Report on the RF Testing of:

KYOCERA Corporation

Mobile Phone, Model: EB1035

FCC ID: JOYEB1035

In accordance with FCC Part 24 Subpart E Class II Permissive Change

Prepared for: KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku

Yokohama-shi, Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Add value. Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-21040-0

SIGNATURE

NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Hiroaki Suzuki	Deputy Manager of RF Group	Approved Signatory	

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Japan Ltd. document control rules.

EXECUTIVE SUMMARY - Result: Complied

A sample(s) of this product was tested and the result above was confirmed in accordance with FCC Part 24 Subpart E.

DISCLAIMER AND COPYRIGHT

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD Japan Ltd.

Client provided data, for which TÜV SÜD Japan Ltd. take no responsibility, which can affect validity of results within this report is clearly identified.

ACCREDIATION

This test report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 Fax: +81 (0) 238 28 2888 www.tuv-sud.jp

Contents

1	Summary of Test	3
1.1 1.2	Modification history of the test reportStandards	3
1.3	Test methods	3
1.4	Deviation from standards	
1.5	List of applied test(s) of the EUT	
1.6	Test information	
1.7	Test set up	
1.8	Test period	3
2	Equipment Under Test	4
2.1	EUT information	,
2.1	Modification to the EUT	
2.3	Variation of family model(s)	
2.4	Description of test mode	
3	Configuration of Equipment	6
3.1	Equipment used	6
3.2	System configuration	
4	Test Result	7
4.1	Equivalent Isotropic Radiated Power	-
4.2	Peak to Average Ratio	
4.3	Occupied Bandwidth	
4.4	Band Edge Spurious and Harmonic at Antenna Terminals	
4.5	Radiated Emissions and Harmonic Emissions	28
4.6	Frequency Stability	31
5	Measurement Uncertainty	33
6	Laboratory Information	34
Annes	adiy A. Toot Equipment	21

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-21040-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 24 Subpart E

1.3 Test methods

KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI/TIA/EIA 603-E-2016 ANSI C63.26-2015

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
2.1046	Conducted Output Power	Conducted	PASS	*1
24.232(c)	Equivalent Isotropic Radiated Power	Radiated	PASS	-
24.232(d)	Peak to Average Ratio	Conducted	PASS	-
24.238(a) 2.1049	Occupied Bandwidth	Conducted	PASS	-
24.238(a) 2.1051	Band Edge Spurious and Harmonic at Antenna Terminal	Conducted	PASS	-
24.238(a) 2.1053	Radiated emissions and Harmonic Emissions	Radiated	PASS	-
24.235 2.1055	Frequency Stability	Conducted	PASS	-

^{*1:} Refer to RF Exposure Report (Test Report_SAR)

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

10-May-2021 - 18-May-2021

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,

Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Equipment Under Test (EUT) Mobile Phone

Model number EB1035

Serial number 355280110018263, 355280110018255

Trade name Kyocera

Number of sample(s) 2

EUT condition Pre-Production

Power rating Battery: DC 3.85 V

Size (W) $71.0 \times (D) 159.0 \times (H) 8.9 \text{ mm}$

Environment Indoor and Outdoor use

Terminal limitation -20 °C to 60 °C

Hardware version PMT

Software version V0.060MI.0020.a Firmware version Not applicable

RF Specification

Frequency of Operation Up Link

WCDMA Band II: 1852.4-1907.6 MHz LTE Band II: 1850.0-1910.0 MHz

Down Link

WCDMA Band II: 1932.4-1987.6 MHz LTE Band II: 1930.0-1990.0 MHz

Modulation type WCDMA Band II: QPSK, 16QAM

LTE Band II: QPSK, 16QAM, 64QAM

Emission designator WCDMA Band II: 4M18F9W

LTE Band II: BW 1.4M QPSK: 1M09G7D

Equivalent Isotropic Radiated

Power (E.I.R.P)

WCDMA Band II: 0.380 W (25.8 dBm) LTE Band II: 0.372 W (25.7 dBm)

Antenna type Internal antenna

Antenna gain WCDMA Band II: 1.2 dBi

LTE Band II: 1.2 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State	Description of Modification	Modification fitted by	Date of Modification		
Model: EB1035, Serial Number: 355280110018263, 355280110018255					
0	As supplied by the applicant	Not Applicable	Not Applicable		

2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

2.3.2 Reason for selection of EUT

Not applicable

2.4 Description of test mode

The EUT had been tested under operating condition.
There are three channels have been tested as following:

Band	Modulation	Bandwidth [MHz]	Channel	Frequency [MHz]
WCDMA Band II	QPSK	-	9262, 9400, 9538	1852.4, 1880.0, 1907.6
	16QAM	-	9262, 9400, 9538	1852.4, 1880.0, 1907.6
LTE Band II	QPSK	1.4	18607, 18900, 19193	1850.7, 1880.0, 1909.3

The electric field strength of spurious radiation was measured in the previous worst case.

The worst emission last time was on the X axis (all bands).

3 Configuration of Equipment

Numbers assigned to equipment on the diagram in "3.2 System configuration" correspond to the list in "3.1 Equipment used".

This test configuration is based on the manufacture's instruction.

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	EB1035	355280110018263, 355280110018255	JOYEB1035	EUT

3.2 System configuration

1. Mobile Phone (EUT)	

4 Test Result

4.1 Equivalent Isotropic Radiated Power

4.1.1 Measurement procedure

[FCC 24.232(c)]

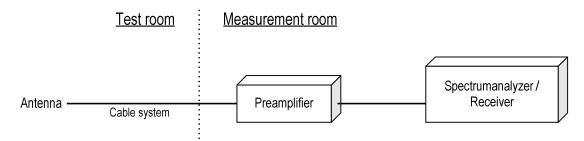
<Step 1>

The EUT and support equipment are placed on a 0.6 meter x 0.6 meter surface, 1.5 meter height styrene foam table. Radiated emission measurements are performed at 3 meter distance with the broadband antenna (double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission.

The bandwidth of the spectrum analyzer is set to 1 MHz. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission.

<Step 2>

The substitution antenna is replaced by the transmitter antenna (EUT).


The frequency of the signal generator is adjusted to the measurement frequency.

Level of the signal generator is adjusted to the level that is obtained from step 1, and record the emission level of signal generator.

The spectrum analyzer is set to;

- a) Span = 1.5 times the OBW
- b) RBW = 1-5% of the expected OBW, not to exceed 1 MHz
- c) VBW \geq 3 x RBW
- d) Number of sweep points ≥ 2 x span / RBW
- e) Sweep time = auto-couple
- f) Detector = RMS (power averaging)
- g) If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
- h) If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

- Test configuration

4.1.2 Calculation method

Result(EIRP) = Ant. Input - Cable loss + Antenna Gain Margin = Limit – Result (EIRP)

Example:

Limit @ 1880 MHz : 33.0 dBm

Ant. Input = 19.3 dBm Cable loss = 1.1dB Ant. Gain = 8.3 dBi

Result = 19.3 - 1.1 + 8.3 = 26.5 dBm

Margin = $33.0 - 26.5 = 6.5 \, dB$

4.1.3 Limit

2 W (33 dBm)

4.1.4 Test data

Date : 10~11-May-2021

Temperature : 22.2 [°C] Humidity : 33.1 [%]

Test place : 3m Semi-anechoic chamber

n Semi-anechoic chamber Chiaki Kanno

Test engineer

[WCDMA Band II]

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	1852.4	-25.7	21.2	1.1	4.7	24.8	33.0	8.2
Н	1880.0	-25.7	22.3	1.1	4.7	25.8	33.0	7.2
Н	1907.6	-26.7	20.4	1.2	4.6	23.9	33.0	9.1

[LTE Band II]

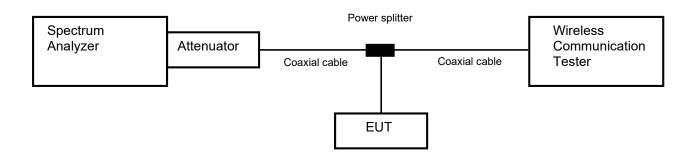
QPSK, BW 1.4MHz

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	1850.7	-25.6	21.1	1.1	4.7	24.7	33.0	8.3
Н	1880.0	-25.2	21.9	1.1	4.7	25.4	33.0	7.6
Н	1909.3	-25.5	22.2	1.2	4.6	25.7	33.0	7.3

4.2 Peak to Average Ratio

4.2.1 Measurement procedure

[FCC 24.232(d)]


The peak to average ratio was measured with a spectrum analyzer connected to the antenna terminal.

The spectrum analyzer is set to;

[WCDMA Band II, LTE Band II]

- a) Power Stat CCDF mode
- b) Set resolution / measurement bandwidth ≥ signal's occupied bandwidth.
- c) Set the number of counts to a value that stabilizes the measured CCDF curve.
- d) Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1ms.
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst duration.
- e) Record the maximum PAPR level associated with a probability of 0.1%.

- Test configuration

4.2.2 Limit

13 dB or less

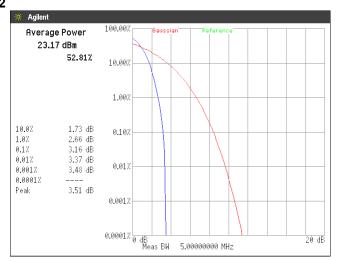
4.2.3 Measurement result

14-May-2021 Date

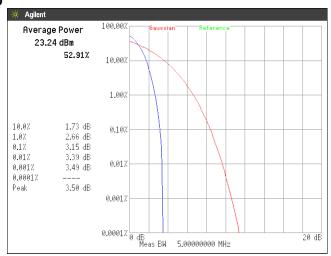
Temperature : 23.3 [°C]
Humidity : 37.9 [%]
Test place : Shielded room No.4

Test engineer

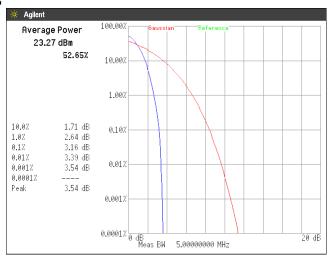
Chiaki Kanno


Band	Channel	Frequency [MHz]	Peak to Average Power Ratio [dB]	Limit [dB]
MCDMA	9262	1852.4	3.16	
WCDMA Band II	9400	1880.0	3.15	13.0
Dailu II	9538	1907.6	3.16	

Band	Channel	Frequency [MHz]	Modulation	Bandwidth [MHz]	RB	Peak to Average Power Ratio [dB]	Limit [dB]
LTE Band II	18900	1880.0	QPSK	1.4	6-0	3.61	13.0

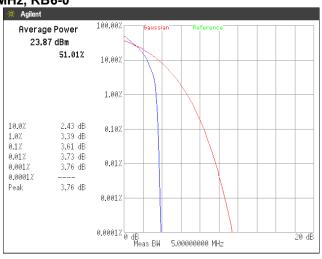


4.2.4 Trace data


[WCDMA Band II] Channel: 9262

Channel: 9400

Channel: 9538



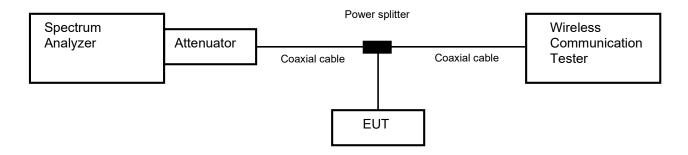
[LTE Band II]

Channel: 18900

QPSK, BW 1.4MHz, RB6-0

4.3 **Occupied Bandwidth**

4.3.1 Measurement procedure


[FCC 24.238(a), 2.1049]

The Occupied bandwidth was measured with a spectrum analyzer connected to the antenna terminal.

The spectrum analyzer is set to;

- RBW = 1-5% of the expected OBW & VBW ≥ 3 x RBW
- b) Detector = Peak
- Trace mode = Max hold c)
- Sweep time = auto-couple d)

- Test configuration

4.3.2 Limit

WCDMA

Band II

None

4.3.3 Measurement result

Date 14-May-2021 Temperature 23.3 [°C]

9400

9538

Humidity 37.9 [%]

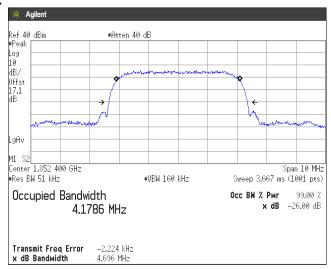
Test engineer Test place Shielded room No.4 Chiaki Kanno

1880.0

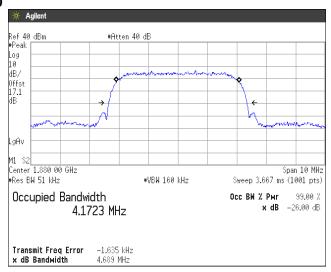
1907.6

Frequency Test Result Band Channel [MHz] [kHz] 9262 1852.4 4178.6

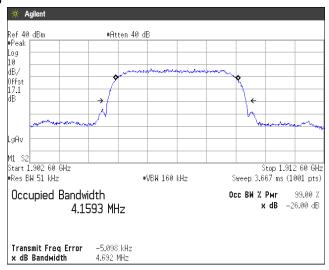
Band	Channel	Frequency [MHz]	Bandwidth [MHz]	Modulation	RB	Test Result [MHz]
LTE Band II	18900	1880.0	1.4	QPSK	3-1	0.6055
LIE Dallu II	10900	1000.0	1.4	QFSK	6-0	1.0949


4172.3

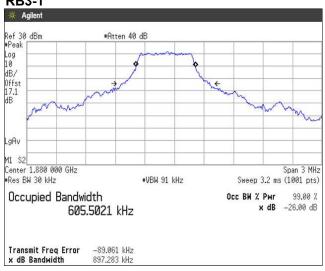
4159.3

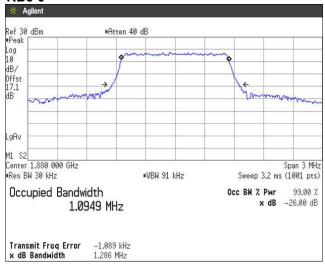


4.3.4 Trace data


[WCDMA Band II] Channel: 9262

Channel: 9400


Channel: 9538



[LTE Band II] Channel: 18900 QPSK, BW 1.4MHz

RB3-1

RB6-0

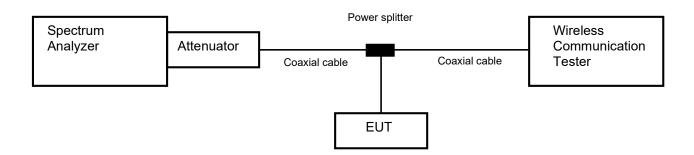
4.4 Band Edge Spurious and Harmonic at Antenna Terminals

4.4.1 Measurement procedure

[FCC 24.238(a), 2.1051]

The band edge spurious and harmonic was measured with a spectrum analyzer connected to the antenna terminal.

The spectrum analyzer is set to;


<Band Edge>

- a) Span was set large enough so as to capture all out of band emissions near the band edge
- b) RBW ≥ 1% of the emission bandwidth or 2% of the emission bandwidth
- c) VBW \geq 3 x RBW
- d) Detector = RMS
- e) Trace mode = Max hold
- f) Sweep time = auto-couple
- g) Number of sweep point ≥ 2 x span / RBW

<Spurious Emissions>

- a) RBW = 1MHz & VBW ≥ 3 x RBW
- b) Detector = Peak
- c) Trace mode = Max hold
- d) Sweep time = auto-couple
- e) Number of sweep point ≥ 2 x span / RBW

- Test configuration

4.4.2 Limit

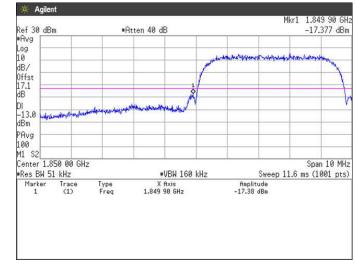
-13 dBm or less

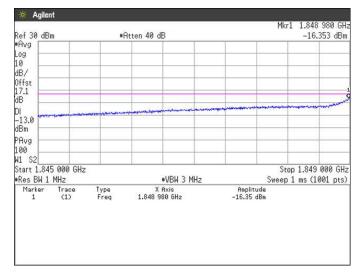
4.4.3 Measurement result

14-May-2021 Date

Temperature : 23.3 [°C]
Humidity : 37.9 [%]
Test place : Shielded room No.4 Test engineer Chiaki Kanno

Band	Channel	Frequency [MHz]	Limit [dB]	Results	
WCDMA	9262	1852.4	-13.0	See the trace data	PASS
Band II	9538	1907.6	-13.0	See the trace data	PASS

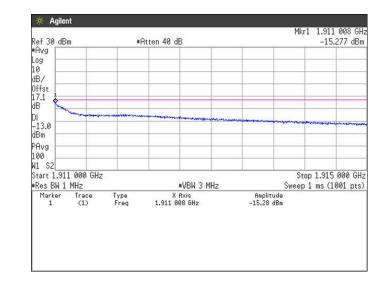

Band	Modulation	Bandwidth [MHz]	Channel	Frequency [MHz]	Limit [dB]	Results		
LTE Band II	ODSK	QPSK	1.4	18607	1850.7	-13.0	See the trace data	PASS
LIE Dallu II	QFSK	1.4	19193	1909.3	-13.0	See the trace data	PASS	



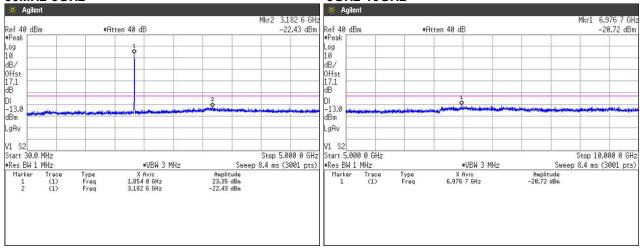
4.4.4 Trace data

[WCDMA Band II] (Band Edge)

Channel: 9262

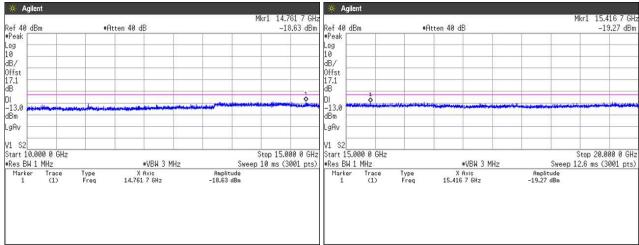


Channel: 9538

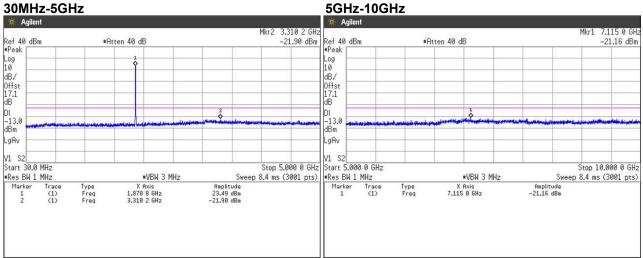


(Spurious Emissions)

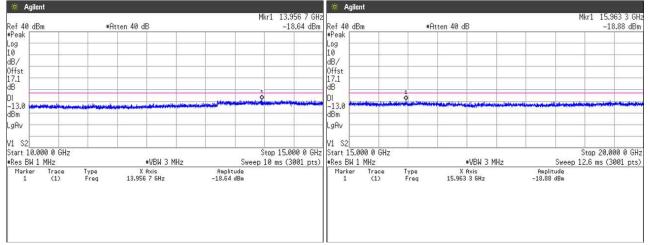
Note: Conducted spurious test was measured in the worst case of conducted output power.


Channel: 9262 30MHz-5GHz

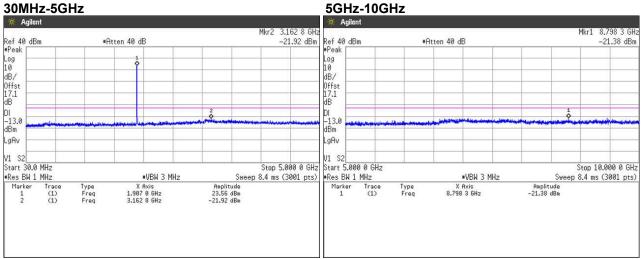
5GHz-10GHz


10GHz-15GHz

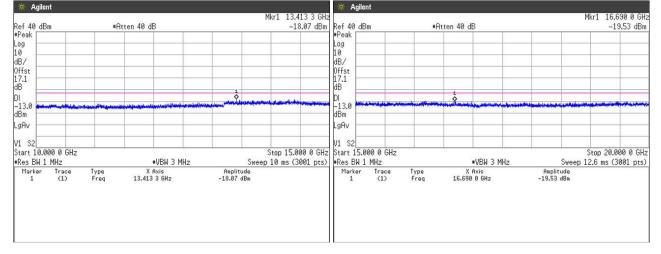
15GHz-20GHz



Channel: 9400 30MHz-5GHz

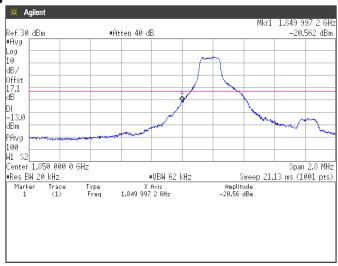


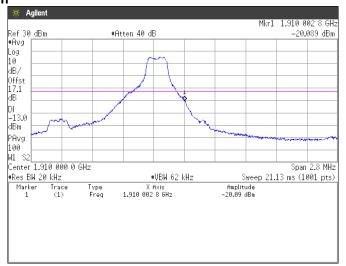
10GHz-15GHz 15GHz-20GHz



Channel: 9538 30MHz-5GHz

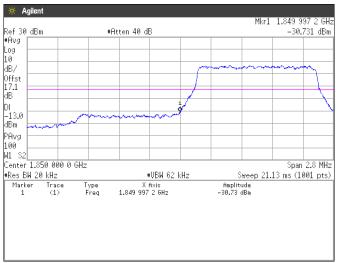
10GHz-15GHz 15GHz-20GHz



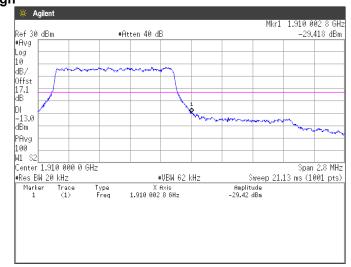

[LTE Band II] (Band Edge)

QPSK, BW 1.4MHz, RB1-0

Channel: Low

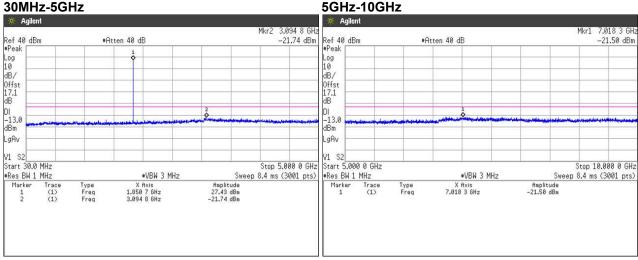


QPSK, BW 1.4MHz, RB1-5 Channel: High



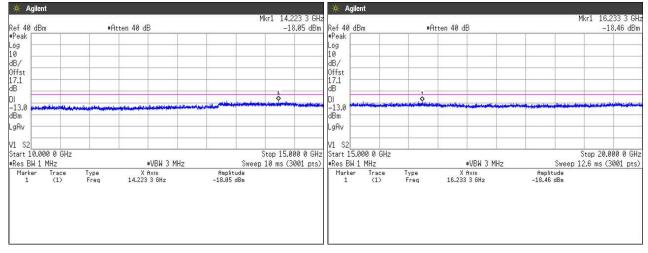
QPSK, BW 1.4MHz, RB6-0 Channel: Low

QPSK, BW 1.4MHz, RB6-0 Channel: High

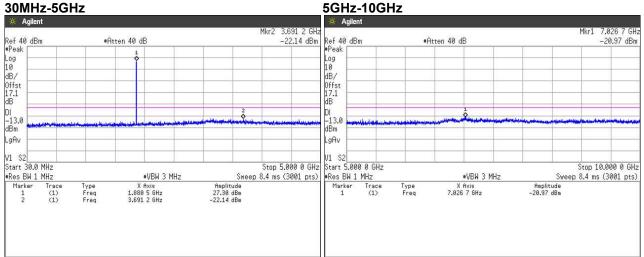


(Spurious Emissions)

Note: Conducted spurious test was measured in the worst case of Effective Radiated Power.

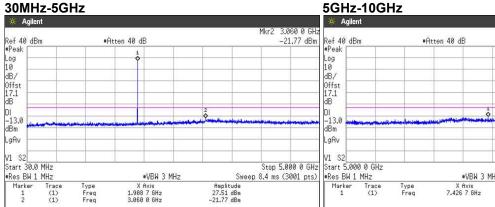

QPSK, BW 1.4MHz **Channel: 18607**

5GHz-10GHz

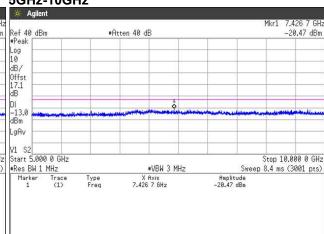

10GHz-15GHz

15GHz-20GHz

Channel: 18900


10GHz-15GHz 15GHz-20GHz Mkr1 18.640 0 GHz -18.12 dBm Mkr1 13.570 0 GHz -18.69 dBm Ref 40 dBm #Peak Ref 40 dBm •Peak •Atten 40 dB •Atten 40 dB Log 10 dB/ Offst 17.1 dB Log 10 dB/ Offst 17.1 dB DI -13.0 dBm DI -13.0 dBm LgAv LgAv V1 S2 Start 15.000 0 GHz *Res BW 1 MHz Marker Trace 1 (1) V1 S2 Start 10.000 0 GHz Stop 20.000 0 GHz Sweep 12.6 ms (3001 pts) Stop 15.000 0 GHz #Res BW 1 MHz

Marker Trace
1 (1) •VBW 3 MHz Sweep 10 ms (3001 pts) ∗VBW 3 MHz X Axis 18.640 0 GHz X Axis 13.570 0 GHz



Channel: 19193

10GHz-15GHz

Sweep 10 ms (3001 pts)

15GHz-20GHz

Mkr1 13.540 0 GHz -18.61 dBm Ref 40 dBm #Peak #Atten 40 dB Log 10 dB/ Offst 17.1 dB Log 10 dB/ Offst 17.1 dB DI -13.0 dBm DI -13.0 dBm LgAv LgAv V1 S2 Start 10.000 0 GHz *Res BW 1 MHz Marker Trace 1 (1) Stop 15.000 0 GHz

•VBW 3 MHz

X Axis 13.540 0 GHz

Mkr1 19.410 0 GHz -19.08 dBm Ref 40 dBm #Peak #Atten 40 dB V1 S2 Start 15.000 0 GHz #Res BW 1 MHz Marker Trace 1 (1) Stop 20.000 0 GHz •VBW 3 MHz Sweep 12.6 ms (3001 pts) X Axis 19.410 0 GHz

4.5 Radiated Emissions and Harmonic Emissions

4.5.1 Measurement procedure

[FCC 24.238(a), 2.1053]

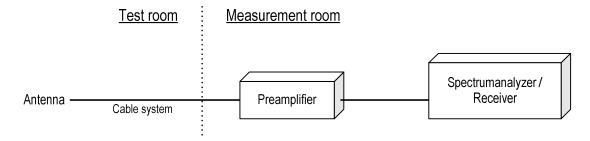
<Step 1>

The EUT and support equipment are placed on a 1 meter x 1 meter surface, 0.8 meter height (Below 1GHz) or 0.6 meter x 0.6 meter surface, 1.5 meter height (Above 1GHz) styrene foam table. Radiated emission measurements are performed at 3 meter distance with the broadband antenna (Biconical antenna, Log periodic antenna and double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission.

The bandwidth of the spectrum analyzer is set to 1 MHz. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission. The frequency is investigated up to 20 GHz.

<Step 2>

The substitution antenna is replaced by the transmitter antenna (EUT).


The frequency of the signal generator is adjusted to the measurement frequency.

Level of the signal generator is adjusted to the level that is obtained from step 1, and record the emission level of signal generator.

The spectrum analyzer is set to;

- a) RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW ≥ 3 x RBW
- b) Detector = Peak
- c) Trace mode = Max hold
- d) Sweep time = auto-couple

- Test configuration

4.5.2 **Calculation method**

Result = Ant. Input - Cable loss + Antenna Gain Margin = Limit - Result (EIRP)

Example:

Limit @ 3700.4 MHz : -13.0 dBm

Ant. Input = -55.6 dBm Cable loss = 1.6 dB Ant. Gain = 9.2 dBi

Result = -55.6 - 1.6 + 9.2 = -49.3 dBm Margin = -13.0 - (-49.3) = 36.3 dB

4.5.3 Limit

-13 dBm or less

4.5.4 **Test data**

10~11-May-2021 Date

Temperature 22.2 [°C]

Humidity 33.1 [%]

Test place 3m Semi-anechoic chamber Chiaki Kanno

12~13-May-2021 Date

Temperature 21.5 [°C]

33.8 [%] Humidity

Test engineer 3m Semi-anechoic chamber Chiaki Kanno Test place

[WCDMA Band II] Channel: 9262

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3704.8	-55.5	-55.8	1.6	8.2	-49.3	-13.0	36.3

Test engineer

Channel: 9400

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3760.0	-55.4	-56.2	1.6	8.2	-49.6	-13.0	36.6

Channel: 9538

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3815.2	-55.3	-55.7	1.7	8.3	-49.1	-13.0	36.1

[LTE Band II] QPSK, BW 1.4MHz Channel: 18607

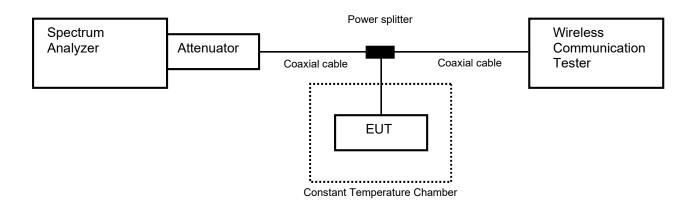
S.A Ant. Input Cable loss Ant.Gain Margin [dB] Frequency Result Limit H/V Reading [MHz] [dBm] [dB] [dBi] [dBm] [dBm] [dBm] Н 3701.4 -54.9 -55.5 1.6 8.2 -49.0 -13.0 36.0

Channel: 18900

Н/	v	quency //Hz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н		3760.0	-54.7	-55.1	1.6	8.2	-48.5	-13.0	35.5

Channel: 19193

H/V	Frequency [MHz]	S.A Reading [dBm]	Ant. Input [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3818.6	-54.8	-55.3	1.7	8.3	-48.7	-13.0	35.7


4.6 Frequency Stability

4.6.1 Measurement procedure

[FCC 24.235, 2.1055]

The EUT was placed of an inside of an constant temperature chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10°C intervals and the unit was allowed to stabilize at each measurement. The frequency drift was measured with the normal Temperature and voltage tolerance and it is presented as the ppm unit.

- Test configuration

4.6.2 Limit

±2.5 ppm

4.6.3 Measurement result

17-May-2021 Date Temperature 23.8 [°C]

Humidity 43.3 [%]

Test engineer Test place : Shielded room No.4 Chiaki Kanno

[WCDMA Band II] Channel: 9400

		Limit: ±0.00025% = ±2.5	ppm		
Power Supply [V]	Temperature [°C]	Measurements Frequency [Hz]	Frequency Tolerance [ppm]	Limit [ppm]	Result
	25(Ref.)	1,879,999,979	0.00000	±2.5	Pass
	50	1,879,999,973	-0.00345	±2.5	Pass
	40	1,879,999,980	0.00061	±2.5	Pass
	30	1,879,999,985	0.00297	±2.5	Pass
3.85	20	1,879,999,986	0.00354	±2.5	Pass
3.65	10	1,879,999,984	0.00269	±2.5	Pass
	0	1,879,999,989	0.00498	±2.5	Pass
	-10	1,879,999,985	0.00307	±2.5	Pass
	-20	1,879,999,987	0.00406	±2.5	Pass
	-30	1,879,999,982	0.00125	±2.5	Pass
3.47	25	1,879,999,982	0.00156	±2.5	Pass
4.24	25	1,879,999,977	-0.00115	±2.5	Pass

[LTE Band II] QPSK, BW 1.4 MHz **Channel: 18900**

		Limit: ±0.00025% = ±2.5	ppm		
Power Supply [V]	Temperature [°C]	Measurements Frequency [Hz]	Frequency Tolerance [ppm]	Limit [ppm]	Result
	25(Ref.)	1,879,999,992	0.00000	±2.5	Pass
	50	1,879,999,981	-0.00577	±2.5	Pass
	40	1,879,999,977	-0.00792	±2.5	Pass
	30	1,879,999,987	-0.00285	±2.5	Pass
3.85	20	1,879,999,988	-0.00198	±2.5	Pass
3.65	10	1,879,999,975	-0.00919	±2.5	Pass
	0	1,879,999,973	-0.00997	±2.5	Pass
	-10	1,879,999,982	-0.00513	±2.5	Pass
	-20	1,879,999,974	-0.00937	±2.5	Pass
	-30	1,879,999,982	-0.00556	±2.5	Pass
3.47	25	1,879,999,987	-0.00288	±2.5	Pass
4.24	25	1,879,999,987	-0.00254	±2.5	Pass

Calculation;

Frequency Tolerance (ppm) = Measurements Frequency (Hz) - Reference Frequency (Hz) / Reference Frequency (Hz) x 1000000

5 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.2 dB
Radiated emission (30 MHz – 1000 MHz)	±5.3 dB
Radiated emission (1 GHz – 6 GHz)	±4.8 dB
Radiated emission (6 GHz – 18 GHz)	±4.5 dB
Radiated emission (18 GHz – 40 GHz)	±6.4 dB
Radio Frequency	±1.4 * 10 ⁻⁸
RF power, conducted	±0.8 dB
Adjacent channel power	±2.4 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge		Measured value and standard limit value
PASS	Standard Case1	+Uncertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled.
	Case2	Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.
FAIL	Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration.
	Case4	Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.

6 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81-238-28-2881 Fax: +81-238-28-2888

Accreditation and Registration

A2LA

Certificate #3686.03

VLAC

Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada

ISED#: 4224A

VCCI Council

Registration number	Expiration date		
A-0166	03-July-2021		

Appendix A. Test Equipment

Antenna port conducted test

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	31-Aug-2021	20-Aug-2020
Attenuator	Weinschel	56-10	J4993	31-Dec-2021	14-Dec-2020
Microwave cable	HUBER+SUHNER	SUCOFLEX 104/1m	199120/4	31-Dec-2021	14-Dec-2020
Microwave cable	HUBER+SUHNER	SUCOFLEX104/1.5m	322087/4	31-Jul-2021	21-Jul-2020
Power divider	Keysight	11636B	MY51359874	30-Sep-2021	29-Sep-2020
Wideband Radio Frequency Tester	ROHDE&SCHWARZ	CMW500	116338	30-Sep-2021	02-Sep-2020
Temperature and humidity chamber	ESPEC	PL1KP	14007261	30-Sep-2021	02-Sep-2020

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2021	28-Sep-2020
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	31-Aug-2021	20-Aug-2020
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	31-Dec-2021	11-Dec-2020
Preamplifier	SONOMA	310	372170	30-Sep-2021	29-Sep-2020
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1333	31-Dec-2021	15-Dec-2020
Log periodic antenna	Schwarzbeck	VUSLP9111B	345	31-Oct-2021	19-Oct-2020
Attenuator	TOYO Connector	NA-PJ-6/6dB	N/A(S541)	30-Sep-2021	29-Sep-2020
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2021	20-Jul-2020
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Dec-2021	15-Dec-2020
Attenuator	AEROFLEX	26A-10	081217-08	31-Dec-2021	14-Dec-2020
Double ridged guide antenna	ETS LINDGREN	3117	00224193	31-Mar-2022	30-Mar-2021
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2340)	31-Dec-2021	15-Dec-2020
Double ridged guide antenna	A.H.Systems Inc.	SAS-574	469	30-Sep-2021	02-Sep-2020
Preamplifier	TSJ	MLA-1840-B03-35	1240332	30-Sep-2021	02-Sep-2020
Band rejection filter	Micro-Tronics	BRC50720	014	31-Dec-2021	14-Dec-2020
Signal generator	ROHDE&SCHWARZ	SMB100A	177525	31-Dec-2021	23-Dec-2020
RF power amplifier	R&K	CGA020M602-2633R	B40240	31-May-2021	15-May-2020
Microwave cable	HUBER+SUHNER	SUCOFELX102/2m	31648	31-Mar-2022	10-Mar-2021
Double ridged guide antenna	ETS LINDGREN	3117	00218815	31-Dec-2021	07-Dec-2020
Wideband Radio Frequency Tester	ROHDE&SCHWARZ	CMW500	126079	31-Oct-2021	21-Oct-2020
Wideband Radio Frequency Tester	ROHDE&SCHWARZ	CMW500	116338	30-Sep-2021	02-Sep-2020
Microwave cable	HUBER+SUHNER	SUCOFLEX104/9m	MY30037/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104/1m	my24610/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104/8m	SN MY30033/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104	MY32976/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104/1.5m	SN MY28404/4	31-Dec-2021	15-Dec-2020
		SUCOFLEX104/7m	41625/6	31-Dec-2021	15-Dec-2020
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V6.0.140	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2021	29-May-2020
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2021	28-May-2020

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.