### Report on the RF Testing of:

KYOCERA Corporation Mobile Phone, Model: EB1056 FCC ID: JOYEB1056

### In accordance with FCC Part15 Subpart C

Prepared for: KYOCERA Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314

### COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-21029-0

| SIGNATURE                         |                                                |                                |                           |
|-----------------------------------|------------------------------------------------|--------------------------------|---------------------------|
|                                   | Kiroak Sugu                                    | hy                             |                           |
| NAME                              | JOB TITLE                                      | RESPONSIBLE FOR                | ISSUE DATE                |
| Hiroaki Suzuki                    | Deputy Manager of RF Group                     | Approved Signatory             | 2021.05.19                |
| Signatures in this approval box h | ave checked this document in line with the rec | uirements of TÜV SÜD Japan Ltd | . document control rules. |

#### EXECUTIVE SUMMARY – Result: Complied A sample of this product was tested and the result above was confirmed in accordance with FCC Part15 Subpart C.



TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 Fax: +81 (0) 238 28 2888 www.tuv-sud.jp

### TÜV SÜD Japan Ltd.





Inspire trust.



### Contents

| 1                                                    | Summary of Test                                                                                                                                                                             |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7<br>1.8 | Modification history of the test report3Standards3Test methods3Deviation from standards3List of applied test(s) of the EUT3Test information3Test set up3Test period3                        |  |  |
| 2                                                    | Equipment Under Test4                                                                                                                                                                       |  |  |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6               | EUT information   4     Modification to the EUT   5     Variation of family model(s)   5     Operating channels and frequencies   5     Description of test mode   6     Operating flow   6 |  |  |
| 3                                                    | Configuration of Equipment7                                                                                                                                                                 |  |  |
| 3.1<br>3.2<br>3.3                                    | Equipment used                                                                                                                                                                              |  |  |
| 4                                                    | Test Result8                                                                                                                                                                                |  |  |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8 | DTS Bandwidth / Occupied Bandwidth (99%)                                                                                                                                                    |  |  |
| 5                                                    | Antenna requirement71                                                                                                                                                                       |  |  |
| 6                                                    | Measurement Uncertainty72                                                                                                                                                                   |  |  |
| 7                                                    | Laboratory Information73                                                                                                                                                                    |  |  |
| Appendix                                             | Appendix A. Test Equipment74                                                                                                                                                                |  |  |
| Appendix                                             | c B. Duty Cycle75                                                                                                                                                                           |  |  |



### 1 Summary of Test

#### 1.1 Modification history of the test report

| Document Number | Modification History | Issue Date              |
|-----------------|----------------------|-------------------------|
| JPD-TR-21029-0  | First Issue          | Refer to the cover page |

#### 1.2 Standards

CFR47 FCC Part 15 Subpart C

#### 1.3 Test methods

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

#### 1.4 Deviation from standards

None

#### 1.5 List of applied test(s) of the EUT

| Test item<br>section          | Test item                                         | Condition | Result | Remark |
|-------------------------------|---------------------------------------------------|-----------|--------|--------|
| 15.247(a)(2)                  | DTS Bandwidth / Occupied Bandwidth<br>(99%)       | Conducted | PASS   | -      |
| 15.247(b)(3)                  | Maximum conducted (average) output<br>power       | Conducted | PASS   | -      |
| 15.247(d)                     | Band Edge Compliance of RF Conducted<br>Emissions | Conducted | PASS   | -      |
| 15.247(d)                     |                                                   | Conducted | PASS   | -      |
| 15.205                        | Spurious Emissions                                | Radiated  | PASS   | -      |
| 15.247(d)<br>15.205<br>15.209 | Restricted Bands of Operation                     | Radiated  | PASS   | -      |
| 15.247(e)                     | Transmitter Power Spectral Density                | Conducted | PASS   | -      |
| 15.207                        | AC Power Line Conducted Emissions                 | Conducted | PASS   | -      |

#### 1.6 Test information

None

#### 1.7 Test set up

Table-top

#### 1.8 Test period

16-April-2021 - 27-April-2021



### 2 Equipment Under Test

All information in this chapter was provided by the applicant.

### 2.1 EUT information

| Applicant                  | KYOCERA Corporation                                                                                                                                                                                                           |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                            | Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,<br>Kanagawa, Japan                                                                                                                                                   |  |
|                            | Phone: +81-45-943-6253 Fax: +81-45-943-6314                                                                                                                                                                                   |  |
| Equipment Under Test (EUT) | Mobile Phone                                                                                                                                                                                                                  |  |
| Model number               | EB1056                                                                                                                                                                                                                        |  |
| Serial number              | 350771280003635, 350771280003718, 358451750000658                                                                                                                                                                             |  |
| Trade name                 | Kyocera                                                                                                                                                                                                                       |  |
| Number of sample(s)        | 3                                                                                                                                                                                                                             |  |
| EUT condition              | Pre-Production                                                                                                                                                                                                                |  |
| Power rating               | Battery: DC 3.8 V                                                                                                                                                                                                             |  |
| Size                       | (W) 51.3 mm × (D) 112.9 mm × (H) 18.0 mm                                                                                                                                                                                      |  |
| Environment                | Indoor and Outdoor use                                                                                                                                                                                                        |  |
| Terminal limitation        | -20°C to 60°C                                                                                                                                                                                                                 |  |
| Hardware Version           | DMT                                                                                                                                                                                                                           |  |
| Software Version           | 0.030PR                                                                                                                                                                                                                       |  |
| Firmware Version           | Not applicable                                                                                                                                                                                                                |  |
| RF Specification           |                                                                                                                                                                                                                               |  |
| Protocol                   | IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20),                                                                                                                                                                                 |  |
| Frequency range            | IEEE802.11b /11g /11n (HT20): 2412 MHz-2462 MHz                                                                                                                                                                               |  |
| Number of RF Channels      | 11 Channels                                                                                                                                                                                                                   |  |
| Modulation type            | IEEE802.11b: DSSS (DBPSK, DQPSK, CCK)<br>IEEE802.11g / 11n (HT20): OFDM (BPSK, QPSK, 16QAM,<br>64QAM)                                                                                                                         |  |
| Data rate                  | IEEE802.11b: 1, 2, 5.5, 11Mbps<br>IEEE802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps<br>IEEE802.11n (HT20 LGI): 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps<br>IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps |  |
| Channel separation         | 5 MHz                                                                                                                                                                                                                         |  |
| Conducted power            | 43.053 mW (IEEE802.11b)<br>75.858 mW (IEEE802.11g)<br>76.736 mW (IEEE802.11n: HT20)                                                                                                                                           |  |
| Antenna type               | Internal antenna                                                                                                                                                                                                              |  |
| Antenna gain               | 0.53 dBi                                                                                                                                                                                                                      |  |



### 2.2 Modification to the EUT

#### The table below details modifications made to the EUT during the test project.

| Modification State                                           | Iodification State Description of Modification |                    | Date of Modification |
|--------------------------------------------------------------|------------------------------------------------|--------------------|----------------------|
| Model: EB1056, Serial Number: 350771280003635, 3507712800037 |                                                | 8, 358451750000658 |                      |
| 0                                                            | As supplied by the applicant                   | Not Applicable     | Not Applicable       |

#### 2.3 Variation of family model(s)

#### 2.3.1 List of family model(s)

EB1056 has model with camera and without camera.

#### 2.3.2 Reason for selection of EUT

Not applicable

### 2.4 Operating channels and frequencies

| Channel | Frequency [MHz] |
|---------|-----------------|
| 1       | 2412            |
| 2       | 2417            |
| 3       | 2422            |
| 4       | 2427            |
| 5       | 2432            |
| 6       | 2437            |
| 7       | 2442            |
| 8       | 2447            |
| 9       | 2452            |
| 10      | 2457            |
| 11      | 2462            |



#### 2.5 Description of test mode

The EUT had been tested under operating condition. There are three channels have been tested as following:

| Tested Channel [11b, 11g, 11n(HT20)] | Frequency [MHz] |
|--------------------------------------|-----------------|
| Low                                  | 2412            |
| Middle                               | 2437            |
| High                                 | 2462            |

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

| Tested Channel    | Modulation Type              | Data Rate      |
|-------------------|------------------------------|----------------|
| Low, Middle, High | IEEE802.11b: DSSS            | 1Mbps          |
| Low, Middle, High | IEEE802.11g: OFDM            | 6Mbps          |
| Low, Middle, High | IEEE802.11n (HT20 LGI): OFDM | MCS0 (6.5Mbps) |

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in X-axis, Open, Without camera and the worst case recorded. Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

#### 2.6 Operating flow

#### - Tx mode

- i) Test program setup to the DM tool
- ii) Select a Test mode

[IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)] Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz

iii) Start test mode

#### - Rx mode

- i) Test program setup to the DM tool
- Select a Test mode [IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)]
  Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz
- iii) Start test mode



### **3** Configuration of Equipment

Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

#### 3.1 Equipment used

| No. | Equipment    | Company | Model No. | Serial No.                                              | FCC ID/DoC | Comment |
|-----|--------------|---------|-----------|---------------------------------------------------------|------------|---------|
| 1   | Mobile Phone | KYOCERA | EB1056    | 350771280003635,<br>350771280003718,<br>358451750000658 | JOYEB1056  | EUT     |
| 2   | AC Adapter   | KDDI    | 0301PQA   | N/A                                                     | N/A        | *       |

\*: AC power line Conducted Emission Test.

#### 3.2 Cable(s) used

| No.     | Equipment                  | Length[m] | Shield | Connector | Comment |
|---------|----------------------------|-----------|--------|-----------|---------|
| а       | USB cable (for AC Adapter) | 1.0       | Yes    | Metal     | *       |
| * • • • |                            |           |        |           |         |

\*: AC power line Conducted Emission Test.

#### 3.3 System configuration





### 4 Test Result

#### 4.1 DTS Bandwidth / Occupied Bandwidth (99%)

#### 4.1.1 Measurement procedure

#### [FCC 15.247(a)(2), KDB 558074 D01 v05r02, Section 8.2]

The bandwidth at 6dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) RBW = 100kHz.
- b) VBW  $\geq$  3 x RBW.
- c) Sweep time = auto-couple.
- d) Detector = peak.
- e) Trace mode = max hold.

- Test configuration



#### 4.1.2 Limit

The minimum permissible 6 dB bandwidth is 500 kHz.



#### 4.1.3 Measurement result

| Date        | : | 12-April-2021      |
|-------------|---|--------------------|
| Temperature | : | 25.1 [°C]          |
| Humidity    | : | 27.3 [%]           |
| Test place  | : | Shielded room No.4 |

Test engineer :

Taiki Watanabe

| Channel | DTS Bandwidth [MHz] |             |                    |  |  |  |  |  |
|---------|---------------------|-------------|--------------------|--|--|--|--|--|
|         | IEEE802.11b         | IEEE802.11g | IEEE802.11n (HT20) |  |  |  |  |  |
| Low     | 7.128               | 16.369      | 17.580             |  |  |  |  |  |
| Middle  | 7.124               | 16.422      | 17.587             |  |  |  |  |  |
| High    | 7.529               | 16.350      | 17.327             |  |  |  |  |  |

| Channel | Occupied Bandwidth (99%) [MHz] |             |                    |  |  |  |  |
|---------|--------------------------------|-------------|--------------------|--|--|--|--|
|         | IEEE802.11b                    | IEEE802.11g | IEEE802.11n (HT20) |  |  |  |  |
| Low     | 11.892                         | 16.482      | 17.630             |  |  |  |  |
| Middle  | 12.049                         | 16.534      | 17.687             |  |  |  |  |
| High    | 12.001                         | 16.538      | 17.686             |  |  |  |  |

#### 4.1.4 Trace data

#### [IEEE802.11b]



Channel Middle



Transmit Freq Error 1.175 kHz x dB Bandwidth 7.124 MHz

#### Channel High



Transmit Freq Error -100.073 kHz x dB Bandwidth 7.529 MHz



#### [IEEE802.11g]





#### **Channel Middle**



Transmit Freq Error -13.687 kHz x dB Bandwidth 16.422 MHz

#### Channel High



Transmit Freq Error -48.327 kHz x dB Bandwidth 16.350 MHz



#### [IEEE802.11n (HT20)]





#### **Channel Middle**



Transmit Freq Error -9.988 kHz x dB Bandwidth 17.587 MHz

#### Channel High

TÜV SÜD Japan Ltd.



x dB Bandwidth 17.327 MHz







#### 4.2 Maximum Conducted Output Power

#### 4.2.1 Measurement procedure

#### [FCC 15.247(b)(3), KDB 558074 D01 v05r02, Section 8.3.1.3]

The peak power is measured with a power sensor connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

#### - Test configuration



#### 4.2.2 Limit

1 W (1000 mW) or less



#### 4.2.3 **Measurement result**

| Date        | : | 14-April-2021      |               |   |                |
|-------------|---|--------------------|---------------|---|----------------|
| Temperature | : | 23.8 [°C]          |               |   |                |
| Humidity    | : | 31.0 [%]           | Test engineer | : |                |
| Test place  | : | Shielded room No.4 | -             |   | Taiki Watanabe |

### [IEEE802.11b]

Battery Full

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------------|---------------|--------|
| Low     | 2412                         | 5.71             | 10.63          | 16.34          | 43.053               | ≦1000         | PASS   |
| Middle  | 2437                         | 5.06             | 10.63          | 15.69          | 37.060               | ≦1000         | PASS   |
| High    | 2462                         | 5.21             | 10.63          | 15.84          | 38.362               | ≦1000         | PASS   |

#### [IEEE802.11g] Battery Full

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------------|---------------|--------|
| Low     | 2412                         | 8.13             | 10.63          | 18.76          | 75.162               | ≦1000         | PASS   |
| Middle  | 2437                         | 8.17             | 10.63          | 18.80          | 75.858               | ≦1000         | PASS   |
| High    | 2462                         | 8.16             | 10.63          | 18.79          | 75.683               | ≦1000         | PASS   |

#### [IEEE802.11n (HT20)] **Battery Full**

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Output Power<br>(mW) | Limit<br>(mW) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------------|---------------|--------|
| Low     | 2412                         | 7.97             | 10.63          | 18.60          | 72.444               | ≦1000         | PASS   |
| Middle  | 2437                         | 7.93             | 10.63          | 18.56          | 71.779               | ≦1000         | PASS   |
| High    | 2462                         | 8.22             | 10.63          | 18.85          | 76.736               | ≦1000         | PASS   |

Calculation;

Reading (dBm) + Factor (dB) = Level (dBm)  $10\log P = Level (dBm)$   $P = 10^{(Maximum Peak Output Power / 10)} (mW)$ 



#### 4.3 Band Edge Compliance of RF Conducted Emissions

#### 4.3.1 Measurement procedure

#### [FCC 15.247(d), KDB 558074 D01 v05r02, Section 8.5]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting. (Setting suitable for measurement.)
- b) RBW = 100kHz.
- c) VBW  $\ge$  3 x RBW
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

#### - Test configuration



#### 4.3.2 Limit

In any 100 kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.



#### 4.3.3 Measurement result

| Date        | : | 12-April-2021      |               |   |                |  |
|-------------|---|--------------------|---------------|---|----------------|--|
| Temperature | : | 25.1 [°C]          |               |   |                |  |
| Humidity    | : | 27.3 [%]           | Test engineer | : |                |  |
| Test place  | : | Shielded room No.4 | 0             |   | Taiki Watanabe |  |

\_\_\_\_\_

### [IEEE802.11b]

| Channel | Frequency<br>(MHz) | RF Power<br>Level<br>(dBm) | Band-edge<br>Frequency<br>(MHz) | Band-edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)                      | Result |
|---------|--------------------|----------------------------|---------------------------------|-----------------------------|------------------------------|-------------------------------------|--------|
| Low     | 2412.00            | -6.47                      | 2399.97                         | -57.34                      | 50.87                        | At least 20dB below from peak of RF | PASS   |
| High    | 2462.00            | -6.14                      | 2486.89                         | -69.44                      | 63.30                        | At least 20dB below from peak of RF | PASS   |

#### [IEEE802.11g]

| Channel | Frequency<br>(MHz) | RF Power<br>Level<br>(dBm) | Band-edge<br>Frequency<br>(MHz) | Band-edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)                      | Result |
|---------|--------------------|----------------------------|---------------------------------|-----------------------------|------------------------------|-------------------------------------|--------|
| Low     | 2412.00            | -13.86                     | 2399.65                         | -51.75                      | 37.89                        | At least 20dB below from peak of RF | PASS   |
| High    | 2462.00            | -12.75                     | 2483.87                         | -68.82                      | 56.07                        | At least 20dB below from peak of RF | PASS   |

#### [IEEE802.11n (HT20)]

| Channel | Frequency<br>(MHz) | RF Power<br>Level<br>(dBm) | Band-edge<br>Frequency<br>(MHz) | Band-edge<br>Level<br>(dBm) | Difference<br>Level<br>(dBm) | Limit<br>(dBm)                      | Result |
|---------|--------------------|----------------------------|---------------------------------|-----------------------------|------------------------------|-------------------------------------|--------|
| Low     | 2412.00            | -13.66                     | 2399.97                         | -51.31                      | 37.65                        | At least 20dB below from peak of RF | PASS   |
| High    | 2462.00            | -12.77                     | 2483.61                         | -67.12                      | 54.35                        | At least 20dB below from peak of RF | PASS   |

#### 4.3.4 Trace data

#### [IEEE802.11b]







#### [IEEE802.11g]



#### Channel High





#### [IEEE802.11n (HT20)]



#### Channel High







#### 4.4 Spurious emissions - Conducted -

#### 4.4.1 Measurement procedure

#### [FCC 15.247(d), KDB 558074 D01 v05r02, Section 8.5]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = wide enough to fully capture the emission being measured.
- b) RBW = 100 kHz.
- c)́ VBW ≥ RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

#### - Test configuration



#### 4.4.2 Limit

In any 100 kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.



#### 4.4.3 Measurement result

| Date<br>Temperature<br>Humidity<br>Test place | : :   | 12-April-2021<br>25.1 [°C]<br>27.3 [%]<br>Shielded room No.4 | Test engineer | : | Taiki Watanabe |
|-----------------------------------------------|-------|--------------------------------------------------------------|---------------|---|----------------|
| Date<br>Temperature<br>Humidity<br>Test place | : : : | 14-April-2021<br>23.8 [°C]<br>31.0 [%]<br>Shielded room No.4 | Test engineer | : | Taiki Watanabe |

### [IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

| Channel | Frequency<br>[MHz] | Limit<br>[dB]                       | Results Chart      | Result |
|---------|--------------------|-------------------------------------|--------------------|--------|
| Low     | 2412               | At least 20dB below from peak of RF | See the trace Data | PASS   |
| Middle  | 2437               | At least 20dB below from peak of RF | See the trace Data | PASS   |
| High    | 2462               | At least 20dB below from peak of RF | See the trace Data | PASS   |



#### 4.4.4 **Trace data**



#### 5GHz-10GHz

#### 10GHz-15GHz



### 15GHz-20GHz

#### 20GHz-25GHz # Agilent 🔅 Agilent Mkr1 15.026 7 GHz Mkr1 24,888 3 GHz Ref 10 dBm Peak Atten 20 dB -65.97 dBm Ref 10 dBm Atten 20 dB -64.69 dBm Log 10 dB/ Log 10 dB/ DI -27.2 dBm DI -27.2 dBm 10 Stop 20.000 0 GHz VI S2 Stop 20.000 0 GHz Start 20.000 0 GHz Sweep 478 ms (3001 pts) \*Res BW 100 kHz 4a Marker Trace 1 (1) LgAv LgAv V1 S2 Start 15.000 0 GHz Stop 25.000 0 GHz •Res BW 100 kHz Marker Trace 1 (1) VBW 300 kHz VBW 300 kHz Sweep 478 ms (3001 pts) Type Freq Amplitude -65.97 dBm Type Freq X fixis 24,898 3 GHz X Axis 15.826 7 GHz Asplitude -64.69 dBa

### Channel Middle





### 15GHz-20GHz

#### 20GHz-25GHz





### **Channel High**





#### 15GHz-20GHz 20GHz-25GHz 🔅 Agilent 🔅 Agilent 16.243 3 GF 4kr1 24,686 7 íkr1 Ref 10 dBm •Peak -65.66 dBm Ref 10 dBm Atten 20 dB •Atten 20 dB -64.47 dBm Log 10 Log 10 dB/ dB/ DI -25.8 dBm DI -25.8 dBm 1 LgAv LgAv V1 S2 Start 15.000 0 GHz •Res BW 100 kHz Marker Trace 1 (1) V1 S2 V1 S2 Stop 20,000 0 GHz Start 20,000 0 GHz Sweep 478 ms (3001 pts) •Res BW 100 kHz Stop 25,000 0 GHz •VBW 300 kHz •VBW 300 kHz Sweep 478 ms (3001 pts) Amplitude -65.66 dBm Marker 1 Trace (1) Anplitude -64,47 dBm Type Freq Type Freq X Axis 24,686 7 6Hz X Rxis 16.243 3 6Hz

## TÜV SÜD Japan Ltd.

0

SUD

Japan

#### [IEEE802.11g] Channel Low 30MHz-1GHz









### **Channel Middle**







## TÜV SÜD Japan Ltd.

SUD

Japan

### Channel High





### 15GHz-20GHz

#### 20GHz-25GHz



## TÜV SÜD Japan Ltd.

SUD

Japan



#### [IEEE802.11n (HT20)] Channel Low 30MHz-1GHz







### Channel Middle





#### 15GHz-20GHz 20GHz-25GHz 🔅 Agilent 🔅 Agilent 19.488 3 GH 4kr1 24,781 7 GH íkr1 Ref 10 dBm •Peak -66.32 dBm Ref 10 dBm •Peak Atten 20 dB •Atten 20 dB -64.69 dBm Log 10 Log 10 dB/ dB/ DI -33,8 dBm DI -33.8 dBm 10 LgAv LgAv V1 S2 Start 15.000 0 GHz •Res BW 100 kHz Marker Trace 1 (1) V1 S2 V1 S2 Stop 20,000 0 GHz Start 20,000 0 GHz Sweep 478 ms (3001 pts) •Res BW 100 kHz Stop 25,000 0 GHz •VBW 300 kHz •VBW 300 kHz Sweep 478 ms (3001 pts) Amplitude -66.32 dBm Marker 1 Trace (1) Anplitude -64,69 dBm Type Freq Type Freq X Axis 19.488 3 6Hz X Rxis 24.781 7 6Hz

## TÜV SÜD Japan Ltd.

SUD

Japan

### Channel High



#### 5GHz-10GHz 10GHz-15GHz 🔅 Agilent 🔅 Agilent 7.000 0 GHz -67.08 dBm Ref 10 dBm •Peak 4kr1 14,291 7 641 CU Ref 10 dBm •Peak Atten 20 dB Atten 20 dB -65.22 dBm Log 10 Log 10 dB/ dB/ DI -33.2 dBm DI -33.2 dBm 1 LgAv LgAv V1 S2 Start 5.000 0 GHz •Res BW 100 kHz Marker Trace 1 (1) V1 S2 VI S2 Stop 10.000 0 GHz Start 10.000 0 GHz Sweep 478 ms (3001 pts) Hes BW 100 kHz Here Trace 1 (1) Stop 15.000 0 GHz •VBW 300 kHz •VBW 300 kHz Sweep 478 ms (3001 pts) Amplitude -67.08 d8m Amplitude -65.22 dBm Type Freq Type Freq X Axie 14.291 7 6Hz X Axie 7.000 0 6Hz







#### 4.5 Spurious Emissions - Radiated -

#### 4.5.1 Measurement procedure

#### [FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

Test was applied by following conditions.

| Test method<br>Frequency range<br>Test place<br>EUT was placed on                                      | :  | ANSI C63.10<br>9 kHz to 25 GHz<br>3m Semi-anechoic chamber<br>Styrofoam table / (W) 1.0 x (D) 1.0 x (H) 0.8 m (below 1 GHz)<br>Styrofoam table / (W) 0.6 x (D) 0.6 x(H)1.5 m (above 1 GHz)                                |
|--------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antenna distance                                                                                       | :  | 3 m                                                                                                                                                                                                                       |
| Test receiver setting<br>- Detector<br>- Bandwidth<br>Spectrum analyzer setting<br>- Peak<br>- Average | :: | Below 1 GHz<br>Average (9 kHz-90 kHz, 110 kHz-490 kHz), Quasi-peak<br>200 Hz, 120 kHz<br>Above 1 GHz<br>RBW=1 MHz, VBW=3 MHz, Span=0 Hz, Sweep=auto<br>RBW=1 MHz, VBW=10 Hz, Span=0 Hz, Sweep=auto<br>Display mode=Linear |

#### Average Measurement Setting [VBW]

| Mode              | Duty Cycle<br>(%) | T <sub>on</sub><br>(us) | T <sub>off</sub><br>(us) | Determined VBW Setting  |
|-------------------|-------------------|-------------------------|--------------------------|-------------------------|
| IEEE802.11b       | 99.42             | 1023                    | 6                        | 10Hz (Duty Cycle ≥ 98%) |
| IEEE802.11g       | 99.42             | 1364                    | 8                        | 10Hz (Duty Cycle ≥ 98%) |
| IEEE802.11n(HT20) | 99.38             | 1276                    | 8                        | 10Hz (Duty Cycle ≥ 98%) |

Although these tests were performed other than open area test site, adequate comparison measurements

were confirmed against 30 m open are test site.

Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna and Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.



- Test configuration



#### 4.5.2 Calculation method

[9 kHz to 150 kHz] Emission level = Reading + (Ant factor + Cable system loss) Margin = Limit – Emission level

[150 kHz to 25 GHz] Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain) Margin = Limit – Emission level

Example:

Limit @ 4824.0 MHz: 74.0 dBuV/m (Peak Limit) S.A Reading = 49.5 dBuV Cable system loss = 8.4 dB Result = 49.5 + 8.4 = 45.1 dBuV/m Margin = 74.0 - 45.1 = 16.1 dB

#### 4.5.3 Limit

| Frequency   | Field s         | Distance      |     |
|-------------|-----------------|---------------|-----|
| [MHz]       | [uV/m]          | [dBuV/m]      | [m] |
| 0.009-0.490 | 2400 / F [kHz]  | 20logE [uV/m] | 300 |
| 0.490-1.705 | 24000 / F [kHz] | 20logE [uV/m] | 30  |
| 1.705-30    | 30              | 29.5          | 30  |
| 30-88       | 100             | 40.0          | 3   |
| 88-216      | 150             | 43.5          | 3   |
| 216-960     | 200             | 46.0          | 3   |
| Above 960   | 500             | 54.0          | 3   |

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level [dBuV/m] = 20log Emission [uV/m]

3. As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition modulation.



#### 4.5.4 Test data

| Date<br>Temperature<br>Humidity<br>Test place | : | 16-April-2021<br>22.6 [°C]<br>21.6 [%]<br>3m Semi-anechoic chamber | Test engineer | : | Tadahiro Seino |
|-----------------------------------------------|---|--------------------------------------------------------------------|---------------|---|----------------|
| Date<br>Temperature<br>Humidity<br>Test place | : | 19-April-2021<br>22.8 [°C]<br>28.1 [%]<br>3m Semi-anechoic chamber | Test engineer | : | Tadahiro Seino |
| Date<br>Temperature<br>Humidity<br>Test place | : | 20-April-2021<br>24.4 [°C]<br>29.1 [%]<br>3m Semi-anechoic chamber | Test engineer | : | Tadahiro Seino |
| Date<br>Temperature<br>Humidity<br>Test place | : | 21-April-2021<br>24.4 [°C]<br>17.8 [%]<br>3m Semi-anechoic chamber | Test engineer | : | Tadahiro Seino |



#### 4.5.4.1 Transmission mode

#### [11b] Channel Low BELOW 1GHz



#### Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |  |
|-----|-----------|-----|-----------|--------|-------|--|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |  |

#### Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



[11b] Channel Low ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading          | Reading          | c. f              | Result             | Result                  | Limit                   | Limit              | Margin       | Margin      | Height        | Angle        |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|-------------------------|-------------------------|--------------------|--------------|-------------|---------------|--------------|
| 1   | [MHz]<br>4824.000 | Н   | [dB(μV)]<br>51.1 | [dB(μV)]<br>35.5 | [dB(1/m)]<br>11.0 | [dB(µV/m)]<br>62.1 | $[dB(\mu V/m)]$<br>46.5 | $[dB(\mu V/m)]$<br>74.0 | [dB(μV/m)]<br>54.0 | [dB]<br>11.9 | [dB]<br>7.5 | [cm]<br>161.0 | [°]<br>162.0 |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[11b] Channel Middle BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.


## [11b] Channel Middle ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading<br>PK    | Reading<br>AV    | c. f              | Result             | Result             | Limit              | Limit              | Margin<br>PK | Margin      | Height        | Angle         |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------|-------------|---------------|---------------|
| 1   | [MHz]<br>4874.000 | Н   | [dB(μV)]<br>50.1 | [dB(μV)]<br>35.3 | [dB(1/m)]<br>11.2 | [dB(µV/m)]<br>61.3 | [dB(µV/m)]<br>46.5 | [dB(µV/m)]<br>74.0 | [dB(µV/m)]<br>54.0 | [dB]<br>12.7 | [dB]<br>7.5 | [cm]<br>287.0 | [°]<br>164. 0 |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[11b] Channel High BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



[11b] Channel High ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading<br>PK    | Reading<br>AV    | c. f              | Result<br>PK       | Result<br>AV       | Limit<br>PK        | Limit              | Margin<br>PK | Margin<br>AV | Height        | Angle         |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------|--------------|---------------|---------------|
| 1   | [MHz]<br>4924.000 | Н   | [dB(μV)]<br>50.7 | [dB(µV)]<br>35.4 | [dB(1/m)]<br>11.3 | [dB(µV/m)]<br>62.0 | [dB(µV/m)]<br>46.7 | [dB(µV/m)]<br>74.0 | [dB(µV/m)]<br>54.0 | [dB]<br>12.0 | [dB]<br>7.3  | [cm]<br>179.0 | [°]<br>160. 0 |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[11g] Channel Low BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |  |  |
|-----|-----------|-----|-----------|--------|-------|--|--|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |  |  |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



[11g] Channel Low ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading<br>PK    | Reading<br>AV    | c. f              | Result<br>PK       | Result<br>AV       | Limit<br>PK        | Limit              | Margin<br>PK | Margin<br>AV | Height        | Angle        |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------|--------------|---------------|--------------|
| 1   | [MHz]<br>4824.000 | Н   | [dB(μV)]<br>50.3 | [dB(μV)]<br>35.4 | [dB(1/m)]<br>11.0 | [dB(µV/m)]<br>61.3 | [dB(µV/m)]<br>46.4 | [dB(µV/m)]<br>74.0 | [dB(µV/m)]<br>54.0 | [dB]<br>12.7 | [dB]<br>7.6  | [cm]<br>236.0 | [°]<br>155.0 |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[11g] Channel Middle BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



## [11g] Channel Middle ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading<br>PK    | Reading<br>AV    | c. f              | Result<br>PK       | Result<br>AV       | Limit<br>PK        | Limit              | Margin<br>PK | Margin<br>AV | Height        | Angle        |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------|--------------|---------------|--------------|
| 1   | [MHz]<br>4874.000 | Н   | [dB(μV)]<br>50.2 | [dB(µV)]<br>35.3 | [dB(1/m)]<br>11.2 | [dB(µV/m)]<br>61.4 | [dB(µV/m)]<br>46.5 | [dB(µV/m)]<br>74.0 | [dB(µV/m)]<br>54.0 | [dB]<br>12.6 | [dB]<br>7.5  | [cm]<br>289.0 | [°]<br>160.0 |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



[11g] Channel High BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



[11g] Channel High ABOVE 1GHz



Final Result

| No. | Frequency | (P) | Reading<br>PK | Reading<br>AV | c. f      | Result<br>PK    | Result          | Limit           | Limit           | Margin<br>PK | Margin | Height | Angle |
|-----|-----------|-----|---------------|---------------|-----------|-----------------|-----------------|-----------------|-----------------|--------------|--------|--------|-------|
|     | [MHz]     |     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB(1/m)] | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | $[dB(\mu V/m)]$ | [dB]         | [dB]   | [cm]   | [°]   |
| 1   | 4924.000  | Н   | 50.0          | 35.3          | 11.3      | 61.3            | 46.6            | 74.0            | 54.0            | 12.7         | 7.4    | 284.0  | 166.0 |

#### Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



## [11n(HT20)] Channel Low BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



## [11n(HT20)] Channel Low ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading<br>PK    | Reading<br>AV    | c. f              | Result<br>PK       | Result<br>AV       | Limit<br>PK        | Limit              | Margin<br>PK | Margin<br>AV | Height        | Angle        |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------|--------------|---------------|--------------|
| 1   | [MHz]<br>4824.000 | Н   | [dB(μV)]<br>50.6 | [dB(μV)]<br>35.7 | [dB(1/m)]<br>11.0 | [dB(µV/m)]<br>61.6 | [dB(µV/m)]<br>46.7 | [dB(µV/m)]<br>74.0 | [dB(µV/m)]<br>54.0 | [dB]<br>12.4 | [dB]<br>7.3  | [cm]<br>211.0 | [°]<br>158.0 |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



## [11n(HT20)] Channel Middle BELOW 1GHz



### Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



## [11n(HT20)] Channel Middle ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading<br>PK    | Reading<br>AV    | c. f              | Result<br>PK       | Result<br>AV       | Limit<br>PK        | Limit<br>AV        | Margin<br>PK | Margin<br>AV | Height        | Angle        |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------|--------------|---------------|--------------|
| 1   | [MHz]<br>4874.000 | Н   | [dB(μV)]<br>51.2 | [dB(μV)]<br>35.6 | [dB(1/m)]<br>11.2 | [dB(µV/m)]<br>62.4 | [dB(µV/m)]<br>46.8 | [dB(µV/m)]<br>74.0 | [dB(µV/m)]<br>54.0 | [dB]<br>11.6 | [dB]<br>7.2  | [cm]<br>187.0 | [°]<br>160.0 |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



## [11n(HT20)] Channel High BELOW 1GHz



### Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.



## [11n(HT20)] Channel High ABOVE 1GHz



Final Result

| No. | Frequency         | (P) | Reading<br>PK    | Reading<br>AV    | c. f              | Result<br>PK       | Result             | Limit<br>PK        | Limit              | Margin<br>PK | Margin<br>AV | Height        | Angle        |
|-----|-------------------|-----|------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------|--------------|---------------|--------------|
| 1   | [MHz]<br>4924.000 | Н   | [dB(μV)]<br>50.3 | [dB(μV)]<br>35.6 | [dB(1/m)]<br>11.3 | [dB(µV/m)]<br>61.6 | [dB(µV/m)]<br>46.9 | [dB(µV/m)]<br>74.0 | [dB(µV/m)]<br>54.0 | [dB]<br>12.4 | [dB]<br>7.1  | [cm]<br>204.0 | [°]<br>164.0 |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.



## 4.5.4.2 Receive mode

## Channel Low BELOW 1GHz



### Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.



Channel Middle BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.



### Channel High BELOW 1GHz



Final Result

| No. | Frequency | (P) | c.f       | Height | Angle |
|-----|-----------|-----|-----------|--------|-------|
|     | [MHz]     |     | [dB(1/m)] | [cm]   | [°]   |

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.



## 4.6 Restricted Band of Operation

## 4.6.1 Measurement procedure

## [FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

Test was applied by following conditions.

| Test method<br>Test place<br>EUT was placed on<br>Antenna distance | : : | ANSI C63.10<br>3m Semi-anechoic chamber<br>Styrofoam table / (W) $1.0 \times (D) 1.0 \times (H) 0.8 \text{ m} (below 1 \text{ GHz})$<br>Styrofoam table / (W) $0.6 \times (D) 0.6 \times (H) 1.5 \text{ m} (above 1 \text{ GHz})$<br>3m |
|--------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectrum analyzer setting<br>- Peak<br>- Average                   | :   | RBW=1 MHz, VBW=3 MHz, Span=Arbitrary setting, Sweep=auto<br>RBW=1 MHz, VBW=10 Hz, Span=Arbitrary setting, Sweep=auto<br>Display mode=Linear                                                                                             |

## Average Measurement Setting [VBW]

| Mode              | Duty Cycle<br>(%) | T <sub>on</sub><br>(us) | T <sub>off</sub><br>(us) | Determined VBW Setting  |
|-------------------|-------------------|-------------------------|--------------------------|-------------------------|
| IEEE802.11b       | 99.42             | 1023                    | 6                        | 10Hz (Duty Cycle ≥ 98%) |
| IEEE802.11g       | 99.42             | 1364                    | 8                        | 10Hz (Duty Cycle ≥ 98%) |
| IEEE802.11n(HT20) | 99.38             | 1276                    | 8                        | 10Hz (Duty Cycle ≥ 98%) |

Although these tests were performed other than open area test site, adequate comparison measurements

were confirmed against 30 m open are test site.

Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration





## 4.6.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

## 4.6.3 Measurement Result

## [IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

| Channel | Frequency [MHz] | Results Chart      | Result |
|---------|-----------------|--------------------|--------|
| Low     | 2412            | See the Trace Data | Pass   |
| High    | 2462            | See the Trace Data | Pass   |

## 4.6.4 Test data

| Date        | : | 26-April-2021            |               |   |                |
|-------------|---|--------------------------|---------------|---|----------------|
| Temperature | : | 23.1 [°C]                |               |   |                |
| Humidity    | : | 21.3 [%]                 | Test engineer | : |                |
| Test place  | : | 3m Semi-anechoic chamber | -             | - | Tadahiro Seino |



44.19 dBµ\ 389250 GH: 44.16 dBµ\ 390000 GH:

Span 105.0 MHz

44.05 dBµ\ 2.387990 GH 44.05 dBµ\ 2.390000 GH

Span 105.0 MHz

**C**REATER D

## [IEEE802.11b]

### **Channel Low** Horizontal Peak



#### Vertical Poak

| Peak                                                                                                                                                               |                                                                                  | Average                                                   | 9                                                                                                             |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------|
| Spectrum     Spectrum 2     Spectrum 2     Spectrum 2       Ref Level     110.00 dBµV     Offset     6.80 dB     RBV       Att     15 dB     SWT     40 ms     VBV | Tum 3     Spectrum 4     X       # 1 MHz     Mode Auto Sweep     Mode Auto Sweep | Spectrum<br>Ref Level 60.0                                | Spectrum 2     Spectrum 3       10 dBµV     Offset 6.80 dB • RBW 1 MHz       15 dB • SWT     12 s • VBW 10 Hz | Spectrum 4 Mode Auto Sweep |
| 1Pk View                                                                                                                                                           |                                                                                  | e 1Pk View                                                |                                                                                                               |                            |
| 100 d8µV-                                                                                                                                                          | M1[1]<br>M2[1]                                                                   | 58.73 dBµV<br>2.379780 GHz<br>57.40 dBµV<br>2.390009-041z |                                                                                                               | M1[1]<br>M2[1]             |
| 90 dBµV                                                                                                                                                            |                                                                                  |                                                           |                                                                                                               |                            |
| 80 dBµV                                                                                                                                                            |                                                                                  |                                                           |                                                                                                               |                            |
| 70 dBµV                                                                                                                                                            |                                                                                  |                                                           |                                                                                                               |                            |
| 60 dBUV                                                                                                                                                            | MI MO                                                                            | 01 5                                                      | 4.000 dBµV                                                                                                    |                            |
| 50 dBµV                                                                                                                                                            |                                                                                  |                                                           |                                                                                                               |                            |
| 40 dBµV                                                                                                                                                            |                                                                                  | 50 dBµV                                                   |                                                                                                               |                            |
| 30 dBµV                                                                                                                                                            |                                                                                  |                                                           |                                                                                                               | MiMS.                      |
| 20 dBµV                                                                                                                                                            |                                                                                  | 40 dBµV-                                                  |                                                                                                               |                            |
|                                                                                                                                                                    | 1001                                                                             | 30 dBµV                                                   | 1001                                                                                                          |                            |
| CF 2.3625 GH2                                                                                                                                                      | 1001 pts sr                                                                      | Dan 105.0 MHz CF 2.3625 GHz                               | 1001                                                                                                          | pts                        |
|                                                                                                                                                                    | Measuring                                                                        |                                                           |                                                                                                               | Measuring                  |



44.45 dBµv 2.487700 GHz 44.40 dBµv 2.483500 GHz

105.0 MHz Spar

CONTRACTOR OF TAXABLE

## **Channel High** Horizontal



## Vertical Poak

|              | ~                          |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               | ~               |                    |                   |
|--------------|----------------------------|--------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|-----------------|--------------------|-------------------|
| Spectrum     | Spectrum 2                 | (X) Spectr         | um 3 🗵                    | Spectrum 4 🛛 🗴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            | Spectrum      | Spectrum 2      | Spectrum 3         | Spectrum 4        |
| Ref Level 11 | l0.00 dBµV Offset          | 7.00 dB 👄 RBV      | / 1 MHz                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | Ref Level 60  | .00 dBµV Offset | 7.00 dB 👄 RBW 1 MH | z                 |
| Att          | 15 dB 🖷 SWT                | 40 ms 🖷 VBV        | / 3 MHz Mode              | Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | Att           | 15 dB 🥌 SWT     | 12 s 👄 VBW 10 H    | z Mode Auto Sweep |
| 1Pk View     |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 1Pk View      |                 |                    |                   |
|              |                            |                    | M                         | 1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.30 dBµV                                 |               |                 |                    | M1[1]             |
| 100 10.01    |                            |                    |                           | [1]0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.495240 GHz                               |               |                 |                    | M0[1]             |
|              |                            |                    |                           | 2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,483500 GHz                               |               |                 |                    |                   |
|              |                            |                    |                           | E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |               |                 |                    | T T               |
| 90 dBµV      |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 | ••••••             |                   |
| 1            |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 |                    |                   |
| 80 dBµV      |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                          |               |                 |                    |                   |
|              | 74.000 dB(6/               |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 |                    |                   |
| 70 dBuV      | 74.000 uppv                | -                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 |                    |                   |
| 1            |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 |                    |                   |
| 60 dBull     | M2                         | M1                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 1             | 54 000 dB(4/    |                    |                   |
| 00 00 00     | the manufactor to have all | and the providence | mandeling poly-surveyers. | and the server and the second s | man have been and the second second second |               | 54.000 uppy     |                    |                   |
|              |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 |                    |                   |
| 50 dBµV-     |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 |                    |                   |
|              |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               |                 |                    |                   |
| 40 dBµV      |                            |                    |                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | SU dBµV       | N               |                    |                   |
|              |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | v             | ·}              |                    |                   |
| 30 dBuV      |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               | M2 M1           |                    |                   |
|              |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |               | - Alimeter      |                    |                   |
| 20 db W      |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 40 d0 44      |                 |                    |                   |
| 20 06/14     |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 40 UBUV       |                 |                    |                   |
|              |                            |                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 30 dBµV       |                 |                    |                   |
| CF 2.5115 GH | 7                          |                    | 1001 nts                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span 105 0 MHz                             | CE 2 5115 GHz | ,               | 1001               | nte               |



## [IEEE802.11g]

### Channel Low Horizontal Peak



#### Vertical Peak

| cun                                                   |                                   |                                 |                                      | _             | Avera       | ige             |                  |                   |            | 6                                       |
|-------------------------------------------------------|-----------------------------------|---------------------------------|--------------------------------------|---------------|-------------|-----------------|------------------|-------------------|------------|-----------------------------------------|
| Spectrum                                              | Spectrum 2 (                      | Spectrum 3                      | Spectrum 4 🛛 🗶                       |               | Spectrum    | n Spectrum      | 2 🗷 Spectru      | m 3 🛛 🗶 Spect     | trum 4 🛛 🔊 | 9                                       |
| Ref Level 110                                         | 0.00 dBµV Offset 6.8              | 30 dB 👄 RBW 1 MHz               |                                      |               | Ref Level   | 60.00 dBµV Offs | et 6.80 dB 👄 RBW | L MHz             |            |                                         |
| Att                                                   | 15 dB 🖷 SWT 4                     | 0 ms 🖷 VBW 3 MHz                | Mode Auto Sweep                      |               | Att         | 15 dB 💩 SWT     | 12 s 🖷 VBW       | 10 Hz Mode Auto S | Sweep      |                                         |
| 1Pk View                                              |                                   |                                 |                                      |               | 1Pk View    |                 |                  |                   |            |                                         |
|                                                       |                                   |                                 | M1[1]                                | 59.28 dB      | IV.         |                 |                  | M1[1]             |            | 43.91 dB                                |
| 00 dBuV                                               |                                   |                                 | -M2[1]                               | 2.380930 G    | 12          |                 |                  | M2[1]             |            | 43.91 dB                                |
|                                                       |                                   |                                 |                                      | 2.390000 0    | iz          |                 |                  |                   |            | 2.390000 GI                             |
| 0 dBµV                                                |                                   |                                 |                                      | A             |             |                 |                  |                   |            |                                         |
|                                                       |                                   |                                 |                                      |               |             |                 |                  |                   |            |                                         |
| 0 dBµV                                                |                                   |                                 |                                      |               |             |                 |                  |                   |            | · • • • • • • • • • • • • • • • • • • • |
| D1 7                                                  | 74.000 dBuV                       |                                 |                                      |               | _           |                 |                  |                   |            |                                         |
| 0 dBµV                                                |                                   |                                 |                                      |               | -           |                 |                  |                   |            |                                         |
|                                                       |                                   |                                 | 141                                  |               |             |                 |                  |                   |            |                                         |
| i0 dBµV                                               | Distance in a colorisation of the | and a second show               | M2                                   | mander        | -           | D1 54.000 dBµV  |                  |                   |            |                                         |
| Control Party and | will Construction that and the    | and all have a short of all all | personal ends abelian endances under |               |             |                 |                  |                   |            |                                         |
| io dBµV                                               |                                   |                                 |                                      |               |             |                 |                  |                   |            |                                         |
|                                                       |                                   |                                 |                                      |               | FO 40-44    |                 |                  |                   |            | <i>f</i>                                |
| 0 dBµV                                                |                                   |                                 |                                      |               | 50 06µV     |                 |                  |                   |            |                                         |
|                                                       |                                   |                                 |                                      |               |             |                 |                  |                   |            |                                         |
| io dBµV                                               |                                   |                                 |                                      |               |             |                 |                  |                   | 1012       | 1                                       |
| 101 10 10                                             |                                   |                                 |                                      |               |             |                 |                  |                   |            |                                         |
| 20 dBµV                                               |                                   |                                 |                                      |               | 40 dBµV     |                 |                  |                   |            |                                         |
|                                                       |                                   |                                 |                                      |               | 30 dBµV     |                 | -                | -                 |            |                                         |
|                                                       |                                   |                                 |                                      |               |             |                 |                  |                   |            | 2                                       |
| F 2.3625 GHz                                          |                                   | 1001 pt                         | 5                                    | Span 105.0 Mi | z CF 2.3625 | GHz             |                  | 001 pts           |            | Span 105.0 MH                           |



44.31 dBµV 2.483490 GHz 44.31 dBµV 2.483500 GHz

Span 105.0 MHz

44.12 dBμ\ 483700 GH 44.08 dBμ\ 483500 GH

105.0 MHz

M1[1]

M2[1]

Measuring

## **Channel High** Horizontal



## Vertical

| Peak                                                   |                                          |                                          |                                                          | Average        | е                               |                                         |                 |    |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------|----------------|---------------------------------|-----------------------------------------|-----------------|----|
| Spectrum Spectrum 2                                    | Spectrum 3 (                             | 🗴 Spectrum 4 🛛 🗶                         |                                                          | Spectrum       | Spectrum 2                      | Spectrum 3                              | Spectrum 4      | ×  |
| RefLevel 110.00 dBµV Offset 7.0<br>■ Att 15 dB ■ SWT 4 | 00 dB 👄 RBW 1 MHz<br>-0 ms 👄 VBW 3 MHz 1 | Mode Auto Sweep                          |                                                          | Ref Level 60.1 | 00 dBµV Offset 3<br>15 dB ● SWT | 7.00 dB • RBW 1 MHz<br>12 s • VBW 10 Hz | Mode Auto Sweep |    |
| Pk View                                                |                                          |                                          |                                                          | 1Pk View       |                                 |                                         |                 |    |
| 100 dBUV                                               |                                          | M1[1]<br>—M2[1]                          | 58.75 dBµV<br>2.498420 GHz<br>57.69 dBµV<br>2.483500 GHz |                |                                 |                                         | M1[1]<br>M2[1]  | T  |
| 90 dBµV<br>80 dBµV<br>70 dBµV<br>20 dBµV               |                                          |                                          |                                                          |                |                                 |                                         |                 |    |
| 60 dBuV                                                | interesterations                         | n Yan makala kata kata dalar majalika ka | oberaturanan anton atauton it                            | D1 5           | 54.000 dBµV                     |                                         |                 |    |
| 40 dBµV                                                |                                          |                                          |                                                          | 50 dBµV        |                                 |                                         |                 |    |
| 30 dBµV                                                |                                          |                                          |                                                          | 40 dBµV        |                                 |                                         |                 |    |
|                                                        | 1001 ptc                                 |                                          | Span 105 0 MHz                                           | 30 dBµV        |                                 | 1001 m                                  | at c            | Sn |



## [IEEE802.11n (HT20)]

### Channel Low Horizontal Peak



#### Vertical Peak

| eak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                     |                   |                     |                                    |                            |                    |                | Avera     | age_        |          |             |                  |        |            |             |                                    |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------------------|------------------------------------|----------------------------|--------------------|----------------|-----------|-------------|----------|-------------|------------------|--------|------------|-------------|------------------------------------|--------|--------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spectrum 2            | 🗶 Spe             | ctrum 3             | Spectro                            | um 4 🗷                     |                    | (₩)            | Spectrur  | n Sp        | ectrum 2 | × s         | pectrum 3        | × 5    | Spectrum   | 4 🗶         |                                    |        | 1      |
| Ref Level 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 dBµV Offset      | 6.80 dB 👄 F       | RBW 1 MHz           |                                    |                            |                    |                | Ref Leve  | 1 60.00 dBµ | V Offse  | t 6.80 dB 🖷 | RBW 1 MHz        |        |            |             |                                    |        |        |
| Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 dB 🖷 SWT           | 40 ms 🖷 🛚         | BW 3 MHz            | Mode Auto S                        | weep                       |                    |                | Att       | 15 d        | ib 💩 SWT | 12 s 🖷      | <b>VBW</b> 10 Hz | Mode / | Auto Sweep |             |                                    |        |        |
| 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |                     |                                    |                            |                    |                | 1Pk View  |             |          |             |                  |        |            |             |                                    |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     | M1[1]                              |                            |                    | 59.11 dBµV     |           |             |          |             |                  | M      | 1[1]       |             |                                    | 43.    | 65 dBµ |
| 100 db w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |                     | LEJ6M                              |                            | 3                  | 56 76 dBuy     |           |             |          |             |                  | M      | 1110       |             |                                    | 2.389  | 370 GH |
| 100 0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |                     | m2[1]                              |                            |                    | 2.390000 GHz   |           |             | ******   |             |                  |        | 2[1]       |             |                                    | 2.390  | 000 GH |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     | 1                                  | 1                          | 1                  | Justimeraborde |           |             |          |             |                  | - 1    | ľ          | · · · · · · | 1                                  |        |        |
| 10 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |                     |                                    |                            |                    | 1              |           |             |          |             | ++               |        |            |             |                                    |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     |                                    |                            |                    | 1              |           |             |          |             |                  |        |            |             |                                    |        |        |
| 30 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |                     | -                                  |                            |                    | 0 0            |           |             |          |             |                  |        |            |             |                                    |        |        |
| D1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.000 dBµV           |                   |                     |                                    |                            | 1                  |                |           |             |          |             |                  |        |            |             |                                    |        |        |
| 70 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |                     |                                    | -                          |                    |                |           |             |          |             |                  |        |            |             |                                    |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     |                                    |                            | 1                  |                |           |             |          |             |                  |        |            |             |                                    |        |        |
| 50 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201771 101.00 Vol. 11 | the second second |                     | terror                             | M2 M2                      | U.U.U.             |                |           | D1 54.000   | dBµV     |             |                  |        |            |             |                                    |        |        |
| endedyeashipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | non-contractions      | unhumuland        | inderved advictory. | بالأبالج والمستعمل المستعمل المالي | seeded which and the state | L. KUHW            |                |           |             |          |             |                  |        |            |             |                                    |        |        |
| 50 dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |                     |                                    |                            |                    | -              |           |             |          |             |                  |        |            |             |                                    |        |        |
| Sector Se |                       |                   |                     |                                    |                            |                    |                |           |             |          |             |                  |        |            |             |                                    | J      |        |
| 40 dB10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   |                     |                                    |                            |                    |                | 50 dBµV   |             |          |             |                  |        |            |             | + +                                |        |        |
| io obpi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |                     |                                    |                            |                    |                |           |             |          |             | ±                |        |            |             | 1                                  |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     |                                    |                            |                    |                |           |             |          |             | +                |        |            |             | · · · · · · ·                      |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     |                                    | 5                          |                    |                |           |             |          |             |                  |        |            | N842        |                                    |        |        |
| 100 IS 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                   |                     |                                    |                            |                    |                |           |             |          |             |                  |        |            |             |                                    |        |        |
| 20 dBµV-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                   | -                   |                                    | -                          |                    | -              | 40 dBµV   |             |          |             |                  |        | -          |             |                                    | 1      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     |                                    |                            |                    |                | 30 dBµV   |             |          | -           | -                |        | -          |             | -                                  | -      |        |
| CE 2.3625 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                   | 1001 pts            | s                                  |                            | Spa                | n 105.0 MHz    | CE 2.3625 | GHz         |          | 1           | 1001             | nts    |            | L           | So                                 | an 105 | 0 MHz  |
| The second secon |                       |                   | 2.502 per           | -<br>                              | audea and                  | Contraction of the | 1.10           | 1. 10010  | 1           |          |             | 1001             |        | Manager    |             | Cope                               | 4.44   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                     | ried                               | suring                     | IN NO. OF TAXABLE  | n li           | L         |             |          |             |                  |        | ricasuri   | ng          | THE R. P. LEWIS CO., LANSING MICH. | -      | 6      |



## **Channel High** Horizontal



## Vertical - - |

| Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                                                                                 | Average        | 9                 |                  |                 |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|-------------------|------------------|-----------------|----------------------------------------|
| Spectrum 2 🛞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spectrum 3 🛞 Spectrum 4                         | ₩ (₩                                                                                                            | Spectrum       | Spectrum 2        | Spectrum 3       | Spectrum 4      | × (***                                 |
| Ref Level 110.00 dBµV Offset 7.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RBW 1 MHz                                       |                                                                                                                 | Ref Level 60.0 | 0 dBµV Offset 7.0 | 0 dB 👄 RBW 1 MHz | _               |                                        |
| Att 15 dB SWT 40 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW 3 MHz Mode Auto Sweep                       |                                                                                                                 | Att            | 15 dB 🥌 SWT       | 12 s 👄 VBW 10 Hz | Mode Auto Sweep |                                        |
| • 1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                                                                                                 | 1Pk View       |                   |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                           | 58.26 dBµV<br>2.498180 GHz                                                                                      |                |                   |                  | M1[1]           | 43.97 dBµ<br>2.490100 GH               |
| 100 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | 57.64 dBµV                                                                                                      |                |                   |                  | M2[1]           | 43.95 dBµ                              |
| Mansonalda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 2.483500 GHz                                                                                                    |                |                   |                  |                 | 2.483500 GH                            |
| 90 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
| 80 dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
| 01 /4.000 dbpv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                                                                                                 | ·              |                   |                  |                 |                                        |
| 10 dbpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
| AD dawn M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                                                                                                 | 01 54          | 1 000 dBus/       |                  |                 |                                        |
| West Structure and a structure of the st | weiselingengenhaltstationserveralistationserver | astrona planeter and a far for a second s | 01.54          | 1.000 ubpv        |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
| SU dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                 | 50 dBuly       |                   |                  |                 |                                        |
| 40 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                 | 30 00pV        |                   |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                 | ·····          |                   |                  |                 |                                        |
| 30 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                 |                | M2 MI             |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                 |                |                   |                  |                 |                                        |
| 20 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                 | 40 dBµV        |                   |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                 | 20 - 10 - 14   |                   |                  |                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001                                            | 0.000                                                                                                           |                |                   | 1001             |                 | 0                                      |
| GF 2.3113 GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1001 prs                                        | span 105.0 MHz                                                                                                  | CF 2.5115 GH2  |                   | 1001 pts         |                 | span 105.0 MH2                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measuring                                       |                                                                                                                 |                |                   |                  | Measuring       | ······································ |



## 4.7 Transmitter Power Spectral Density

## 4.7.1 Measurement procedure

## [FCC 15.247(e), KDB 558074 D01 v05r02, Section 8.4]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW  $\geq$  3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

### - Test configuration



### 4.7.2 Limit

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band.

## 4.7.3 Measurement result

| Date        | : | 14-April-2021      |               |   |                |  |
|-------------|---|--------------------|---------------|---|----------------|--|
| Temperature | : | 23.8 [°C]          |               |   |                |  |
| Humidity    | : | 31.0 [%]           | Test engineer | : |                |  |
| Test place  | : | Shielded room No.4 |               |   | Taiki Watanabe |  |

## [IEEE802.11b]

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------|-----------------|--------|
| Low     | 2412                         | -19.00           | 10.63          | -8.37          | 8.00           | 16.37           | PASS   |
| Middle  | 2437                         | -19.47           | 10.63          | -8.84          | 8.00           | 16.84           | PASS   |
| High    | 2462                         | -19.05           | 10.63          | -8.42          | 8.00           | 16.42           | PASS   |

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

## [IEEE802.11g]

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------|-----------------|--------|
| Low     | 2412                         | -26.94           | 10.63          | -16.31         | 8.00           | 24.31           | PASS   |
| Middle  | 2437                         | -26.75           | 10.63          | -16.12         | 8.00           | 24.12           | PASS   |
| High    | 2462                         | -26.07           | 10.63          | -15.44         | 8.00           | 23.44           | PASS   |

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

## [IEEE802.11n (HT20)]

| Channel | Center<br>Frequency<br>(MHz) | Reading<br>(dBm) | Factor<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dBm) | Result |
|---------|------------------------------|------------------|----------------|----------------|----------------|-----------------|--------|
| Low     | 2412                         | -26.05           | 10.63          | -15.42         | 8.00           | 23.42           | PASS   |
| Middle  | 2437                         | -26.06           | 10.63          | -15.43         | 8.00           | 23.43           | PASS   |
| High    | 2462                         | -26.74           | 10.63          | -16.11         | 8.00           | 24.11           | PASS   |

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)



## 4.7.4 Trace data

## [IEEE802.11b]

Channel Low\_\_\_



## Channel Middle



## Channel High





## [IEEE802.11g]



## **Channel Middle**



## Channel High







## [IEEE802.11n (HT20)]



## **Channel Middle**



## Channel High



Japan



## 4.8 AC Power Line Conducted Emissions

## 4.8.1 Measurement procedure

## [FCC 15.207]

Test was applied by following conditions.

| Test method                    | : | ANSI C63.10                               |
|--------------------------------|---|-------------------------------------------|
| Frequency range                | : | 0.15 MHz to 30 MHz                        |
| Test place                     | : | 3m Semi-anechoic chamber                  |
| EUT was placed on              | : | FRP table / (W) 2.0 × (D) 1.0 × (H) 0.8 m |
| Vertical Metal Reference Plane | : | (W) 2.0 x (H) 2.0 m, 0.4 m away from EUT  |
| Test receiver setting          |   |                                           |
| - Detector                     | : | Quasi-peak, Average                       |
| - Bandwidth                    | : | 9 kHz                                     |

EUT and peripherals are connected to  $50\Omega/50 \mu$ H Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in  $50\Omega$ .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration



## 4.8.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example: Limit @ 0.403 MHz: 57.8 dB $\mu$ V(Quasi-peak) : 47.8 dB $\mu$ V(Average) (Quasi peak)Reading = 22.7 dB $\mu$ V c.f. = 10.4 dB Emission level = 22.7 + 10.4 = 33.1 dB $\mu$ V Margin = 57.8 - 33.1 = 24.7 dB (Average) Reading = 6.5 dB $\mu$ V c.f. = 10.4 dB Emission level = 6.5 + 10.4 = 16.9 dB $\mu$ V Margin = 47.8 - 16.9 = 30.9 dB



## 4.8.3 Limit

| Frequency | Lir       | nit       |
|-----------|-----------|-----------|
| [MHz]     | QP [dBuV] | AV [dBuV] |
| 0.15-0.5  | 66-56*    | 56-46*    |
| 0.5-5     | 56        | 46        |
| 5-30      | 60        | 50        |

\*: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.



## 4.8.4 Test data

| Date<br>Temperature<br>Humidity<br>Test place                    | : 27-April-2021<br>: 23.7 [°C]<br>: 18.1 [%]<br>: 3m Semi-anechoic chamber    | Test engineer :<br>                                                                                          | adahiro Seino             |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------|
| Company Name<br>EUT<br>Model No.<br>Serial No.<br>Test mode      | : KYOCERA Corporation<br>: Mobile Phone<br>: EB1056<br>: N/A<br>: WLAN_11b_Tx | Standard : FCC Part.1<br>Operator : T.Seino<br>Temp,Hum,Atm : 23.7[°C] 18.<br>Note1 : Without Car<br>Note2 : | 5 Class C<br>1[%]<br>nera |
| [dB(µV)]<br>80<br>70<br>60<br>50<br>40<br>30<br>10<br>0<br>0.150 | 0.500 1.000                                                                   | 5.000 10.000 30                                                                                              | <pre></pre>               |

## Final Result

|     | L1 Phase  | -             |               |      |               |               |               |               |        |        |
|-----|-----------|---------------|---------------|------|---------------|---------------|---------------|---------------|--------|--------|
| No. | Frequency | Reading       | Reading       | c.f  | Result        | Result        | Limit         | Limit         | Margin | Margin |
|     |           | QP            | AV            |      | QP            | AV            | QP            | AV            | QP     | AV     |
|     | [MHz]     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB] | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB]   | [dB]   |
| 1   | 0.394     | 31.0          | 14.1          | 10.4 | 41.4          | 24.5          | 58.0          | 48.0          | 16.6   | 23.5   |
| 2   | 0.483     | 30.6          | 11.3          | 10.4 | 41.0          | 21.7          | 56.3          | 46.3          | 15.3   | 24.6   |
| 3   | 0.743     | 30.9          | 11.2          | 10.4 | 41.3          | 21.6          | 56.0          | 46.0          | 14.7   | 24.4   |
| 4   | 1.920     | 40.4          | 14.4          | 10.5 | 50.9          | 24.9          | 56.0          | 46.0          | 5.1    | 21.1   |
| 5   | 2.305     | 35.0          | 18.7          | 10.5 | 45.5          | 29.2          | 56.0          | 46.0          | 10.5   | 16.8   |
| 6   | 5.173     | 6.8           | 0.3           | 10.7 | 17.5          | 11.0          | 60.0          | 50.0          | 42.5   | 39.0   |
|     | L2 Phase  | _             |               |      |               |               |               |               |        |        |
| No. | Frequency | Reading       | Reading       | c.f  | Result        | Result        | Limit         | Limit         | Margin | Margin |
|     |           | QP            | AV            |      | QP            | AV            | QP            | AV            | QP     | AŬ     |
|     | [MHz]     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB] | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB]   | [dB]   |
| 1   | 0.392     | 35.3          | 21.1          | 10.4 | 45.7          | 31.5          | 58.0          | 48.0          | 12.3   | 16.5   |
| 2   | 0.481     | 32.1          | 17.5          | 10.4 | 42.5          | 27.9          | 56.3          | 46.3          | 13.8   | 18.4   |
| 3   | 0.748     | 32.2          | 16.6          | 10.4 | 42.6          | 27.0          | 56.0          | 46.0          | 13.4   | 19.0   |
| 4   | 1.830     | 33.1          | 18.1          | 10.5 | 43.6          | 28.6          | 56.0          | 46.0          | 12.4   | 17.4   |
| 5   | 2.266     | 30.8          | 18.0          | 10.5 | 41.3          | 28.5          | 56.0          | 46.0          | 14.7   | 17.5   |
| 6   | 10,830    | 18.3          | 6.3           | 11.3 | 29.6          | 17.6          | 60.0          | 50.0          | 30.4   | 32.4   |



## 5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.



## 6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

| Test item                                  | Measurement uncertainty |  |
|--------------------------------------------|-------------------------|--|
| Conducted emission, AMN (9 kHz – 150 kHz)  | ±3.7 dB                 |  |
| Conducted emission, AMN (150 kHz – 30 MHz) | ±3.3 dB                 |  |
| Radiated emission ( 9kHz – 30 MHz)         | ±3.2 dB                 |  |
| Radiated emission (30 MHz – 1000 MHz)      | ±5.3 dB                 |  |
| Radiated emission (1 GHz – 6 GHz)          | ±4.8 dB                 |  |
| Radiated emission (6 GHz – 18 GHz)         | ±4.5 dB                 |  |
| Radiated emission (18 GHz – 40 GHz)        | ±6.4 dB                 |  |
| Radio Frequency                            | ±1.4 * 10 <sup>-8</sup> |  |
| RF power, conducted                        | ±0.8 dB                 |  |
| Adjacent channel power                     | ±2.4 dB                 |  |
| Temperature                                | ±0.6 °C                 |  |
| Humidity                                   | ±1.2 %                  |  |
| Voltage (DC)                               | ±0.4 %                  |  |
| Voltage (AC, <10kHz)                       | ±0.2 %                  |  |

| Judge | Measured value and standard limit value |                                                                                                                                                                                                                                                                          |  |
|-------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PASS  | Case1                                   | ty   -Uncertainty     Even if it takes uncertainty into consideration,     sured value   a standard limit value is fulfilled.     Although measured value is in a standard limit value,     a limit value won't be fulfilled if uncertainty is taken into consideration. |  |
| FAIL  | Case3                                   | Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration.                                                                                                                                      |  |
|       |                                         | Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.                                                                                                                                                                                 |  |


## 7 Laboratory Information

Testing was performed and the report was issued at:

#### TÜV SÜD Japan Ltd. Yonezawa Testing Center

 Address:
 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

 Phone:
 +81-238-28-2881

 Fax:
 +81-238-28-2888

#### Accreditation and Registration

A2LA Certificate #3686.03

VLAC Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada ISED#: 4224A

#### VCCI Council

| Registration number | Expiration date |
|---------------------|-----------------|
| A-0166              | 03-July-2021    |



## Appendix A. Test Equipment

#### Antenna port conducted test

| Equipment         | Company              | Model No. | Serial No. | Cal. Due    | Cal. Date   |
|-------------------|----------------------|-----------|------------|-------------|-------------|
| Spectrum analyzer | Agilent Technologies | E4440A    | US44302655 | 31-Aug-2021 | 20-Aug-2020 |
| Attenuator        | Weinschel            | 56-10     | J4993      | 31-Dec-2021 | 14-Dec-2020 |
| Power meter       | ROHDE&SCHWARZ        | NRP2      | 103269     | 31-Mar-2022 | 10-Mar-2021 |
| Power sensor      | ROHDE&SCHWARZ        | NRP-Z81   | 102467     | 31-Mar-2022 | 10-Mar-2021 |

#### **Radiated emission**

| Equipment                   | Company              | Model No.         | Serial No.       | Cal. Due    | Cal. Date   |
|-----------------------------|----------------------|-------------------|------------------|-------------|-------------|
| EMI Receiver                | ROHDE&SCHWARZ        | ESCI              | 100765           | 30-Sep-2021 | 28-Sep-2020 |
| Spectrum analyzer           | Agilent Technologies | E4447A            | MY46180188       | 31-Mar-2022 | 11-Mar-2021 |
| Spectrum analyzer           | Agilent Technologies | E4440A            | US40420937       | 31-Dec-2021 | 11-Dec-2020 |
| Spectrum analyzer           | ROHDE&SCHWARZ        | FSV40             | 101731           | 30-Jun-2021 | 22-Jun-2020 |
| Preamplifier                | SONOMA               | 310               | 372170           | 30-Sep-2021 | 29-Sep-2020 |
| Loop antenna                | ROHDE&SCHWARZ        | HFH2-Z2           | 100515           | 30-Apr-2021 | 15-Apr-2020 |
| Biconical antenna           | Schwarzbeck          | VHBB9124/BBA9106  | 1333             | 31-Dec-2021 | 15-Dec-2020 |
| Log periodic antenna        | Schwarzbeck          | VUSLP9111B        | 344              | 30-Apr-2021 | 17-Apr-2020 |
| Attenuator                  | TOYO Connector       | NA-PJ-6/6dB       | N/A(S541)        | 30-Sep-2021 | 29-Sep-2020 |
| Attenuator                  | TAMAGAWA.ELEC        | CFA-10/3dB        | N/A(S503)        | 31-Jul-2021 | 20-Jul-2020 |
| Preamplifier                | TSJ                  | MLA-100M18-B02-40 | 1929118          | 31-Dec-2021 | 15-Dec-2020 |
| Attenuator                  | AEROFLEX             | 26A-10            | 081217-08        | 31-Dec-2021 | 14-Dec-2020 |
| Double ridged guide antenna | ETS LINDGREN         | 3117              | 00052315         | 30-Apr-2021 | 08-Apr-2020 |
| Attenuator                  | HUBER+SUHNER         | 6803.17.B         | N/A(2340)        | 31-Dec-2021 | 15-Dec-2020 |
| Double ridged guide antenna | A.H.Systems Inc.     | SAS-574           | 469              | 30-Sep-2021 | 02-Sep-2020 |
| Preamplifier                | TSJ                  | MLA-1840-B03-35   | 1240332          | 30-Sep-2021 | 02-Sep-2020 |
| Band rejection filter       | Micro-Tronics        | BRC50702          | G433             | 30-Sep-2021 | 29-Sep-2020 |
|                             | HUBER+SUHNER         | SUCOFLEX104/9m    | MY30037/4        | 31-Dec-2021 | 15-Dec-2020 |
| Microwave cable             |                      | SUCOFLEX104/1m    | my24610/4        | 31-Dec-2021 | 15-Dec-2020 |
|                             |                      | SUCOFLEX104/8m    | SN MY30033/4     | 31-Dec-2021 | 15-Dec-2020 |
|                             |                      | SUCOFLEX104       | MY32976/4        | 31-Dec-2021 | 15-Dec-2020 |
|                             |                      | SUCOFLEX104/1.5m  | SN MY28404/4     | 31-Dec-2021 | 15-Dec-2020 |
|                             |                      | SUCOFLEX104/7m    | 41625/6          | 31-Dec-2021 | 15-Dec-2020 |
| PC                          | DELL                 | DIMENSION E521    | 75465BX          | N/A         | N/A         |
| Software                    | TOYO Corporation     | EP5/RE-AJ         | 0611193/V6.0.140 | N/A         | N/A         |
| Absorber                    | RIKEN                | PFP30             | N/A              | N/A         | N/A         |
| 3m Semi an-echoic Chamber   | TOKIN                | N/A               | N/A(9002-NSA)    | 31-May-2021 | 29-May-2020 |
| 3m Semi an-echoic Chamber   | TOKIN                | N/A               | N/A(9002-SVSWR)  | 31-May-2021 | 28-May-2020 |

#### Conducted emission at mains port

| Equipment                            | Company                            | Model No.   | Serial No.      | Cal. Due    | Cal. Date   |
|--------------------------------------|------------------------------------|-------------|-----------------|-------------|-------------|
| EMI Receiver                         | ROHDE&SCHWARZ                      | ESCI        | 100765          | 30-Sep-2021 | 28-Sep-2020 |
| Attenuator                           | HUBER+SUHNER                       | 6810.01.A   | N/A (S411)      | 31-Dec-2021 | 15-Dec-2020 |
| Line impedance stabilization network | Kyoritsu Electrical<br>Works, Ltd. | TNW-407F2   | 12-17-110-2     | 30-Jun-2021 | 03-Jun-2020 |
| Coaxial cable                        | FUJIKURA                           | 5D-2W/4m    | N/A (S350)      | 31-Dec-2021 | 15-Dec-2020 |
| Coaxial cable                        | FUJIKURA                           | 5D-2W/1m    | N/A (S193)      | 31-Dec-2021 | 15-Dec-2020 |
| Coaxial cable                        | HUBER+SUHNER                       | RG214/U/10m | N/A (S194)      | 31-Dec-2021 | 15-Dec-2020 |
| PC                                   | DELL                               | DIMENSION   | 75465BX         | N/A         | N/A         |
| Software                             | TOYO Corporation                   | EP5/CE-AJ   | 0611193/V5.4.11 | N/A         | N/A         |

\*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

# TÜV SÜD Japan Ltd.



## Appendix B. Duty Cycle

### [Plot & Calculation]

11b



Duty Cycle = Ton / (Ton + Toff) = 1023[µs] / (1023[µs] + 6[µs]) =99.42[%]

11g



Duty Cycle = Ton / (Ton + Toff) = 1364[µs] / (1364[µs] + 8[µs]) =99.42[%]

#### 11n (HT20)



Duty Cycle = Ton / (Ton + Toff) = 1276[µs] / (1276[µs] + 8[µs]) =99.38[%]

TÜV SÜD Japan Ltd.