

7.4.3 Radiated Emissions

Date Temperature Humidity Test place	::	December 2, 2016 26.6 [°C] 26.6 [%] 3m Semi-anechoic chamber	Test engineer :	Taiki Watanabe
Date Temperature Humidity Test place	::	December 8, 2016 21.1 [°C] 21.8 [%] 3m Semi-anechoic chamber	Test engineer :	Taiki Watanabe
Date Temperature Humidity Test place	:	December 9, 2016 21.1 [°C] 21.8 [%] 3m Semi-anechoic chamber	Test engineer :	Taiki Watanabe
Date Temperature Humidity Test place	:	December 12, 2016 21.5 [°C] 22.6 [%] 3m Semi-anechoic chamber	Test engineer :	Taiki Watanabe
Date Temperature Humidity Test place	::	December 13, 2016 21.1 [°C] 22.5 [%] 3m Semi-anechoic chamber	Test engineer :	Taiki Watanabe
Date Temperature Humidity Test place	::	December 14, 2016 21.1 [°C] 23.6 [%] 3m Semi-anechoic chamber	Test engineer :	Taiki Watanabe
Date Temperature Humidity Test place	:	December 22, 2016 23.1 [°C] 24.5 [%] 3m Semi-anechoic chamber	Test engineer :	Kazunori Saito
Date Temperature Humidity Test place	:	December 23, 2016 22.8 [°C] 23.8 [%] 3m Semi-anechoic chamber	Test engineer :	Kazunori Saito

[IEEE802.11a] (5.2GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	36	5180	10360.00	Н	PK	45.1	10.5		55.6	68.2	12.6
802.11a	40	5200	10400.00	Н	PK	46.0	10.6		56.6	68.2	11.6
	48	5240	10480.00	Н	PK	45.6	10.8		56.4	68.2	11.8

(5.3GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	52	5260	10520.00	Н	PK	45.4	10.8		56.2	68.2	12.0
802 11a	56	5280	10560.00	V	PK	45.6	10.8		56.4	68.2	11.8
002.114	64	5320	10640.00	V	PK	51.0	10.8		61.8	74.0	12.2
	04	3320	10640.00	V	AV	40.2	10.8		51.0	54.0	3.0

(5.6GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			5466.50	Н	PK	49.7	10.1		59.8	68.2	8.4
	100	5500	5467.00	V	PK	50.2	10.1		60.3	68.2	7.9
	100	0000	11000.00	V	PK	48.5	10.9		59.4	74.0	14.6
802 11a			11000.00	V	AV	36.9	10.9		47.8	54.0	6.2
002.114	116	5580	11160.00	V	PK	47.9	10.9		58.8	74.0	15.2
	110	5560	11160.00	V	AV	42.1	10.9		53.0	54.0	1.0
140	140	5700	11400.00	V	PK	47.1	11.1		58.2	74.0	15.8
	140	5700	11400.00	V	AV	35.9	11.1		47.0	54.0	7.0

Note:

Emission Level (Margin) = Limit - [Reading + C.F (Antenna + Cable – Amp)]
 No emission were detected in frequency range 30MHz to 1000MHz at the 3 meters distance.

3. No emission was detected in the receive mode.

[IEEE802.11n (HT20)]

(5.2GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
902.11p	36	5180	10360.00	V	PK	48.0	10.5		58.5	68.2	9.7
(20MHz)	40	5200	10400.00	V	PK	47.1	10.6		57.7	68.2	10.5
(2000 2)	48	5240	10480.00	V	PK	46.4	10.8		57.2	68.2	11.0

(5.3GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	52	5260	10520.00	Н	PK	46.9	10.8		57.7	68.2	10.5
802.11n	56	5280	10560.00	V	PK	48.4	10.8		59.2	68.2	9.0
(20MHz)	64	5320	10640.00	V	PK	50.6	10.8		61.4	74.0	12.6
	04	5520	10640.00	V	AV	39.3	10.8		50.1	54.0	3.9

(5.6GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			5465.17	Н	PK	50.4	10.1		60.5	68.2	7.7
	100	5500	5461.10	V	PK	50.3	10.1		60.4	68.2	7.8
	100	0000	11000.00	V	PK	49.9	10.9		60.8	74.0	13.2
802.11n			11000.00	V	AV	37.1	10.9		48.0	54.0	6.0
(20MHz)	116	5580	11160.00	V	PK	48.6	10.9		59.5	74.0	14.5
	110	3300	11160.00	V	AV	36.1	10.9		47.0	54.0	7.0
	140	5700	11400.00	V	PK	47.7	11.1		58.8	74.0	15.2
	140	5700	11400.00	V	AV	36.1	11.1		47.2	54.0	6.8

Note:

Emission Level (Margin) = Limit - [Reading + C.F (Antenna + Cable – Amp)]
 No emission were detected in frequency range 30MHz to 1000MHz at the 3 meters distance.
 No emission was detected in the receive mode.

[IEEE802.11n (HT40)] (5.2GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
802.11n	38	5190	10380.00	V	PK	48.1	10.5		58.6	68.2	9.6
(40MHz)	46	5230	10460.00	V	PK	46.4	10.7		57.1	68.2	11.1

(5.3GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
900 11p	54	5270	10540.00	V	PK	46.8	10.8		57.6	68.2	10.6
(40MHz)	62	5310	10620.00	V	PK	47.8	10.8		58.6	74.0	15.4
(02	3310	10620.00	V	AV	36.2	10.8		47.0	54.0	7.0

(5.6GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			5468.36	Н	PK	49.8	10.1		59.9	68.2	8.3
	102	5510	5466.79	V	PK	50.2	10.1		60.3	68.2	7.9
102	3310	11020.00	V	PK	48.0	10.9		58.9	74.0	15.1	
802.11n			11020.00	V	AV	36.1	10.9		47.0	54.0	7.0
(40MHz)	110	5550	11100.00	V	PK	47.9	10.9		58.8	74.0	15.2
	110	5550	11100.00	V	AV	35.4	10.9		46.3	54.0	7.7
	134	5670	11340.00	V	PK	46.9	11.1		58.0	74.0	16.0
	104	5570	11340.00	V	AV	35.9	11.1		47.0	54.0	7.0

Note:

Emission Level (Margin) = Limit - [Reading + C.F (Antenna + Cable – Amp)]
 No emission were detected in frequency range 30MHz to 1000MHz at the 3 meters distance.

3. No emission was detected in the receive mode.

[IEEE802.11ac (HT80)]

(5.2GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
802.11ac (80MHz)	42	5210	10420.00	V	PK	48.1	10.6		58.7	68.2	9.5

(5.3GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
802.11ac (80MHz)	58	5290	10580.00	V	PK	46.4	10.8		57.2	68.2	11.0

(5.6GHz Band)

Mode	Channel	Frequency (MHz)	Frequency (MHz)	ANT H/V	Detector PK/AV	Reading (dBµV)	C.F (dB)	DCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			5469.10	Н	PK	49.4	10.1		59.5	68.2	8.7
	106	5530	5469.10	V	PK	50.1	10.1		60.2	68.2	8.0
802.11ac	100	0000	11060.00	V	PK	47.4	10.9		58.3	74.0	15.7
(80MHz)			11060.00	V	AV	35.3	10.9	0.19	46.4	54.0	7.6
	122	5610	11220.00	V	PK	47.5	10.9		58.4	74.0	15.6
	122	5010	11220.00	V	AV	35.7	10.9	0.19	46.8	54.0	7.2

Note: 1. Emission Level (Margin) = Limit - [Reading + C.F (Antenna + Cable – Amp)] 2. No emission were detected in frequency range 30MHz to 1000MHz at the 3 meters distance. 3. No emission was detected in the receive mode.

7.4.4 Measurement chart 7.4.4.1 Transmission mode

[11a] W52 / Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

[11a] W52 / Channel Low **ABOVE 1GHz**

UV SUD Zact	a Ltd.		«DATA S	heet No.02>>		2 December,2016 02:0
Company name EUT Aodel No. Fest mode IB(μV/m)]	 : KYOCERA C : Mobile Phone : DA03 : N/A : 5GHz_W52_1 	orporation 1a_Tx_Low		Standard Operator Temp,Hum,Atm Note1 Note2	: FCC Part.15 su : T.Watanabe : 26.6[°C] 26.6[% : ch:36_5180MH ₂ :	bpart E
90 90 80 70 60						<pcc e_ghz(peak_only).3m=""> Limit(PK) <01_GHz_Tx_W52_11a_Low> Range(H,PK) Bange(V,PK) Emission level(H,PK)</pcc>
40 30 20 10						
1000.000	2000.	000	5000.000	10000	.000 18000.	000

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
1	[MHz] 10360.000	Н	[dB(µV)] 45.1	[dB(1/m)] 10.5	[dB(µV/m)] 55.6	[dB(µV/m)] 68.2	[dB] 12.6	[cm] 150.0	[°] 0.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11a] W52 / Channel Middle BELOW 1GHz

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11a] W52 / Channel Middle ABOVE 1GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix}$	[dB]	[cm]	[°]	
1	10400.000	H	46.0	10.6	56.6	68.2	11.6	156.0	0.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11a] W52 / Channel High BELOW 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11a] W52 / Channel High ABOVE 1GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit	Margin	Height	Angle	Remark
1	[MHz]	н	$\begin{bmatrix} dB(\mu V) \end{bmatrix}$	[dB(1/m)]	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix}$	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix}$	[dB]	[cm] 150_0	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11a] W53 / Channel Low BELOW 1GHz

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	["]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11a] W53 / Channel Low ABOVE 1GHz

TUV SUD Zacta Ltd. <<DATA Sheet No.08>> 2 December, 2016 05:31 : KYOCERA Corporation : Mobile Phone : FCC Part.15 subpart E Company name Standard : T.Watanabe : 26.6[°C] 26.6[%] EUT Model No. Operator : DA03 Temp,Hum,Atm Serial No. : N/A Note1 : ch:52_5260MHz : 5GHz_W53_11a_Tx_Low Test mode Note2 [dB(µV/m)] 100 E <FCC E_GHz(Peak_Only)_3m> 90 <04_GHz_Tx_W53_11a_Low) ì Range(H,PK) Range(V,PK) Emission level(H,PK) 80 ł 70 60 Level 50 a superior and the 40 30 20 10 0 2000.000 18000.000 1000.000 5000.000 10000.000 Frequency [MHz]

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
1	[MHz] 10520.000	Н	[dB(µV)] 45.4	[dB(1/m)] 10.8	[dB(µV/m)] 56.2	[dB(µV/m)] 68.2	[dB] 12.0	[cm] 148.0	[°] 0.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11a] W53 / Channel Middle BELOW 1GHz

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11a] W53 / Channel Middle **ABOVE 1GHz**

ru v	/ SUD Zacta	Ltd.		[XX]	DATA Shee	et No.10>>	2 December,2016 06:	
Con EUT Moc Seri Tes dB(ipany name Γ lel No. al No. t mode μ V/m)]	: KYOCERA C : Mobile Phone : DA03 : N/A : 5GHz_W53_1	Corporation 1a_Tx_Middle		S C T N N	tandard perator emp,Hum,A ote1 ote2	: FCC : T.Wat : 26.6[⁵ : ch:56	Part.15 subpart E anabe C] 26.6[%] 5280MHz
	110 E	1		1			а). -	<fcc e_ghz(peak_only)_3m=""></fcc>
	100						1	<05_GHz_Tx_W53_11a_Mid>
	90	į		1			-	Range(H,PK) Range(V,PK)
	80 E			-				Emission level(V,PK
	70							
	60 E		1					
	E E			and the second second	and the second s		Xame	and the second se
	50	and the second second		1		TIT		
	40 E	1						
	30							
	20			1			1962	
	10	 į		1			+	
	0 E	į	Ľ.	1			1.10	
	1000.000	2000.	000	500	0.000	100	00.000	18000.000

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
1	[MHz] 10560.000	v	[dB(μV)] 45.6	[dB(1/m)] 10.8	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix} \\ 56.4$	[dB(µV/m)] 68.2	[dB] 11.8	[cm] 140.0	[°] 183.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11a] W53 / Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

[11a] W53 / Channel High ABOVE 1GHz

TUV SUD Zacta Ltd. <<DATA Sheet No.12>> 8 December, 2016 23:01 Company name : KYOCERA Corporation Standard : FCC Part, 15 subpart E EUT Model No. : T.Watanabe : 21.1[°C] 21.8[%] : ch:64_5320MHz : Mobile Phone Operator Temp,Hum,Atm : DA03 Serial No. Note1 : N/A : 5GHz_W53_11a_Tx_High Test mode Note2 [dB(µV/m)] 110 F 100 90 80 7060 Level 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c, f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(µV)]	[dB(1/m)]	[dB(µ V/m)]	$[dB(\mu V/n)]$	[dB{ µ V/m}]	[dB]	[dB]	[cm]	I* 1	
1	10640.000	Y	51.0	40.2	10.8	61.8	51.0	74.0	12.2	3.0	107.0	156.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11a] W56 / Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

[11a] W56 / Channel Low ABOVE 1GHz

TUV SUD Zacta Ltd. ((DATA Sheet No.14>) 8 December, 2016 23:01 Company name : KYOCERA Corporation Standard : FCC Part.15 subpart E EUT Model No. : Mobile Phone : DA03 : T.Watanabe : 21.1[°C] 21.8[%] : ch:100_5500MHz Operator Temp,Hum,Atm Serial No. Note1 : N/A Test mode : 5GHz_W56_11a_Tx_Low Note2 [dB(µV/m)] 110 F <FCC E_GHz(Peak_Only)_3m> Limit(PK) <07_GHz_Tx_W56_11a_Low> Range(H,PK) 100 90 Range(V,PK) Emission level(H,PK) Emission level(V,PK) 妨害レベル(V,CAV) 80 70 60 [ava.] 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 [MHz] Frequency

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	<i>c</i> . f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		[dB(µV)]	[dB(µV)]	[dB(1/m)]	[dB(µ V/m)]	$[dB(\mu V/a)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	1. 1	
1	5466, 535	H	49.7		10.1	59.8		68, 2	8.4		140.0	227.0	
2	5467.000	V	50.2		10. I	60.3		68.2	7.9		103.0	152.0	
3	11000,000	V	48.5	36, 9	10.9	59.4	47.8	74.0	14. 6	6, 2	127.0	316.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11a] W56 / Channel Middle BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11a] W56 / Channel Middle ABOVE 1GHz

TUV SUD Zacta Ltd. <<DATA Sheet No.16>> 8 December, 2016 23:01 Company name : KYOCERA Corporation Standard : FCC Part.15 subpart E EUT Model No. : Mobile Phone : DA03 : T.Watanabe : 21.1[°C] 21.8[%] : ch:116_5580MHz Operator Temp,Hum,Atm Serial No. : N/A Note1 Test mode : 5GHz_W56_11a_Tx_Middle Note2 [dB(µV/m)] 110 F <FCC E_GHz(Peak_Only)_3m> Limit(PK) 100 <08_GHz_Tx_W56_11a_Mid> Range(H,PK) 90 Range(V,PK) Emission level(V,PK) 妨害レベル(V,CAV) 80 × 70 60 [eve] 50 40 30 20 10 E 0 18000.000 1000.000 2000.000 5000.000 10000.000 [MHz] Frequency

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c.f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	[dB(µ V/m)]	$[dB(\mu V/n)]$	[dB{ µ V/m}]	[dB]	[dB]	[cm]	I* 1	
1	11160.000	Y	47.9	42.1	10.9	58.8	53.0	74.0	15.2	1.0	112.0	141.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11a] W56 / Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

[11a] W56 / Channel High **ABOVE 1GHz**

TUV SUD Zacta Ltd. ((DATA Sheet No.18>> 9 December,2016 02:39 Company name : KYOCERA Corporation Standard : FCC Part.15 subpart E EUT Model No. : T.Watanabe : 21.1[°C] 21.8[%] : Mobile Phone Operator : DA03 Temp,Hum,Atm : ch:140_5700MHz Serial No. N/A Note1 ; 5GHz W56_11a_Tx_High Test mode Note2 $[dB(\mu V/m)]$ 110 <FCC E_GHz(Peak_Only)_3m> Limit(PK) 100 <09_GHz_Tx_W56_11a_High> Range(H,PK) 90 Range(V.PK) Emission level(V,PK) 妨害レベル(V,CAV) 80 × 70 60 Level 144 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

Final Result

No Fromoney (P) Roading Roading

-10.04	riequency	1	PK	CAV	N. 1	PK	CAV	PK	PK	CAV	neight	mgre	ACHOLK
	[MHz]		$[dB(\mu V)]$	[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	[]	
1	11400.000	V	47.1	35.9	11.1	58.2	47.0	74.0	15.8	7.0	114.0	137.0	

Recul+

Linit

Margin Margin Haight Angla Remark

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

- F

2. No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

Power1+

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

[11n(HT20)] W52 / Channel Low **BELOW 1GHz**

TU	V SUD Zacta	Ltd.	~~	(DATA Sheet No.19>>	22 December,2016 23:58
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (µV/m)]	: KYOCERA Co : Mobile Phone : DA03 : N/A : 5GHz_W52_11	n(HT20)_Tx_Low	Standard Operator Temp,Hum,Atm Note1 Note2	: FCC Part.15 subpart E : K.Saito : 22.8[°C] 23.8[%] : ch:36_5180MHz :
	50 40				<pre></pre>
Level	30 20				
	10				
	30.000	50.000	100.000 Frequence	500.00 cy	00 1000.000 [MHz]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W52 / Channel Low ABOVE 1GHz

TUN	/ SUD Zacta	Ltd.	< <data< th=""><th>Sheet No.20>></th><th>9 December,2016 03:33</th></data<>	Sheet No.20>>	9 December,2016 03:33
Cor EU Moo Seri Tes [dB(npany name Γ del No. ial No. t mode μ V/m)]	: KYOCERA Corporat : Mobile Phone : DA03 : N/A : SGHz_W52_11n(HT2	ion 0)_Tx_Low	Standard : Operator : Temp,Hum,Atm : 2 Note1 : 0 Note2 :	FCC Part.15 subpart E F.Watanabe PI.1[°C] 21.8[%] h:36_5180MHz
	¹¹⁰				<fcc e_ghz(peak_only)_3m=""></fcc>
	100				<01_GHz_TX_Marge(H_PK)
	90	1			Range(V,PK)
	80				Emission level(v,PK)
	70				
140	60				
Le	50	Law In Malanama Care and Income	Hump Matter	and a second	
	40				
	30				
	20				
	10	1			
	٥ E				
	1000.000	2000.000	5000.000	10000.000	18000.000

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
1	[MHz]	v	[dB(µV)]	[dB(1/m)]	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix}$	$\begin{bmatrix} dB(\mu V/m) \end{bmatrix}$	[dB]	[cm]	[°] 345_0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT20)] W52 / Channel Middle **BELOW 1GHz**

TU	V SUD Zacta	Ltd.		< <data n<="" sheet="" th=""><th>o.21>></th><th></th><th>23 December,2016 00:19</th></data>	o.21>>		23 December,2016 00:19
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (µV/m)]	: KYOCERA C : Mobile Phone : DA03 : N/A : 5GHz_W52_1	orporation In(HT20)_Tx_Mid	Stand Oper Temj Note	lard ator 9,Hum,Atm 1 2	: FCC Part.15 s : K.Saito : 22.8[°C] 23.8[9 : ch:40_5200MH :	ubpart E 6] z
	60 50 40						<pre><fcc part15="" subparte=""> Limit(QP) </fcc></pre> <11_MHz_Tx_W52_11n(HT20)_Mid> Range(H,PK) Range(V,PK)
Level	30					Land Balling	
	10			NA)			
	0 E 30.000	50.000	100.000 Fr	equency	500.0	00 1000. IMH	000

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W52 / Channel Middle **ABOVE 1GHz**

TU	V SUD Zacta	Ltd.	< <data no.22="" sheet="">></data>	9 December,2016 04:12
Col EU Mo Ser Tes	mpany name T del No, rial No, st mode (u V/m)]	: KYOCERA Corporatio : Mobile Phone : DA03 : N/A : 5GHz_W52_11n(HT20)	Tx_Middle Standard : FCC P Operator : T.Watz Temp,Hum,Atm : 21.1[°C Note1 : ch:40.5 Note2 :	art.15 subpart E anabe C] 21.8[%] 5200MHz
Level	110 100 90 80 70 60 50 40 30 20 10 0			✓FCC E_GHz(Peak Only).3m> Limit(PK) <02_GHz.Tx_W52_11n(HT20)_Mid) Range(H,PK) Range(V,PK) ★ Emission level(V,PK)
	1000.000	2000.000	5000.000 10000.000 Frequency	18000.000 [MHz]

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading	c.f	Result PK	Limit	Margin PK	Height	Angle	Remark
t.	[MHz] 10400.000	v	[dB(µV)] 47.1	[dB(1/m)] 10.6	[dB(µV/m)] 57.7	[dB(µV/m)] 68.2	[dB] 10.5	[cm] 124.0	[°] 177.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT20)] W52 / Channel High BELOW 1GHz

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W52 / Channel High ABOVE 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
1	[MHz] 10480.000	V	[dB(µV)] 46.4	[dB(1/m)] 10.8	[dB(µV/m)] 57.2	[dB(µV/m)] 68.2	[dB] 11.0	[cm] 123.0	[°] 184, 0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT20)] W53 / Channel Low BELOW 1GHz

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W53 / Channel Low ABOVE 1GHz

TUV SUD Zacta Ltd. << DATA Sheet No.26>> 9 December,2016 07:00 Company name : KYOCERA Corporation Standard : FCC Part.15 subpart E EUT Model No. : Mobile Phone : DA03 : T.Watanabe : 21.1[°C] 21.8[%] Operator Temp,Hum,Atm Serial No. : ch:52_5260MHz : N/A Note1 ; 5GHz_W53_11n(HT20)_Tx_Low Test mode Note2 [dB(µV/m)] 110 <FCC E_GHz(Peak_Only)_3m> COL GHZ TX W53_11n(HT20) Low> Range(H,PK) 100 90 Range(V.PK) Emission level(H,PK) 80 70 60 Level 50 40 30 20 10 0 2000.000 5000.000 10000.000 18000.000 1000.000 [MHz] Frequency

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
L	10520.000	Н	46.9	10.8	57.7	68.2	10.5	128.0	165.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT20)] W53 / Channel Middle BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT20)] W53 / Channel Middle ABOVE 1GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		PK [dB(μ V)]	[dB(1/m)]	PK [dB(μV/m)]	PK [dB(μ V/m)]	PK [dB]	[cm]	[°]	
1	10560.000	V	48.4	10.8	59.2	68.2	9.0	134.0	308.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

[11n(HT20)] W53 / Channel High **BELOW 1GHz**

TUV SUD Zacta	Ltd.	< <da< th=""><th>TA Sheet No.29>></th><th>23 December</th><th>2016 01:24</th></da<>	TA Sheet No.29>>	23 December	2016 01:24
Company name EUT Model No. Serial No. Test mode [dB(µ V/m)]	: KYOCERA Co : Mobile Phone : DA03 : N/A : 5GHz_W53_11r	rporation (HT20)_Tx_High	Standard Operator Temp,Hum,Atm Note1 Note2	: FCC Part.15 subpart E : K.Saito : 22.8[C] 23.8[%] : ch:64_5320MHz :	
50 40				<pre></pre>	E > (HT20)_High> K) K)
30					
20		Constanting and a second second	and the second se		
10					
0 30.000	50.000	100.000	500.0	00 1000.000	

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark	
	[MHz]		[dB(1/m)]	[cm]	[°]		

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W53 / Channel High **ABOVE 1GHz**

TUV SUD Zacta Ltd.				< <data no.30="" sheet="">></data>				12 December,2016 10:28		
Cor EU Mo Ser Tes [dBi	mpany name T del No. ial No. st mode (µV/m)]	: KYOCERA Cor : Mobile Phone : DA03 : N/A : 5GHz_W53_11n	poration (HT20)_Tx_High		Standard Operato Temp,H Note1 Note2	l r am,Atm	: FCC Part.15 sul : T.Watanabe : 21.5[°C] 22.6[%] : ch:64_5320MHz :	ppart E		
2000	110 E							<pre><fcc e_ghz(peak_only)_3m=""></fcc></pre>		
	100				+++			<pre>Configure Configure C</pre>		
	90 E	1	1					Range(V,PK)		
	80		1				2			
	70				+					
ivel	60			A DECEMBER OF			and the second second			
ž	50	In the second			-					
	40						27			
	30			+ $+$	+++	+ + +				
	20			+ $+$	+++	+ + +				
	10	1 1 1	1		+ $+$ $+$					
	0 E	2000.00	0	5000.000	<u>i i i</u>	10000.00	0 18000.0	00		
	1000.000	2000.00	Fi	requency		10000.00	[MHz]		

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading FK	Reading CAV	c.f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		[dB(µV)]	$[dB(\mu V)]$	[dB(1/m)]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB(µV/m)]	[dB]	[dB]	[cm]	[*]	
1.	10640.000	V.	50.6	39.3	10.8	61.4	50, 1	74.0	12.6	3.9	122.0	310.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT20)] W56 / Channel Low BELOW 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark	
	[MHz]		[dB(1/m)]	[cm]	[•]		

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W56 / Channel Low **ABOVE 1GHz**

TU	V SUD Zacta	Ltd,		< <d< th=""><th>ATA Sł</th><th>ieet No.3</th><th>2>></th><th></th><th>12 December,2016 11:46</th></d<>	ATA Sł	ieet No.3	2>>		12 December,2016 11:46
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (µV/m)]	: KYOCERA C : Mobile Phone : DA03 : N/A : 5GHz_W56_1	Corporation	v		Standard Operato Temp,Hu Note1 Note2	im,Atr	: FCC Part.15 : T.Watanabe n : 21.5[°C] 22. : ch:100_5500 :	subpart E 6[%] MHz
	110								<pre><fcc e_ghz(peak_only)_3m=""></fcc></pre>
	90								<pre><07_GHz_Tx_W56_11n(HT20)_Low> Range(H,PK)</pre>
	80 E								Emission level(H,PK)
	70						1		
vel	60			1. Sec. and a	-		+	June 1	
Le	50. Europe	Sine on a la surger de la	and the second sec					*	-
	40		i				10 33 10 10		-
	30					++	+		-
	20			1	+		+ +		-
	10	<u> </u>	L				1 1 1		-
	0 E	Ĩ	1	l' i	Î	1	1		
	1000.000	2000.	000	5000 Frequency	.000		10000	.000 180 [N	00.000 (Hz]

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c. f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Ang1e	Remark
	MHz		[dB(gV)]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/n)]$	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	["]	
1	5465, 170	H	50.4	1000 C	10.1	60.5	ONE SEAL USE OF	68.2	7.7	Stephen -	123.0	209.0	
2	5461.100	V.	50.3		10.1	60.4		68.2	7.8		128.0	154.0	
3	11000.000	V	49.9	37.1	10.9	60.8	48.0	74.0	13.2	6.0	120.0	312.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT20)] W56 / Channel Middle **BELOW 1GHz**

TU	V SUD Zacta	Ltd.	100	DATA Sheet No.33>>	23 December,2016 01:56
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (μV/m)]	: KYOCERA Co : Mobile Phone : DA03 : N/A : 5GHz_W56_11n	n(HT20)_Tx_Mid	Standard Operator Temp,Hum,Atm Note1 Note2	: FCC Part.15 subpart E : K.Saito : 22.8[°C] 23.8[%] : ch:116.5580MHz :
	50 50 40				<pre></pre>
Level	30 E				
	20			aller and a second s	
	10				
	0 30.000	50.000	100.000 Frequence	500.00	00 1000.000 [MHz]

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	["]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W56 / Channel Middle **ABOVE 1GHz**

TU	V SUD Zact	a Ltd.	< <data she<="" th=""><th>et No.34>></th><th>12 December,2016 14:15</th></data>	et No.34>>	12 December,2016 14:15
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (µV/m)]	 KYOCERA Corporatio Mobile Phone DA03 N/A SGHz_W56_11n(HT20) 	n Tx_Middle	Standard : F Operator : T Temp,Hum,Atm : 2 Note1 : c Note2 ;	CC Part.15 subpart E .Watanabe 1.5[°C] 22.6[%] h:116_5580MHz
	110 E	ŀ			<fcc e_ghz(peak_only)_3m=""></fcc>
	100				<08_GHz_Tx_W56_11n(HT20)_Mid) スペクトラム1(H)
	90	L L			Range(H,PK) Range(V,PK)
	70 E				──★── Emission level(V,PK) →★── 妨害レベル(V,CAV)
2	60 E	l I I			and the
Leve	50 E	and the second se	and the second	م الم الم الم الم ال	
	40				
	30 E	Î			
	20				
	10 E	1 1 1			
	_ه ق	1			
	1000.000	2000.000	5000.000 Erecuepcy	10000.000	18000.000

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c.f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		[dB(µV)]	$[dB(\mu V)]$	[dB(1/m)]	[dB(µV/m)]	$[dB(\mu V/n)]$	$[dB{\mu V/m}]$	[dB]	[dB]	[cm]	I* 1	
1	11160.000	- V	48.6	36, 1	10.9	59.5	47.0	74.0	14.5	7.0	111.0	312.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT20)] W56 / Channel High **BELOW 1GHz**

TUV	/ SUD Zacta	Ltd.		<	Sheet No.35>>		23 December,2016 02:18
Cot EU Moo Seri Tes [dB(npany name Γ del No. ial No. t mode μV/m)]	: KYOCERA C : Mobile Phone : DA03 : N/A : 5GHz_W56_1	Corporation : 1n(HT20)_Tx_High	1	Standard Operator Temp,Hum,Atm Note1 Note2	: FCC Part.15 : : K.Saito : 22.8[°C] 23.8[: ch:140_5700M ;	subpart E %] Hz
	60 50 40						<pre></pre>
lava,	30						
	20			A standard strengthe			
	10						
	0 30.000	50.000	100.000		500.0	00 1000	.000

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] W56 / Channel High ABOVE 1GHz

TUV SUD Zacta Ltd. <<DATA Sheet No.36>> 12 December, 2016 15:04 Company name : KYOCERA Corporation Standard : FCC Part.15 subpart E : T.Watanabe : 21.5[°C] 22.6[%] : ch:140_5700MHz EUT Model No. Mobile Phone Operator : DA03 Temp,Hum,Atm Serial No. : N/A Note1 Test mode : 5GHz_W56_11n(HT20)_Tx_High Note2 $[dB(\mu V/m)]$ 110 <FCC E_GHz(Peak_Only)_3m> Limit(PK) 100 <09_GHz_Tx_W56_11n(HT20)_High> ______Range(H,PK) ______Range(V,PK) 90 Emission level(V,PK) 妨害レベル(V,CAV) 80 70 60 Level 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c.f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[dB]	[cm]	["]]	
1	11400.000	V	47.7	36. I	11.1	58.8	47.2	74.0	15.2	6.8	110.0	135.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT40)] W52 / Channel Low **BELOW 1GHz**

TU	V SUD Zacta	Ltd.		< <data sheet<="" th=""><th>No.37>></th><th></th><th>23 December,2016 02:42</th></data>	No.37>>		23 December,2016 02:42
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (µV/m)]	: KYOCERA C : Mobile Phone : DA03 : N/A : 5GHz_W52_1	orporation 1n(HT40 <u>)</u> Tx_Low	Sta Op Tei Noi Noi	ndard erator np,Hum,Atm .e1 .e2	: FCC Part.15 st : K.Saito : 22.8[°C] 23.8[% : ch:38_5190MH: ;	ibpart E I
	60 50 40						<pre></pre>
Level	30						
	20 10		and the second sec				
	0 30,000	50.000	100.000		500.00	00 1000.0	200

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[•]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT40)] W52 / Channel Low ABOVE 1GHz

TUV SUD Zacta I	Ltd.	< <da.< th=""><th>TA Sheet No.38>></th><th>12 December,2016 15:52</th></da.<>	TA Sheet No.38>>	12 December,2016 15:52
Company name EUT Model No. Serial No. Test mode dB(u V/m)]	: KYOCERA Corpor : Mobile Phone : DA03 : N/A : SGHz_W52_11n(HT	ation '40)_Tx_Low	Standard : FCC Operator : T.Wa Temp,Hum,Atm : 21.5 Note1 : ch:38 Note2 :	Part.15 subpart E stanabe °C] 22.6[%] § 5190MHz
110 100 90 80 70 60 50 40 20 10 0 1000,000	2000.000	5000.00		

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
1	[MHz] 10380.000	v	[dB(µV)] 48.1	[dB(1/m)] 10.5	[dB(µV/m)] 58.6	$\begin{bmatrix} dB (\mu V/m) \end{bmatrix} \\ 68.2 \end{bmatrix}$	[dB] 9.6	[cm] 114.0	[°] 307.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT40)] W52 / Channel High BELOW 1GHz

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT40)] W52 / Channel High ABOVE 1GHz

</DATA Sheet No.40>> TUV SUD Zacta Ltd. 12 December,2016 16:48 : KYOCERA Corporation : FCC Part.15 subpart E Company name Standard EUT Model No. : Mobile Phone : DA03 Operator Temp,Hum,Atm : T.Watanabe : 21.5 C 22.6 %] Serial No. : N/A Note1 : ch:46_5230MHz Test mode : 5GHz_W52_11n(HT40)_Tx_High Note2 [dB(µV/m)] 110 100 <02_GHz_Tx_W52_11n(HT40)_High> Range(H,PK) 90 Range(V,PK) Emission level(V,PK) 80 70 60 level 50 40 30 20 10 0 18000.000 1000.000 2000.000 5000.000 10000.000 [MHz] Frequency

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$\left[dB\left(\mu V/m\right)\right]$	[dB]	[cm]	[°]	
1	10460,000	Y	46.4	10.7	57.1	68.2	11.1	103.0	59.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT40)] W53 / Channel Low **BELOW 1GHz**

TU	V SUD Zacta	Ltd.	< <data no.41="" sheet="">></data>			2	3 December,2016 03:17	
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (µV/m)]	: KYOCERA Co : Mobile Phone : DA03 : N/A : SGHz_W53_11r	rporation (HT40)_Tx_Low		Standard Operator Temp,Hum,Atm Note1 Note2	: FCC Part : K.Saito : 22.8[°C] : ch:54_52 :	15 subpart E 23.8[%] '0MHz	
	60 50 40						<pre> <fcc <="" <10_mhz="" pa="" pre=""></fcc></pre>	rt15 subpartE > Limit(QP) Tx,W53_11n(HT40)_Low> Range(H,PK) Range(V,PK)
Level	30							
	20							
	10							
	0 30.000	50,000	100.000 Freque	ency	500.0	00	1000.000 [MHz]	

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT40)] W53 / Channel Low **ABOVE 1GHz**

TUY	V SUD Zacta	Ltd.		< <data no.42="" sheet="">></data>			12 December,2016 17:33
Cor EU Mo Ser Tes [dB(mpany name T del No. ial No. st mode (µ V/m)]	: KYOCERA Cor : Mobile Phone : DA03 : N/A : SGHz_W53_11nt	poration HT40)_Tx_Low	St O Ti N	andard perator emp,Hum,Atm ote1 ote2	: FCC Part.15 : T.Watanabe : 21.5['C] 22.6 : ch:54_5270MF :	subpart E [%] Hz
	110 E						<pre><fcc e_ghz(peak_only)_3m=""></fcc></pre>
	100			1			<pre><03_GHz_Tx_W53_11n(HT40)_Low)</pre>
	90 E						Range(V,PK)
	80	1					Lanssion revented in
	70						
level	60			al and a second second		Countration of the	
1	50	and the state of the		110			
	40						
	30						
	20						2
	10						
	0 E	1	<u>i i</u>		iil	la constante de	
	1000.000	2000.000) Fro	5000.000	10000.	.000 1800	0.000 Hz1

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	c. f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	10540.000	¥	46.8	10.8	57.6	68.2	10.6	124.0	8.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT40)] W53 / Channel High BELOW 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT40)] W53 / Channel High ABOVE 1GHz

<<DATA Sheet No.44>> TUV SUD Zacta Ltd. 12 December, 2016 17:54 : KYOCERA Corporation : Mobile Phone : DA03 : FCC Part.15 subpart E Company name Standard EUT Model No. Operator Temp,Hum,Atm : T.Watanabe : 21.5[°C] 22.6[%] Serial No. : N/A Note1 : ch:62_5310MHz : 5GHz_W53_11n(HT40)_Tx_High Test mode Note2 [dB(µV/m)] 100 90 <04_GHz_Tx_W53_11n(HT40)_High> Range(H,PK) į 80 Range(V,PK) ł Emission level(V,PK) 妨害レベル(V,CAV) 70 60 Level 50 and a first of a started 40 30 20 10 0 18000.000 1000.000 2000.000 5000.000 10000.000 [MHz] Frequency

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c, f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(1/m)]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB(µV/m)]	[dB]	[dB]	[cm]	[*]	
1	10620.000	V	47.8	36, 2	10.8	58.6	47.0	74.0	15.4	7.0	123.0	156.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT40)] W56 / Channel Low **BELOW 1GHz**

TUN	V SUD Zacta	Ltd.		《DATA Sheet]	No.45>>		23 December,2016 03:47
Cor EU Mod Seri Tes [dB(mpany name T del No. ial No. st mode (µV/m)]	: KYOCERA Co : Mobile Phone : DA03 : N/A : SGHz_W56_11r	rporation h(HT40)_Tx_Low	Stan Ope Tem Note	dard rator p,Hum,Atm =1 =2	: FCC Part.15 s : K.Saito : 22.8[°C] 23.8[: ch:102_5510Ml :	ubpart E 6] Hz
	60 50 40						<pre><fcc part15="" subparte=""> Limit(QP) </fcc></pre> <pre></pre>
Level	30						
	20						
	10						
	0 30.000	50.000	100.000 Free	uency	500.00	00 1000. IMH	000

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT40)] W56 / Channel Low **ABOVE 1GHz**

TU	V SUD Zacta	Ltd.	9	CDATA Sh	eet No.46>>	12 December,2016 19:00	
Cor EU Mo Ser Tes	mpany name T del No. fal No. st mode (µ V/m)]	: KYOCERA Corpor : Mobile Phone : DA03 : N/A : SGHz_W56_11n(HT	ation '40)_Tx_Low		Standard Operator Temp,Hum,A Note1 Note2	: FCC Pa : T,Watai : 21.5[°C : ch:102_3	rt.15 subpart E nabe] 22.6[%] 5510MHz
	110 E						<fcc e_ghz(peak_only)_3m=""></fcc>
	100						<pre> Children Control Control</pre>
	90 E	1					Range(V, PK)
	80						Emission level(V,PK)
	70						
vel	60		C. ALMAN AND A			Turketing	
Le	50	And the state of the state of the			Sample P	*	
	40						
	30						C
	20	į				20 B	
	10	į					
	0 E	į					
	1000.000	2000.000	5	000.000	100	00.000	18000.000

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c, f	Result FK	Result CAV	Līmit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(µV)]	[dB(1/m)]	$[dB(\mu V/m)]$	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]	[dB]	[cm]	E"]	
1	5468, 360	H	49.8		10.1	59.9		68.2	8, 3		146.0	231.0	
2	5466, 790	V	50.2		10.1	60.3		68.2	7.9		131.0	151.0	
3	11020.000	¥	48.0	36.1	10.9	58.9	47.0	74.0	15.1	7.0	102.0	309.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT40)] W56 / Channel Middle BELOW 1GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT40)] W56 / Channel Middle **ABOVE 1GHz**

TU	V SUD Zac	ta Ltd.		《 DATA Sh	eet No.48>>		12 December,2016 19:13		
Cor EU Mo Ser Tes [dB(mpany nam T del No. ial No. st mode (µV/m)]	e : KYOCERA (: Mobile Phon : DA03 : N/A : 5GHz_W56_1	Corporation e 1n(HT40)_Tx_Midd	le	Standard Operator Temp,Hum,Atn Note1 Note2	: FCC Part.15 : T.Watanabe a : 21.5[°C] 22.6[: ch:110_5550M :	subpart E %] Hz		
	110 E						<fcc e_ghz(peak_only)_3m=""></fcc>		
	100 E						<06_GHz_Tx_W56_11n(HT40)_Mid)		
	90 E						Range(V,PK)		
	80						Emission level(V,PK)		
	70								
el	60 E					T. J. In March			
Lev	50	Low March Street Street	- Manual Market		-				
	40					<u> </u>			
	30 E					ş			
	20 E		17						
	10 E								
	۰E		1						
	1000.000	2000	000	5000.000	10000	.000 18000	0.000		

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c.f	Result PK	Result CAV	Limit PK	Margin FK	Margin CAV	Height	Ang1e	Remark
	[MHz]		[dB(µV)]	[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB(µV/m)]	[dB]	[dB]	[cm]	[*]	
1	11100,000	V	47.9	35.4	10.9	58.8	46.3	74.0	15.2	7.7	110.0	310.0	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 18GHz to 40GHz at the 3 meters distance.

[11n(HT40)] W56 / Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT40)] W56 / Channel High ABOVE 1GHz

TUV SUD Zacta Ltd. ((DATA Sheet No.50)) 12 December,2016 19:50 Company name : KYOCERA Corporation Standard : FCC Part.15 subpart E EUT Model No. : T.Watanabe : 21.5[°C] 22.6[%] : ch:134_5670MHz Mobile Phone Operator DA03 Temp,Hum,Atm ÷ Serial No. Note1 N/A : 5GHz_W56_11n(HT40)_Tx_High Test mode Note2 [dB(µV/m)] 110 <FCC E_GHz(Peak_Only)_3m> Limit(PK) 100 90 Emission level(V,PK) 妨害レベル(V,CAV) 80 70 60 [ava,] 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

Final Result

No.	Frequency	(P)	Reading PK	Reading CAV	c. f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		$[dB(\mu V)]$	[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[dB]	[cm]	17]	
1	11340.000	V.	46, 9	35.9	11.1	58, 0	47.0	74.0	16.0	7.0	127.0	138.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT80)] W52 **BELOW 1GHz**

TU	V SUD Zacta	Ltd.		< <data she<="" th=""><th>23 December,2016 04:37</th></data>	23 December,2016 04:37		
Cor EU Mo Ser Tes [dB(mpan <mark>y name</mark> T del No. ial No. st mode (µV/m)]	: KYOCERA (: Mobile Phon : DA03 : N/A : 5GHz_W52_1	Corporation e 1ac(HT80)_Tx	S C T N N	tandard perator emp,Hum,Atm ote1 ote2	: FCC Part, 15 s : K.Saito : 22.8[°C] 23.8[: ch:42_5210MH :	ubpart E %] z
Level	60 50 40 20 10						<pre></pre>
	30.000	50.000	100.000 I	² requency	500.00	00 1000. [MH	000 [z]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	["]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT80)] W52 ABOVE 1GHz

TUV SUD Zacta Ltd. ((DATA Sheet No.52)) 13 December, 2016 09:54 : KYOCERA Corporation : FCC Part.15 subpart E Company name Standard : Mobile Phone : DA03 Operator Temp,Hum,Atm EUT Model No. : T.Watanabe : 21.1["C] 22.5[%] Serial No. : N/A : ch:42_5210MHz Note1 Test mode : 5GHz_W52_11ac(HT80)_Tx Note2 [dB(µV/m)] 110 F <FCC E_GHz(Peak_Only)_3m> Limit(PK) <01_GHz_Tx_W52_11ac(HT80)> Range(H,PK) 100 90 Range(V,PK) Emission level(V,PK) 80 70 60 Level 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
1	[MHz] 10420.000	v	[dB(μV)] 48.1	[dB(1/m)] 10.6	[dB(µV/m)] 58.7	[dB(µV/m)] 68.2	[dB] 9,5	[cm] 125.0	[°] 308.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT80)] W53 **BELOW 1GHz**

TUV	/ SUD Zacta	Ltd.	<pre><<pre><<pre></pre></pre></pre>		23 December,2016 05:0		
Con EUT Mod Seri Test [dB(npany name Γ del No. al No. t mode μ V/m)]	: KYOCERA Co : Mobile Phone : DA03 : N/A : 5GHz_W53_11	prporation ac(HT80)_Tx	Standard Operator Temp,Hum,Atm Note1 Note2	: FCC Part.15 subpa : K.Saito : 22.8[°C] 23.8[%] : ch:58_5290MHz :	art E	
	50 50 40					CC Part15 subpartE > Limit(QP) 02 MHz_Tx_W53 11sc(HT80)> Range(H,PK) Range(V,PK)	
Leve	30 20						
	10 0 30.000	50.000	100.000	500.0	00 1000.000		

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]
 No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT80)] W53 ABOVE 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading PK	c.f	Result PK	Limit PK	Margin PK	Height	Angle	Remark
1	[MHz] 10580.000	v	[dB(µV)] 46.4	[dB(1/m)] 10.8	[dB(µV/m)] 57.2	[dB(µV/m)] 68.2	[dB] 11.0	[cm] 113.0	[°] 311.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT80)] W56 / Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	An,	gle	Remark
	[MHz]		[dB(1/m)]	[cm]	E°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT80)] W56 / Channel Low ABOVE 1GHz

TUV SUD Zacta Ltd. <<DATA Sheet No.56>> 13 December,2016 10:39 : KYOCERA Corporation Company name Standard : FCC Part.15 subpart E EUT Model No. : Mobile Phone : DA03 : T.Watanabe : 21.1[°C] 22.5[%] : ch:106_5530MHz Operator Temp,Hum,Atm Serial No. Note1 : N/A Test mode : 5GHz_W56_11ac(HT80)_Tx_Low Note2 [dB(µV/m)] 110 <FCC E_GHz(Peak_Only)_3m> Limit(PK) <03_GHz_Tx_W56_11ac(HT80)_Low> ________Range(H,PK) 100 90 Range(V,PK) Emission level(H,PK) Emission level(V,PK) 妨害レベル(V,CAV) 80 70 60 Level 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading FK	Reading CAV	c.f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		[dB(µV)]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB(µV/m)]	[dB]	[dB]	[cm]	F 1	
1	5468.710	H	49.4		10.1	59.5		68.2	8.7		133.0	229.0	
2	5467.828	V	50.1		10.1	60.2		68, 2	8.0		112.0	149.0	
3	11060.000	V	47.4	35.3	10.9	58.3	46.2	74.0	15.7	7.8	123.0	52.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT80)] W56 / Channel High BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Ang	gle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT80)] W56 / Channel High ABOVE 1GHz

<<DATA Sheet No.58>> TUV SUD Zacta Ltd. 13 December,2016 11:34 : KYOCERA Corporation Company name Standard : FCC Part.15 subpart E EUT Model No. : Mobile Phone : DA03 : T.Watanabe : 21.1["C] 22.5[%] : ch:122_5610MHz Operator Temp,Hum,Atm Serial No. Note1 : N/A Test mode : 5GHz_W56_11ac(HT80)_Tx_High Note2 [dB(µV/m)] 110 100 90 Range(V,PK) Emission level(V,PK) 妨害レベル(V,CAV) 80 54 70 60 level 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	Reading FK	Reading	c.f	Result PK	Result CAV	Limit PK	Margin PK	Margin CAV	Height	Angle	Remark
	[MHz]		[dB(µV)]	[dB(µV)]	[dB(1/m)]	$[dB(\mu V/m)]$	[dB(µV/m)]	[dB(µ V/m)]	[dB]	[dB]	[cm]	f* 1	
1	11220,000	- X.	47.5	35.7	10.9	58, 4	46.6	74.0	15.6	7.4	125.0	144.0	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

7.4.4.2 Receive mode

W52 / Channel Low BELOW 1GHz

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

W52 / Channel Middle BELOW 1GHz

****** RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

W52 / Channel High BELOW 1GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

W53 / Channel Low BELOW 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

W53 / Channel Middle BELOW 1GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Page 136 of 159

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

W53 / Channel High BELOW 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

W56 / Channel Low BELOW 1GHz

******* RADIATED EMISSION ******* [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

W56 / Channel Middle BELOW 1GHz

******* RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

W56 / Channel High BELOW 1GHz

****** RADIATED EMISSION ****** [3m Semi-anechoic chamber]

Final Result

No.	Frequency	(P)	c.f	Height	Angle	Remark
	[MHz]		[dB(1/m)]	[cm]	[°]	

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]
8. Frequency Stability

8.1 Measurement procedure [FCC 15.407(g)]

The EUT was placed of an inside of an constant temperature chamber as the temperature in the chamber was varied between -30°C and +60°C. The temperature was incremented by 10°C intervals and the unit was allowed to stabilize at each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channels center frequency was recorded.

The EUT was set to operate with following conditions.

- 5.2GHz Band, 5.3GHz Band, 5.6GHz Band

The test mode of EUT is as follows.

- Tx mode

- Test configuration

8.2 Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified.

8.3 Measurement result

Date	:	November 16, 2016
Temperature	:	26.3 [°C]
Humidity	:	37.1 [%]
Test place	:	Shielded room No.4

Test engineer :

Tadahiro Seino

[Channel: 36 (5180MHz)]

Power		Measurements	Frequency	Measurements	Frequency	Measurements	Frequency	Measurements	Frequency
Function	Temperature	Frequency	Tolerance	Frequency	Tolerance	Frequency	Tolerance	Frequency	Tolerance
Supply		(startup)	(startup)	(2mins)	(2mins)	(5mins)	(5mins)	(10mins)	(10mins)
[V]	[°C]	[Hz]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]
	25(Ref.)	5180006258	0.00000000	5180004711	-0.29864829	5180004711	-0.29864829	5180010189	0.75887939
	60	5180000034	-1.20145029	5180010135	0.74845469	5180010135	0.74845469	5180009113	0.55115764
	50	5180002619	-0.70250880	5179992327	-2.68937899	5179992327	-2.68937899	5180008745	0.48011525
	40	5180020407	2.73146388	5180010444	0.80810713	5180010444	0.80810713	5180011690	1.04864738
	30	5180004133	-0.41023116	5180014972	1.68223735	5180014972	1.68223735	5180000688	-1.07528828
3.80	20	5180011100	0.93474791	5180005795	-0.08938213	5180005795	-0.08938213	5179993569	-2.44961094
	10	5180005667	-0.11409253	5180007781	0.29401509	5180007781	0.29401509	5180010857	0.88783677
	0	5180011473	1.00675554	5180027503	4.10134640	5180027503	4.10134640	5180008127	0.36081037
	-10	5180009006	0.53050129	5179994112	-2.34478481	5179994112	-2.34478481	5180002692	-0.68841616
	-20	5180015681	1.81910977	5180028588	4.31080560	5180028588	4.31080560	5180012795	1.26196759
	-30	5180000180	-1.17335766	5179995121	-2.14999740	5179995121	-2.14999740	5179970879	-6.82991453
3.42	25	5180008290	0.39227752	5180005061	-0.23108080	5180005061	-0.23108080	5180019888	2.63127095
4.18	25	5180011068	0.92857031	5180001229	-0.97084825	5180001229	-0.97084825	5180004355	-0.36737407

[Channel: 64 (5320MHz)]

Deurer		Measurements	Frequency	Measurements	Frequency	Measurements	Frequency	Measurements	Frequency
Power	Temperature	Frequency	Tolerance	Frequency	Tolerance	Frequency	Tolerance	Frequency	Tolerance
Suppiy		(startup)	(startup)	(2mins)	(2mins)	(5mins)	(5mins)	(10mins)	(10mins)
[V]	[°C]	[Hz]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]
	25(Ref.)	5320017268	0.00000000	5320007421	-1.85093384	5320010312	-1.30751455	5320019464	0.41278062
	60	5319990890	-4.95825458	5319975586	-7.83493697	5320019479	0.41560015	5320022982	1.07405666
	50	5320021154	0.73044876	5319996798	-3.84773187	5320015507	-0.33101396	5320002678	-2.74247230
	40	5320016498	-0.14473637	5320016447	-0.15432281	5320010447	-1.28213870	5320008351	-1.67612238
	30	5320012291	-0.93552328	5320006492	-2.02555734	5320032058	2.78006616	5320009403	-1.47837866
3.80	20	5320015219	-0.38514913	5319994027	-4.36859484	5320026513	1.73777631	5320014421	-0.53514864
	10	5320011406	-1.10187612	5320017365	0.01823302	5320021718	0.83646345	5320015227	-0.38364537
	0	5320014007	-0.61296794	5319996286	-3.94397216	5320024238	1.31014612	5320022446	0.97330511
	-10	5320003797	-2.53213464	5320007160	-1.89999383	5320014641	-0.49379539	5320017081	-0.03515026
	-20	5319982064	-6.61727175	5320027742	1.96879060	5320004848	-2.33457889	5320001402	-2.98232115
	-30	5320001612	-2.94284759	5320000853	-3.08551630	5319986456	-5.79171052	5320007727	-1.79341523
3.42	25	5320016278	-0.18608962	5320008283	-1.68890429	5320010185	-1.33138666	5320002191	-2.83401336
4.18	25	5320013973	-0.61935889	5320019993	0.51221638	5320024997	1.45281483	5320007990	-1.74397930

[Channel: 140 (5700MHz)]

Power		Measurements	Frequency	Measurements	Frequency	Measurements	Frequency	Measurements	Frequency
Supply	Temperature	Frequency	Tolerance	Frequency	Tolerance	Frequency	Tolerance	Frequency	Tolerance
eapp.j		(startup)	(startup)	(2mins)	(2mins)	(5mins)	(5mins)	(10mins)	(10mins)
[V]	[°C]	[Hz]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]
	25(Ref.)	5699996749	0.00000000	5700001508	0.83491276	5700013288	2.90158060	5700003240	1.13877258
	60	5700012477	2.75929982	5700020837	4.22596732	5700022409	4.50175695	5699995982	-0.13456148
	50	5700037720	7.18789884	5699991061	-0.99789531	5700010965	2.49403651	5700010221	2.36351012
	40	5700018117	3.74877407	5700013153	2.87789638	5699996001	-0.13122815	5699985353	-1.99929939
	30	5700002072	0.93386018	5700007308	1.85245720	5700007482	1.88298353	5700017895	3.70982668
3.80	20	5700001399	0.81578994	5699999117	0.41543883	5699997427	0.11894744	5700004619	1.38070254
	10	5699999610	0.50193011	5700008341	2.03368537	5700014643	3.13930004	5700003977	1.26807090
	0	5700021856	4.40473935	5700017566	3.65210735	5700005118	1.46824645	5700030340	5.89316126
	-10	5699993060	-0.64719335	5700004800	1.41245695	5700014140	3.05105437	5700008016	1.97666779
	-20	5700013581	2.95298414	5699988313	-1.48000084	5699995586	-0.20403520	5700020167	4.10842340
	-30	5700002799	1.06140411	5700014241	3.06877368	5699992972	-0.66263196	5699998109	0.23859663
3.42	25	5700018679	3.84737062	5700003414	1.16929891	5700014173	3.05684385	5700015710	3.32649313
4.18	25	5700001209	0.78245659	5700013555	2.94842273	5700018276	3.77666882	5700014899	3.18421234

9. AC Power Line Conducted Emissions

9.1 Measurement procedure [FCC 15.207]

Test was applied by following conditions.

Test method	:	ANSI C63.10
Frequency range	:	0.15MHz to 30MHz
Test place	:	3m Semi-anechoic chamber
EUT was placed on	:	FRP table / (W)2.0m × (D)1.0m × (H)0.8m
Vertical Metal Reference Plane	:	(W)2.0m × (H)2.0m 0.4m away from EUT
Test receiver setting		
- Detector	:	Quasi-peak, Average
- Bandwidth	:	9kHz

EUT and peripherals are connected to $50\Omega/50\mu$ H Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

9.2 Calculation method

Emission level = Reading + (LISN. factor + Cable system loss) Margin = Limit – Emission level

9.3 Limit

Frequency	Limit					
[MHz]	QP [dBuV]	AV [dBuV]				
0.15-0.5	66-56*	56-46*				
0.5-5	56	46				
5-30	60	50				

*: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

Page 145 of 159

Date	:	December 15, 2016			
Temperature	:	21.6 [°C]			
Humidity	:	24.1 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber		_	Kazunori Saito

9.4 Test data

***** CONDUCTED EMISSION at MAINS PORT ***** [3m Semi-anechoic chamber]

Final Result

	L1 Phase -										
No.	Frequency	Reading QP	Reading AV	c. f	Result QP	Result AV	Limit QP	Lîmit AV	Margin QP	Margin AV	Remark
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]	
1	0,407	30.2	20.4	10.3	40.5	30.7	57.7	47.7	17.2	17.0	
2	0,776	23.2	9.1	10.3	33.5	19.4	56.0	46.0	22, 5	26.6	
3	1.201	21.5	8.4	10.4	31, 9	18.8	56.0	46.0	24.1	27.2	
4	1,423	26.6	14.5	10, 4	37.0	24.9	56.0	46.0	19,0	21.1	
5	1.480	24.4	11.3	10.4	34.8	21.7	56.0	46.0	21.2	24.3	
6	1.842	26.8	12.3	10.4	37.2	22.7	56.0	46.0	18.8	23.3	
	L2 Phase	and the									
No.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Limit AV	Margin	Margin AV	Remark
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]	
1	1.588	27.5	10.4	10.4	37.9	20.8	56.0	46.0	18.1	25.2	
2	1.919	27.4	8.8	10.4	37.8	19.2	56.0	46.0	18.2	26.8	
3	1.944	27.5	8.4	10.4	37.9	18.8	56.0	46.0	18.1	27.2	
4	2.045	26.6	8.5	10.4	37.0	18.9	56.0	46.0	19.0	27.1	
5	2.251	29.3	12.7	10.4	39.7	23.1	56.0	46.0	16.3	22.9	
6	2, 276	29.5	13.4	10.4	39.9	23.8	56.0	46.0	16.1	22.2	

***** CONDUCTED EMISSION at MAINS PORT ***** [3m Semi-anechoic chamber]

Final Result

_	L1 Phase -	-									
No.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]	
1	0.401	33.1	23.5	10.3	43.4	33, 8	57.8	47.8	14.4	14.0	
2	0.775	24.5	10.8	10.3	34.8	21.1	56.0	46.0	21.2	24.9	
3	0.947	25.5	13.2	10.4	35.9	23, 6	56. 0	46.0	20.1	22.4	
4	0.961	28.1	15.1	10.4	38.5	25, 5	56.0	46.0	17.5	20, 5	
5	0.999	28.3	16, 2	10.4	38.7	26.6	56.0	46.0	17.3	19.4	
6	1. 773	27.6	14.8	10.4	38.0	25.2	56.0	46.0	18.0	20.8	
-	L2 Phase -	3 1988 - 1963									
No.	Frequency	Reading QP	Reading AV	c, f	Result QP	Result AV	Lîmît QP	Limit AV	Margin QP	Margin	Remark
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(µV)]	[dB]	[dB]	
1	1,691	27.1	9.5	10.4	37.5	19.9	56.0	46.0	18.5	26.1	
2	1.841	28.0	8.3	10.4	38.4	18.7	56.0	46.0	17.6	27.3	
3	1.861	26.6	8.6	10.4	37.0	19.0	56.0	46.0	19.0	27.0	
4	1.974	26.9	3.9	10.4	37.3	14.3	56.0	46.0	18.7	31.7	
5	2.095	29.0	12.3	10.4	39.4	22.7	56.0	46.0	16.6	23.3	
6	2, 245	29.8	11.5	10.4	40.2	21.9	56.0	46.0	15.8	24.1	

***** CONDUCTED EMISSION at MAINS PORT ***** [3m Semi-anechoic chamber]

Final Result

	L1 Phase -										
No.	Frequency	Reading QP	Reading AV	c. f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark
	[MHz]	$[dB(\mu V)]$	[dB(µV)]	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(µV)]	$[dB(\mu V)]$	[dB]	[dB]	
1	0.406	32.4	22.8	10.3	42.7	33.1	57.7	47.7	15.0	14.6	
2	0.728	26.4	15.4	10.3	36.7	25.7	56.0	46.0	19.3	20.3	
3	0.951	26.1	12.9	10.4	36.5	23. 3	56.0	46.0	19.5	22.7	
-4	1,006	28.7	17.5	10, 4	39.1	27.9	56.0	46.0	16.9	18, 1	
5	1,209	31.8	22.0	10.4	42.2	32.4	56.0	46.0	13.8	13.6	
6	1. 492	29.7	17.3	10, 4	40.1	27.7	56.0	46.0	15.9	18, 3	
-	L2 Phase	Comp. and									
No.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Lîmît AV	Margîn QP	Margîn AV	Remark
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(µV)]	$[dB(\mu V)]$	[dB]	[dB]	
1	1.796	25.7	8.5	10.4	36.1	18.9	56.0	46.0	19.9	27.1	
2	1.852	28.2	5.8	10.4	38.6	16.2	56.0	46.0	17.4	29.8	
3	2.042	28.2	12.3	10.4	38.6	22.7	56.0	46.0	17.4	23.3	
4	2.064	29.2	12.4	10.4	39.6	22.8	56.0	46.0	16.4	23.2	
5	2.294	31.5	16.6	10.4	41.9	27.0	55. 0	46.0	14.1	19.0	
6	2.319	32.2	18.0	10.4	42.6	28.4	56.0	46.0	13.4	17.6	

10. Duty Cycle

10.1 Measurement procedure [KDB 789033 Zero-Span Spectrum Analyzer Method]

The duty cycle is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- RBW=8MHz, VBW=8MHz, Span=0Hz, Sweep=Auto, Detector=Peak, Trace mode=Single The EUT was set to operate with following conditions.

- 5.2GHz Band, 5.3GHz Band, 5.6GHz Band

The test mode of EUT is as follows.

- Tx mode

- Test configuration

10.2 Limit

None

10.3 Measurement result

Date	:	October 6, 2016			
Temperature	:	23.8 [°C]			
Humidity	:	57.0 [%]	Tested by	:	
Test place	:	Shielded room No.4	-		Kazunori Saito

		F		Duty Cycle		DCF	DCF		
Mode	Channel	Frequency (MHz)	On Time(ms)	On+Off Time(ms)	х	1/T	(dB) 10log(1/x)	(dB) 20log(1/x)	
	36	5180							
	40	5200	1.362	1.370	0.994	734.2	0.025	0.051	
	58	5240							
	52	5260		1.372	0.994	733.1	0.025	0.051	
802.11a	56	5280	1.364						
	64	5320							
	100	5500							
-	116	5580	1.364	1.372	0.994	733.1	0.025	0.051	
	140	5700							

Note: X = On time / (On + Off time)

		_		Duty Cycle DCF		DCF	DCF		
Mode	Channel	(MHz)	On Time(ms)	On+Off Time(ms)	х	1/T	(dB) 10log(1/x)	(dB) 20log(1/x)	
	36	5180	1.276						
	40	5200		1.276	1.284	0.994	783.7	0.027	0.054
	58	5240							
902 11n	52	5260	1.274	1.284	0.992	2 784.9 2 784.9	0.034	0.068	
(20MHz)	56	5280							
	64	5320							
	100	5500							
	116	5580	1.274	1.284					
	140	5700							

Note: X = On time / (On + Off time)

Mode		F		Duty Cycle	DCF	DCF		
	Channel	(MHz)	On Time(ms)	On+Off Time(ms)	х	1/T	(dB) 10log(1/x)	(dB) 20log(1/x)
802.11n (40MHz)	38	5190	0.635	0.645	0.984	1574.8	0.068	0.126
	46	5230						0.150
	54	5270	0.636	0.645	0.986	1572.3	0.061	0.122
	62	5310						
	102	5510			0.981	1577.3	0.081	0.163
	110	5550	0.634	0.646				
	134	5670						

Note: X = On time / (On + Off time)

	_			Duty Cycle	DCF	DCF		
Mode Cl	Channel	el (MHz)	On Time(ms)	On+Off Time(ms)	x	1/T	(dB) 10log(1/x)	(dB) 20log(1/x)
	42	5210	0.247	0.258	0.957	4056.8	0.190	0.379
802.11ac	58	5290	0.247	0.258	0.957	4056.8	0.190	0.379
(80MHz)	106	5530	0.247	0.258	0.957	4048.6	0.189	0.378
	122	5610	0.247	0.258	0.957	4056.8	0.190	0.379

Note: X = On time / (On + Off time)

10.4 Trace data [IEEE802.11a]

Channel: 40

Channel: 56

[IEEE802.11n (HT20)]

Channel: 40

Channel: 56

[IEEE802.11n (HT40)]

Channel: 38

Channel: 54

[IEEE802.11ac (HT80)]

Channel: 42

[IEEE802.11ac (HT80)]

Channel: 106

11. Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

12. Uncertainty of measurement

Expanded uncertainties stated are calculated with a coverage Factor k=2.

Please note that these results are not taken into account when determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission at mains port	±3.0dB
Radiated emission (9kHz – 30MHz)	±4.4dB
Radiated emission (30MHz – 1000MHz)	±4.5dB
Radiated emission (1000MHz – 26GHz)	±3.9dB

13. Laboratory Information

1. Location

Name:Yonezawa Testing CenterAddress:5-4149-7, Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 JapanPhone:+81-238-28-2881Fax:+81-238-28-2888

- 2. Accreditation and Registration
 - 1) NVLAP LAB CODE: 200306-0
 - 2) VLAC Accreditation No.: VLAC-013
 - 3) BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

4) FCC

Registration number	Expiration date
540072	2017-2-20

5) Industry Canada

Site number	Facility	Expiration date
4224A-4	3m Semi-anechoic chamber	2017-12-03
4224A-5	10m Semi-anechoic chamber No.1	2017-12-03
4224A-6	10m Semi-anechoic chamber No.2	2019-12-14

6) VCCI Council

Registration number	Expiration date
A-0166	2017-07-03

Appendix A. Test equipment

Antenna	port co	nducted	test

Equipment	Company	Model No.	Serial No.	Cal. due	Cal. date
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	Jul. 31, 2017	Jul. 15, 2016
Microwave cable	RS	YH-13S5	N/A(S403)	May 31, 2017	May 24, 2016
Attenuator	Weinschel	56-10	J4993	Nov. 30, 2016	Nov. 12, 2015
Attenuator	Weinschel	56-10	J4993	Nov. 30, 2017	Nov. 1, 2016
Low temperature and humidity chamber	Espec	PL1KP	14007261	Jan. 21, 2017	Jan. 22, 2016

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	Aug. 31, 2017	Aug. 19, 2016
Preamplifier	ANRITSU	MH648A	M96057	May 31, 2017	May 10, 2016
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	892246/010	May 31, 2017	May 9, 2016
Attenuator	TDC	TAT-43B-06	N/A(S209)	May 31, 2017	May 10, 2016
Biconical antenna	Schwarzbeck	VHA9103/BBA9106	2155	Jun. 30, 2017	Jun. 2, 2016
Log periodic antenna	Schwarzbeck	UHALP9108A	0560	Jun. 30, 2017	Jun. 2, 2016
Attenuator	TME	CFA-01NPJ-6	N/A(S273)	May 31, 2017	May 25, 2016
Attenuator	TME	CFA-01NPJ-3	N/A(S270)	May 31, 2017	May 25, 2016
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	Jul. 31, 2017	Jul. 15, 2016
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	Aug. 31, 2017	Aug. 19, 2016
Double ridged guide antenna	EMCO	3115	5205	Mar. 31, 2017	Mar. 3, 2016
Double ridged guide antenna	ETS LINDGREN	3117	00052315	Feb. 28, 2017	Feb. 23, 2016
Attenuator	Agilent Technologies	8491B	MY39268633	Feb. 28, 2017	Feb. 23, 2016
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170189	Jun. 30, 2017	Jun. 16, 2016
Preamplifier	TSJ	MLA-1840-B03-35	1240332	Jun. 30, 2017	Jun. 16, 2016
Notch Filter	Micro-Tronics	BRM50716	006	Jul. 31, 2017	Jul. 20, 2016
Microwave cable	SUHNER	SUCOFELX102/2m	31648	Mar. 31, 2017	Mar. 29, 2016
		SUCOFLEX104/9m	346316/4	May 31, 2017	May 25, 2016
Microwave cable	SUHNER	SUCOFLEX104/1m	322084/4	May 31, 2017	May 25, 2016
		SUCOFLEX104/1.5m	317226/4	May 31, 2017	May 25, 2016
		SUCOFLEX104/7m	41625/6	May 31, 2017	May 25, 2016
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V5.3.61	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	May 31, 2017	May 11, 2016
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	May 31, 2017	May 12, 2016

Conducted emission at mains port

Equipment	Company	Model No.	Serial No.	Cal. due	Cal. date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100764	Aug. 31, 2017	Aug. 19, 2016
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	Feb. 28, 2017	Feb. 23, 2016
Line impedance stabilization	Kyoritsu Electrical		8-2003-1	Mar 31 2017	Mar 28, 2016
network for EUT	Works, Ltd.	1(1107-4071	0-2000-1	Mai. 51, 2017	Mai. 20, 2010
Coaxial cable	FUJIKURA	5D-2W/4m	N/A (S330)	Feb. 28, 2017	Feb. 23, 2016
Coaxial cable	FUJIKURA	5D-2W/1m	N/A (S193)	Feb. 28, 2017	Feb. 23, 2016
Coaxial cable	SUHNER	RG214/U/10m	N/A (S194)	Feb. 28, 2017	Feb. 23, 2016
PC	DELL	DIMENSION	75465BX	N/A	N/A

*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.