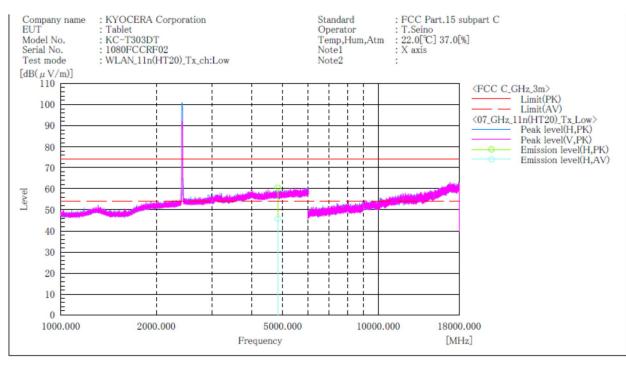


[11n(HT20)] Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
			QP		QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	$\left[dB(1/m) \right]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	369.752	H	46.3	-12.0	34.3	46.0	11.7	100.0	85.0	
2	369.752	V	35.7	-12.0	23.7	46.0	22.3	299.0	156.0	
3	493.001	H	50.8	-9.1	41.7	46.0	4.3	200.0	272.0	
4	493.001	V	44.7	-9.1	35.6	46.0	10.4	217.0	332.0	


Note:

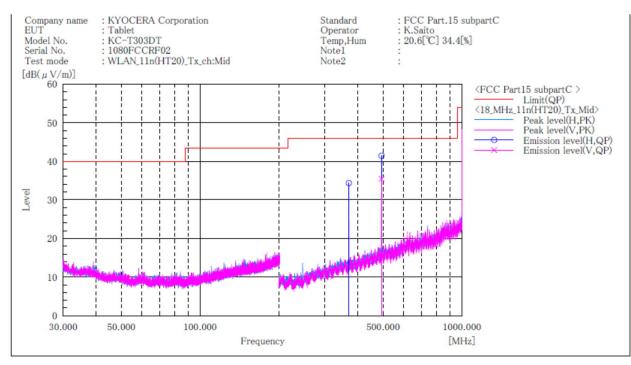
1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] Channel Low ABOVE 1GHz

Final Result

No.	Frequency	(P)	Reading PK	Reading	c. f	Result	Result	Limit	Limit	Margin PK	Margin	Height	Angle	Remark
1	[MHz] 4824.000	Н	[dB(μV)] 49.8					[dB(µV/m)] 74.0	[dB(µV/m)] 54.0	[dB] 13.6	[dB] 8.2	[cm] 139.0	[°] 146.0	


Note:

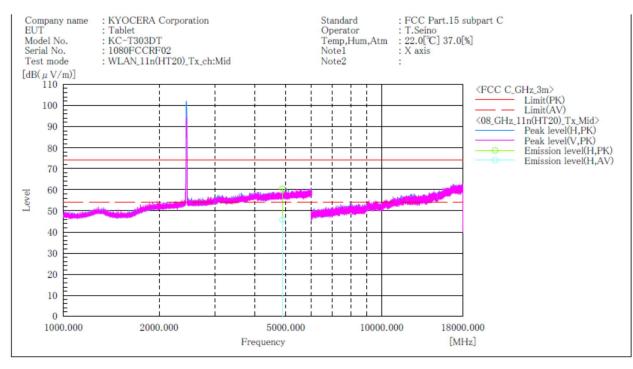
1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11n(HT20)] Channel Middle BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
			QP		QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	369.753	Н	46.3	-12.0	34.3	46.0	11.7	100.0	98.0	
2	493.001	H	50.6	-9.1	41.5	46.0	4.5	200.0	278.0	
3	493.001	V	44.5	-9.1	35.4	46.0	10.6	221.0	346.0	


Note:

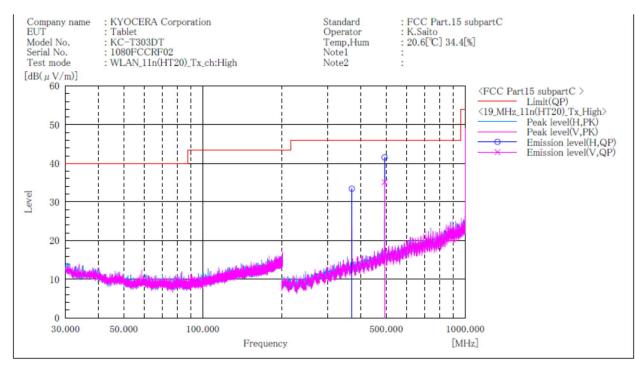
1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] Channel Middle ABOVE 1GHz

Final Result

No.	Frequency	(P)	Reading	Reading	c. f	Result	Result	Limit	Limit	Margin PK	Margin	Height	Angle	Remark
1	[MHz] 4874.000	H	[dB(µV)] 49.8	[dB(μV)] 35.2	[dB(1/m)] 10.7	[dB(µV/m)] 60.5	[dB(µV/m)] 45.9	[dB(µV/m)] 74.0	[dB(µV/m)] 54.0	[dB] 13.5	[dB] 8, 1	[cm] 158.0	[°] 148.0	

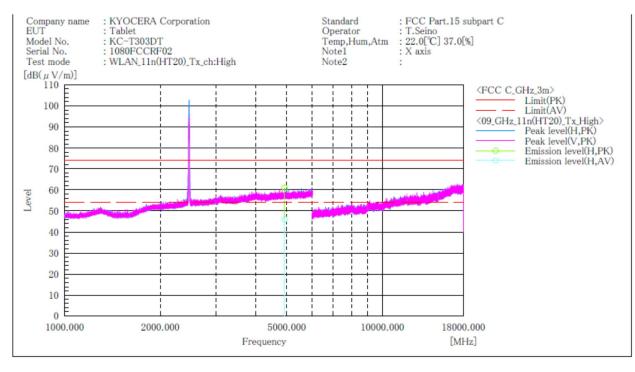

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

[11n(HT20)] Channel High BELOW 1GHz

Final Result


No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
			QP		QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	369.746	H	45.4	-12.0	33.4	46.0	12.6	100.0	239.0	
2	493.001	H	50.7	-9.1	41.6	46.0	4.4	200.0	260.0	
3	493.001	V	44.2	-9.1	35.1	46.0	10.9	228.0	327.0	

Note:

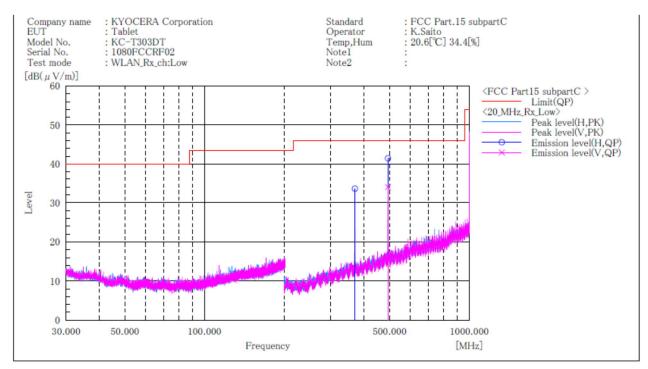
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] Channel High ABOVE 1GHz

Final Result

No.	Frequency	(P)	PK	Reading AV	c. f	Result PK	Result AV	Limit PK	Limit AV	Margin PK	Margin AV	Height	Angle	Remark
1	[MHz] 4924.000	Н	[dB(µV)] 50.3	[dB(μV)] 35.3	[dB(1/m)] 10.7	[dB(µV/m)] 61.0	[dB(µV/m)] 46.0	[dB(µV/m)] 74.0	[dB(µV/m)] 54.0	[dB] 13.0	[dB] 8.0	[cm] 157.0	[°] 152.0	

Note:


1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

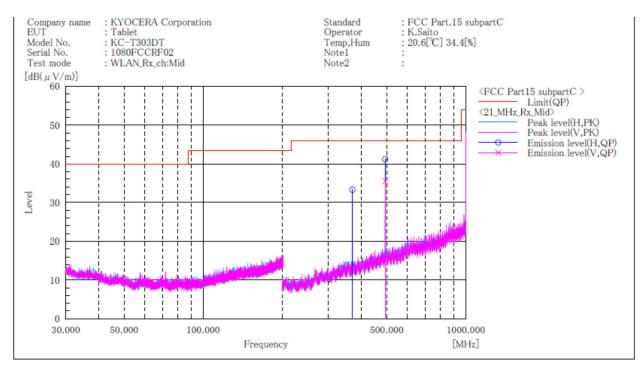
2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

4.5.4.2 Receive mode

Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
			QP		QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	$\left[dB(1/m) \right]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	369.749	H	45.6	-12.0	33.6	46.0	12.4	100.0	254.0	
2	493.001	H	50.6	-9.1	41.5	46.0	4.5	213.0	262.0	
3	493.001	V	43.1	-9.1	34.0	46.0	12.0	257.0	324.0	


Note:

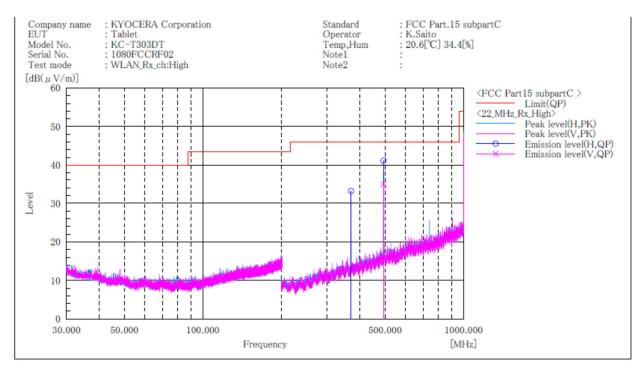
1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

Channel Middle BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	-	Height	Angle	Remark
			QP		QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	$\left[dB(1/m) \right]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	369.754	H	45.3	-12.0	33. 3	46.0	12.7	104.0	96.0	
2	493.001	H	50.4	-9.1	41.3	46.0	4.7	206.0	255.0	
3	493.001	V	44.6	-9.1	35.5	46.0	10.5	214.0	337.0	


Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
			QP	-	QP	QP	QP			
	[MHz]		$[dB(\mu V)]$	$\left[dB(1/m) \right]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	369.745	H	45.2	-12.0	33.2	46.0	12.8	100.0	259.0	
2	493.001	H	50.3	-9.1	41.2	46.0	4.8	202.0	253.0	
3	493.001	V	44.1	-9.1	35.0	46.0	11.0	223.0	325.0	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

4.6 Restricted Band of Operation

4.6.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

Test was applied by following conditions.

Test method Test place EUT was placed on Antenna distance	::	ANSI C63.10 3m Semi-anechoic chamber Styrofoam table / (W) $1.0 \times (D) 1.0 \times (H) 0.8 \text{ m}$ (below 1 GHz) Styrofoam table / (W) $0.6 \times (D) 0.6 \times (H) 1.5 \text{ m}$ (above 1 GHz) 3m
Spectrum analyzer setting - Peak - Average	:	RBW=1 MHz, VBW=3 MHz, Span=Arbitrary setting, Sweep=auto 11b: RBW=1 MHz, VBW=3 kHz, Span=0 Hz, Sweep=auto 11g, 11n: RBW=1 MHz, VBW=3 kHz (11b, 11g), 1kHz (11n), Span=0 Hz, Sweep=auto Display mode=Linear

Average Measurement Setting [VBW]

mode	Duty Cycle (%)	Ton [µs]	Toff [µs]	1/Ton (kHz)	Determined VBW Setting
11b	96.17	990.5	39.5	1.010	3kHz
11g	96.80	1392	46	0.718	1kHz
11n(HT20)	96.54	1284	46	0.779	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements

were confirmed against 30 m open are test site.

Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

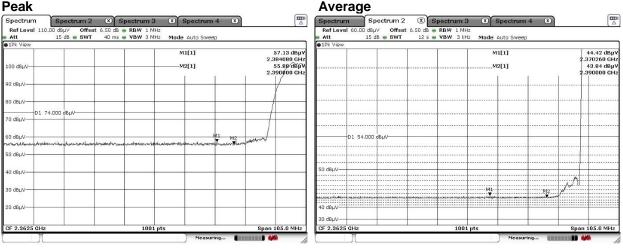
4.6.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

4.6.3 Measurement Result

[IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

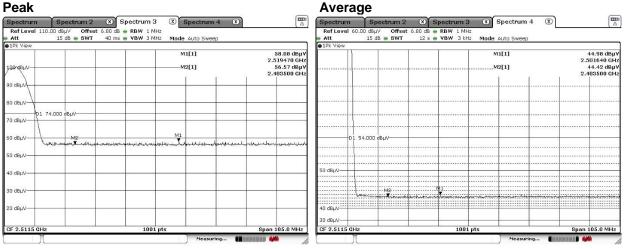
Channel	Frequency [MHz]	Results Chart	Result
Low	2412	See the Trace Data	Pass
High	2462	See the Trace Data	Pass


4.6.4 Test data

Date	:	8-November-2021			
Temperature	:	22.1 [°C]			
Humidity	:	31.5 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber	-		Tadahiro Seino

[IEEE802.11b]

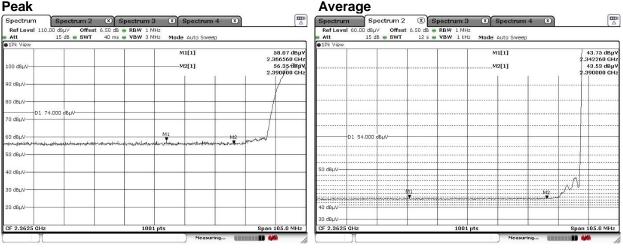
Channel Low Horizontal Peak


Vertical

Peak Average Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 4 Ref Level 110.00 dBµV Offset 6.50 dB RBW 1 MHz Att State State Spectrum 4 Spec 57.22 dBµV 2.382400 GHz 56.00 dBµV 2.390000 QHz M1[1] M1[1] 44.27 dBμV 2.376350 GHz 44.00 dBμV 2.390000 GHz 100 dBuV M2[1] M2[1] 90 dBµV 80 dBµV D1 74.000 dBµV 70 dBµV-60 dBµ\ D1 54.000 dBuV M2 L. Istai 50 dBµV 40 dBµ\ 0 dBµV 30 dBµV M1 M2 1.75 20 dBµV-40 dBµV 30 dBuV F 2.3625 100 05.0 MHz F 2.3625 GH 1001 pt: 8pan 105.0 MHz Spa 100

[IEEE802.11b]

Channel High Horizontal Peak

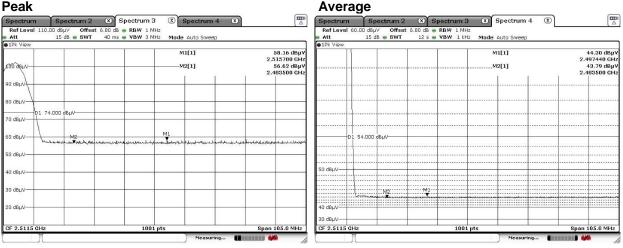

Vertical Book

Peak		Average	e			
Spectrum 2 🙁 Spectrum 3	(X) Spectrum 4 (X)			Spectrum 3 🛛 🛞	Spectrum 4 🛞	
Ref Level 110.00 dBμV Offset 6.80 dB ● RBW 1 MHz Att 15 dB • SWT 40 ms ● VBW 3 MHz				B 📻 RBW 1 MHz s 🚍 VBW 3 kHz Model	e Auto Sweep	
1Pk View		●1Pk View				
100 dBµV	M1[1] 57.97 2.49482 —M2[1] 55.95 2.48350	GHZ IBµV			M1[1] M2[1]	44.97 dBµ\ 2.525240 GH; 44.44 dBµ\ 2.483500 GH;
10 dBµV						
	Relation from for a start of the start of th	D1 54.0	000 dBµV			
60 dBµV		50 dBµV				
			- M2		ML construction of the second second	NIMETER CONTRACTO
20 dBµV		40 dBµV 30 dBµV IHz CF 2.5115 GHz				Span 105.0 MHz

[IEEE802.11g]

Channel Low Horizontal Peak

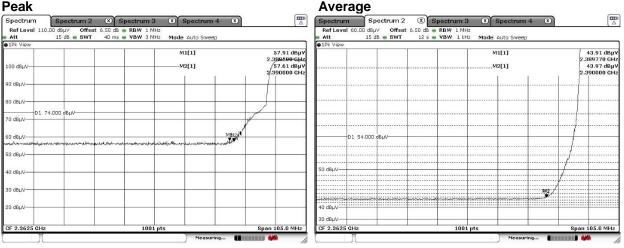
Vertical Peak


Average

00 d8µV		M1[1] M2[1]	57.45 dBµV 2.383030 GHz 55.23 dBµV 2.390000 GHz			 	2[1]	2.3	43.65 dBµ 382950 GF 43.36 dBµ 390000 GF
0 dBµV						 	 	 	
) dBµV						 	 	 	
D1 74.000 dBµV			A			 	 	 	
D dBµV	enternetarenternetarenterater		M2		D1 54.000 dBµV		 		
second all and a second and a second	haddelaan daw on op foor see talk naddel noo	M ไม่ประเทศเหตุการจัดการจัดการจัดการจัดการจัดเลือกเป็นไม่ได้เหตุการจัดการจัดเลือกเป็นไม่ได้เกิดเลือกเป็นไม่ได้เป็	NI2				 		
ainnaalaalaannaa kaaraannaa) dBµV	hadddaeroffacormodina.cortalaraddarlarta	hd h	NI2 Note-and gradent of the						
анциянындайниндиклоприяна) dBµV	hyddifane fferenn felfen sool afwrgherferig	hall and the second state of the second state	N2 Vigencedatory						
lau-violandyale-violanavious D dBµV	kalahan kummena kuman	(), (), (), (), (), (), (), (), (), (),	N2 commentantion profit	50 dBµV—					
0 dBµV			N2 Superior der Longerty	50 dBµV—					

[IEEE802.11g]

Channel High Horizontal Peak

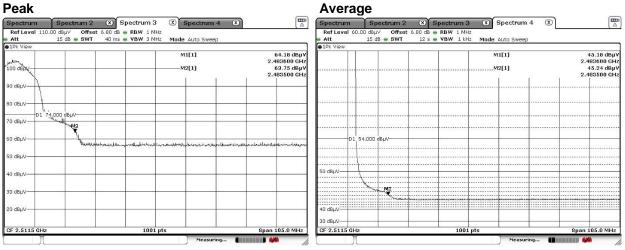

Vertical Book

Peak Average Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 4 Ref Level 60.00 dbuy Offset 6.80 db RBW 1 NHt Att 15 db SWT 12 s VBW 1 kHt Att 15 db SWT 12 s VBW 1 kHt Mode Auto Sweep Spectrum 4 🛛 Mode Auto Sw M1[1] 59.22 dBµV 2.548740 GHz 56.46 dBµV 2.483500 GHz M1[1] 44.17 dBμV 2.513910 GHz 43.89 dBμV 2.483500 GHz 100 dBµV M2[1] M2[1] 90 dBu BD dBµV D1 74.000 dBµV 70 dBµV M1 60 dBuV 54.000 BuV M2 50 dBµ 40 dBµV 0 dBµV 30 dBµV 1/11: .M2. 40 dBµV-20 dBµV-30 dBuV F 2.5115 100 Spar 05.0 MHz F 2.5115 GHz 1001 pt: 8pan 105.0 MHz

[IEEE802.11n (HT20)]

Channel Low Horizontal Peak

Vertical Peak


Average

	0 ms 🖷 VBW 3 MHz 🛛 Mode Auto Sweep					
1Pk View			●1Pk View			
00 d8µV	M1[1] M2[1]	57.74 dBμV 2.386800 GHz <u>56.09 dBμV</u> 2.890000 GHz			M1[1] M2[1]	43.67 dBj 2.389770 GF 43.49 dBj 2.390000 GF
00 dBµV					*******	
10 dBµV						
0 dBµV		- Jour Marine				
0 dBuV	M1 W1	12018	D1 54.000	dBµV		
mound and an in the mound belly merely all him	here and a star and a star and a star and a star a star and the star	A.	The second second second second second	the second statement of the statements and the	oceans or care and a manual base property	The Assessment of the Assess
non-Maulushananainakur-ahlaiturnatatakulih. 0 dBUV	<u>112-pr</u> heread device agrice with the second and the second s	ç				
	กักรุงแหล่งที่มากการกำระการกับสะหากการการกำระหากการการการการการการการการการการการการกา	· · · · · · · · · · · · · · · · · · ·	50 dBµV			
0 dBµV						
ю обру			50 dBµV			

[IEEE802.11n (HT20)]

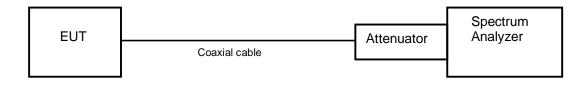
Channel High Horizontal Peak

Vertical Peak

Peak	Avera	ye			C
Spectrum 🔰 Spectrum 2 🗶 Spectrum 3 🕱 Spectrum 4 🗴	Spectrum	Spectrum 2 🙁	Spectrum 3 🛛 🙁	Spectrum 4 🛞	2
Ref Level 110.00 dBµV Offset 6.80 dB = RBW 1 MHz	Ref Level 60		👄 RBW 1 MHz		
Att 15 dB SWT 40 ms VBW 3 MHz Mode Auto Sweep	Att IPk View	15 dB 🖶 SWT 12 s	s 🖶 VBW 1 kHz Mod	le Auto Sweep	
19848pV M2[1]	60.70 dBμV 483810 GHz 60.60 dBμV 483500 GHz			M1[1] M2[1]	44.14 dBµ 2.504680 GF 44.13 dBµ 2.493500 GF
30 dBµV-					
01,74.000 dBµV					
50 dB1V Variantellanansketerekastrikelinetereterekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekastriketerekas	, where the first of the second secon	54.000 dBµV			
40 dBuy-	50 dBµV				
30 dBµV		M2	M1		
20 d6µV	40 dBµV				
CF 2.5115 GHz 1001 pts Span	30 dBµV 105.0 MHz CF 2.5115 GHz		1001 pts		Span 105.0 MHz

4.7 Transmitter Power Spectral Density

4.7.1 Measurement procedure


[FCC 15.247(e), KDB 558074 D01 v05r02, Section 8.4]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW \geq 3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

4.7.2 Limit

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band.

4.7.3 Measurement result

Date	:	22-September-2021			
Temperature	:	21.0 [°C]			
Humidity	:	61.2 [%]	Test engineer	:	
Test place	:	Shielded room No.4			Kazunori Saito

[IEEE802.11b]

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-23.25	10.49	-12.76	8.00	20.76	PASS
Middle	2437	-22.40	10.49	-11.91	8.00	19.91	PASS
High	2462	-21.40	10.49	-10.91	8.00	18.91	PASS

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

[IEEE802.11g]

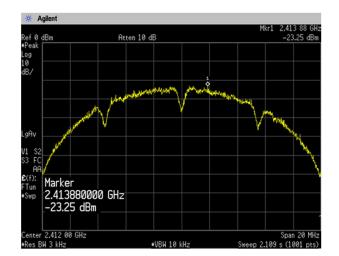
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-24.94	10.49	-14.45	8.00	22.45	PASS
Middle	2437	-23.17	10.49	-12.68	8.00	20.68	PASS
High	2462	-23.11	10.49	-12.62	8.00	20.62	PASS

Calculation;

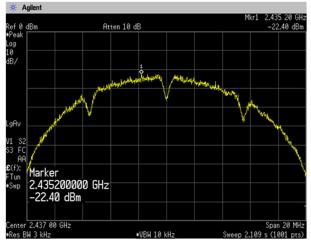
Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

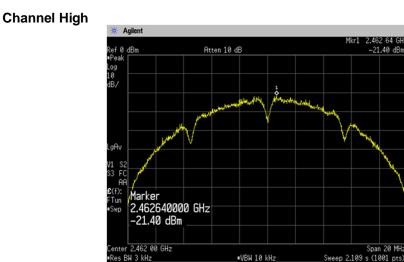
[IEEE802.11n (HT20)]

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-24.79	10.49	-14.30	8.00	22.30	PASS
Middle	2437	-23.40	10.49	-12.91	8.00	20.91	PASS
High	2462	-23.86	10.49	-13.37	8.00	21.37	PASS

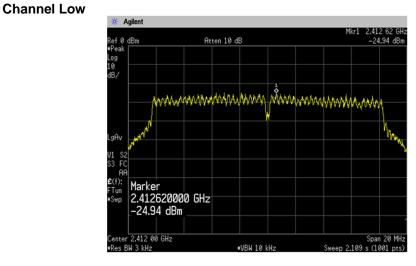

Calculation;

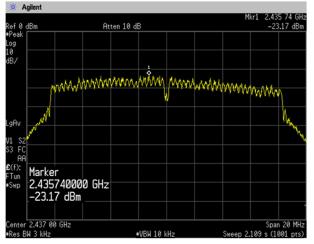
Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

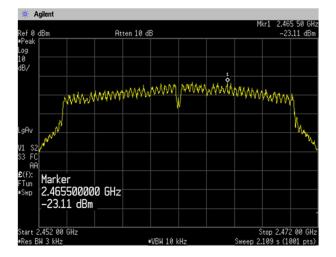

4.7.4 Trace data


[IEEE802.11b]

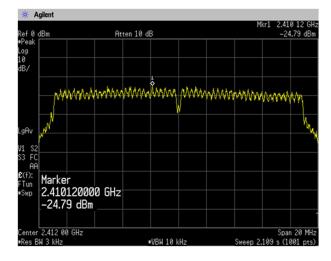
Channel Low

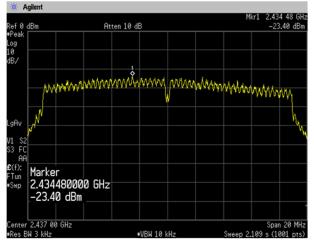

Channel Middle



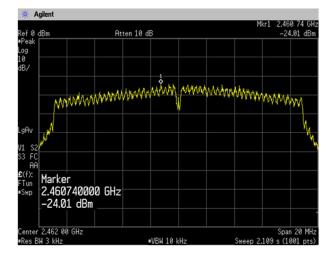

[IEEE802.11g]

Channel Middle


Channel High


Japan

[IEEE802.11n (HT20)]



Channel Middle

Channel High

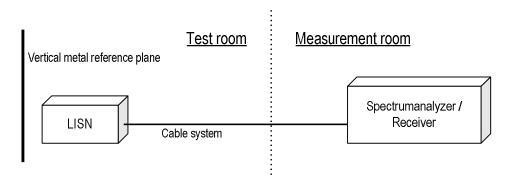
Japan

4.8 AC Power Line Conducted Emissions

4.8.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.


Test method	:	ANSI C63.10
Frequency range	:	0.15 MHz to 30 MHz
Test place	:	3m Semi-anechoic chamber
EUT was placed on	:	FRP table / (W) 1.5 × (D) 1.0 × (H) 0.8 m
Vertical Metal Reference Plane	:	(W) 2.0 × (H) 2.0 m, 0.4 m away from EUT
Test receiver setting		
- Detector	:	Quasi-peak, Average
- Bandwidth	:	9 kHz

EUT and peripherals are connected to $50\Omega/50 \mu$ H Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

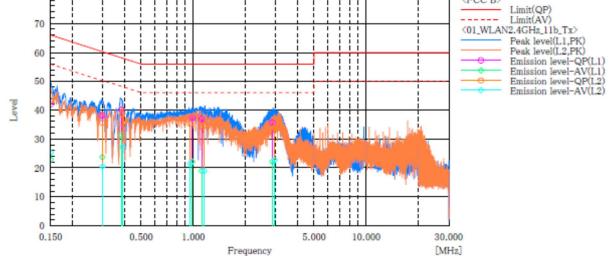
- Test configuration

4.8.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example: Limit @ 0.403 MHz: 57.8 dB μ V(Quasi-peak) : 47.8 dB μ V(Average) (Quasi peak)Reading = 22.7 dB μ V c.f. = 10.4 dB Emission level = 22.7 + 10.4 = 33.1 dB μ V Margin = 57.8 - 33.1 = 24.7 dB (Average) Reading = 6.5 dB μ V c.f. = 10.4 dB Emission level = 6.5 + 10.4 = 16.9 dB μ V Margin = 47.8 - 16.9 = 30.9 dB

4.8.3 Limit


Frequency	Lir	nit
[MHz]	QP [dBuV]	AV [dBuV]
0.15-0.5	66-56*	56-46*
0.5-5	56	46
5-30	60	50

*: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

4.8.4 Test data

Date Temperature Humidity Test place	: 9-November-2021 : 23.4 [°C] : 44.5 [%] : 3m Semi-anechoic chamber	Test engineer : <u>Tadahiro Seino</u>
Company Name EUT Model No. Serial No. Test mode [dB(µ V)]	: KYOCERA Corporation : Tablet : KC-T303DT : 1090RF02 : WLAN_11b_Tx	Standard : FCC Part.15 Subpart C Operator : T.Seino Temp,Hum,Atm : 23.4[°C] 44.5[%] Notel : Note2 :
80		

Final Result

	L1 Phase	-								
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
	From 7	QP	CAV	C 107	QP	CAV	QP	AV	QP	CAV
	[MHz]	$[dB(\mu V)]$		[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]
1	0.150	31.4	12.3	10.6	42.0	22.9	66.0	56.0	24.0	33.1
2	0.299	27.7	13.3	10.4	38.1	23.7	60.3	50.3	22.2	26.6
3	0.384	29.7	21.0	10.4	40.1	31.4	58.2	48.2	18.1	16.8
4	0.987	26.8	11.7	10.4	37.2	22.1	56.0	46.0	18.8	23.9
4 5 6	1.119	26.6	8.6	10.4	37.0	19.0	56.0	46.0	19.0	27.0
6	2.868	25.1	11.7	10.5	35.6	22.2	56.0	46.0	20.4	23.8
-	L2 Phase	-								
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
		QP	CAV		QP	CAV	QP	AV	QP	CAV
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]
1	0.150	32.6	14.6	10.6	43.2	25.2	66.0	56.0	22.8	30.8
1 2 3	0.299	25.1	10.0	10.5	35.6	20.5	60.3	50.3	24.7	29.8
3	0.389	28.3	16.9	10.4	38.7	27.3	58.1	48.1	19.4	20.8
4	0.961	24.8	11.0	10.5	35.3	21.5	56.0	46.0	20.7	24.5
5	1.158	24.2	8.5	10.5	34.7	19.0	56.0	46.0	21.3	27.0
6	2,961	23.3	12.1		33, 9	22.7	56.0	46.0	22.1	23.3

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.2 dB
Radiated emission (30 MHz – 1000 MHz)	±5.3 dB
Radiated emission (1 GHz – 6 GHz)	±4.8 dB
Radiated emission (6 GHz – 18 GHz)	±4.5 dB
Radiated emission (18 GHz – 40 GHz)	±6.4 dB
Radio Frequency	±1.4 * 10 ⁻⁸
RF power, conducted	±0.8 dB
Adjacent channel power	±2.4 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge	Measured value and standard limit value						
PASS	Case1	t value Incertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled. Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.					
FAIL	Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration. Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.					

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address:5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 JapanPhone:+81-238-28-2881

Accreditation and Registration A2LA

Certificate #3686.03

VLAC Accreditation No.: VLAC-013

BSMI Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada ISED#: 4224A

VCCI Council Registration number: A-0166

Appendix A. Test Equipment

Antenna port conducted test

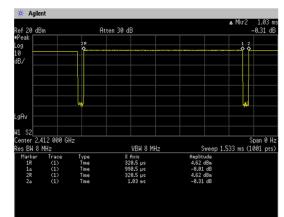
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	30-Sep-2022	01-Sep-2021
Attenuator	Weinschel	56-10	J4180	31-Jul-2022	20-Jul-2021
Power meter	ROHDE&SCHWARZ	NRP2	103269	31-Mar-2022	10-Mar-2021
Power sensor	ROHDE&SCHWARZ	NRP-Z81	102467	31-Mar-2022	10-Mar-2021

Radiated emission

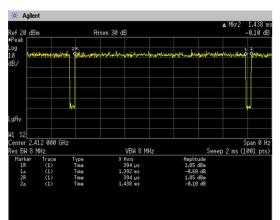
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2022	15-Sep-2021
Spectrum analyzer	Agilent Technologies	E4447A	MY46180188	31-Mar-2022	11-Mar-2021
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	31-Dec-2021	11-Dec-2020
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101731	30-Jun-2022	08-Jun-2021
Preamplifier	SONOMA	310	372170	30-Sep-2022	15-Sep-2021
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	30-Apr-2022	27-Apr-2021
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	28-Feb-2022	03-Feb-2021
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1333	31-Dec-2021	15-Dec-2020
Log periodic antenna	Schwarzbeck	VUSLP9111B	346	31-Oct-2022	19-Oct-2021
Attenuator	TOYO Connector	NA-PJ-6/6dB	N/A(S541)	30-Sep-2022	16-Sep-2021
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2022	20-Jul-2021
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Dec-2021	15-Dec-2020
Attenuator	AEROFLEX	26A-10	081217-08	31-Dec-2021	14-Dec-2020
Double ridged guide antenna	ETS LINDGREN	3117	00224193	31-Mar-2022	30-Mar-2021
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2340)	31-Dec-2021	15-Dec-2020
Double ridged guide antenna	A.H.Systems Inc.	SAS-574	469	31-Aug-2022	02-Aug-2021
Preamplifier	TSJ	MLA-1840-B03-35	1240332	31-Aug-2022	02-Aug-2021
Band rejection filter	Micro-Tronics	BRC50702	G433	30-Sep-2021	15-Sep-2021
		SUCOFLEX104/9m	MY30037/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104/1m	my24610/4	31-Dec-2021	15-Dec-2020
Microwave cable	HUBER+SUHNER	SUCOFLEX104/8m	SN MY30033/4	31-Dec-2021	15-Dec-2020
MICLOWAVE CADIE		SUCOFLEX104/1m	MY32976/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104/2m	SN MY28404/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104/7m	41625/6	31-Dec-2021	15-Dec-2020
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V6.0.140	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2022	20-May-2021
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2022	20-May-2021

Conducted emission at mains port

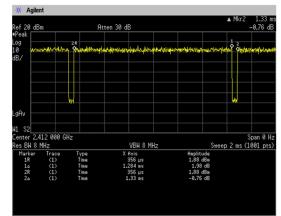
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2022	15-Sep-2021
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Dec-2021	15-Dec-2020
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	30-Jun-2022	17-Jun-2021
Coaxial cable	FUJIKURA	5D-2W/4m	N/A (S350)	31-Dec-2021	15-Dec-2020
Coaxial cable	FUJIKURA	5D-2W/1m	N/A (S193)	31-Dec-2021	15-Dec-2020
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Dec-2021	15-Dec-2020
PC	DELL	DIMENSION	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/CE-AJ	0611193/V5.4.11	N/A	N/A


*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Appendix B. Duty Cycle


[Plot & Calculation]

11b


Duty Cycle = Ton / (Ton + Toff) = 990.5[µs] / (990.5[µs] + 39.5[µs]) =96.17[%]

11g

Duty Cycle = $\overline{Ton} / (Ton + Toff) = 1392[\mu s] / (1392[\mu s] + 46[\mu s]) = 96.8[\%]$

11n (HT20)

Duty Cycle = $Ton / (Ton + Toff) = 1284[\mu s] / (1284[\mu s] + 46[\mu s]) = 96.54[\%]$