Report on the RF Testing of:

KYOCERA Corporation Mobile Phone, Model: CB70 FCC ID: JOYCB70

In accordance with FCC Part15 Subpart C

Prepared for: **KYOCERA** Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-19187-0

SIGNATURE			
Dia	Siguh		
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Hiroaki Suzuki	Deputy Manager of RF Group	Approved Signatory	2 5 NOV 2019
Signatures in this approval box have	checked this document in line with the requ	irements of TÜV SÜD Japan Ltd. doo	ument control rules.

EXECUTIVE SUMMARY

A sample(s) of this product was tested and found to be compliant with FCC Part15 Subpart C.

DISCLAIMER AND COPYRIGHT

The results in this report are applicable only to the equipment tested. This report shall not be re-produced except in full without the written approval of TÜV SÜD Japan Ltd.

ACCREDIATION

This test report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. government.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81 (0) 238 28 2881 Fax: +81 (0) 238 28 2888 www.tuv-sud.jp

TÜV SÜD Japan Ltd.

TŮV®

Contents

1	Summary of Test					
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Modification history of the test report3Standards3Test methods3Deviation from standards3List of applied test(s) of the EUT3Test information3Test set up3Test period3					
2	Equipment Under Test4					
2.1 2.2 2.3 2.4 2.5 2.6	EUT information .4 Modification to the EUT .5 Variation of family model(s) .5 Operating channels and frequencies .5 Description of test mode .6 Operating flow .6					
3	Configuration of Equipment7					
3.1 3.2 3.3	Equipment used					
4	Test Result8					
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	DTS Bandwidth / Occupied Bandwidth (99%)8Maximum Conducted Output Power13Band Edge Compliance of RF Conducted Emissions15Spurious emissions - Conducted -20Spurious Emissions - Radiated -31Restricted Band of Operation55Transmitter Power Spectral Density63AC Power Line Conducted Emissions68					
5	Antenna requirement70					
6	Measurement Uncertainty71					
7	Laboratory Information72					
Appendix	Appendix A. Test Equipment73					
Appendix	Appendix B. Duty Cycle74					

1 Summary of Test

1.1 Modification history of the test report

Ē	Document Number	Modification History	Issue Date
	JPD-TR-19187-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart C

1.3 Test methods

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
15.247(a)(2)	DTS Bandwidth / Occupied Bandwidth (99%)	Conducted	PASS	-
15.247(b)(3)	Maximum conducted (average) output power	Conducted	PASS	-
15.247(d)	Band Edge Compliance of RF Conducted Emissions	Conducted	PASS	-
15.247(d) 15.205 15.209	Spurious Emissions	Conducted Radiated	PASS	-
15.247(d) 15.205 15.209	Restricted Bands of Operation	Radiated	PASS	-
15.247(e)	Transmitter Power Spectral Density	Conducted	PASS	-
15.207	AC Power Line Conducted Emissions	Conducted	PASS	-

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

21-October-2019 - 30-October-2019

Equipment Under Test 2

2.1 **EUT** information

Λ.	_	~1;	~~	nt
A	μ	ווכ	са	m

Applicant	KYOCERA Corporation
	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan
	Phone: +81-45-943-6253 Fax: +81-45-943-6314
Equipment Under Test (EUT)	Mobile Phone
Model number	CB70
Serial number	N/A
Trade name	Kyocera
Number of sample(s)	1
EUT condition	Pre-Production
Power rating	Battery: DC 3.85 V
Size	(W) 71.0 × (D) 159.0 × (H) 8.9 mm
Environment	Indoor and Outdoor use
Terminal limitation	-20°C to 60°C
Hardware Version	DMT2
Software Version	0.410HA
Firmware Version	Not applicable
RF Specification	
Protocol	IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20),
Frequency range	IEEE802.11b /11g/11n (HT20): 2412 MHz-2462 MHz
Number of RF Channels	11 Channels
Modulation type	IEEE802.11b: DSSS (DBPSK, DQPSK, CCK) IEEE802.11g /11n (HT20): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Data rate	IEEE802.11b: 1, 2, 5.5, 11Mbps IEEE802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps IEEE802.11n (HT20 LGI): 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps
Channel separation	5 MHz
Output power	83.368 mW (IEEE802.11b) 174.985 mW (IEEE802.11g) 247.742 mW (IEEE802.11n: HT20)
Antenna type	Internal antenna
Antenna gain	1.7 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State Description of Modification		Modification fitted by Date of Modification	
Model: CB70, Seria	I Number: N/A		
0	As supplied by the applicant	Not Applicable	Not Applicable

2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

2.3.2 Reason for selection of EUT

Not applicable

2.4 Operating channels and frequencies

Channel	Frequency [MHz]
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

2.5 Description of test mode

The EUT had been tested under operating condition. There are three channels have been tested as following:

Tested Channel [11b, 11g, 11n(HT20)]	Frequency [MHz]
Low	2412
Middle	2437
High	2462

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

Tested Channel	Modulation Type	Data Rate
Low, Middle, High	IEEE802.11b: DSSS	1Mbps
Low, Middle, High	IEEE802.11g: OFDM	6Mbps
Low, Middle, High	IEEE802.11n (HT20 LGI): OFDM	MCS0 (6.5Mbps)

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in X-axis and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

2.6 Operating flow

- Tx mode

- i) Test program setup to the Software
- ii) Select a Test mode

[IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)] Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz

iii) Start test mode

- Rx mode

- i) Test program setup to the Software
- Select a Test mode [IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)]
 Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz
- iii) Start test mode

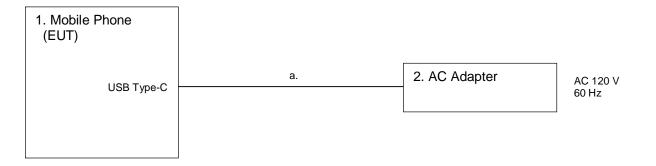
3 Configuration of Equipment

Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	CB70	N/A	JOYCB70	EUT
2	AC Adapter	KDDI	0301PQA	N/A	N/A	*
* * * *						


*:AC power line Conducted Emission Test.

3.2 Cable(s) used

No.	Equipment	Length[m]	Shield	Connector	Comment	
а	USB cable (for AC Adapter)	1.0	Yes	Metal	*	
*• ^ C	*AC nower line Conducted Emission Test					

*:AC power line Conducted Emission Test.

3.3 System configuration

4 Test Result

4.1 DTS Bandwidth / Occupied Bandwidth (99%)

4.1.1 Measurement procedure

[FCC 15.247(a)(2), KDB 558074 D01 v05r02, Section 8.2]

The bandwidth at 6dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) RBW = 100kHz.
- b) VBW \geq 3 x RBW.
- c) Sweep time = auto-couple.
- d) Detector = peak.
- e) Trace mode = max hold.

- Test configuration

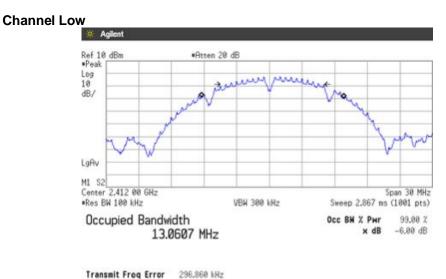
4.1.2 Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

4.1.3 Measurement result

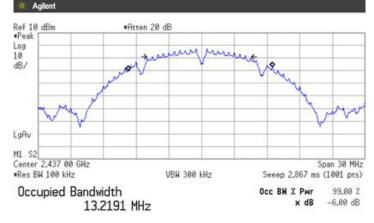
Date	:	21-October-2019
Temperature	:	24.1 [°C]
Humidity	:	44.3 [%]
Test place	:	Shielded room No.4

Test engineer :

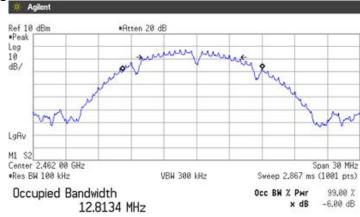

Taiki Watanabe

	DTS Bandwidth [MHz]							
Channel	IEEE802.11b	IEEE802.11g	IEEE802.11n (HT20)					
Low	8.580	15.715	16.332					
Middle	8.544	15.744	16.349					
High	8.082	14.207	12.975					

	Occupied Bandwidth (99%) [MHz]							
Channel	IEEE802.11b	IEEE802.11g	IEEE802.11n (HT20)					
Low	13.061	16.385	17.549					
Middle	13.219	16.430	17.592					
High	12.813	16.191	17.343					

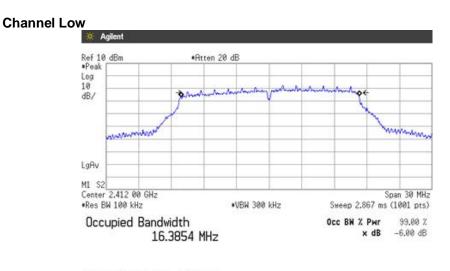

4.1.4 Trace data

[IEEE802.11b]

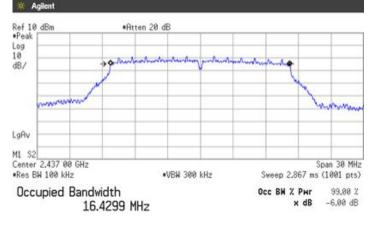

x dB Bandwidth 8.580 MHz

Channel Middle

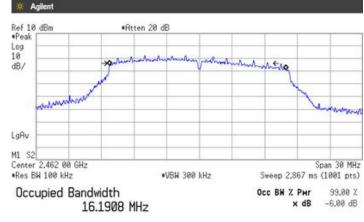
Transmit Freq Error -123.847 kHz x dB Bandwidth 8.544 MHz


Channel High

Transmit Freq Error -362.858 kHz x dB Bandwidth 8.082 MHz



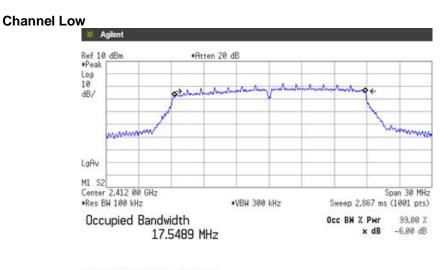
[IEEE802.11g]


Transmit Freq Error 88.238 kHz x dB Bandwidth 15.715 MHz

Channel Middle

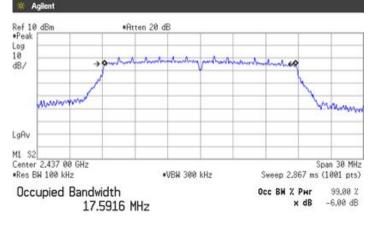
Transmit Freq Error -35.931 kHz x dB Bandwidth 15.744 MHz

Channel High

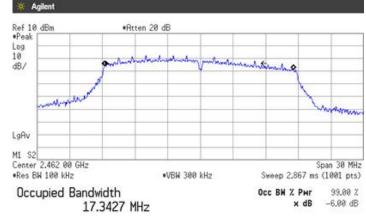


-136.051 kHz

14.207 MHz


Transmit Freq Error x dB Bandwidth Japan

[IEEE802.11n (HT20)]

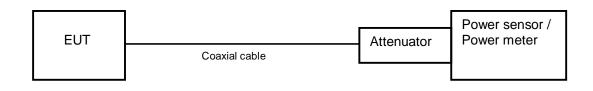

Transmit Freq Error 81.401 kHz x dB Bandwidth 16.332 MHz

Channel Middle

Transmit Freq Error	-23.531 kHz
x dB Bandwidth	16.349 MHz

Channel High

Transmit Freq Error -133.041 kHz x dB Bandwidth 12.975 MHz


4.2 Maximum Conducted Output Power

4.2.1 Measurement procedure

[FCC 15.247(b)(3), KDB 558074 D01 v05r02, Section 8.3.1.3]

The peak power is measured with a power sensor connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

- Test configuration

4.2.2 Limit

1 W (1000 mW) or less

4.2.3 **Measurement result**

Date	: 23-October-2019		
Temperature	: 20.6 [°C]		
Humidity	: 60.8 [%]	Test engineer	:
Test place	: Shielded room No.4		Taiki Watanabe

[IEEE802.11b]

Battery Full

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Output Power (mW)	Limit (mW)	Result
Low	2412	7.82	10.63	18.45	69.984	≦1000	PASS
Middle	2437	7.54	10.63	18.17	65.615	≦1000	PASS
High	2462	8.58	10.63	19.21	83.368	≦1000	PASS

[IEEE802.11g] Battery Full

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Output Power (mW)	Limit (mW)	Result
Low	2412	11.80	10.63	22.43	174.985	≦1000	PASS
Middle	2437	11.76	10.63	22.39	173.380	≦1000	PASS
High	2462	11.37	10.63	22.00	158.489	≦1000	PASS

[IEEE802.11n (HT20)] **Battery Full**

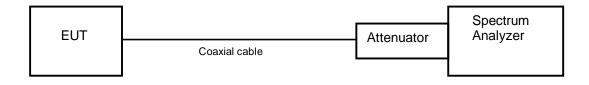
Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Output Power (mW)	Limit (mW)	Result
Low	2412	13.06	10.63	23.69	233.884	≦1000	PASS
Middle	2437	13.31	10.63	23.94	247.742	≦1000	PASS
High	2462	12.49	10.63	23.12	205.116	≦1000	PASS

Calculation;

Reading (dBm) + Factor (dB) = Level (dBm) $10\log P = Level (dBm)$ P = $10^{(Maximum Peak Output Power / 10)} (mW)$

4.3 Band Edge Compliance of RF Conducted Emissions

4.3.1 Measurement procedure


[FCC 15.247(d), KDB 558074 D01 v05r02, Section 8.5]

The Band Edge is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = Arbitrary setting. (Setting suitable for measurement.)
- b) RBW = 100kHz.
- c) VBW \ge 3 x RBW
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

4.3.2 Limit

In any 100 kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

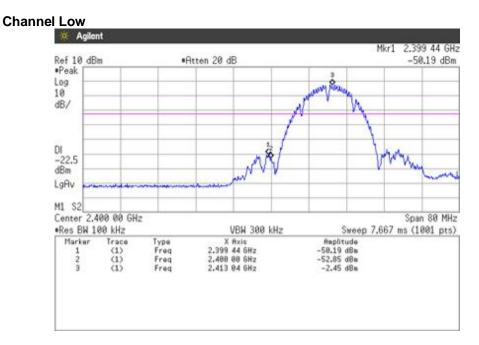
4.3.3 Measurement result

Date	:	21-October-2019				
Temperature	:	24.1 [°C]				
Humidity	:	44.3 [%]	Test engineer	:		
Test place	:	Shielded room No.4	-		Taiki Watanabe	

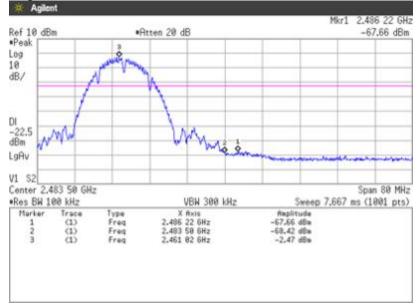
[IEEE802.11b]

Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band-edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-2.45	2399.44	-50.19	47.74	At least 20dB below from peak of RF	PASS
High	2462.00	-2.47	2486.22	-67.66	65.19	At least 20dB below from peak of RF	PASS

[IEEE802.11g]

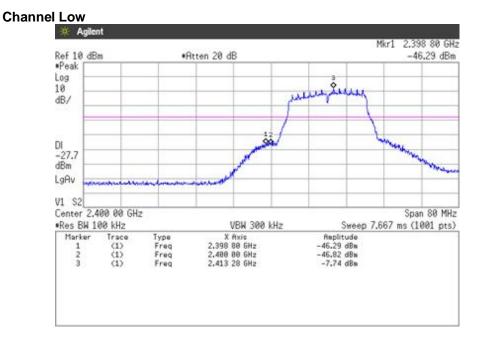

Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band-edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-7.74	2398.80	-46.29	38.55	At least 20dB below from peak of RF	PASS
High	2462.00	-7.78	2483.74	-64.65	56.87	At least 20dB below from peak of RF	PASS

[IEEE802.11n (HT20)]


Channel	Frequency (MHz)	RF Power Level (dBm)	Band-edge Frequency (MHz)	Band-edge Level (dBm)	Difference Level (dBm)	Limit (dBm)	Result
Low	2412.00	-7.79	2399.84	-44.22	36.43	At least 20dB below from peak of RF	PASS
High	2462.00	-7.79	2483.82	-62.29	54.50	At least 20dB below from peak of RF	PASS

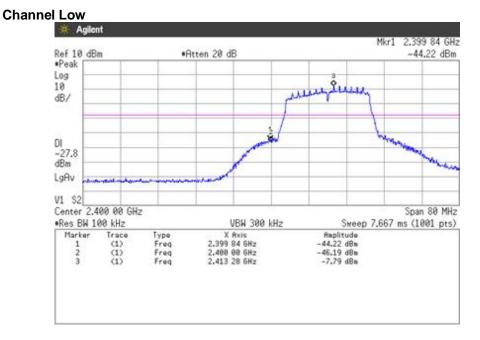
4.3.4 Trace data

[IEEE802.11b]



Channel High

[IEEE802.11g]



Channel High



[IEEE802.11n (HT20)]

Channel High

4.4 Spurious emissions - Conducted -

4.4.1 Measurement procedure

[FCC 15.247(d), KDB 558074 D01 v05r02, Section 8.5]

The spurious emissions (Conducted) are measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

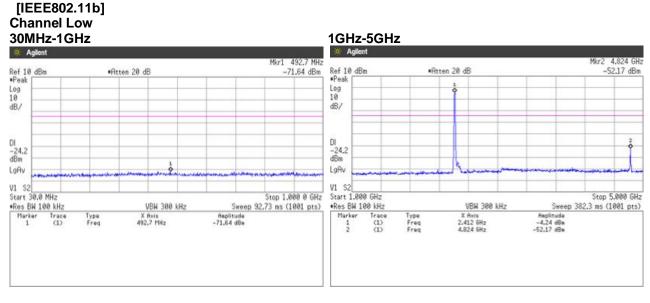
- a) Span = wide enough to fully capture the emission being measured.
- b) RBW = 100 kHz.
- c)́ VBW ≥ RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

4.4.2 Limit

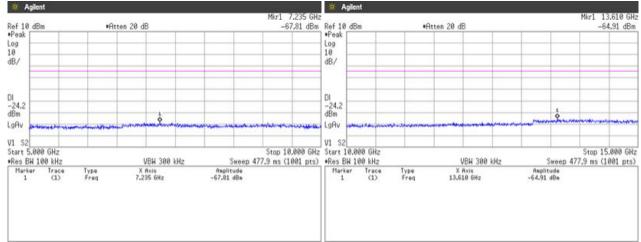
In any 100 kHz bandwidth outside the frequency band the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

4.4.3 Measurement result

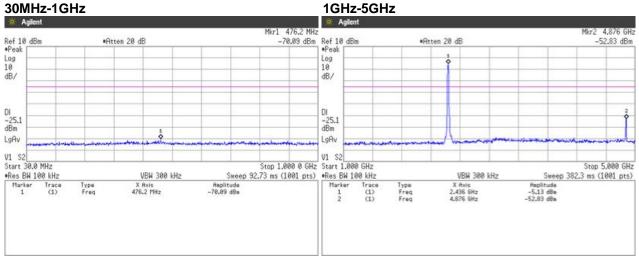

Date	: 21-October-2019			
Temperature	: 24.1 [°C]			
Humidity	: 44.3 [%]	Test engineer	:	
Test place	: Shielded room No.4	-		Taiki Watanabe

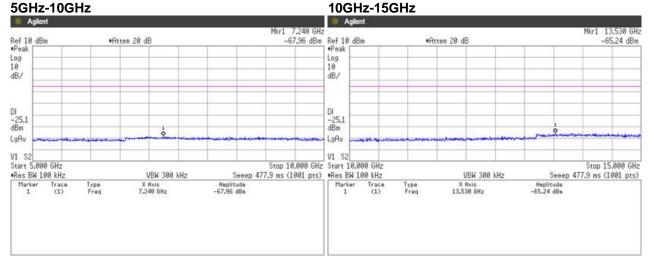
[IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

Channel	Frequency [MHz]	Limit [dB]	Results Chart	Result
Low	2412	At least 20dB below from peak of RF	See the trace Data	PASS
Middle	2437	At least 20dB below from peak of RF	See the trace Data	PASS
High	2462	At least 20dB below from peak of RF	See the trace Data	PASS

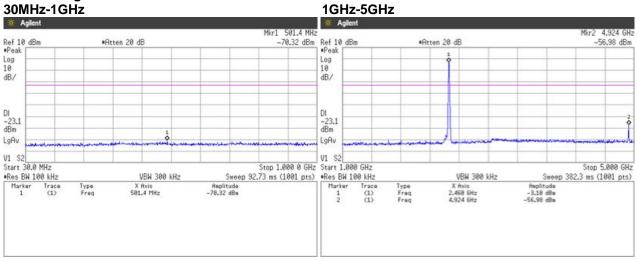


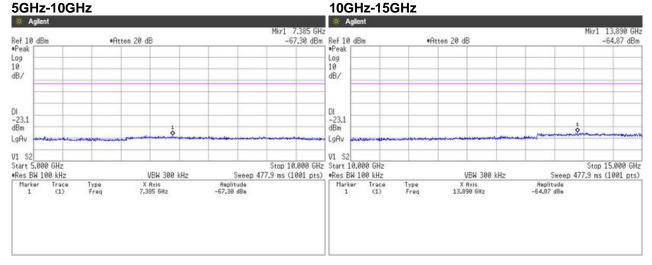

4.4.4 Trace data


5GHz-10GHz


10GHz-15GHz

Channel Middle

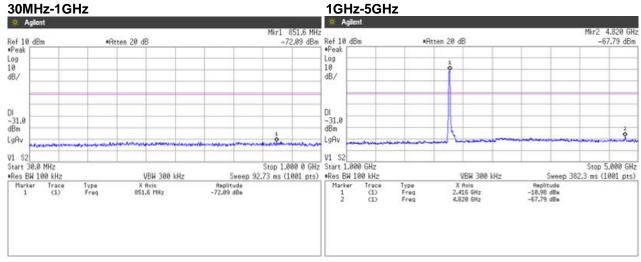


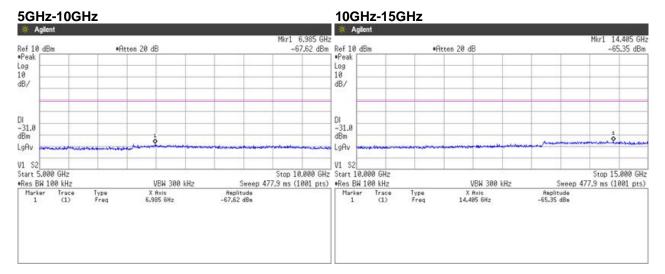


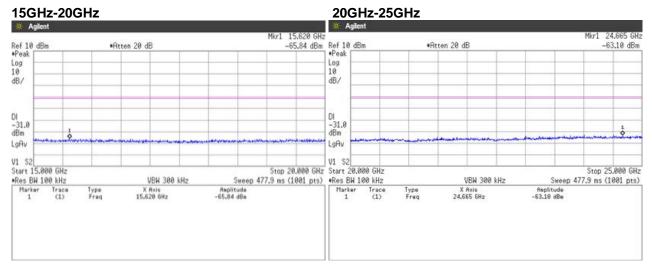

Japan

SUD

Channel High

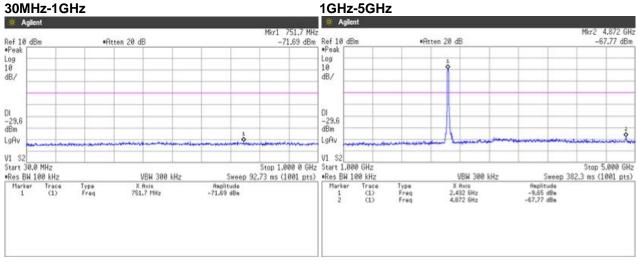


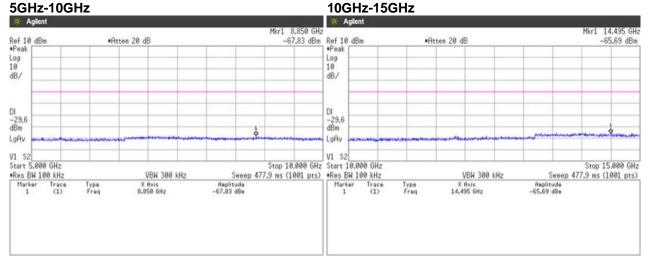

TÜV SÜD Japan Ltd.

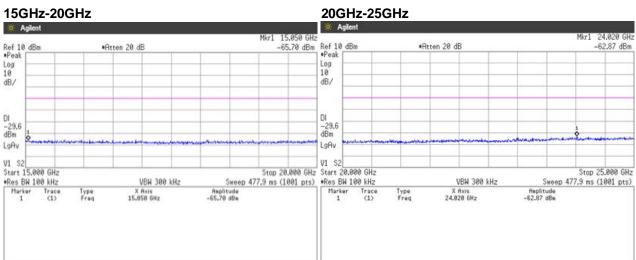

SUD

Japan

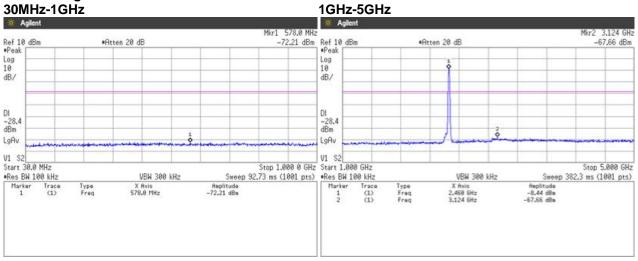
[IEEE802.11g] Channel Low 30MHz-1GHz

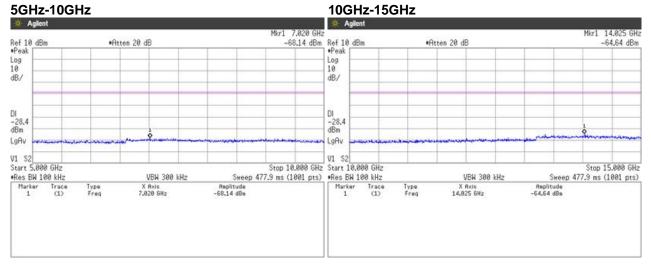


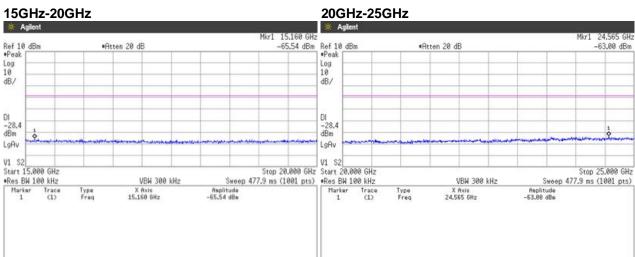




Channel Middle 30MHz-1GHz

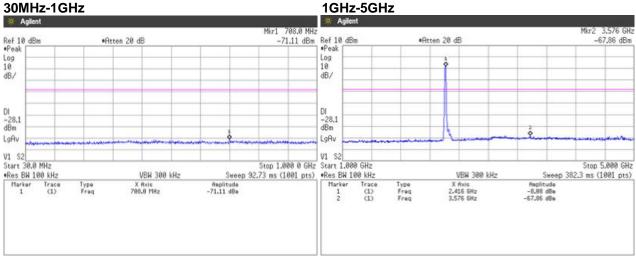


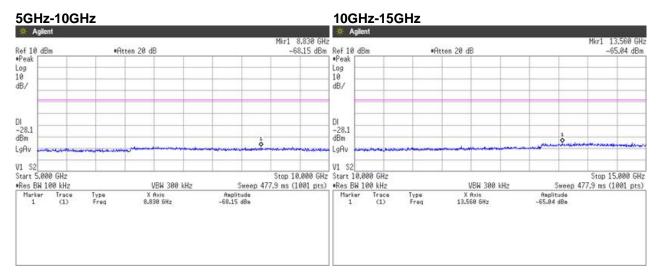


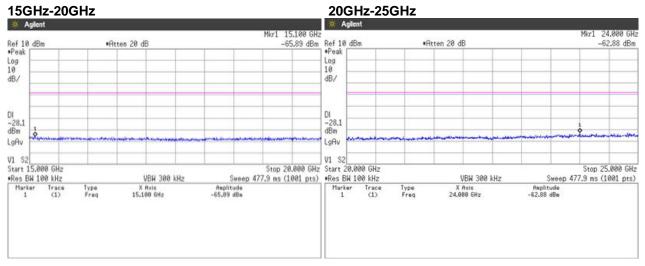

SUD

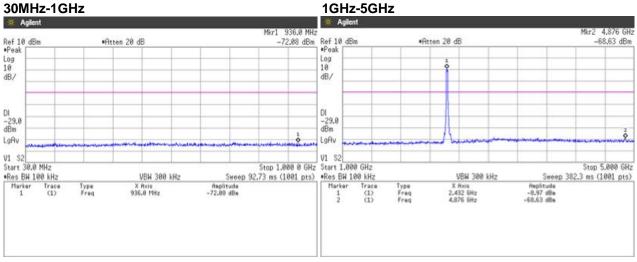
Japan

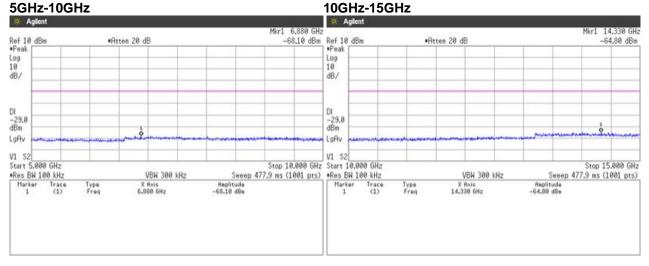
Channel High

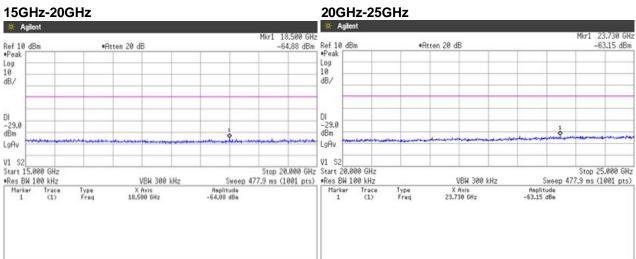




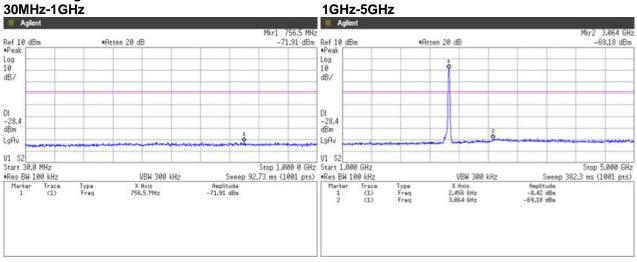

Japan Mir2 3.124 GHz

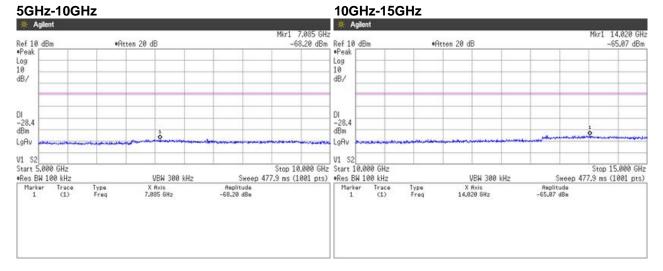

[IEEE802.11n (HT20)] Channel Low 30MHz-1GHz



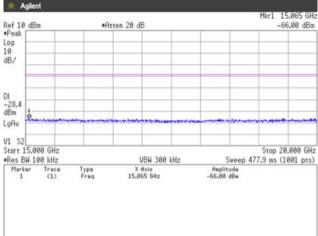


Channel Middle 30MHz-1GHz

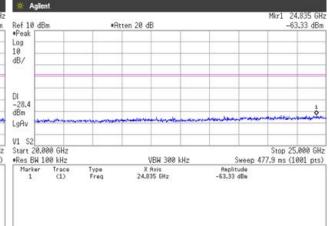



TÜV SÜD Japan Ltd.

SUD


Japan

Channel High



15GHz-20GHz

20GHz-25GHz

4.5 Spurious Emissions - Radiated -

4.5.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

Test was applied by following conditions.

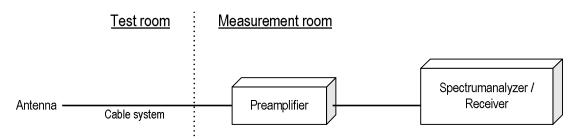
Test method Frequency range Test place EUT was placed on	ANSI C63.10 9 kHz to 25 GHz 3m Semi-anechoic chamber Styrofoam table / (W) $1.0 \times$ (D) $1.0 \times$ (H) 0.8 m (below 1 Styrofoam table / (W) $0.6 \times$ (D) $0.6 \times$ (H) 1.5 m (above 1 C	
Antenna distance	3 m	
Test receiver setting - Detector - Bandwidth Spectrum analyzer setting - Peak - Average	Below 1 GHz Average (9 kHz-90 kHz, 110 kHz-490 kHz), Quasi-peak 200 Hz, 120 kHz Above 1 GHz RBW=1 MHz, VBW=3 MHz, Span=0 Hz, Sweep=auto RBW=1 MHz, VBW=1kHz,3kHz, Span=0 Hz, Sweep=au Display mode=Linear	to

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
IEEE802.11b	96.12	990	40	1.010	1kHz
IEEE802.11g	96.94	1392	44	0.718	1kHz
IEEE802.11n(HT20)	96.55	1286	46	0.778	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements

were confirmed against 30 m open are test site.


Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna and Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.5.2 Calculation method

[9 kHz to 150 kHz] Emission level = Reading + (Ant factor + Cable system loss) Margin = Limit – Emission level

[150 kHz to 25 GHz] Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain) Margin = Limit – Emission level

Example:

 $Limit @ 4824.0 \ MHz: 74.0 \ dBuV/m \ (Peak \ Limit) \\ S.A \ Reading = 49.5 \ dBuV \ Cable \ system \ loss = 8.4 \ dB \\ Result = 49.5 + 8.4 = 45.1 \ dBuV/m \\ Margin = 74.0 - 45.1 = 16.1 \ dB \\$

4.5.3 Limit

Frequency	Field s	Distance	
[MHz]	[uV/m]	[dBuV/m]	[m]
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30
1.705-30	30	29.5	30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level [dBuV/m] = 20log Emission [uV/m]

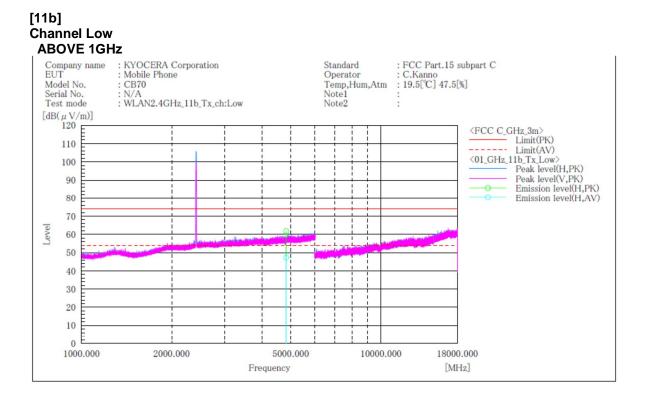
3. As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition modulation.

4.5.4 Test data

Date Temperature Humidity Test place	: 21-October-2019 : 19.5 [°C] : 47.5 [%] : 3m Semi-anechoic chamber	Test engineer	: Chiaki Kanno
Date Temperature Humidity Test place	: 25-October -2019 : 22.6 [°C] : 48.1 [%] : 3m Semi-anechoic chamber	Test engineer	: _Chiaki Kanno

[11b] **Channel Low BELOW 1GHz** : KYOCERA Corporation : Mobile Phone : CB70 : N/A : WLAN2.4GHz_11b_Tx_ch:Low : FCC Part.15 subpartC Standard Company name EUT Model No. : C.Kanno : 22.6[°C] 48.1[%] Operator Temp,Hum Note1 Serial No. Test mode Note2 [dB(µV/m)] 60 <FCC Part15 subpartC > Limit(QP) <11_MHz_11b_Tx_Low> Peak level(H,PK) Peak level(V,PK) 50 Г 40 Level 30 20 10 0 30.000 50.000 100.000 500.000 1000.000 Frequency [MHz]

4.5.4.1 Transmission mode - With camera


Final Result

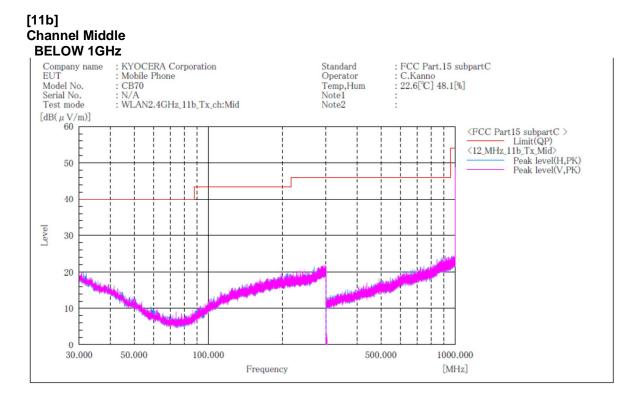
No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

Japan

Final Result


No.	Frequency	(P)	PK	AV	Result PK	Result AV	Limit PK	Limit AV	Margin PK	AV		Angle
1	[MHz] 4824.000	Н	[dB(μV)] 51.6		[dB(µV/m)] 61.7			[dB(µV/m)] 54.0	[dB] 12.3	[dB] 6.7	[cm] 338.0	[°] 11.0

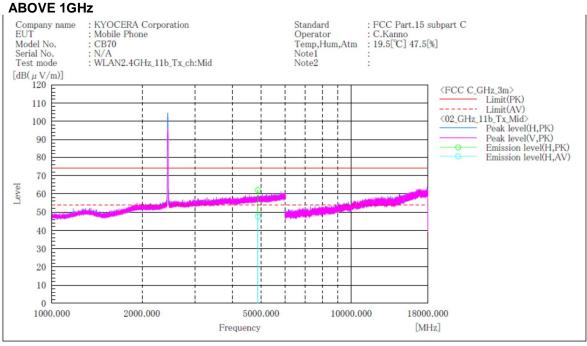
Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

Final Result

No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

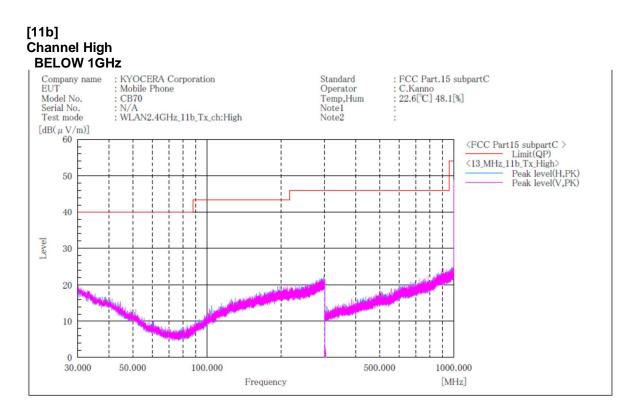

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

Japan

[11b] Channel Middle ABOVE 1GHz

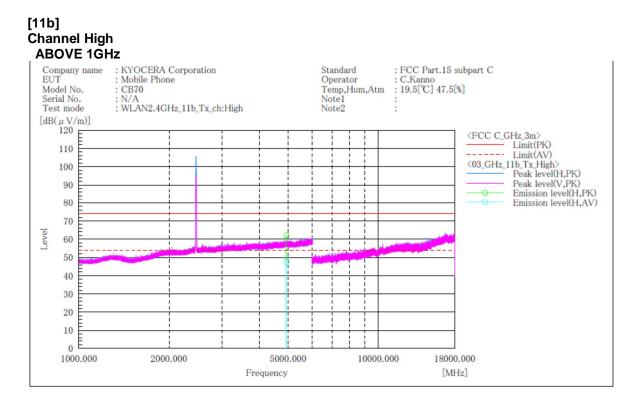


Final Result

No.	Frequency	(P)	Reading PK	Reading AV	c.f	Result PK	Result AV	Limit PK	Limit AV	Margin PK	Margin AV	Height	Angle
1	[MHz] 4874.000	Н	[dB(μV)] 51.7	[dB(μV)] 37.3	[dB(1/m)] 10.3	[dB(µV/m)] 62.0	[dB(µV/m)] 47.6	[dB(µV/m)] 74.0	[dB(µV/m)] 54.0	[dB] 12.0	[dB] 6.4	[cm] 226.0	[°] 11.0

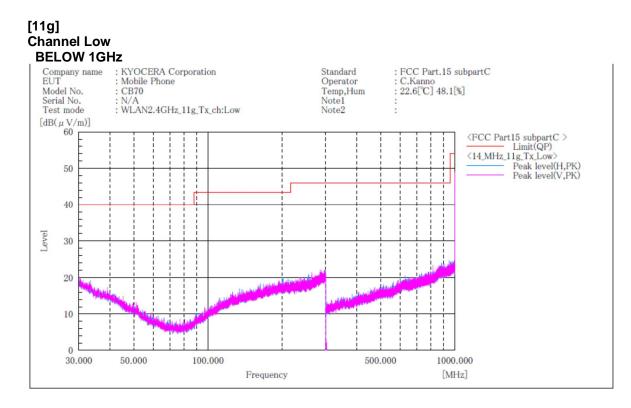
Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]


No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

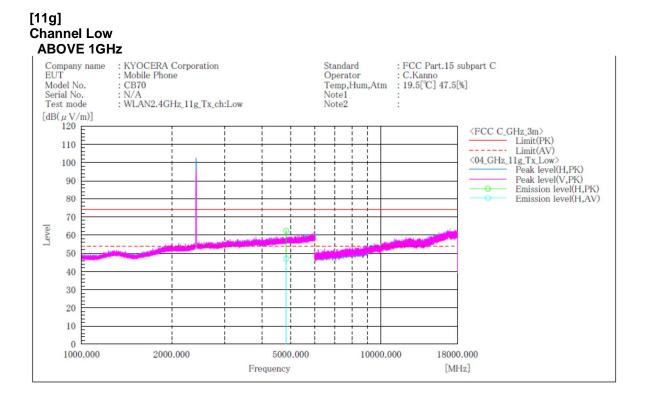
1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]



No.	Frequency	(P)	PK	Reading	c.f	Result PK	Result	Limit PK	Limit AV	Margin PK	Margin AV	Height	Angle
1	[MHz] 4924.000	Н	[dB(μV)] 51.7	[dB(μV)] 37.2		[dB(µV/m)] 62.1		[dB(µV/m)] 74.0	[dB(µV/m)] 54.0	[dB] 11.9	[dB] 6.4	[cm] 221.0	[°] 8.0

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

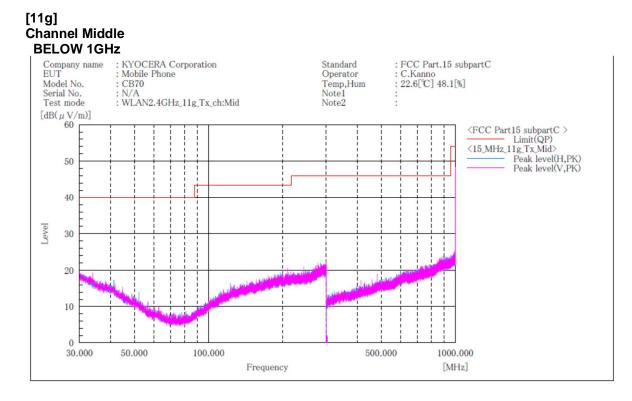


No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

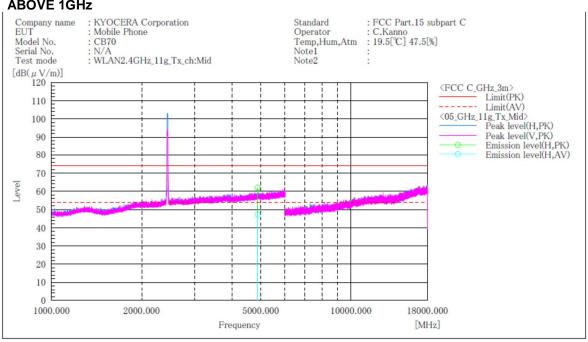
Japan


Final Result

No.	Frequency	(P)	PK	Reading AV	c.f	Result PK	Result AV	Limit PK	Limit	PK	Margin AV		Angle
1	[MHz] 4824.000	H	[dB(μV)] 52.2		[dB(1/m)] 10.1		[dB(µV/m)] 47.1		[dB(µV/m)] 54.0	[dB] 11.7	[dB] 6.9	[cm] 226.0	[°] 14.0

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

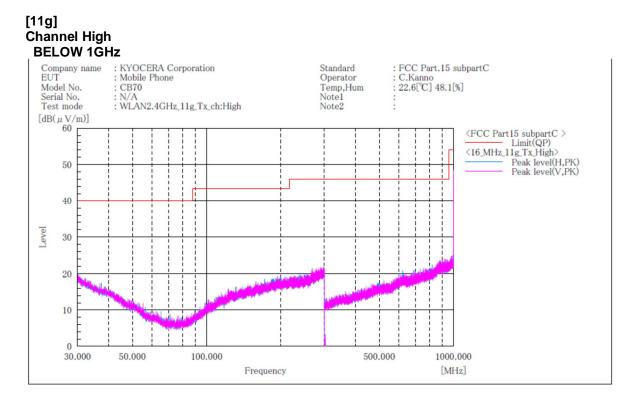

No.	Frequency	(P)	c.f	Height	Angle		
	[MHz]		[dB(1/m)]	[cm]	[°]		

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

Japan

[11g] Channel Middle ABOVE 1GHz


Final Result

No.	Frequency	(P)	Reading PK	Reading AV	c.f	Result PK	Result AV	Limit PK	Limit	Margin PK	Margin AV	Height	Angle
1	[MHz] 4874.000	Н	[dB(μV)] 51.7	[dB(μV)] 37.0	[dB(1/m)] 10.3		[dB(µV/m)] 47.3		[dB(µV/m)] 54.0	[dB] 12.0	[dB] 6.7	[cm] 228.0	[°] 14.0

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11g] **Channel High ABOVE 1GHz** Company name EUT : KYOCERA Corporation : Mobile Phone : FCC Part.15 subpart C : C.Kanno : 19.5[°C] 47.5[%] Standard Operator Temp,Hum,Atm : CB70 : N/A : WLAN2.4GHz_11g_Tx_ch:High Model No. Serial No. Test mode Note1 Note2 [dB(µV/m)] 120 F <FCC C_GHz_3m> Limit(PK)Limit(AV) <06_GHz_11g_Tx_High> Peak level(H,PK) Peak level(V,PK) Peak level(H,PK) Emission level(H,AV) 110 100 90 80 70 Level 60 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 [MHz] Frequency

Final Result

No.	Frequency	(P)	PK	Reading AV	c.f	Result PK	Result AV	Limit PK	Limit	PK	AV		Angle
1	[MHz] 4924.000	H	[dB(μV)] 51.8	[dB(μV)] 37.1			[dB(µV/m)] 47.5		[dB(µV/m)] 54.0	[dB] 11.8	[dB] 6.5	[cm] 224.0	[°] 11.0

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT20)] Channel Low **BELOW 1GHz** : KYOCERA Corporation : Mobile Phone : FCC Part.15 subpartC : C.Kanno : 22.6[°C] 48.1[%] Standard Company name EUT Operator Model No. Serial No. Test mode : CB70 : N/A Temp,Hum Note1 WLAN2.4GHz_11n(HT20)_Tx_ch:Low Note2 [dB(µV/m)] 60 <FCC Part15 subpartC > Limit(QP) <17_MHz_11n(HT20)_Tx_Low> Peak level(H,PK) Peak level(V,PK) 50 40 Level 30 20 10 0 30.000 50.000 100.000 1000.000 500.000 Frequency [MHz]

Final Result

No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT20)] **Channel Low ABOVE 1GHz** Company name EUT : KYOCERA Corporation : Mobile Phone : FCC Part.15 subpart C : C.Kanno : 19.5[℃] 47.5[%] Standard Operator : CB70 : N/A : WLAN2.4GHz_11n(HT20)_Tx_ch:Low Model No. Temp,Hum,Atm Serial No. Test mode Note1 Note2 [dB(µV/m)] 120 F <FCC C_GHz_3m> <FCC C_GHz_3m> Limit(PK) <07_GHz_11n(HT20)_Tx_Low> Peak level(H,PK) Peak level(V,PK) Emission level(H,PK) Emission level(H,AV) 110 100 90 80 70 level 60 50 40 30 20 10 0 2000.000 10000.000 18000.000 1000.000 5000.000 [MHz] Frequency

Final Result

No.	Frequency	(P)	Reading PK	Reading AV	c.f	Result PK	Result AV	Limit PK	Limit	Margin PK	Margin	Height	Angle
1	[MHz] 4824.000	Н	[dB(µV)] 51.8	[dB(μV)] 36.9	[dB(1/m)] 10.1	[dB(µV/m)] 61.9	[dB(µV/m)] 47.0	[dB(µV/m)] 74.0	[dB(µV/m)] 54.0	[dB] 12.1	[dB] 7.0	[cm] 225.0	[°] 15.0

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

[11n(HT20)] Channel Middle **BELOW 1GHz** : KYOCERA Corporation : Mobile Phone : FCC Part.15 subpartC : C.Kanno : 22.6[°C] 48.1[%] Standard Company name EUT Model No. Serial No. Test mode Operator : CB70 : N/A Temp,Hum Note1 : WLAN2.4GHz_11n(HT20)_Tx_ch:Mid Note2 [dB(µV/m)] 60 <FCC Part15 subpartC > Limit(QP) <18_MHz_11n(HT20)_Tx_Mid> Peak level(H,PK) Peak level(V,PK) 50 40 Level 30 20 10 0 30.000 50.000 100.000 1000.000 500.000 Frequency [MHz]

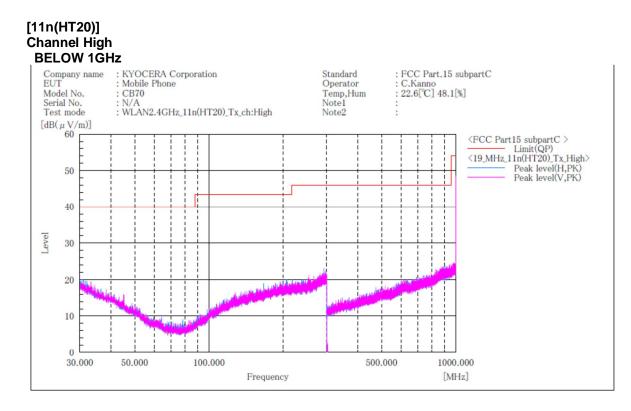
Final Result

No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT20)] Channel Middle **ABOVE 1GHz** Company name EUT : KYOCERA Corporation : Mobile Phone : FCC Part.15 subpart C : C.Kanno : 19.5[℃] 47.5[%] Standard Operator Model No. : CB70 Temp,Hum,Atm Serial No. Test mode : N/A : WLAN2.4GHz_11n(HT20)_Tx_ch:Mid Note1 Note2 [dB(µV/m)] 120 <FCC C_GHz_3m> CPCC C_GHz_shi/ Limit(PK) ----- Limit(AV) <08_GHz_11n(HT20)_Tx_Mid> 110 100 In(H120)_1X_MIG/ Peak level(H,PK) Peak level(V,PK) Emission level(H,PK) Emission level(H,AV) 90 80 70 Level 60 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 [MHz] Frequency


Final Result

No.	Frequency	(P)	Reading PK	Reading AV	c.f	Result PK	Result AV	Limit PK	Limit AV	Margin PK			
1	[MHz] 4874.000	H	[dB(μV)] 51.5	[dB(μV)] 37.1	[dB(1/m)] 10.3				[dB(µV/m)] 54.0	[dB] 12.2	[dB] 6.6	[cm] 224.0	[°] 15.0

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

No.	Frequency	(P)	c.f	Height	Angle	
	[MHz]		[dB(1/m)]	[cm]	[°]	

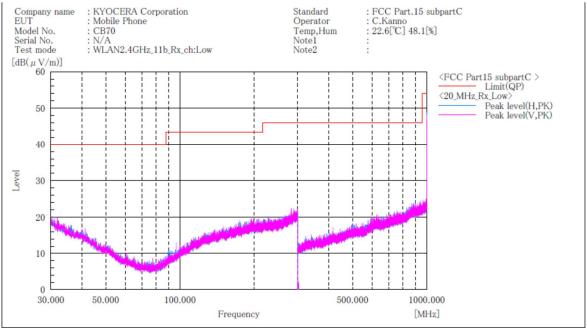
Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

[11n(HT20)] **Channel High ABOVE 1GHz** : KYOCERA Corporation : Mobile Phone : CB70 : N/A : WLAN2.4GHz_11n(HT20)_Tx_ch:High Company name Standard : FCC Part.15 subpart C Operator Temp,Hum,Atm : C.Kanno : 19.5[°C] 47.5[%] EUT Model No. Serial No. Test mode Note1 Note2 [dB(µV/m)] 120 F <FCC C_GHz_3m> Limit(PK)Limit(AV) <09_GHz_11n(HT20)_Tx_High> Peak level(V,PK) Peak level(V,PK) Beak level(V,PK) Beak size level(H,AV) 110 100 90 80 70 Level 60 50 40 30 20 10 0 1000.000 2000.000 5000.000 10000.000 18000.000 Frequency [MHz]

Final Result

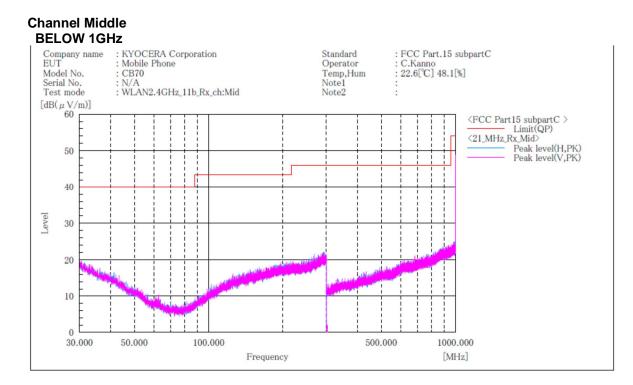
No.	Frequency	(P)	Reading PK	Reading	c.f	Result PK	Result AV	Limit PK	Limit AV	Margin PK	Margin AV	Height	Angle
1	[MHz] 4924.000	Н	[dB(μV)] 51.8				[dB(µV/m)] 47.4		[dB(µV/m)] 54.0	[dB] 11.8	[dB] 6.6	[cm] 224.0	[°] 14.0


Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable - Amp)]

4.5.4.2 Receive mode

Channel Low BELOW 1GHz


Final Result

No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

Channel High BELOW 1GHz Company name EUT : KYOCERA Corporation : Mobile Phone : FCC Part.15 subpartC : C.Kanno : 22.6[°C] 48.1[%] Standard Operator Temp,Hum Model No. : CB70 : N/A Serial No. Test mode Note1 Note2 : WLAN2.4GHz_11b_Rx_ch:High [dB(µV/m)] 60 <FCC Part15 subpartC > Limit(QP) <22_MHz.Rx.High> Peak level(H,PK) Peak level(V,PK) 50 40 Level 30 20 10 0 Г 30.000 50.000 100.000 500.000 1000.000 Frequency [MHz]

Final Result

No.	Frequency	(P)	c.f	Height	Angle
	[MHz]		[dB(1/m)]	[cm]	[°]

Note:

1. Emission Level (Margin) = Limit - [Reading + Factor (Antenna + Cable – Amp)]

2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

4.6 Restricted Band of Operation

4.6.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

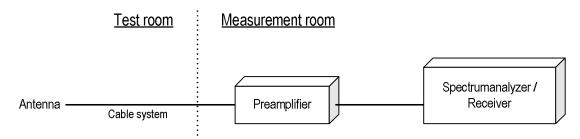
Test was applied by following conditions.

Test method Test place EUT was placed on Antenna distance	:	ANSI C63.10 3m Semi-anechoic chamber Styrofoam table / (W) $1.0 \times (D) 1.0 \times (H) 0.8 \text{ m}$ (below 1 GHz) Styrofoam table / (W) $0.6 \times (D) 0.6 \times (H) 1.5 \text{ m}$ (above 1 GHz) 3m
Spectrum analyzer setting - Peak - Average	:	RBW=1 MHz, VBW=3 MHz, Span=Arbitrary setting, Sweep=auto RBW=1 MHz, VBW=1kHz,3kHz, Span=0 Hz, Sweep=auto Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
IEEE802.11b	96.12	990	40	1.010	3kHz
IEEE802.11g	96.94	1392	44	0.718	1kHz
IEEE802.11n(HT20)	96.55	1286	46	0.778	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements


were confirmed against 30 m open are test site.

Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

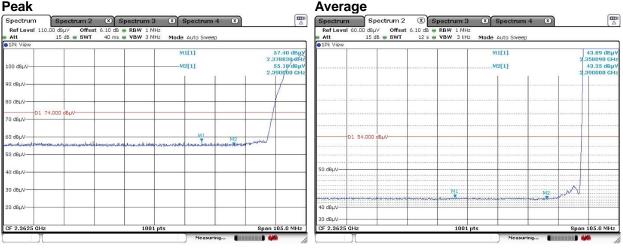
4.6.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

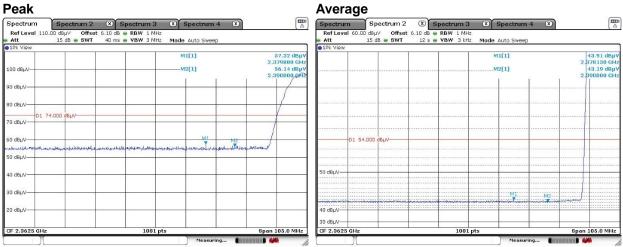
4.6.3 Measurement Result

[IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

Channel	Frequency [MHz]	Results Chart	Result
Low	2412	See the Trace Data	Pass
High	2462	See the Trace Data	Pass

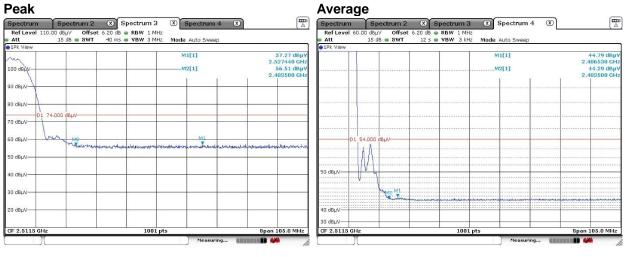

4.6.4 Test data

Date		24-October-2019				
Temperature	:	21.4 [°C]				
Humidity	:	42.3 [%]	Test engineer	:		
Test place	:	Shielded room No.4	-		Tadahiro Seino	

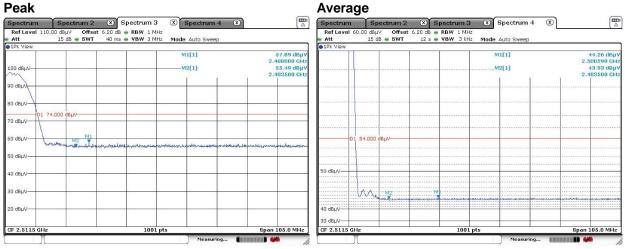


[IEEE802.11b]

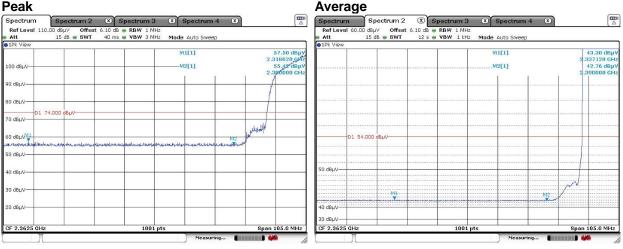
Channel Low Horizontal Peak



Vertical Peak



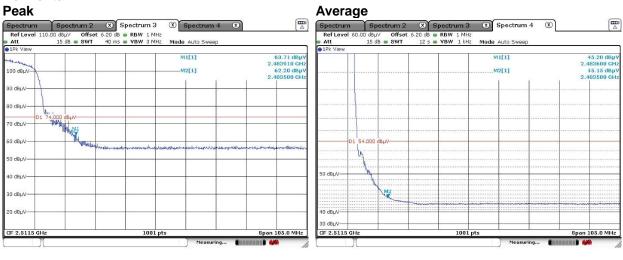
Channel High Horizontal


Vertical

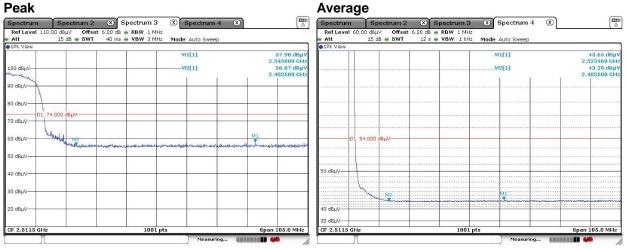


[IEEE802.11g]

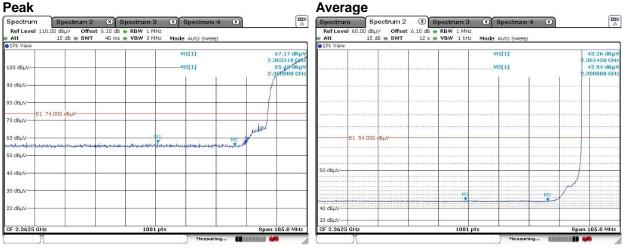
Channel Low Horizontal Peak



Vertical Peak

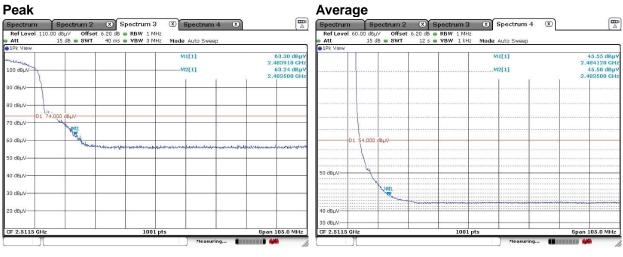


Channel High Horizontal

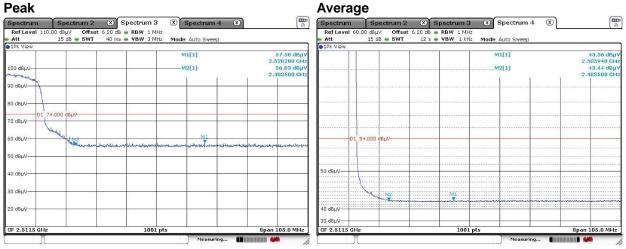

Vertical

[IEEE802.11n (HT20)]

Channel Low Horizontal



Vertical Peak

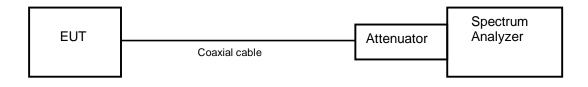

Peak Average Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Spectrum4 Spectrum4 Spectrum4</ Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 4 Ref Level 60.00 dbµ/ Offset 6.10 db = RBW 1 MHz 15 db = SWT 12 s = VBW 1 MHz Att 15 db = SWT 12 s = VBW 1 MHz Mode Auto Sweep 42.99 dBµV 985260 GHz 57.39 dBµ 2.359850 GH 55.22 dBµ 2.390000 QH M1[1] M1[1] -M2[1] 42.77 dBµ .390000 GH 100 dBuV M2[1] 90 dBµV 80 dBµV D1 74.000 dBµV-70 dBuV-60 dBµV D1 54.000 ماسدل 50 dBµV 0 dBµV 40 dBµ\ 30 dBuV M1 M2 20 dBµV-40 dBµV 30 dBµV-CF 2.3625 100 15.0 MHz F 2.3625 GH 1001 pt 105.0 MHz The subscript of the local division of the l STREET.

Channel High Horizontal

Vertical

4.7 Transmitter Power Spectral Density

4.7.1 Measurement procedure


[FCC 15.247(e), KDB 558074 D01 v05r02, Section 8.4]

The peak power is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

The spectrum analyzer is set to;

- a) Span = 1.5 times the 6 dB bandwidth.
- b) RBW = 3kHz 100kHz.
- c) VBW \geq 3 x RBW.
- d) Sweep time = auto-couple.
- e) Detector = peak.
- f) Trace mode = max hold.

- Test configuration

4.7.2 Limit

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band.

4.7.3 Measurement result

Date	:	23-October-2019			
Temperature	:	20.6 [°C]			
Humidity	:	60.8 [%]	Test engineer	:	
Test place	:	Shielded room No.4			Taiki Watanabe

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-17.53	10.63	-6.90	8.00	14.90	PASS
Middle	2437	-16.56	10.63	-5.93	8.00	13.93	PASS
High	2462	-16.68	10.63	-6.05	8.00	14.05	PASS

Calculation;

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

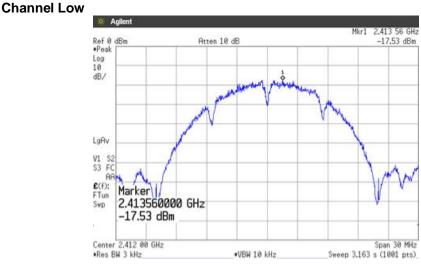
[IEEE802.11g]

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-20.02	10.63	-9.39	8.00	17.39	PASS
Middle	2437	-21.35	10.63	-10.72	8.00	18.72	PASS
High	2462	-21.36	10.63	-10.73	8.00	18.73	PASS

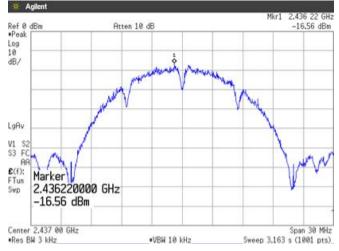
Calculation;

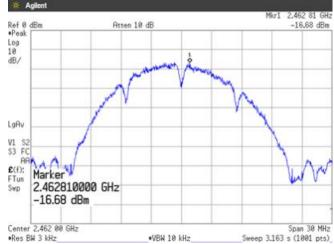
Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

[IEEE802.11n (HT20)]

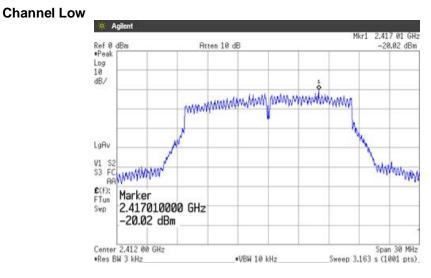

Channel	Center Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dBm)	Result
Low	2412	-22.23	10.63	-11.60	8.00	19.60	PASS
Middle	2437	-22.26	10.63	-11.63	8.00	19.63	PASS
High	2462	-22.50	10.63	-11.87	8.00	19.87	PASS

Calculation;

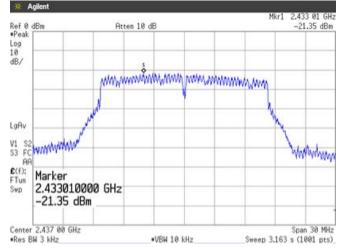

Transmitter Power Spectral Density Level (Margin) = Limit – (Reading + Factor)

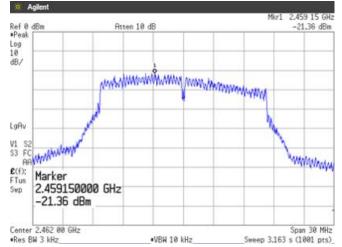

10.4 Trace data [IEEE802.11b]

Channel Middle

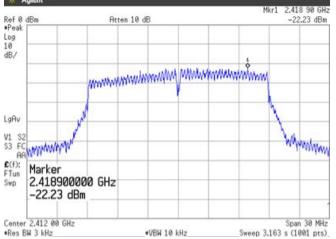


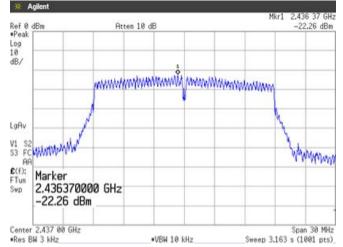
Channel High



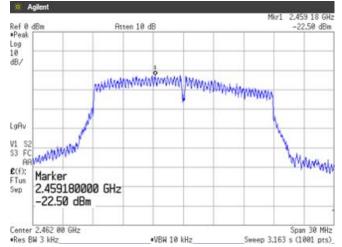

[IEEE802.11g]

Channel Middle


Channel High



[IEEE802.11n (HT20)]



Channel Middle

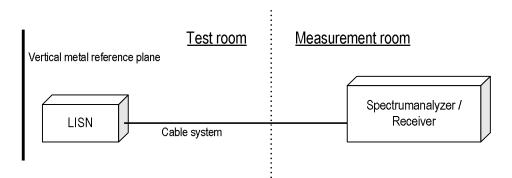
Channel High

4.8 AC Power Line Conducted Emissions

4.8.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.


Test method		ANSI C63.10
Frequency range	:	0.15 MHz to 30 MHz
Test place	:	3m Semi-anechoic chamber
EUT was placed on	:	FRP table / (W) 2.0 × (D) 1.0 × (H) 0.8 m
Vertical Metal Reference Plane	:	(W) 2.0 × (H) 2.0 m, 0.4 m away from EUT
Test receiver setting		
- Detector	:	Quasi-peak, Average
- Bandwidth	:	9 kHz

EUT and peripherals are connected to $50\Omega/50 \mu$ H Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

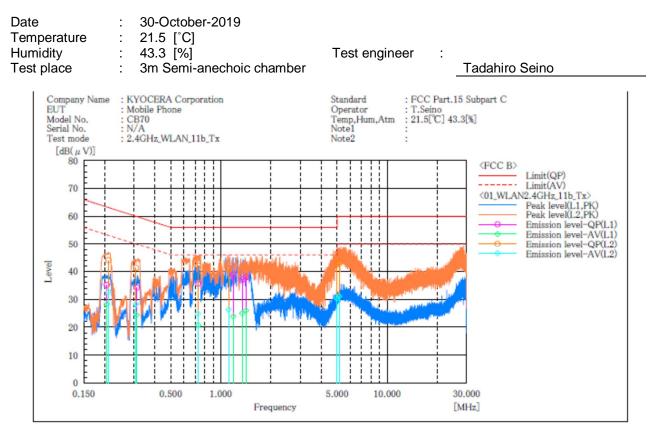
EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

4.8.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example: Limit @ 0.403 MHz: 57.8 dB μ V(Quasi-peak) : 47.8 dB μ V(Average) (Quasi peak)Reading = 22.7 dB μ V c.f. = 10.4 dB Emission level = 22.7 + 10.4 = 33.1 dB μ V Margin = 57.8 - 33.1 = 24.7 dB (Average) Reading = 6.5 dB μ V c.f. = 10.4 dB Emission level = 6.5 + 10.4 = 16.9 dB μ V Margin = 47.8 - 16.9 = 30.9 dB



4.8.3 Limit

Frequency	Limit				
[MHz]	QP [dBuV]	AV [dBuV]			
0.15-0.5	66-56*	56-46*			
0.5-5	56	46			
5-30	60	50			

*: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

4.8.4 Test data

Final Result

	L1 Phase	-								
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
		QP	AV		QP	AV	QP	AV	QP	AV
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]
1	0.206	24.8	17.9	10.4	35.2	28.3	63.4	53.4	28.2	25.1
2	0.312	23.9	14.1	10.3	34.2	24.4	59.9	49.9	25.7	25.5
3	0.732	25.4	10.5	10.3	35.7	20.8	56.0	46.0	20.3	25.2
4	1.188	28.5	13.5	10.4	38.9	23.9	56.0	46.0	17.1	22.1
2 3 4 5 6	1.343	26.6	14.6	10.4	37.0	25.0	56.0	46.0	19.0	21.0
6	1.419	27.6	15.7	10.4	38.0	26.1	56.0	46.0	18.0	19.9
	LO DI									
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
		QP	AV		QP	AV	QP	AV	QP	AV
	[MHz]	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB]	[dB]
1	0.211	33.7	22.3	10.4	44.1	32.7	63.2	53.2	19.1	20.5
1 2 3	0.309	31.0	18.0	10.3	41.3	28.3	60.0	50.0	18.7	21.7
3	0.730	31.8	14.6	10.3	42.1	24.9	56.0	46.0	13.9	21.1
45	1.114	30.6	16.0	10.4	41.0	26.4	56.0	46.0	15.0	19.6
5	4.994	32.3	19.8	10.5	42.8	30.3	56.0	46.0	13.2	15.7
5	4.994 5.138		19.8 20.6	10.5 10.5	42.8 43.3	30.3 31.1	56.0 60.0	46.0 50.0	13.2 16.7	15.7 18.9

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.8 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.1 dB
Radiated emission (30 MHz – 1000 MHz)	±4.9 dB
Radiated emission (1 GHz – 6 GHz)	±4.8 dB
Radiated emission (6 GHz – 18 GHz)	±5.1 dB
Radiated emission (18 GHz – 40 GHz)	±5.8 dB
Radio Frequency	±1.4 * 10 ⁻⁸
RF power, conducted	±0.6 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge		Measured value and standard limit value
PASS	Case1	d limit value +Uncertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled. Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.
FAIL	Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration. Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

 Address:
 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

 Phone:
 +81-238-28-2881

 Fax:
 +81-238-28-2888

Accreditation and Registration

NVLAP LAB CODE: 200306-0

VLAC Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada

Site number	Facility	Expiration date
4224A-4	3 m Semi-anechoic chamber	27-November-2020
4224A-5	10 m Semi-anechoic chamber No. 1	27-November-2020
4224A-6	10 m Semi-anechoic chamber No. 2	14-December-2019

VCCI Council

Registration number	Expiration date
A-0166	03-July-2021

Appendix A. Test Equipment

Antenna port conducted test

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	31-Aug-2020	05-Aug-2019
Attenuator	Weinschel	56-10	J4180	31-Jul-2020	18-Jul-2019
Power meter	ROHDE&SCHWARZ	NRP2	103269	31-Jul-2020	18-Jul-2019
Power sensor	ROHDE&SCHWARZ	NRP-Z81	102467	31-Jul-2020	18-Jul-2019

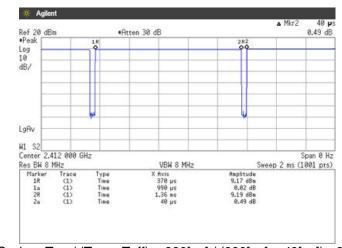
Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2020	25-Sep-2019
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	31-Aug-2020	05-Aug-2019
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101731	31-Dec-2019	07-Dec-2018
Preamplifier	SONOMA	310	372170	30-Sep-2020	26-Sep-2019
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	31-Mar-2020	07-Mar-2019
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	31-Dec-2019	17-Dec-2018
Biconical antenna	Schwarzbeck	VHA9103/BBA9106	VHA91031308	31-May-2020	16-May-2019
Log periodic antenna	Schwarzbeck	UHALP9108A	0728	31-May-2020	16-May-2019
Attenuator	TAMAGAWA.ELEC	CFA-01/6dB	N/A(S465)	31-May-2020	17-May-2019
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2020	17-Jul-2019
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Jan-2020	17-Jan-2019
Attenuator	AEROFLEX	26A-10	081217-08	31-Jan-2020	17-Jan-2019
Double ridged guide antenna	ETS LINDGREN	3117	00224193	31-Jan-2020	23-Jan-2019
Attenuator	Agilent Technologies	8491B	MY39268633	31-Mar-2020	08-Mar-2019
DRGH antenna	A.H.Systems Inc.	SAS-574	469	31-Aug-2020	28-Aug-2019
Preamplifier	TSJ	MLA-1840-B03-35	1240332	31-Aug-2020	28-Aug-2019
Notch filter	Micro-Tronics	BRM50702	045	31-May-2020	16-May-2019
		SUCOFLEX104/9m	MY30037/4	31-Jan-2020	16-Jan-2019
		SUCOFLEX104/1m	my24610/4	31-Jan-2020	16-Jan-2019
Microwave cable	HUBER+SUHNER	SUCOFLEX104/8m	SN MY30031/4	31-Jan-2020	16-Jan-2019
MICTOWAVE CADIE	HUBER+SUHINER	SUCOFLEX104	MY32976/4	31-Jan-2020	16-Jan-2019
		SUCOFLEX104/1.5m	MY19309/4	31-Jan-2020	16-Jan-2019
		SUCOFLEX104/7m	41625/6	31-Jan-2020	16-Jan-2019
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V5.6.0	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2020	14-May-2019
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2020	13-May-2019

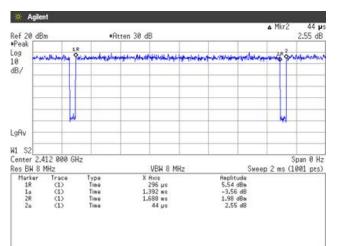
Conducted emission at mains port

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2020	25-Sep-2019
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Jan-2020	17-Jan-2019
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	31-May-2020	16-May-2019
Coaxial cable	FUJIKURA	5D-2W/4m	N/A (S350)	31-Jan-2020	16-Jan-2019
Coaxial cable	FUJIKURA	5D-2W/1m	N/A (S193)	31-Jan-2020	16-Jan-2019
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Jan-2020	16-Jan-2019
PC	DELL	DIMENSION	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/CE-AJ	0611193/V5.4.11	N/A	N/A

*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

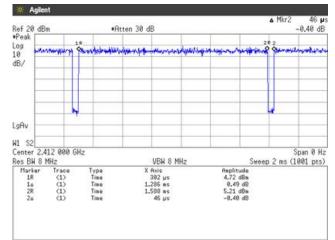


Appendix B. Duty Cycle


[Plot & Calculation]

11b

11g



Duty Cycle = Ton / (Ton + Toff) = 990[µs] / (990[µs] + 40[µs]) = 96.12[%]

Duty Cycle = Ton / (Ton + Toff) = 1392[µs] / (1392[µs] + 44[µs]) =96.94[%]

11n (HT20)

Duty Cycle = Ton / (Ton + Toff) = 1286[µs] / (1286[µs] + 46[µs]) =96.55[%]