIGNATURE				
	dioak Sigus	Ry.		
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE	
Hiroaki Suzuki Deputy Manager of RF Group		Approved Signatory	2024,07,10	

EXECUTIVE SUMMARY – Result: Complied A sample of this product was tested and the result above was confirmed in accordance with FCC Part15 Subpart C.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 www.tuvsud.com/ja-jp

TÜV SÜD Japan Ltd.

Add value. Inspire trust.

Japan

Contents

1	Summary of Test			
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Modification history of the test report3Standards3Test methods3Deviation from standards3List of applied test(s) of the EUT3Test information4Test set up4Test period4			
2	Equipment Under Test			
2.1 2.2 2.3 2.4 2.5 2.6	EUT information 5 Modification to the EUT 6 Variation of family model(s) 6 Operating channels and frequencies 6 Description of test mode 7 Operating flow 7			
3	Configuration of Equipment8			
3.1 3.2 3.3	Equipment used			
4	Test Result9			
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	DTS Bandwidth / Occupied Bandwidth (99%) .9 Maximum Conducted Output Power .14 Band Edge Compliance of RF Conducted Emissions .16 Spurious emissions - Conducted - .21 Spurious Emissions - Radiated - .32 Restricted Band of Operation .56 Transmitter Power Spectral Density .64 AC Power Line Conducted Emissions .69			
5	Antenna requirement72			
6	Measurement Uncertainty73			
7	Laboratory Information74			
	Appendix A. Test Equipment75			
Appendix	Appendix B. Duty Cycle77			

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-22104-0	First Issue	2-June-2022
JPD-TR-22104-1	Conducted test results for EB1134 added.	5-June-2024
JPD-TR-22104-2	The results of the conducted test of EB1134 were deleted and the conducted test of EB1135 was performed.	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart C

1.3 Test methods

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
15.247(a)(2)	DTS Bandwidth / Occupied Bandwidth (99%)	Conducted	PASS	-
15.247(b)(3)	Maximum conducted (average) output power	Conducted	PASS	-
15.247(d)	Band Edge Compliance of RF Conducted Emissions	Conducted	PASS	-
15.247(d)		Conducted	PASS	-
15.205 15.209	Spurious Emissions	Radiated	PASS	-
15.247(d) 15.205 15.209	Restricted Bands of Operation	Radiated	PASS	-
15.247(e)	Transmitter Power Spectral Density	Conducted	PASS	-
15.207	AC Power Line Conducted Emissions	Conducted	PASS	-

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

7-March-2022 - 9-July-2024

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant	KYOCERA Corporation
	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan
	Phone: +81-45-943-6253 Fax: +81-45-943-6314
Equipment Under Test (EUT)	Mobile Phone
Model number	EB1135
Serial number	RF1, RF2, RF3
Trade name	Kyocera
Number of sample(s)	3
EUT condition	Pre-Production
Power rating	Battery: DC 3.8 V
Size	(W) 112.9 mm × (D) 51.3 mm × (H) 18.0 mm
Environment	Indoor and Outdoor use
Terminal limitation	-20°C to 60°C
Hardware Version	DMT1
Software Version	nightly_20220208
Firmware Version	Not applicable
RF Specification	
Protocol	IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20),
Frequency range	IEEE802.11b /11g /11n (HT20): 2412 MHz-2462 MHz
Number of RF Channels	11 Channels
Modulation type	IEEE802.11b: DSSS (DBPSK, DQPSK, CCK) IEEE802.11g / 11n (HT20): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Data rate	IEEE802.11b: 1, 2, 5.5, 11Mbps IEEE802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	IEEE802.11n (HT20 LGI): 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps
Channel separation	
Channel separation Conducted power	IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps
·	IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps 5 MHz 32.434 mW (IEEE802.11b) 116.681 mW (IEEE802.11g)
Conducted power	IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps 5 MHz 32.434 mW (IEEE802.11b) 116.681 mW (IEEE802.11g) 148.594 mW (IEEE802.11n: HT20)

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

	Modification State Description of Modification		Modification fitted by	Date of Modification
Model: EB1135, Serial Number: RF1, RF2, RF3				
	0	As supplied by the applicant	Not Applicable	Not Applicable

2.3 Variation of family model(s)

2.3.1 List of family model(s)

EB1135 has model with camera and without camera.

2.3.2 Reason for selection of EUT

Not applicable

2.4 Operating channels and frequencies

Channel	Frequency [MHz]
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

2.5 Description of test mode

The EUT had been tested under operating condition. There are three channels have been tested as following:

Tested Channel [11b, 11g, 11n(HT20)]	Frequency [MHz]
Low	2412
Middle	2437
High	2462

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

Tested Channel	Modulation Type	Data Rate
Low, Middle, High	IEEE802.11b: DSSS	1Mbps
Low, Middle, High	IEEE802.11g: OFDM	6Mbps
Low, Middle, High	IEEE802.11n (HT20 LGI): OFDM	MCS0 (6.5Mbps)

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in X-axis, Open, With camera and the worst case recorded. Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

2.6 Operating flow

- Tx mode

- i) Test program setup to the Software
- ii) Select a Test mode

[IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)] Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz

iii) Start test mode

- Rx mode

- i) Test program setup to the Software
- Select a Test mode [IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)]
 Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz
- iii) Start test mode

3 Configuration of Equipment

Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	EB1135	RF1, RF2, RF3	JOYEB1135	EUT
2	AC Adapter	KDDI	0602PQA	N/A	N/A	*
* AC nower line Conducted Emission Test						

*:AC power line Conducted Emission Test.

3.2 Cable(s) used

No.	Equipment	Length[m]	Shield	Connector	Comment
а	USB cable (for AC Adapter)	1.5	No	Plastic	*
*: AC nower line Conducted Emission Test					

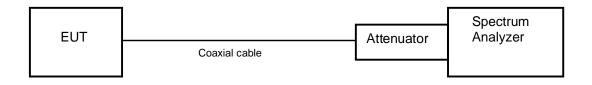
*:AC power line Conducted Emission Test.

3.3 System configuration

4 Test Result

4.1 DTS Bandwidth / Occupied Bandwidth (99%)

4.1.1 Measurement procedure


[FCC 15.247(a)(2), KDB 558074 D01 v05r02, Section 8.2]

The bandwidth at 6dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) RBW = 100 kHz.
- b) VBW \geq 3 x RBW.
- c) Sweep time = auto-couple.
- d) Detector = peak.
- e) Trace mode = max hold.

- Test configuration

4.1.2 Limit

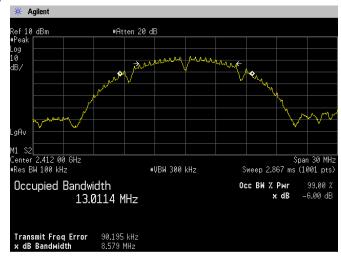
The minimum permissible 6 dB bandwidth is 500 kHz.

4.1.3 Measurement result

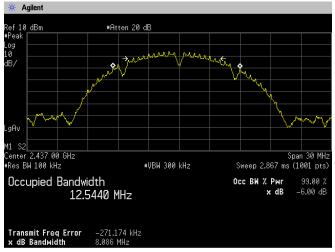
Date	:	9-July-2024
Temperature	:	24.1 [°C]
Humidity	:	54.7 [%]
Test place	:	Shielded room No.4

Test engineer :

Kazunori Saito


		DTS Bandwidth [MHz]	
Channel	IEEE802.11b	IEEE802.11g	IEEE802.11n (HT20)
Low	8.579	15.983	17.315
Middle	8.086	15.698	16.094
High	8.099	15.723	16.313

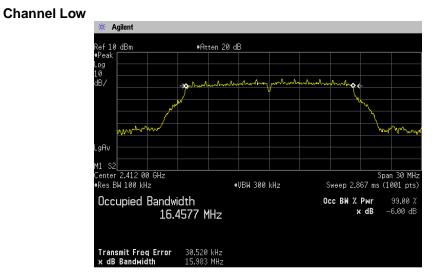
Channel		Occupied Bandwidth (99%) [MHz]						
Channel	IEEE802.11b IEEE802.11g IEEE802.11n (HT2							
Low	13.011	16.458	17.620					
Middle	12.544	16.248	17.400					
High	12.743	16.349	17.491					


4.1.4 Trace data

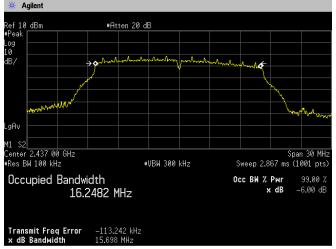
[IEEE802.11b]

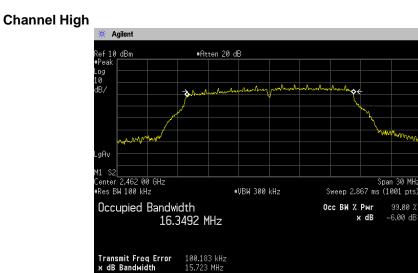
Channel Low

Channel Middle

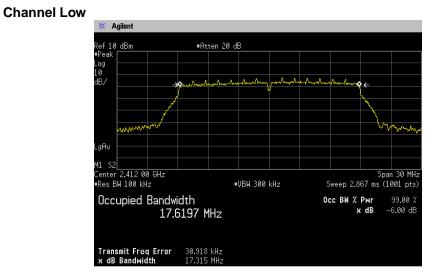


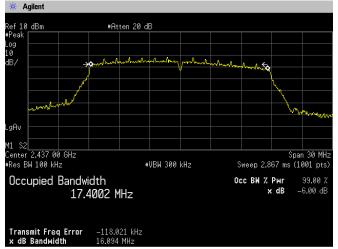
Channel High

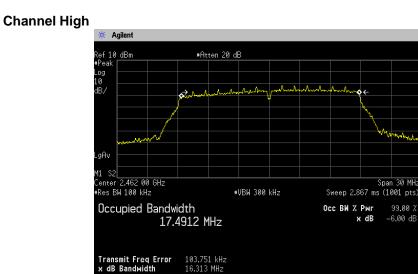




[IEEE802.11g]

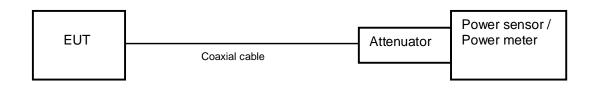

Channel Middle




Japan

[IEEE802.11n (HT20)]

Channel Middle


4.2 Maximum Conducted Output Power

4.2.1 Measurement procedure

[FCC 15.247(b)(3), KDB 558074 D01 v05r02, Section 8.3.1.3]

The peak power is measured with a power sensor connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

- Test configuration

4.2.2 Limit

1 W (1000 mW) or less

4.2.3 **Measurement result**

Date	:	9-July-2024			
Temperature	:	24.1 [°C]			
Humidity	:	54.7 [%]	Test engineer	:	
Test place	:	Shielded room No.4	5		Kazunori Saito

[IEEE802.11b] Battery Full

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2412	3.47	10.93	14.40	27.542	≦1000	PASS
Middle	2437	4.18	10.93	15.11	32.434	≦1000	PASS
High	2462	4.10	10.93	15.03	31.842	≦1000	PASS

[IEEE802.11g] **Battery Full**

Danolyie			r	r -		r	
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2412	9.68	10.93	20.61	115.080	≦1000	PASS
Middle	2437	9.74	10.93	20.67	116.681	≦1000	PASS
High	2462	9.58	10.93	20.51	112.460	≦1000	PASS

[IEEE802.11n (HT20)] Battery Full

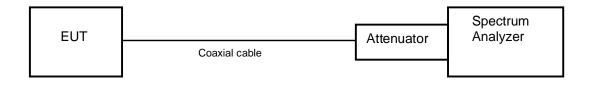
Dallery FL							
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Peak Output Power (mW)	Limit (mW)	Result
Low	2412	10.79	10.93	21.72	148.594	≦1000	PASS
Middle	2437	10.43	10.93	21.36	136.773	≦1000	PASS
High	2462	10.23	10.93	21.16	130.617	≦1000	PASS

Calculation;

Reading (dBm) + Factor (dB) = Level (dBm) $10\log P = Level (dBm)$ $P = 10^{(Maximum Peak Output Power / 10)} (mW)$

4.3 Band Edge Compliance of RF Conducted Emissions

4.3.1 Measurement procedure


[FCC 15.247(d), KDB 558074 D01 v05r02, Section 8.5]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting. (Setting suitable for measurement.)
- b) RBW = 100 kHz.
- c) VBW $\ge 3 \times RBW$
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

4.3.2 Limit

In any 100 kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

4.3.3 Measurement result

Date	:	9-July-2024
Temperature	:	24.1 [°C]
Humidity	:	54.7 [%]
Test place	:	Shielded room No.4

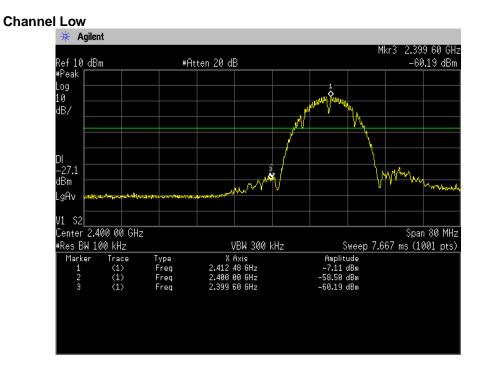
Test engineer :

Kazunori Saito

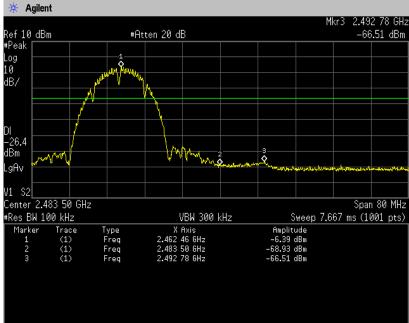
[IEEE802.11b]

Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band- edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-7.11	2399.60	-60.19	53.08	At least 20dB below from peak of RF	PASS
High	2462.00	-6.39	2492.78	-66.51	60.12	At least 20dB below from peak of RF	PASS

[IEEE802.11g]

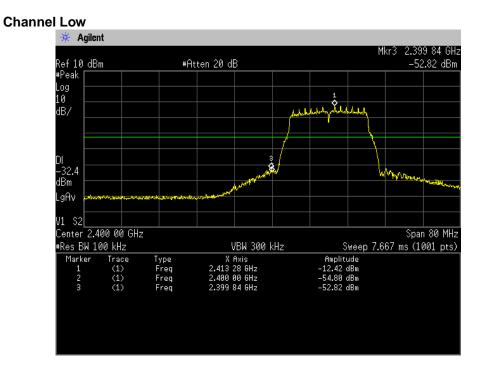

Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band- edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-12.42	2399.84	-52.82	40.40	At least 20dB below from peak of RF	PASS
High	2462.00	-11.45	2492.86	-63.27	51.82	At least 20dB below from peak of RF	PASS

[IEEE802.11n (HT20)]


Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band- edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-12.46	2399.44	-52.84	40.38	At least 20dB below from peak of RF	PASS
High	2462.00	-11.70	2493.26	-63.28	51.58	At least 20dB below from peak of RF	PASS

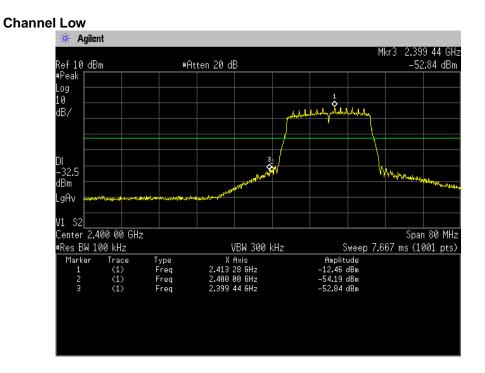
4.3.4 Trace data

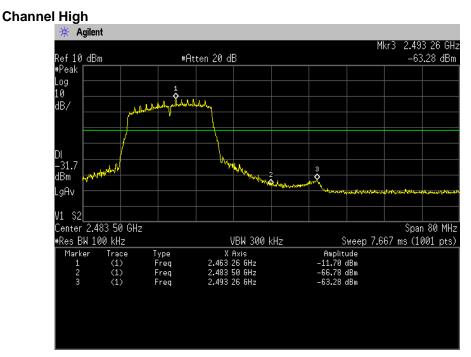
[IEEE802.11b]



Channel High

[IEEE802.11g]

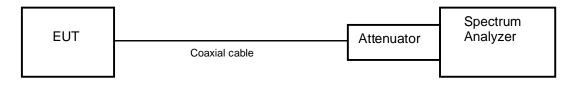



Channel High 🔆 Agilent 2.492 86 GHz -63.27 dBm Mkr3 Ref 10 dBm #Peak #Atten 20 dB Log 10 dB/ Muh –31.5 dBm WWW 3 0 .gAv V1 S2 *F 52 Center 2.483 50 GHz #Res BW 100 kHz Span 80 MHz Sweep 7.667 ms (1001 pts) VBW 300 kHz Amplitude -11.45 dBm -66.34 dBm -63.27 dBm Trace (1) (1) (1) X Axis 2.463 26 GHz 2.483 50 GHz 2.492 86 GHz Marker Type Freq Freq Freq

[IEEE802.11n (HT20)]

4.4 Spurious emissions - Conducted -

4.4.1 Measurement procedure


[FCC 15.247(d), KDB 558074 D01 v05r02, Section 8.5]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

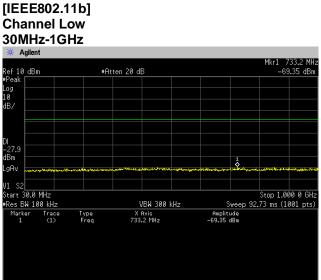
- a) Span = wide enough to fully capture the emission being measured.
- b) RBW = 100 kHz.
- c)́ VBW ≥ RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

4.4.2 Limit

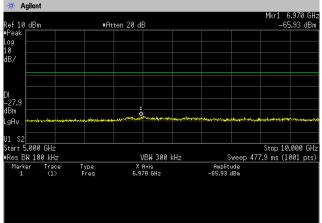
In any 100 kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

4.4.3 Measurement result

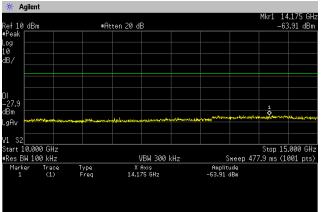

Date Temperature Humidity Test place	: 9-July-2024 : 24.1 [°C] : 54.7 [%] : Shielded room No.4	Test engineer	:	Kazunori Saito

[IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

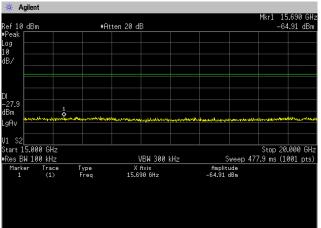
Channel	Frequency [MHz]	Limit [dB]	Results Chart	Result
Low	2412	At least 20dB below from peak of RF	See the trace Data	PASS
Middle	2437	At least 20dB below from peak of RF	See the trace Data	PASS
High	2462	At least 20dB below from peak of RF	See the trace Data	PASS

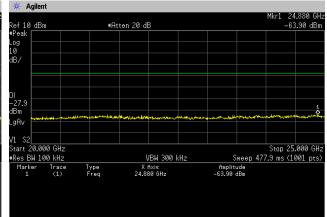


4.4.4 Trace data

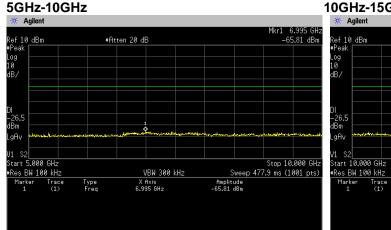


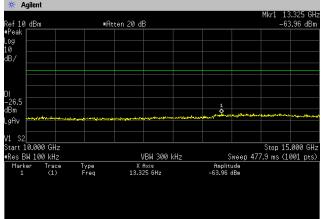
1GHz-5GHz Mkr2 3.088 GHz -65.89 dBm #Atten 20 dB Ref 10 dBm ≢Peak [Log 10 dB/ _27.9 dBm \$.αÂ\ V1 vi 52 Start 1.000 GHz #Res BW 100 kHz Stop 5.000 GHz Sweep 382.3 ms (1001 pts) VBW 300 kHz Marker 1 2 Trace (1) (1) Amplitude -7.86 dBm -65.89 dBm Type Freq Freq X Axis 2.412 GHz 3.088 GHz

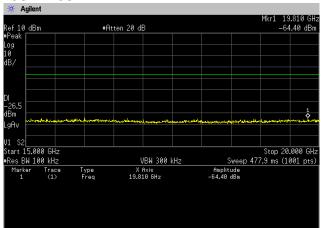

5GHz-10GHz

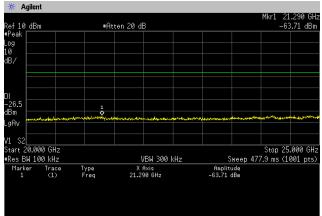

10GHz-15GHz


15GHz-20GHz

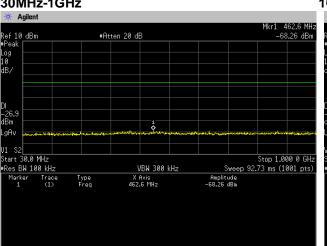

20GHz-25GHz


Channel Middle 30MHz-1GHz

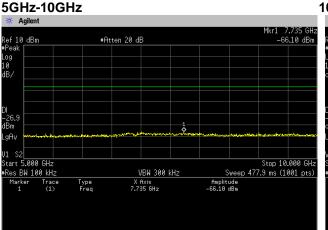

1GHz-5GHz Agilent Mkr2 3.148 GHz -66.71 dBm ∎Atten 20 dB əf 10 dBm 1 –26.5 dBm \$ V1 S2 Start 1.000 GHz #Res BW 100 kHz Marker Trace 1 (1) 2 (1) Stop 5.000 GHz Sweep 382.3 ms (1001 pts) VBW 300 kHz Type Freq Freq Amplitude -6.55 dBm -66.71 dBm X Axis 2.436 GHz 3.148 GHz

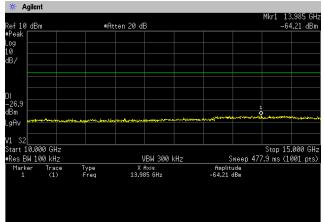


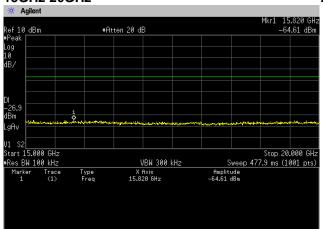
15GHz-20GHz

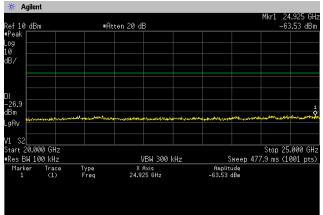


20GHz-25GHz

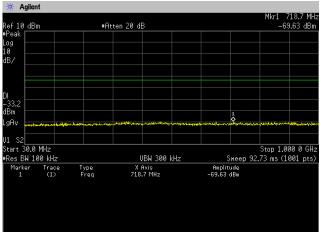



Channel High 30MHz-1GHz

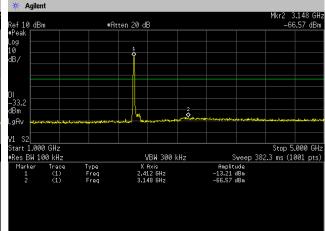

1GHz-5GHz Agilent Mkr2 3.320 GHz –66.62 dBm ∎Atten 20 dB əf 10 dBm ŧPea Log 10 dB/ –26.9 dBm \$.gAv $\sqrt{1}$ V1 S2 Start 1.000 GHz #Res BW 100 kHz Marker Trace 1 (1) 2 (1) Stop 5.000 GHz Sweep 382.3 ms (1001 pts) VBW 300 kHz Type Freq Freq Amplitude -6.91 dBm -66.62 dBm X Axis 2.464 GHz 3.320 GHz

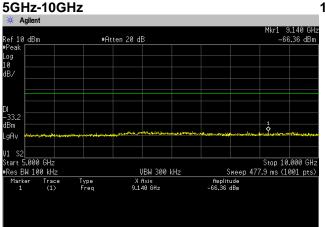


15GHz-20GHz

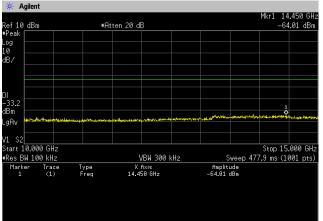


20GHz-25GHz

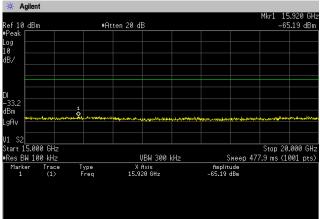


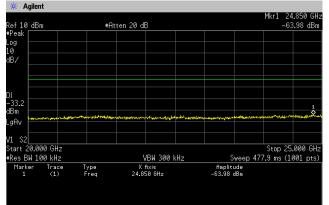


[IEEE802.11g] Channel Low 30MHz-1GHz

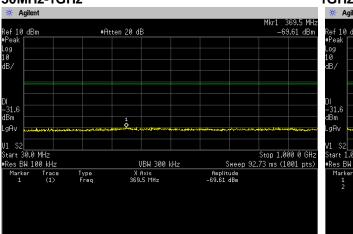


1GHz-5GHz

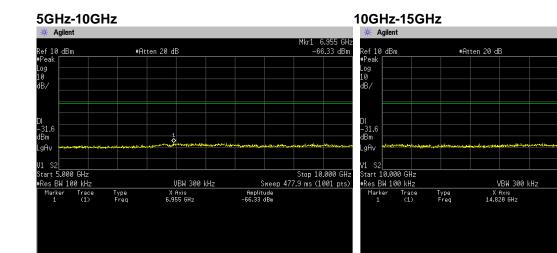


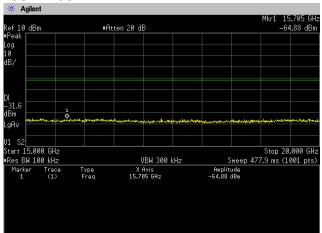

10GHz-15GHz

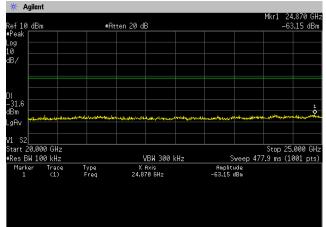
15GHz-20GHz



20GHz-25GHz

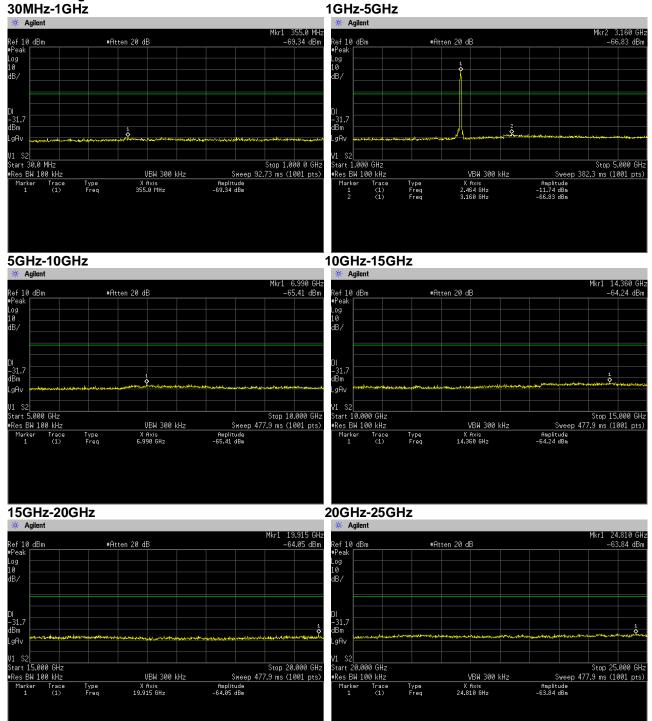



Channel Middle 30MHz-1GHz


IGHZ-SGHZ Mir2 3.192 GHz Mir2 3.192 GHz Nir2 3.192 GHz Nir2 3.192 GHz Nir2 3.192 GHz OB <th

15GHz-20GHz

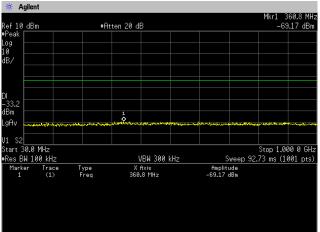
20GHz-25GHz

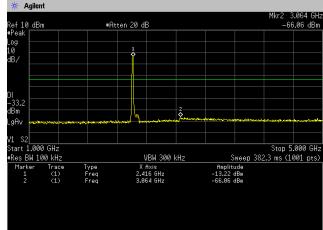


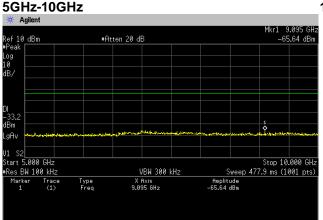
14.820 GH: -64.74 dBm

1

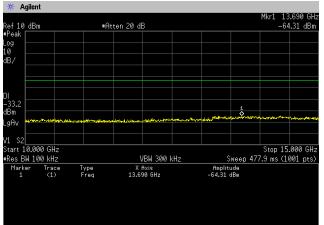
Sweep 477.9 ms (1001 pts) Amplitude -64.74 dBm


Channel High

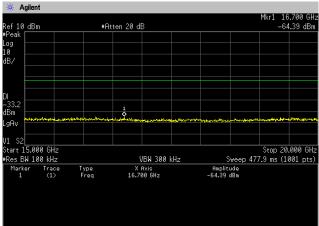


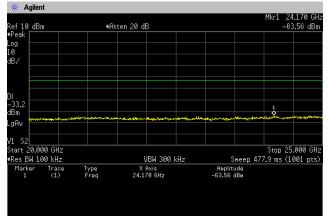


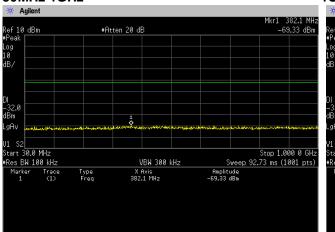
[IEEE802.11n (HT20)] Channel Low 30MHz-1GHz

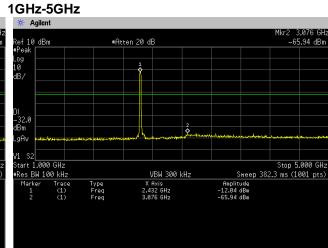


1GHz-5GHz

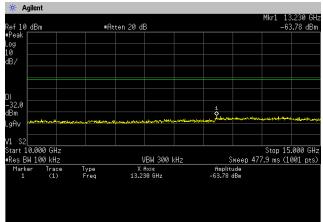


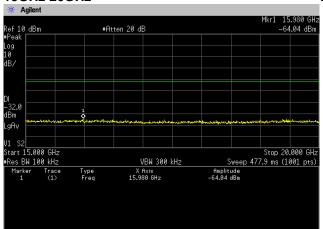

10GHz-15GHz


15GHz-20GHz

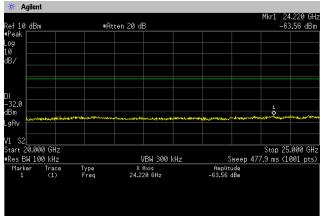


20GHz-25GHz

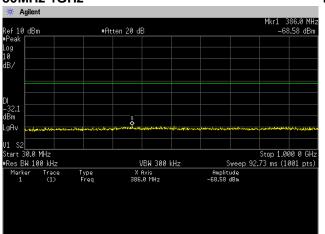

Channel Middle 30MHz-1GHz

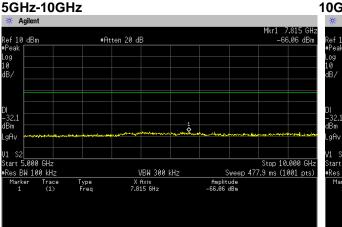


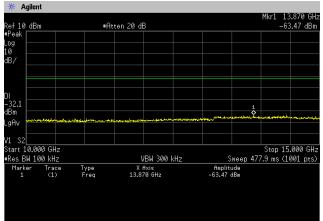
SGHz-10GHz 1 Mkr1 7.980 GHz Ref 10 dBm •Atten 20 dB -65.42 dBm Peak Log 0 -65.42 dBm 0 -65.42 dBm

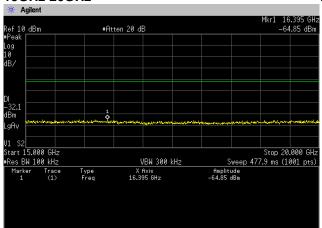


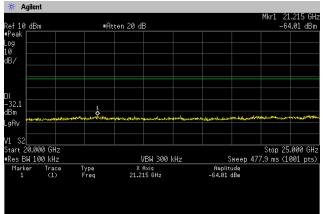
15GHz-20GHz


20GHz-25GHz


1GH7-5GH7


Channel High 30MHz-1GHz


1GHz-5GHz Agilent Mkr2 3.624 GHz -66.03 dBm ∎Atten 20 dB ef 10 dBm ŧPea Log 10 dB/ -32.1 dBm \$.gAv $\sqrt{1}$ V1 S2 Start 1.000 GHz #Res BW 100 kHz Marker Trace 1 (1) 2 (1) Stop 5.000 GHz Sweep 382.3 ms (1001 pts) VBW 300 kHz Type Freq Freq Amplitude -12.09 dBm -66.03 dBm X Axis 2.464 GHz 3.624 GHz


10GHz-15GHz

15GHz-20GHz

20GHz-25GHz

4.5 Spurious Emissions - Radiated -

4.5.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

Test was applied by following conditions.

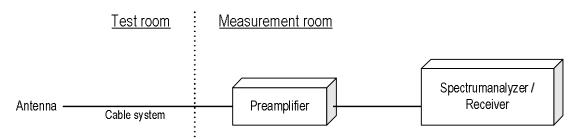
Test method Frequency range Test place EUT was placed on Antenna distance		ANSI C63.10 9 kHz to 25 GHz 3m Semi-anechoic chamber Styrofoam table / (W) $1.0 \times (D) 1.0 \times (H) 0.8$ m (below 1 GHz) Styrofoam table / (W) $0.6 \times (D) 0.6 \times (H)1.5$ m (above 1 GHz) 3 m
Test receiver setting - Detector - Bandwidth Spectrum analyzer setting - Peak - Average	:	Below 1 GHz Average (9 kHz-90 kHz, 110 kHz-490 kHz), Quasi-peak 200 Hz, 120 kHz Above 1 GHz RBW=1 MHz, VBW=3 MHz, Span=0 Hz, Sweep=auto 11b: RBW=1 MHz, VBW=3 kHz, Span=0 Hz, Sweep=auto 11g, 11n: RBW=1 MHz, VBW=1 kHz, Span=0 Hz, Sweep=auto Display mode=Linear

Average Measurement Setting [VBW]

mode	Duty Cycle (%)	Ton [µs]	Toff [µs]	1/Ton (kHz)	Determined VBW Setting
11b	96.32	992.1	37.9	1.008	3kHz
11g	96.80	1392	46	0.718	1kHz
11n(HT20)	96.70	1288	44	0.776	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements

were confirmed against 30 m open are test site.


Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna and Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst cases emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.5.2 Calculation method

[9 kHz to 150 kHz] Emission level = Reading + (Ant factor + Cable system loss) Margin = Limit – Emission level

[150 kHz to 25 GHz] Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain) Margin = Limit – Emission level

Example:

Limit @ 4824.0 MHz: 74.0 dBuV/m (Peak Limit) S.A Reading = 49.5 dBuV Cable system loss = 8.4 dB Result = 49.5 + 8.4 = 45.1 dBuV/m Margin = 74.0 - 45.1 = 16.1 dB

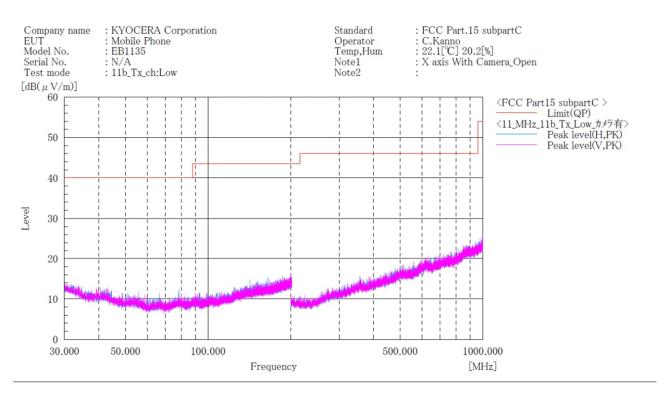
4.5.3 Limit

Frequency	Field st	Distance		
[MHz]	[uV/m]	[dBuV/m]	[m]	
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300	
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30	
1.705-30	30	29.5	30	
30-88	100	40.0	3	
88-216	150	43.5	3	
216-960	200	46.0	3	
Above 960	500	54.0	3	

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition modulation.


4.5.4 Test data

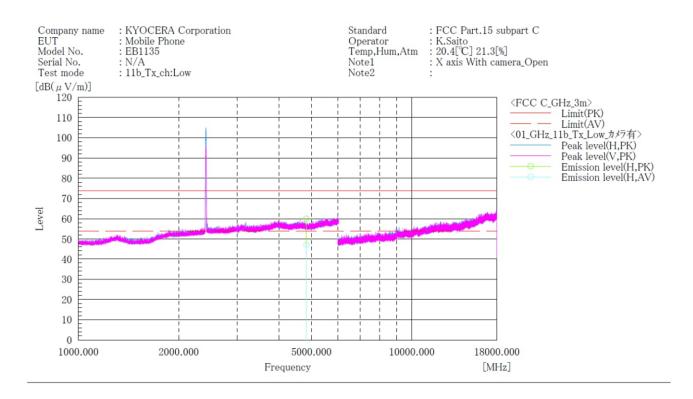
Date Temperature Humidity Test place	: 2 : 2	7-March-2022 20.4 [°C] 21.3 [%] 3m Semi-anechoic chamber	Test engineer :	:	Kazunori Saito
Date Temperature Humidity Test place	: 2	3-March-2022 22.1 [°C] 20.2 [%] 3m Semi-anechoic chamber	Test engineer :	:	Chiaki Kanno
Date Temperature Humidity Test place	: 2 : 1	3~9-March-2022 22.9 [°C] 19.0 [%] 3m Semi-anechoic chamber	Test engineer :	:	Tadahiro Seino

4.5.4.1 Transmission mode

[11b] Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11b] Channel Low ABOVE 1GHz

Final Result


No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
1	[MHz] 4824.000	H	$\begin{bmatrix} dB(\mu V) \end{bmatrix}$ 49.4	$[dB(\mu V)]$ 36.4	[dB(1/m)] 10.6	$\begin{bmatrix} dB (\mu V/m) \\ 60.0 \end{bmatrix}$	$\begin{bmatrix} dB(\mu V/m) \\ 47.0 \end{bmatrix}$	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$ 74.0	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$ 54.0	[dB] 14.0	[dB] 7.0	[cm] 195.0	[°] 234.0	

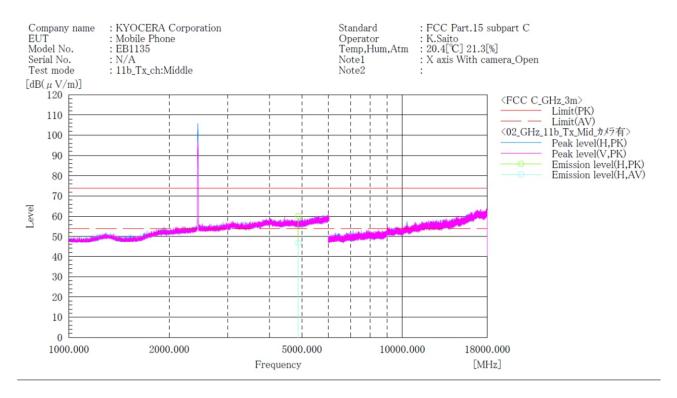
Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11b] Channel Middle BELOW 1GHz

Final Result

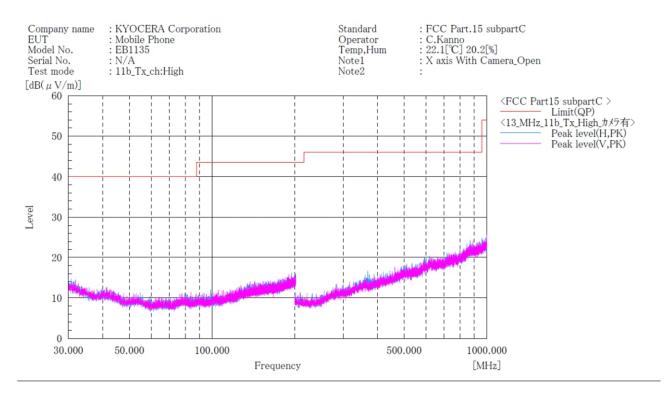
No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11b] Channel Middle ABOVE 1GHz


Final Result

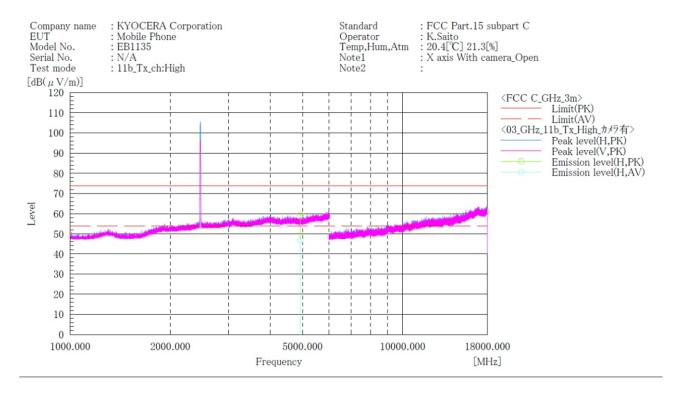
No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
1	[MHz] 4874.000	Н	PK [dB(μV)] 49.4	AV [dB(µV)] 36.2	[dB(1/m)] 10.6	$\begin{bmatrix} PK \\ [dB(\mu V/m)] \\ 60.0 \end{bmatrix}$	AV [dB(μV/m)] 46.8	$\begin{bmatrix} PK \\ [dB(\mu V/m)] \\ 74.0 \end{bmatrix}$	$\begin{bmatrix} AV \\ [dB(\mu V/m)] \\ 54.0 \end{bmatrix}$	PK [dB] 14.0	AV [dB] 7.2	[cm] 346.0	[°] 194. 0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11b] Channel High BELOW 1GHz

Final Result

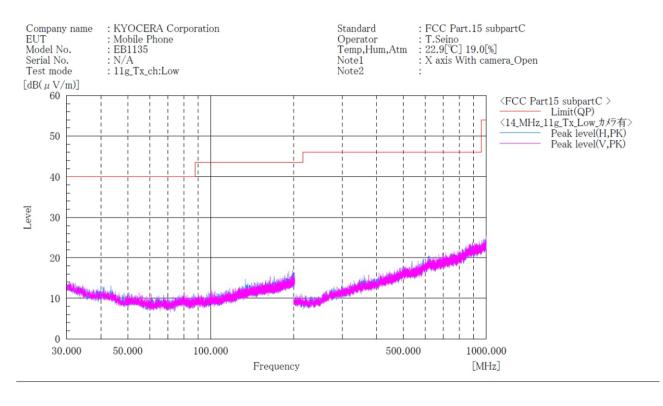
No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11b] Channel High ABOVE 1GHz


Final Result

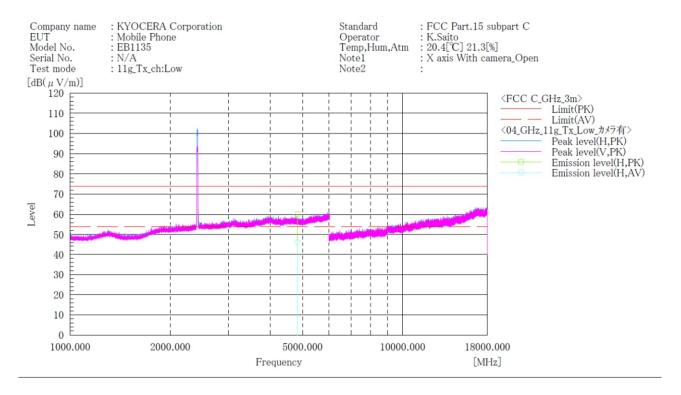
No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
	[MHz]					PK [dB($\mu V/m$)]	AV [dB($\mu V/m$)]	$\frac{PK}{[dB(\mu V/m)]}$	ΑV [dB(μV/m)]	PK [dB]	AV [dB]	[cm]	[°]	
1	4924.000	Н	48.8	36.1	10.6	59.4	46.7	74.0	54.0	14.6	7.3	340.0	198.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11g] Channel Low BELOW 1GHz

Final Result

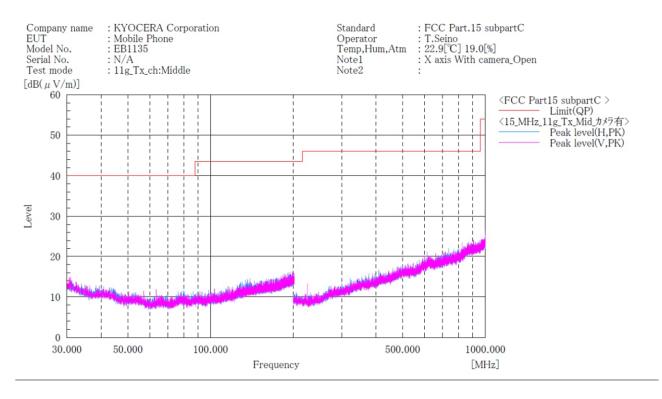
No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11g] Channel Low ABOVE 1GHz


Final Result

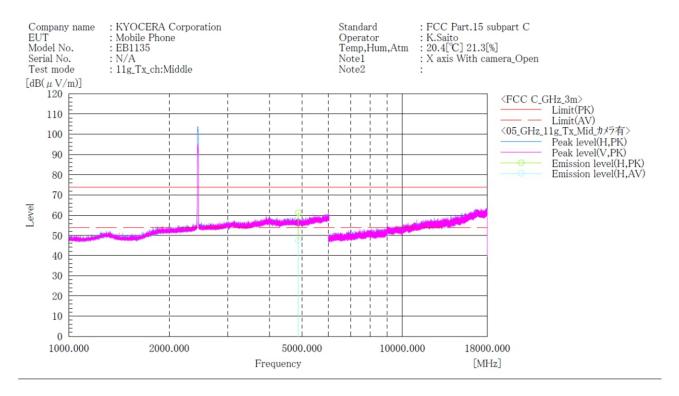
No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
			PK	AV		PK	AV	PK	AV	PK	AV			
	[MHz]							$[dB(\mu V/m)]$		[dB]	[dB]	[cm]	[°]	
1	4824.000	Н	49.4	35.6	10.6	60.0	46.2	74.0	54.0	14.0	7.8	350.0	211.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11g] Channel Middle BELOW 1GHz

Final Result

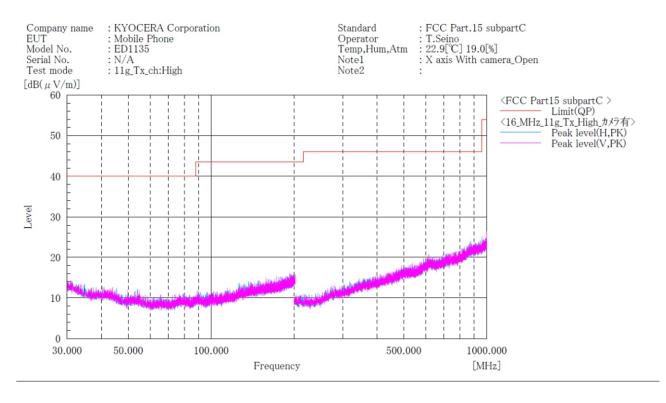
No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11g] Channel Middle ABOVE 1GHz


Final Result

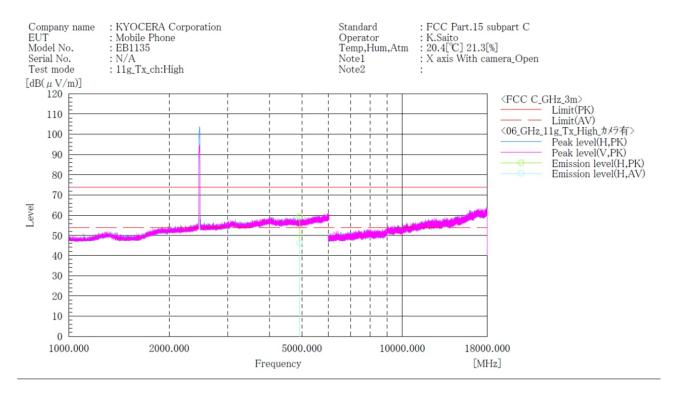
No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
			PK	AV		PK	AV	PK	AV	PK	AV			
	[MHz]					$[dB(\mu V/m)]$		$[dB(\mu V/m)]$		[dB]	[dB]	[cm]	[°]	
1	4874.000	H	50.7	36.9	10.6	61.3	47.5	74.0	54.0	12.7	6.5	311.0	202.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11g] Channel High BELOW 1GHz

Final Result

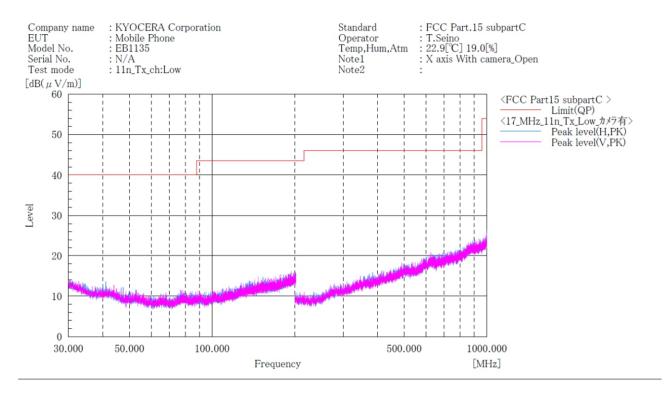
No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11g] Channel High ABOVE 1GHz


Final Result

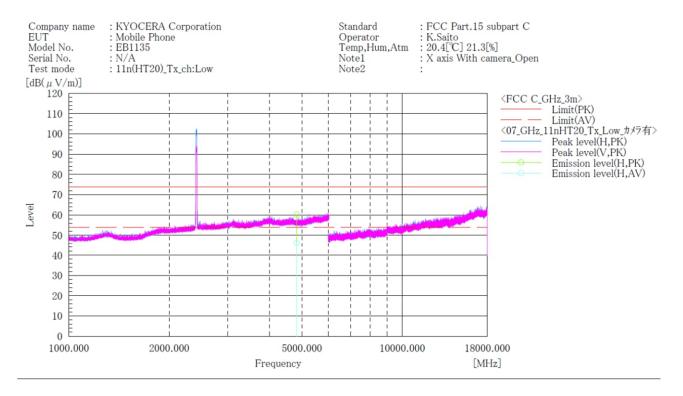
No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
1	[MHz] 4924.000	Н	PK [dB(μV)] 48.8	AV [dB(μV)] 35.6	[dB(1/m)] 10.6	$\begin{bmatrix} PK \\ [dB(\mu V/m)] \\ 59.4 \end{bmatrix}$	AV [dB(μV/m)] 46.2	$\begin{bmatrix} PK \\ [dB(\mu V/m)] \\ 74.0 \end{bmatrix}$	$\begin{bmatrix} AV \\ [dB(\mu V/m)] \\ 54.0 \end{bmatrix}$	PK [dB] 14.6	AV [dB] 7.8	[cm] 340.0	[°] 197. 0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11n(HT20)] Channel Low BELOW 1GHz

Final Result

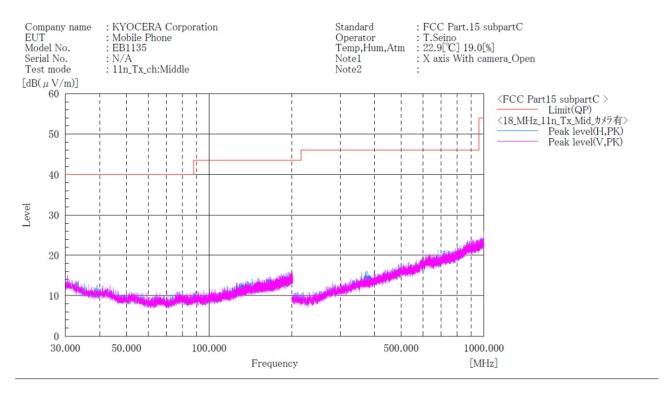
No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] Channel Low ABOVE 1GHz


Final Result

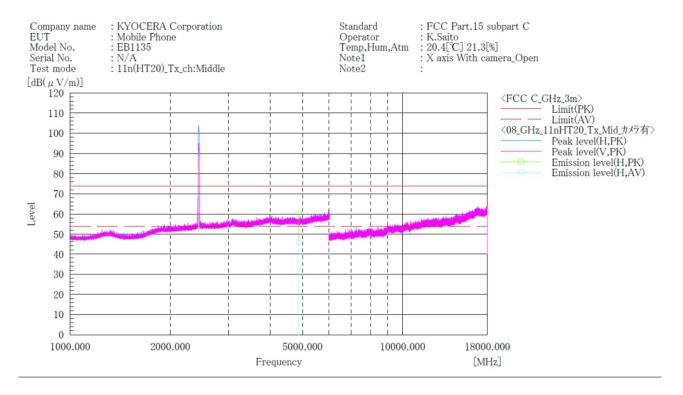
No. I	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
1	[MHz] 4824,000	и	$\begin{bmatrix} dB(\mu V) \end{bmatrix} \\ 49.6 \end{bmatrix}$	AV [dB(μV)] 35,6	[dB(1/m)] 10.6	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix}$ 60, 2	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix}$ 46.2	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$ 74.0	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$	[dB]	AV [dB] 7, 8	[cm] 316.0	[°] 204, 0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11n(HT20)] Channel Middle BELOW 1GHz

Final Result

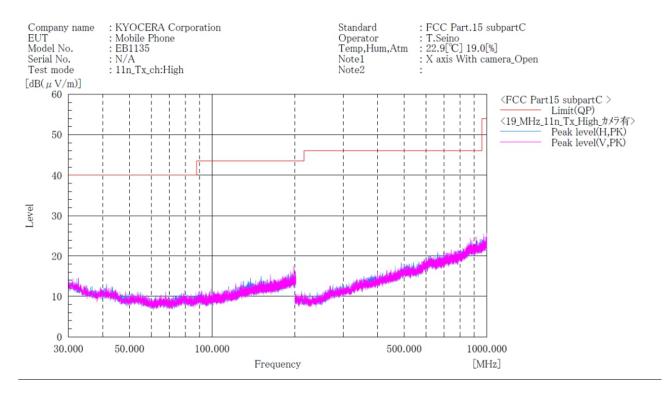
No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] Channel Middle ABOVE 1GHz


Final Result

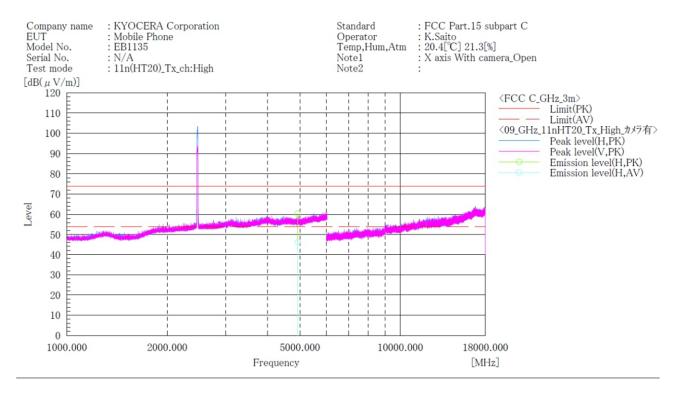
No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
1	[MHz] 4874.000	Н	PK [dB(μV)] 49.6	AV [dB(µV)] 35.5	[dB(1/m)] 10.6	PK [dB(μV/m)] 60.2	AV [dB(μV/m)] 46.1	$\begin{bmatrix} PK \\ [dB(\mu V/m)] \\ 74.0 \end{bmatrix}$	$\begin{bmatrix} AV \\ [dB(\mu V/m)] \\ 54.0 \end{bmatrix}$	PK [dB] 13.8	AV [dB] 7.9	[cm] 345.0	[°] 197.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11n(HT20)] Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

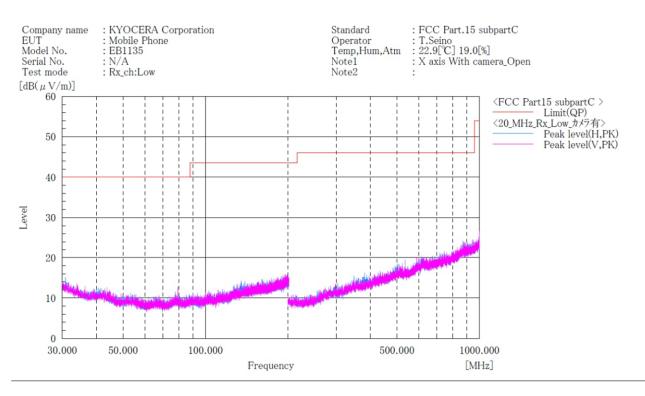

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] Channel High ABOVE 1GHz

Final Result

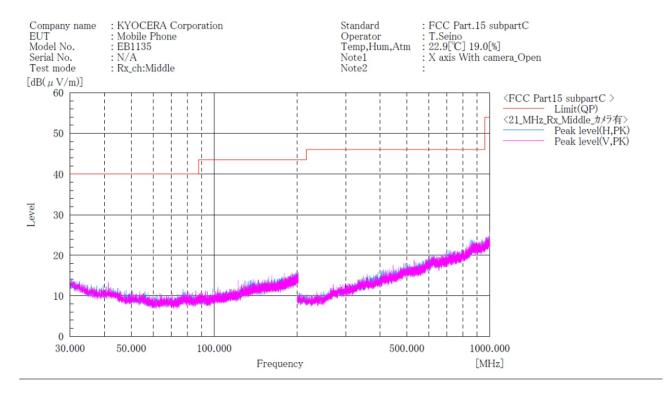

No.	Frequency	(P)	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Remark
1	[MHz] 4924.000	Н	PK [dB(μV)] 49.8	AV [dB(μV)] 35.6	[dB(1/m)] 10.6	$\begin{bmatrix} PK \\ [dB(\mu V/m)] \\ 60.4 \end{bmatrix}$	$\begin{bmatrix} AV \\ [dB(\mu V/m)] \\ 46.2 \end{bmatrix}$	$\begin{bmatrix} PK \\ [dB(\mu V/m)] \\ 74.0 \end{bmatrix}$	$\begin{bmatrix} AV \\ [dB(\mu V/m)] \\ 54.0 \end{bmatrix}$	PK [dB] 13.6	AV [dB] 7.8	[cm] 340.0	[°] 197.0	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

4.5.4.2 Receive mode

Channel Low BELOW 1GHz

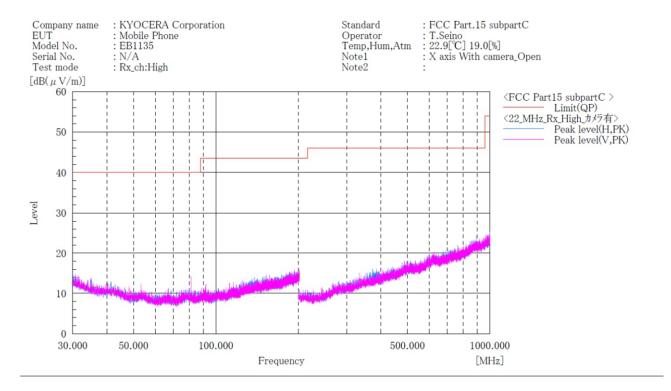
Final Result


No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

Channel Middle BELOW 1GHz


Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

4.6 Restricted Band of Operation

4.6.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

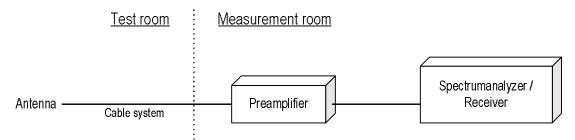
Test was applied by following conditions.

Test method Test place EUT was placed on Antenna distance	:	ANSI C63.10 3m Semi-anechoic chamber Styrofoam table / (W) $1.0 \times (D) 1.0 \times (H) 0.8 \text{ m}$ (below 1 GHz) Styrofoam table / (W) $0.6 \times (D) 0.6 \times (H) 1.5 \text{ m}$ (above 1 GHz) 3m
Spectrum analyzer setting - Peak - Average	:	RBW=1 MHz, VBW=3 MHz, Span=Arbitrary setting, Sweep=auto 11b: RBW=1 MHz, VBW=3 kHz, Span= Arbitrary setting, Sweep=auto 11g, 11n: RBW=1 MHz, VBW=1 kHz, Span= Arbitrary setting, Sweep=auto Display mode=Linear

Average Measurement Setting [VBW]

mode	Duty Cycle (%)	Ton [µs]	Toff [µs]	1/Ton (kHz)	Determined VBW Setting
11b	96.26	990.5	38.5	1.010	3kHz
11g	96.94	1392	44	0.718	1kHz
11n(HT20)	96.70	1288	44	0.776	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements


were confirmed against 30 m open are test site.

Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

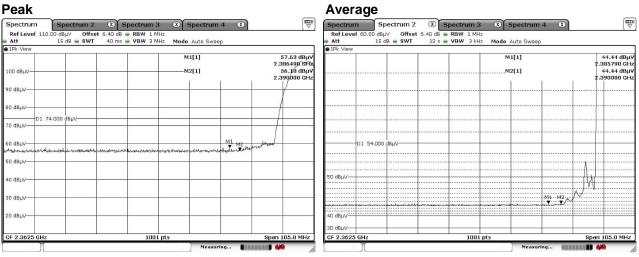
4.6.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

4.6.3 Measurement Result

[IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

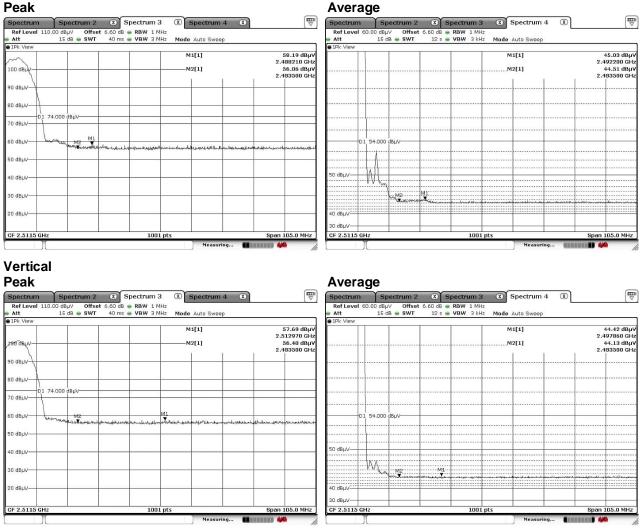
Channel	Frequency [MHz]	Results Chart	Result
Low	2412	See the Trace Data	Pass
High	2462	See the Trace Data	Pass


4.6.4 Test data

Date	:	7~8-March-2022			
Temperature	:	20.9 [°C]			
Humidity	:	21.1 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber	-		Tadahiro Seino

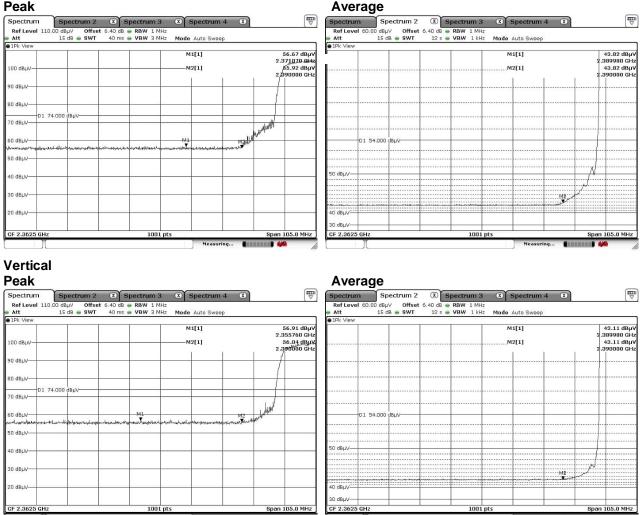
[IEEE802.11b]

Channel Low Horizontal Peak


Vertical Dook

Peak			Avera	ge			
Spectrum Spectrum 2	Spectrum 3 Spectrum	n 4 🗴 🕎	Spectrum	Spectrum 2	Spectrum	n 3 🛞 Spectrum 4	8
Ref Level 110.00 dBµV Offset	6.40 dB 曼 RBW 1 MHz		Ref Level 6		t 6.40 dB 👄 RBW 11		
Att 15 dB 👄 SWT	40 ms 🖶 VBW 3 MHz 🛛 Mode Auto Swe	ep	Att	15 dB 🖷 SWT	12 s 👄 VBW 3	kHz Mode Auto Sweep	
1Pk View			• 1Pk View				
	M1[1]	57.79 dBµV 2.340860 GHz				M1[1]	44.47 dB 2.369950 G
00 dBuV	M2[1]	2.340860 GHZ 56.12 dBgrV				M2[1]	43.89 dB
00 0000		2.390080 GHz					2.390000 G
0 dBµV						1 1 1	
0 dBhA							
		Y					
0 dBµV							
D1 74.000 dBµV		1					
0 dBµV							
MI							
	his were any providence to the providence of the second	M2	D:	1 54.000 dBµV			
	highidehalantantantantantantantatikan katalan yangan bahartantantantantantantantantantantantantant	condition when the second			· · · · · · · · · · · · · · · · · · ·		
io dBµV					•••••••		
0 dBµV			50 dBµV				
					+		
0 dBµV						M1	
			Company and and			t-speaker man free-keeboone	Sector Martine Street
0 dBµV			40 dBµV				
			30 dBµV				
F 2.3625 GHz	1001 pts	Span 105.0 MHz	CF 2.3625 G	Hz	10	101 pts	Span 105.0 MH
The second secon	Meas	ıring 🚺 🔰 🚧		1		Measuring.	

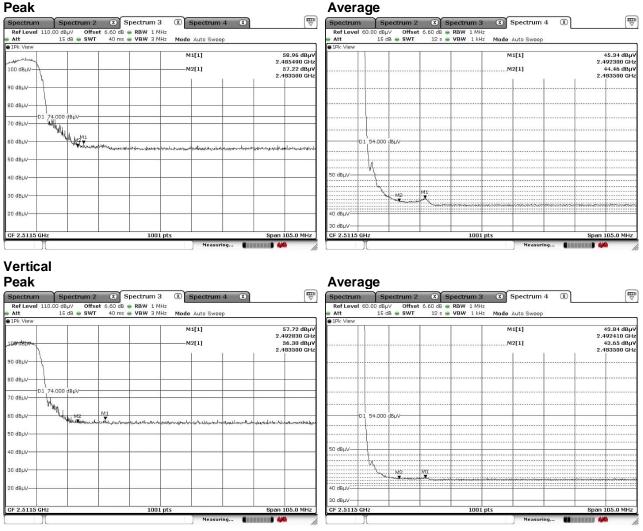
[IEEE802.11b]


Channel High Horizontal Peak

[IEEE802.11g]

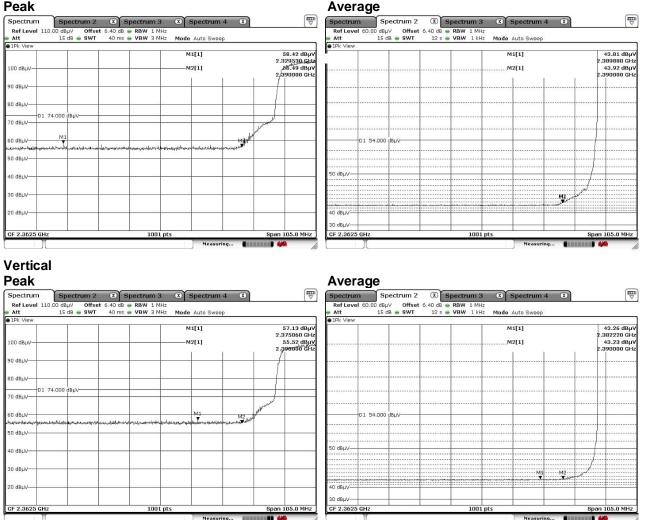
Channel Low Horizontal Peak

Measuring.

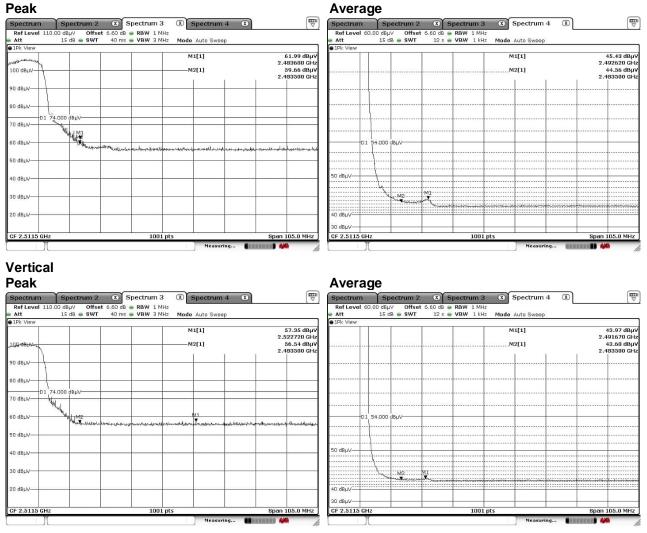

TÜV SÜD Japan Ltd.

Measuring

[IEEE802.11g]


Channel High Horizontal Peak

[IEEE802.11n (HT20)]

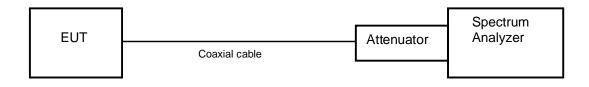

Channel Low Horizontal Peak

[IEEE802.11n (HT20)]

Channel High Horizontal Peak

4.7 Transmitter Power Spectral Density

4.7.1 Measurement procedure


[FCC 15.247(e), KDB 558074 D01 v05r02, Section 8.4]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW \geq 3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

4.7.2 Limit

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band.

4.7.3 Measurement result

Date	:	9-July-2024			
Temperature	:	24.1 [°C]			
Humidity	:	54.7 [%]	Test engineer	:	
Test place	:	Shielded room No.4			Kazunori Saito

[IEEE802.11b]

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-20.37	10.93	-9.44	8.00	17.44	PASS
Middle	2437	-20.34	10.93	-9.41	8.00	17.41	PASS
High	2462	-20.31	10.93	-9.38	8.00	17.38	PASS

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

[IEEE802.11g]

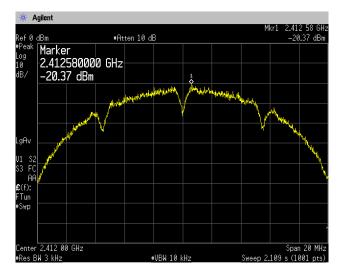
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-26.19	10.93	-15.26	8.00	23.26	PASS
Middle	2437	-24.71	10.93	-13.78	8.00	21.78	PASS
High	2462	-25.35	10.93	-14.42	8.00	22.42	PASS

Calculation;

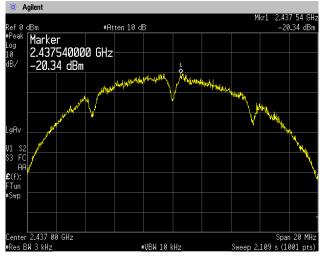
Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

[IEEE802.11n (HT20)]

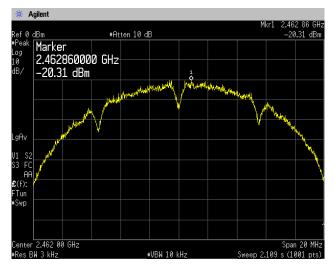
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-25.90	10.93	-14.97	8.00	22.97	PASS
Middle	2437	-25.45	10.93	-14.52	8.00	22.52	PASS
High	2462	-24.09	10.93	-13.16	8.00	21.16	PASS


Calculation;

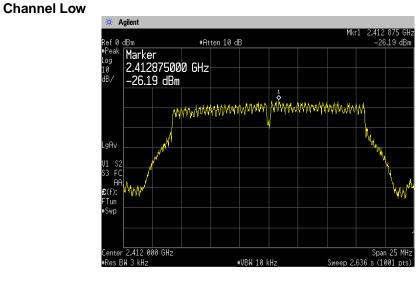
Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)


4.7.4 Trace data

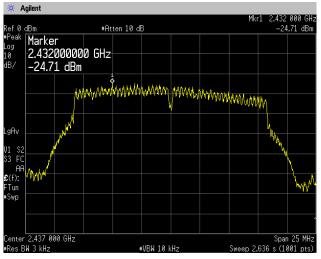
[IEEE802.11b]

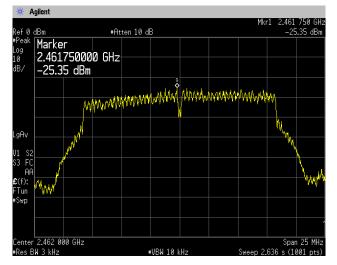

Channel Low

Channel Middle

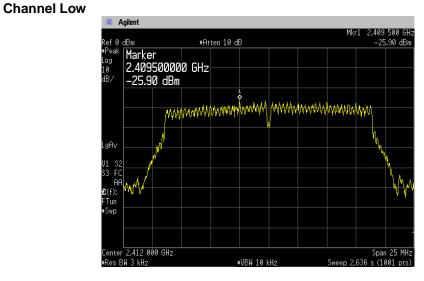


Channel High

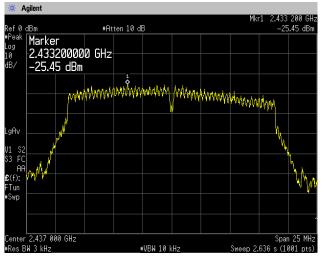


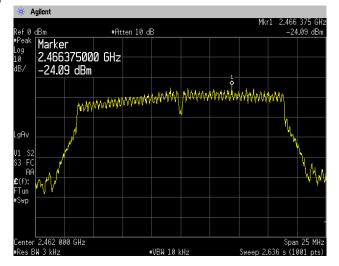

[IEEE802.11g]

Channel Middle



Channel High




[IEEE802.11n (HT20)]

Channel Middle

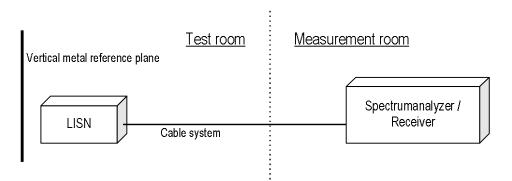
Channel High

4.8 AC Power Line Conducted Emissions

4.8.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.


Test method	:	ANSI C63.10
Frequency range	:	0.15 MHz to 30 MHz
Test place	:	3m Semi-anechoic chamber
EUT was placed on	:	FRP table / (W) 2.0 × (D) 1.0 × (H) 0.8 m
Vertical Metal Reference Plane	:	(W) $2.0 \times (H) 2.0 \text{ m}$, 0.4 m away from EUT
Test receiver setting		
- Detector	:	Quasi-peak, Average
- Bandwidth		9 kHz

EUT and peripherals are connected to $50\Omega/50 \mu$ H Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

4.8.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example: Limit @ 0.403 MHz: 57.8 dB μ V(Quasi-peak) : 47.8 dB μ V(Average) (Quasi peak)Reading = 22.7 dB μ V c.f. = 10.4 dB Emission level = 22.7 + 10.4 = 33.1 dB μ V Margin = 57.8 - 33.1 = 24.7 dB (Average) Reading = 6.5 dB μ V c.f. = 10.4 dB Emission level = 6.5 + 10.4 = 16.9 dB μ V Margin = 47.8 - 16.9 = 30.9 dB

4.8.3 Limit

Frequency	Limit				
[MHz]	QP [dBuV]	AV [dBuV]			
0.15-0.5	66-56*	56-46*			
0.5-5	56	46			
5-30	60	50			

*: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

4.8.4 Test data

Date Temperature Humidity Test place	: 10~11-March-2022 : 24.1 [°C] : 19.2 [%] : 3m Semi-anechoic chamber	Test engineer : Tadahiro Seino
Company Nam EUT Model No. Serial No. Test mode [dB(μ V)] 80 70 60 50 40 30 20 40 10 0 0.150	e : KYOCERA Corporation : Mobile Phone : EB1135 : N/B : WLAN_11b_TX 	Standard EFCC Part.15 Class C Operator T.Seino Temp,Hum,Atm 24.1[°C] 19.2[%] Note1 With Camera Note2 T

F	ina	1 Resu	lt
•		1 11000	10

	L1 Phase	-								
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
		QP	CAV		QP	CAV	QP	AV	QP	CAV
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]
1	0.150	26.6	6.1	10.5	37.1	16.6	66.0	56.0	28.9	39.4
2 3	0.239	15.8	3.8	10.3	26.1	14.1	62.1	52.1	36.0	38.0
3	0.533	18.3	10.0	10.3	28.6	20.3	56.0	46.0	27.4	25.7
4	0.687	23.2	13.3	10.3	33.5	23.6	56.0	46.0	22.5	22.4
4 5	4.904	19.8	6.6	10.6	30.4	17.2	56.0	46.0	25.6	28.8
6	5.897	16.7	6.4	10.7	27.4	17.1	60.0	50.0	32.6	32.9
								111111		
	L2 Phase	-								
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
		QP	CAV		QP	CAV	QP	AV	QP	CAV
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$		$[dB(\mu V)]$	[dB]	[dB]
1	0.150	27.3	7.6	10.5	37.8	18.1	66.0	56.0	28.2	37.9
1 2	0.226	18.6	6.2	10.4	29.0	16.6	62.6	52.6	33.6	36.0
3	0.532	16.3	9.3	10.3	26.6	19.6	56.0	46.0	29.4	26.4
4	0.687	22.3	12.7	10.3	32.6	23.0	56.0	46.0	23.4	23.0
45	4.877	18.2	5.5	10.6	28.8	16.1	56.0	46.0	27.2	29.9
6	6.246	16.6	8.1	10.8	27.4	18.9	60.0	50.0	32.6	31.1

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.2 dB
Radiated emission (30 MHz – 1000 MHz)	±5.5 dB
Radiated emission (1 GHz – 6 GHz)	±4.8 dB
Radiated emission (6 GHz – 18 GHz)	±4.4 dB
Radiated emission (18 GHz – 40 GHz)	±6.4 dB
Radio Frequency	±1.3 * 10 ⁻⁸
RF power, conducted	±0.7 dB
Adjacent channel power	±1.5 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge	Measured value and standard limit value							
PASS	Case1 +Uncertainty -Uncertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled. Case2							
	Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.							
FAIL	Case3 Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration.							
	Case4 Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.							

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81-238-28-2881

Accreditation and Registration A2LA

Certificate #3686.03

VLAC Accreditation No.: VLAC-013

BSMI Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada ISED#: 4224A

VCCI Council Registration number: A-0166

Appendix A. Test Equipment

Antenna port conducted test

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
	A silest Technologies	E44404	11044000/55	30-Sep-2022	20-Sep-2021
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	31-Oct-2024	06-Oct-2023
Attenueter	Wainashal	E4 10	14002	31-Dec-2022	21-Dec-2021
Attenuator	Weinschel	56-10	J4993	31-Dec-2024	19-Dec-2023
		NRP2	103269	31-Mar-2022	10-Mar-2021
Power meter	ROHDE&SCHWARZ			31-Mar-2023	02-Mar-2022
				31-Mar-2025	26-Mar-2024
		NRP-Z81		31-Mar-2022	10-Mar-2021
Power sensor	ROHDE&SCHWARZ		102467	31-Mar-2023	02-Mar-2022
				31-Mar-2025	26-Mar-2024

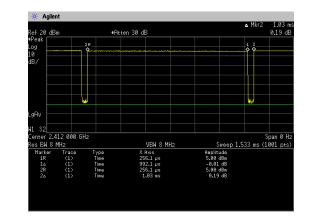
Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2022	15-Sep-2021
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	31-Dec-2022	13-Dec-2021
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101731	30-Jun-2022	08-Jun-2021
Preamplifier	SONOMA	310	372170	30-Sep-2022	15-Sep-2021
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	30-Apr-2022	27-Apr-2021
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	28-Feb-2023	03-Feb-2022
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1333	31-Dec-2022	15-Dec-2021
Log periodic antenna	Schwarzbeck	VUSLP9111B	346	31-Oct-2022	15-Oct-2021
Attenuator	TOYO Connector	NA-PJ-6/6dB	N/A(S541)	30-Sep-2022	16-Sep-2021
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2022	20-Jul-2021
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Dec-2022	22-Dec-2021
Attenuator	AEROFLEX	26A-10	081217-08	31-Dec-2022	22-Dec-2021
Double ridged guide antenna	ETS LINDGREN	3117	00052315	31-May-2022	24-May-2021
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2340)	31-Dec-2022	23-Dec-2021
Double ridged guide antenna	A.H.Systems Inc.	SAS-574	469	31-Aug-2022	02-Aug-2021
Preamplifier	TSJ	MLA-1840-B03-35	1240332	31-Aug-2022	02-Aug-2021
Band rejection filter	Micro-Tronics	BRC50702	G433	30-Sep-2022	15-Sep-2021
Microwave cable	HUBER+SUHNER	SUCOFLEX104/9m	MY30037/4	31-Dec-2022	22-Dec-2021
		SUCOFLEX104/1m	my24610/4	31-Dec-2022	22-Dec-2021
		SUCOFLEX104/8m	SN MY30033/4	31-Dec-2022	22-Dec-2021
		SUCOFLEX104/1m	MY32976/4	31-Dec-2022	22-Dec-2021
		SUCOFLEX104/2m	SN MY28404/4	31-Dec-2022	22-Dec-2021
		SUCOFLEX104/7m	41625/6	31-Dec-2022	22-Dec-2021
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V6.0.140	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2022	20-May-2021
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2022	20-May-2021

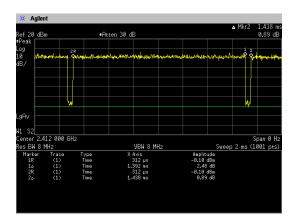
*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Conducted emission at mains port

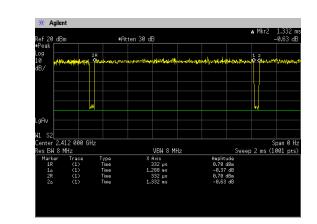
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2022	15-Sep-2021
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Dec-2022	22-Dec-2021
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	30-Jun-2022	17-Jun-2021
Microwave cable	HUBER+SUHNER	SUCOFLEX104/5m	MY33601/4	31-Oct-2022	26-Oct-2021
Microwave cable	HUBER+SUHNER	SUCOFLEX104/2m	MY37268/4	31-Oct-2022	28-Oct-2021
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Dec-2022	22-Dec-2021
PC	DELL	DIMENSION	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/CE-AJ	0611193/V5.4.11	N/A	N/A


*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Appendix B. Duty Cycle


[Plot & Calculation]

11b



Duty Cycle = Ton / (Ton + Toff) = 992.1[µs] / (992.1[µs] + 37.9[µs]) =96.32[%]

11g

Duty Cycle = Ton / (Ton + Toff) = $1392[\mu s] / (1392[\mu s] + 46[\mu s]) = 96.8[\%]$

Duty Cycle = Ton / (Ton + Toff) = $1288[\mu s] / (1288[\mu s] + 44[\mu s]) = 96.7[\%]$

TÜV SÜD Japan Ltd.

11n (HT20)