TEST REPORT

DT&C Co., Ltd.									
ΨI	Dt&C		n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 : 031-321-2664, Fax : 031-321-1664						
1. Report No	1. Report No : DRRFCC1805-0059								
2. Customer									
• Name :	Kyocera Corporatio	n							
 Address 	: Yokohama Office	2-1-1 Kagahara, Tsuz	uki-ku Yokohama-shi, Kanagawa, Japan						
3. Use of Re	port : FCC Original	Grant							
4. Product N	ame / Model Name	: Tablet / KC-T301DT							
FCCID : J	OYCA02								
5. Test Meth	od Used : IEEE 152	8-2013 , FCC SAR K	DB Publications (Details in test report)						
Test Spec	ification : CFR §2.1	093							
6. Date of Te	est : 2018-05-16								
7. Testing Er	nvironment : Refer to	o attached test report							
8. Test Resu	It : Refer to attache	d test report.							
	Tested by	/	Technical Manager						
Affirmation	Name : HoSik Sim	(Signature)	Name : HakMin Kim						
		23.	only to the sample supplied by applicant and						
the use of this		ed other than its purpose vithout the written appro	e. This test report shall not be reproduced except val of DT&C Co., Ltd.						
	2018 .05 .30 .								
		2010.001	· · ·						
		DT&C Co	Ltd.						
			-,						

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

1

Test Report Version

Test Report No.	Date	Description
DRRFCC1805-0059	May. 30, 2018	Initial issue

Table of Contents

1.DESCRIPTION OF DEVICE	4
1.1 Guidance Applied	5
1.2 Device Overview	
1.3 Nominal and Maximum Output Power Specifications	
1.4 DUT Antenna Locations	6
1.5 SAR Test Configurations and Exclusions	7
1.6 Power Reduction for SAR	8
1.7 Device Serial Numbers	8
2. INTROCUCTION	
3. DESCRIPTION OF TEST EQUIPMENT	10
3.1 SAR MEASUREMENT SETUP	10
3.2 EX3DV4 Probe Specification	11
3.3 Probe Calibration Process	12
3.3.1 E-Probe Calibration	12
3.4 Data Extrapolation	13
3.5 ELI PHANTOM	
3.6 Device Holder for Transmitters	
3.7 Muscle Simulation Mixture Characterization	
3.8 SAR TEST EQUIPMENT	
4. TEST SYSTEM SPECIFICATIONS	
5. SAR MEASUREMENT PROCEDURE	
5.1 Measurement Procedure	
6. TEST CONFIGURATION POSITIONS FOR HANDSETS	
6.1 Device Holder	
6.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02	
7. RF EXPOSURE LIMITS	
8. FCC MEASUREMENT PROCEDURES	
8.1 Measured and Reported SAR	
8.2 SAR Testing with 802.11 Transmitters	
8.2.1 General Device Setup	
8.2.2 Initial Test Position Procedure	
8.2.3 2.4 GHz SAR Test Requirements	
8.2.4 OFDM Transmission Mode and SAR Test Channel Selection	
8.2.5 Initial Test Configuration Procedure	
8.2.6 Subsequent Test Configuration Procedures	
9. RF CONDUCTED POWERS.	
9.1 WLAN Conducted Powers 9.2 Bluetooth Conducted Powers	
10. SYSTEM VERIFICATION	
10.1 Tissue Verification 10.2 Test System Verification	
10.2 Test System Vernication	
11.1 Standalone Body SAR Results	
11.2 SAR Test Notes	
12. MEASUREMENT UNCERTAINTIES	
12. MEASUREMENT UNCERTAINTIES	
13. CONCLUSION	
Attachment 1. – Probe Calibration Data	
Attachment 2. – Dipole Calibration Data	
Attachment 3. – SAR SYSTEM VALIDATION	

1.DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

General Information

h								
EUT type	Tablet							
FCC ID	JOYCA02							
Equipment model name	KC-T301DT							
Equipment add model name	N/A							
Equipment serial no.	Identical prototype							
Mode(s) of Operation	2.4 G W-LAN (802.1	1b/g/n HT20), Bluetooth						
	Band	Mode	Bandwidth	Frequency				
TX Frequency Range	2.4 GHz W-LAN	802.11b/g/n	HT20	2412 ~ 2462 MHz				
	Bluetooth	-	-	2402 ~ 2480 MHz				
RX Frequency Range	2.4 GHz W-LAN	802.11b/g/n	HT20	2412 ~ 2462 MHz				
	Bluetooth	-	-	2402 ~ 2480 MHz				
	Band		Reported SAR					
Equipment Class			1g SAR (W/kg)					
			Body					
DTS	2.4	GHz W-LAN		0.91				
DSS		Bluetooth		0.67				
FCC Equipment Class	Part 15 Spread Spec Digital Transmission	ctrum Transmitter(DSS) System(DTS)						
	2018-05-16~ 2018-05-16							
Date(s) of Tests	2018-05-16~ 2018-0	5-16						
Date(s) of Tests Antenna Type	2018-05-16~ 2018-0 Internal Type Antenn							

Dt&C

1.1 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR)
- FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance)
- FCC KDB Publication 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB Publication 690783 D01 SAR Listings on Grants v01r03
- FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 RF Exposure Reporting v01r02

1.2 Device Overview

Equipment Class	Mode	Operating Modes	Tx Frequency	
DTS	2.4 GHz WLAN	Data	2412 ~ 2462 MHz	
DSS/DTS	Bluetooth	Data	2402 ~ 2480 MHz	

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06

(A) 2.4G WLAN

Band & M	Modulated Average[dBm]	
IEEE 802.11b	Maximum	11.0
(2.4 GHz)	Nominal	9.0
Ch. 1, 11	Minimum	4.0
IEEE 802.11b	Maximum	14.0
(2.4 GHz)	Nominal	12.0
Ch. 2 ~ 10	Minimum	7.0
IEEE 802.11g	Maximum	11.0
(2.4 GHz)	Nominal	9.0
Ch. 1, 11	Minimum	4.0
IEEE 802.11g	Maximum	13.0
(2.4 GHz)	Nominal	11.0
Ch. 2 ~ 10	Minimum	6.0
IEEE 802.11n HT20	Maximum	11.0
(2.4 GHz)	Nominal	9.0
Ch. 1, 11	Minimum	4.0
IEEE 802.11n HT20	Maximum	13.0
(2.4 GHz)	Nominal	11.0
Ch. 2 ~ 10	Minimum	6.0

(B) BT

Band	Modulated Average[dBm]	
	Maximum	11.3
Bluetooth 1 Mbps	Nominal	9.3
Тторо	Minimum	3.5
	Maximum	11.3
Bluetooth 2 Mbps	Nominal	9.3
2 10000	Minimum	3.5
	Maximum	11.3
Bluetooth 3 Mbps	Nominal	9.3
o mopo	Minimum	3.5
	Maximum	2.5
Bluetooth LE	Nominal	0.5
	Minimum	-5.0

1.4 DUT Antenna Locations

A diagram showing the location of the device of the device antenna can be found in JOYCA02_Antenna Location.pdf.

1.5 SAR Test Configurations and Exclusions

(A) BT

Per FCC KDB 447498 D01v06, **the 1g SAR exclusion threshold for distances < 50 mm** is defined by the following equation:

 $\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$

Band	Mode	Equation	Result	SAR exclusion threshold	Required SAR
Dee	Bluetooth	[(13/5)* √2.480]	4.2	3.0	0
DSS	Bluetooth LE	[(2/5)* √2.480]	0.6	3.0	X

Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) SAR Exclusion Positions

(Top Side Position)

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances < 50 mm is defined by the following equation:

Max Power of Channel (mW)	$\sqrt{Frequency(GHz)} \le 3.0$
Test Separation Dist (mm)	$\sqrt{Prequency(0112)} \leq 3.0$

Band	Mode	Equation	Result	SAR exclusion threshold	Determine of Body SAR
DTS	2.4 GHz W-LAN	[(25/8.3)* \(\sqrt{2.462}])	4.7	3.0	0
DSS	Bluetooth	[(13/8.3)* √2.480]	2.5	3.0	X

(Bottom Side Position)

Per FCC KDB 447498 D01v06, the SAR exclusion threshold for distances > 50 mm is defined by the following equation: (The SAR test exclusion threshold is determined according to the following, and as illustrated in KDB 447498 AppendixB)

- b) For 100 MHz to 6 GHz and *test separation distances* > 50 mm, the 1-g and 10-g *SAR test exclusion thresholds* are determined by the following (also illustrated in Appendix B):³²
 - 1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm) · (f_(MHz)/150)]} mW, for 100 MHz to 1500 MHz
 - {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤ 6 GHz

Band	Mode	Equation	Calculated Threshold Power [mW]	Maximum Allowed Power [mW]	Determine of Body SAR
DTS	2.4 GHz W-LAN	[(96)+(165.7-50)*10]	1253	25	X
DSS	Bluetooth	[(96)+(165.7-50)*10]	1253	13	X

(Right Side Position)

Per FCC KDB 447498 D01v06, the SAR exclusion threshold for distances > 50 mm is defined by the following equation: (The SAR test exclusion threshold is determined according to the following, and as illustrated in KDB 447498 Appendix b)

- b) For 100 MHz to 6 GHz and *test separation distances* > 50 mm, the 1-g and 10-g *SAR test exclusion thresholds* are determined by the following (also illustrated in Appendix B):³²
 - 1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance $-50 \text{ mm} \cdot (f_{(MHz)}/150)$]} mW, for 100 MHz to 1500 MHz
 - 2) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤ 6 GHz

Band	Mode	Equation	Calculated Threshold Power [mW]	Maximum Allowed Power [mW]	Determine of Body SAR
DTS	2.4 GHz W-LAN	[(96)+(157.4-50)*10]	1170	25	X
DSS	Bluetooth	[(96)+(157.4-50)*10]	1170	13	X

(Left Side Position)

Per FCC KDB 447498 D01v06, the SAR exclusion threshold for distances > 50 mm is defined by the following equation: (The SAR test exclusion threshold is determined according to the following, and as illustrated in KDB 447498 Appendix b)

- b) For 100 MHz to 6 GHz and *test separation distances* > 50 mm, the 1-g and 10-g *SAR test exclusion thresholds* are determined by the following (also illustrated in Appendix B):³²
 - 1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance $-50 \text{ mm} \cdot (f_{(MHz)}/150)$]} mW, for 100 MHz to 1500 MHz
 - 2) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and ≤ 6 GHz

Band	Mode	Equation	Calculated Threshold Power [mW]	Maximum Allowed Power [mW]	Determine of Body SAR
DTS	2.4 GHz W-LAN	[(96)+(95.6-50)*10]	552	25	X
DSS	Bluetooth	[(96)+(95.6-50)*10]	552	13	X

Table 1.5Determined EUT sides for SAR Testing

Mode	EUT Sides for SAR Testing					
Mode	Тор	Bottom	Front	Rear	Right	Left
2.4 GHz W-LAN (802.11b)	0	Х	Х	0	Х	Х
Bluetooth	Х	Х	Х	0	Х	Х

Note: Per FCC KDB 616217 D04v01r01, particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v06.

1.6 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7 Device Serial Numbers

Band & Mode	Body Serial Number
2.4 GHz WLAN	FCC #1
Bluetooth	FCC #1

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU)absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

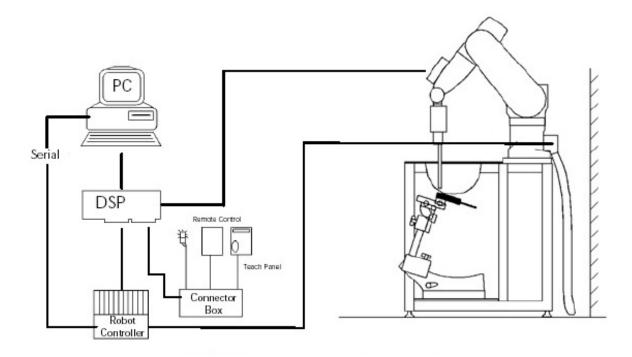
NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

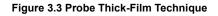
3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.




Figure 3.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

3.2 EX3DV4 Probe Specification

Calibration	In air from 10 MHz to 6 GHz In brain and muscle simulating tissue at Frequer 2450 MHz, 2600 MHz, 5200 MHz, 5300 MHz, 5500	
Frequency	10 MHz to 6 GHz	
Linearity	± 0.2 dB(30 MHz to 6 GHz)	
Dynamic	10 μW/g to > 100 mW/g	54.7
Range	Linearity : ±0.2dB	Δ- BEAM
Dimensions	Overall length : 337 mm	Figure 3.2 Triangular Probe Configurations
Tip length	20 mm	
Body diameter	12 mm	DT.
Tip diameter	2.5 mm	e l
Distance from p	robe tip to sensor center 1.0 mm	
Application	SAR Dosimetry Testing	

Compliance tests of mobile phones

DAE System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 Probe Calibration Process

3.3.1 E-Probe Calibration

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

SAR =
$$C\frac{\Delta T}{\Delta t}$$

where:

where:

- $\mathsf{SAR} = \frac{\left|\mathsf{E}\right|^2 \cdot \sigma}{\rho}$
- σ = simulated tissue conductivity,
 - Tissue density (1.25 g/cm³ for brain tissue)

 $\Delta t =$

С

heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

exposure time (30 seconds),

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

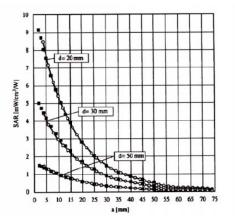


Figure 3.4E-Field and Temperature Measurements at 900MHzMeasurements at 1800MHz

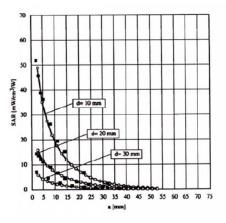


Figure 3.5 E-Field and Temperature

= compensated signal of channel i (i = x,y,z)

3.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 Cf = crest factor of exciting field (DASY parameter)
 dcp_{i} = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

٧.

with

E-field probes:

$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^{2}$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_{i} = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{2} \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g

$$E_{tot} = \text{total field strength in V/m}$$

$$\sigma = \text{conductivity in [mho/m] or [Siemens/m]}$$

$$\rho = \text{equivalent tissue density in g/cm}^{3}$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{prov} = \frac{E_{tot}^{2}}{3770}$$
 with
$$P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^{2}$$
$$= \text{total electric field strength in V/m}$$

3.5 ELI PHANTOM

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6)

Figure 3.6 ELI Phantom

ELI Phantom Specification:

ConstructionELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4,
but has reinforced top structure. ELI V5.0, released in August 2014, has the same shell
geometry as ELI4 but offers increased long term stability. A cover prevents evaporation of the
liquid. Reference markings on the phantom allow the complete setup of all predefined
phantom positions and measurement grids by teaching three points with the robot. The liquid
depth is maintained at a minimum depth of 15cm to minimize reflections from the upper
surface.Shell Thickness2.0 ± 0.2 mm

Shell Hilckness	2.0 ± 0.2 mm
Filling Volume	Approx. 30 liters
Dimensions	Major axis: 600 mm
	Minor axis: 400 mm

3.6 Device Holder for Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device (Body-Worn) enables testing of tansmitter devices according to IEC 62209-2 specifications. The device holder can be locked for positioning at flat phantom section. Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power),the hand is omitted during the tests.

Figure 3.7 Mounting Device

3.7 Muscle Simulation Mixture Characterization

The muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.8 Simulated Tissue

Ingredients	Frequency (MHz)
(% by weight)	2450
Tissue Type	Body
Water	73.40
Salt (NaCl)	0.060
Sugar	-
HEC	-
Bactericide	-
Triton X-100	-
DGBE	26.54
Diethylene glycol hexyl ether	-
Polysorbate (Tween) 80	-
Target for Dielectric Constant	52.7
Target for Conductivity (S/m)	1.95

Table3.1 Compositi	ion of the Tissue Ec	quivalent Matter
--------------------	----------------------	------------------

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]		oxy) ethanol]
Triton X-100(ultra pure):	Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether		

3.8 SAR TEST EQUIPMENT

	Table 3.2 Test Equipment Calibration						
	Туре	Manufacturer	Model	Cal. Date	Next.Cal.Date	S/N	
\square	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room	
\bowtie	Robot	SCHMID	TX90XL	N/A	N/A	F13/5RR2A1/A/01	
\bowtie	Robot Controller	SCHMID	CS8C	N/A	N/A	F13/5RR2A1/C/01	
\bowtie	Joystick	SCHMID	N/A	N/A	N/A	D21142605A	
\square	IntelCorei7-3770 3.40 GHz Windows 7 Professional	N/A	N/A	N/A	N/A	N/A	
\bowtie	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA	
\bowtie	Device Holder	SCHMID	Holder	N/A	N/A	SD000H01HA	
\bowtie	2mm Oval Phantom ELI5	SCHMID	QDIVA001BB	N/A	N/A	1223	
\boxtimes	Data Acquisition Electronics	SCHMID	DAE4V1	2017-07-24	2018-07-24	1335	
\boxtimes	Dosimetric E-Field Probe	SCHMID	EX3DV4	2017-07-26	2018-07-26	3930	
	2450MHz SAR Dipole	SCHMID	D2450V2	2017-09-19	2019-09-19	726	
\boxtimes	Network Analyzer	Agilent	E5071C	2018-02-02	2019-02-02	MY46111534	
\boxtimes	Signal Generator	Agilent	E4438C	2017-09-05	2018-09-05	US41461520	
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	2017-09-06	2018-09-06	1020	
\boxtimes	Power Meter	HP	EPM-442A	2017-12-27	2018-12-27	GB37170267	
\boxtimes	Power Meter	HP	EPM-442A	2017-12-27	2018-12-27	GB37170413	
\boxtimes	Power Sensor	HP	8481A	2017-12-27	2018-12-27	3318A96566	
\boxtimes	Power Sensor	HP	8481A	2017-12-27	2018-12-27	2702A65976	
\boxtimes	Power Sensor	HP	8481A	2017-12-27	2018-12-27	US37294267	
\boxtimes	Directional Coupler	HP	772D	2017-07-13	2018-07-13	2889A01064	
\boxtimes	Low Pass Filter 3.0GHz	Micro LAB	LA-30N	2017-09-05	2018-09-05	N/A	
	Attenuators(3 dB)	Agilent	8491B	2017-12-27	2018-12-27	MY39260700	
	Attenuators(10 dB)	WEINSCHEL	23-10-34	2017-12-27	2018-12-27	BP4387	
\boxtimes	Dielectric Probe kit	SCHMID	DAK-3.5	2017-11-21	2018-11-21	1092	

NOTE: The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&Cbefore each test. The muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the muscle-equivalent material. Each equipment item was used solely within its respective calibration period.

4. TEST SYSTEM SPECIFICATIONS

Automated TEST SYSTEM SPECIFICATIONS:

Positioner

Robot Repeatability No. of axis	StäubliUnimation Corp. Robot Model:TX90L 0.02 mm 6
Data Acquisition Electro	onic (DAE) System
<u>Cell Controller</u> Processor Clock Speed Operating System Data Card	Intel Core i7-3770 3.40 GHz Windows 7 Professional DASY5 PC-Board
Data Converter Features Software Connecting Lines	Signal, multiplexer, A/D converter. & control logic DASY5 Optical downlink for data and status info Optical uplink for commands and clock
PC Interface Card Function	24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot
<u>E-Field Probes</u> Model Construction Frequency Linearity	EX3DV4 S/N: 3930 Triangular core fiber optic detection system 10 MHz to 6 GHz ± 0.2 dB (30 MHz to 6 GHz)
<u>Phantom</u> Phantom Shell Material Thickness	SAM Twin Phantom (V5.0) Composite 2.0 ± 0.2 mm

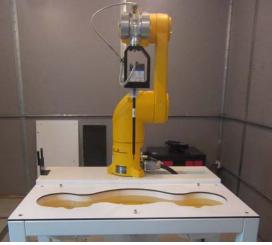


Figure 4.1 DASY5 Test System

5. SAR MEASUREMENT PROCEDURE

5.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

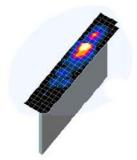


Figure 5.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 5.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

			\leq 3 GHz	> 3 GHz
Marine Katalon Caralanda and and a statistic		20012	- 5 0112	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 mm ± 1 mm	½·δ·ln(2) mm ± 0.5 mm	
Maximum probe angle surface normal at the r			30°±1°	20°±1°
Maximum area scan spatial resolution: $\Delta x_{Area}, \Delta y_{Area}$			$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \hspace{0.1 cm} GHz \hspace{-0.1 cm}:\hspace{-0.1 cm} \leq 12 \hspace{0.1 cm} mm \\ 4-6 \hspace{0.1 cm} GHz \hspace{-0.1 cm}:\hspace{-0.1 cm} \leq 10 \hspace{0.1 cm} mm \end{array}$
			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{Zoom},\Delta y_{Zoom}$		≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$\begin{array}{l} 3-4 \; GHz :\leq 4 \; mm \\ 4-5 \; GHz :\leq 3 \; mm \\ 5-6 \; GHz :\leq 2 \; mm \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	$\begin{array}{l} 3-4~\mathrm{GHz:} \leq 3~\mathrm{mm} \\ 4-5~\mathrm{GHz:} \leq 2.5~\mathrm{mm} \\ 5-6~\mathrm{GHz:} \leq 2~\mathrm{mm} \end{array}$
	gria	$\begin{array}{l} \Delta z_{Zoom}(n{>}1):\\ between \ subsequent\\ points \end{array}$	\leq 1.5· Δz_{Zoom} (n-1) mm	
Minimum zoom scan volume	m x, y, z		≥ 30 mm	$\begin{array}{l} 3-4 \; GHz; \geq 28 \; mm \\ 4-5 \; GHz; \geq 25 \; mm \\ 5-6 \; GHz; \geq 22 \; mm \end{array}$
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.				ium; see IEEE Std
* When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.				
Table 5 1 Area an	d Zoom	Scan Resolutions	per FCC KDB Publicati	on 865664 D01v01r04

	per FCC KDB Publication 865664 D01v01r04
Iania 5 1 Aroa and Zoom Scan Pacolitione	DOF FUT KINK DUDUCATION SEEEEA DUTVOTTOA
Table J. I Alea and Loom Scall Resolutions	

6. TEST CONFIGURATION POSITIONS FOR HANDSETS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02.

6.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

7. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employmentrelated; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	HUMAN EXPC	SURE LIMITS
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0

Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

8. FCC MEASUREMENT PROCEDURES

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02r02 for more details.

8.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

8.2.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured.

8.2.3 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.2.4 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g or 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.2.5 Initial Test Configuration Procedure

For OFDM, in both 2.4 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR \leq 0.8 W/kg, no additional measurements on other test channels are required.

Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured.

8.2.6 Subsequent Test Configuration Procedures

For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power is ≤ 1.2 W/kg, no additional SAR testing for the subsequent test configurations is required.

9. RF CONDUCTED POWERS

9.1 WLAN Conducted Powers

	F ire a		802.11b (2.4 GHz) Conducted Power (dBm)
Mode	Freq.	Channel	Data Rate (Mbps)
	(MHz)		1
	2412	1	10.14
802.11b	2437	6	<u>13.31</u>
	2462	11	<u>10.26</u>

Table 9.1.1	IEEE	802.11b	Average	RF	Power

	-		802.11g (2.4 GHz) Conducted Power (dBm)
Mode	Freq.	Channel	Data Rate (Mbps)
	(MHz)		6
	2412	1	10.48
802.11g	2437	6	12.08
. .	2462	11	10.18

Table 9.1.2 IEEE 802.11g Average RF Power

	Free		802.11n HT20 (2.4 GHz) Conducted Power (dBm)
Mode	Freq.	Channel	Data Rate (Mbps)
	(MHz)		MCS0
000.44	2412	1	10.43
802.11n	2437	6	12.05
(HT-20)	2462	11	10.16

Table 9.1.3 IEEE 802.11n HT20 Average RF Power

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r02 and October 2012 / April 2013 FCC/TCB Meeting Notes:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, duo to an even number of channels, both channels were measured.
- Output Power and SAR is not required for 802.11 g/n HT20 channels when the highest <u>reported</u> SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjust SAR is ≤ 1.2 W/kg.
- The underlined data rate and channel above were tested for SAR.

The average output powers of this device were tested by below configuration.

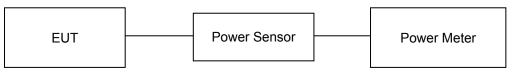


Figure 9.1.1 Power Measurement Setup

🛈 Dt&C

9.2 Bluetooth Conducted Powers

Channel	Frequency	Pov	/G Output wer bps)	Ρον	/G Output wer bps)	Frame AVG Output Power (3Mbps)		
	(MHz)	(dBm) (mW)		(dBm)	(mW)	(dBm)	(mW)	
Low	2402	7.58	5.73	4.98	3.15	4.99	3.16	
Mid	2441	7.26	5.32	5.72	3.73	5.73	3.74	
High	2480	<u>8.86</u>	<u>7.69</u>	6.62	4.59	6.63	4.60	

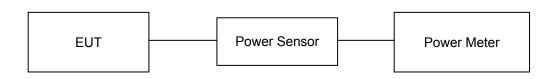
Table 9.2.1 Bluetooth Frame Average RF Power

Channel	Frequency	Frame AVG Output Power (LE)							
	(MHz)	(dBm)	(mW)						
Low	2402	-2.11	0.62						
Mid	2440	-0.93	0.81						
High	2480	-0.44	0.90						

Table 9.2.2 Bluetooth LE Frame Average RF Power

Bluetooth Conducted Powers procedures

1. Bluetooth (BDR, EDR)


1) Enter DUT mode in EUT and operate it.

When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.

- 2) Instruments and EUT were connected like Figure 9.2.1.
- 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester.
- 4) Power levels were measured by a Power Meter.

2. Bluetooth (LE)

- 1) Enter LE mode in EUT and operate it.
- When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
- 2) Instruments and EUT were connected like Figure 9.2.1.
- 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT.
- 4) Power levels were measured by a Power Meter.

Figure 9.2.1 Average Power Measurement Setup

The average conducted output powers of Bluetooth were measured using above test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level.

10. SYSTEM VERIFICATION

10.1 Tissue Verification

	MEASURED TISSUE PARAMETERS														
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]					
				2402.0	52.764	1.904	51.224	1.929	-2.92	1.31					
Date(s) May. 16. 2018				2412.0	52.751	1.914	51.188	1.941	-2.96	1.41					
	0.450			2437.0	52.717	1.938	51.106	1.970	-3.06	1.65					
May. 16. 2018	2450 Body	20.1	20.7	2441.0	52.712	1.941	51.090	1.975	-3.08	1.75					
	Douy			2450.0	52.700	1.950	51.060	1.985	-3.11	1.79					
				2462.0	52.685	1.967	51.023	1.998	-3.15	1.58					
				2480.0	52.662	1.993	50.948	2.017	-3.25	1.20					

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight
- angle. 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity, for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^a \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r^{'}\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

10.2 Test System Verification

Prior to assessment, the system is verified to the± 10 % of the specifications at 2450 MHzand 5GHzby using the SAR Dipole kit(s). (Graphic Plots Attached)

Table 10.2.1 System Verification Results (1g)

	SYSTEM DIPOLE VERIFICATION TARGET & MEASURED														
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation [%]			
D	2450	D2450V2, SN: 726	May. 16. 2018	Body	20.1	20.7	3930	100	50.3	5.32	53.20	5.77			

Note1 : System Verification was measured with input 100 mW and normalized to 1W.

Note2: Full system validation status and results can be found in Attachment 3.

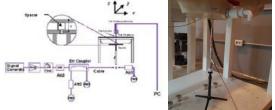


Figure 10.1 Dipole Verification Test Setup Diagram & Photo

11. SAR TEST RESULTS

11.1 Standalone Body SAR Results

						013 00								
					MEASUR	EMENT RESULT	s							
NCY	Mode	Maximum Allowed Power	Conducted Power	Device Serial	Peak SAR of Area Scan	Data Rate	Duty Cycle	1g SAR	Scaling Factor	Scaling Factor (Duty	SAR (W/kg)	Plots #		
Ch		[dBm]	[ubiii]	[ub]		Number		[wpbs]		(wv/kg)		Cycle)		
6	802.11b	14.0	13.31	-0.070	0 mm [Top]	FCC #1	0.146	1	99.2	0.151	1.172	1.008	0.178	
6	802.11b	14.0	13.31	0.040	0 mm [Rear]	FCC #1	0.750	1	99.2	0.774	1.172	1.008	0.914	A1
11	802.11b	11.0	10.26	0.070	0 mm [Rear]	FCC #1	0.337	1	99.2	0.337	1.186	1.008	0.403	
ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure										1.6 W/kg	(mW/g)	1		-
N	Ch 6	Mode Ch Mode 6 802.11b 6 802.11b 11 802.11b	Image: Node Allowed Power [dbm] 6 802.11b 14.0 6 802.11b 14.0 11 802.11b 11.0	Image: Node Allowed Power [dBm] Conducted Power [dBm] Conducted Power [dBm] 6 802.11b 14.0 13.31 6 802.11b 14.0 13.31 11 802.11b 14.0 10.26	ICY Mode Maximum Allowed Power [dBm] Conducted Power [dBm] Drift Power [dBm] 6 802.11b 14.0 13.31 -0.070 6 802.11b 14.0 13.31 0.040 11 802.11b 11.0 10.26 0.070 ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak	McY Maximum Allowed Power [dBm] Conducted Power [dBm] Drift Power [dBm] Phantom Position 6 802.11b 14.0 13.31 -0.070 0 mm [Top] 6 802.11b 14.0 13.31 0.040 0 mm [Rear] 11 802.11b 11.0 10.26 0.070 0 mm [Rear] ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak	Mode Maximum Allowed Power [dBm] Conducted Power [dBm] Drift Power [dBm] Phantom Position Device Serial Number 6 802.11b 14.0 13.31 -0.070 0 mm [Top] FCC #1 6 802.11b 14.0 13.31 0.040 0 mm [Rear] FCC #1 11 802.11b 11.0 10.26 0.070 0 mm [Rear] FCC #1 ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak	Instrument Allowed Power (dBm) Conducted Power (dBm) Drift Power (dBm) Phantom Position Device Serial Number Peak SAR of Area Scan 6 802.11b 14.0 13.31 -0.070 0 mm [Top] FCC #1 0.146 6 802.11b 14.0 13.31 0.040 0 mm [Rear] FCC #1 0.146 11 802.11b 11.0 10.26 0.070 0 mm [Rear] FCC #1 0.337	Maximum Ch Maximum Allowed Power [dBm] Conducted Power (dBm] Drift Power [dBm] Phantom Power [dBm] Device Serial Number Peak SAR of Area Scan Data Rate [Mbps] 6 802.11b 14.0 13.31 -0.070 0 mm [Top] FCC #1 0.146 1 6 802.11b 14.0 13.31 0.040 0 mm [Rear] FCC #1 0.750 1 11 802.11b 11.0 10.26 0.070 0 mm [Rear] FCC #1 0.337 1 ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak	MEASUREMENT RESULTS ICY Mode Maximum Allowed Power [dBm] Conducted Power [dBm] Drift Power [dB] Phantom Position Device Serial Number Peak SAR of Area Scan Data Rate [Mbps] Duty Cycle 6 802.11b 14.0 13.31 -0.070 0 mm [Top] FCC #1 0.146 1 99.2 6 802.11b 14.0 13.31 0.040 0 mm [Rear] FCC #1 0.750 1 99.2 11 802.11b 11.0 10.26 0.070 0 mm [Rear] FCC #1 0.337 1 99.2 ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak	MEASUREMENT RESULTS ICY Mode Maximum Allowed Power [dBm] Conducted Power (dB] Drift Power (dB] Phantom Position Device Serial Number Peak SAR of Area Scan Data Rate (Mbps] Duty Cycle 1g SAR (Wkg) 6 802.11b 14.0 13.31 -0.070 0 mm [Top] FCC #1 0.146 1 99.2 0.151 6 802.11b 14.0 13.31 0.040 0 mm [Rear] FCC #1 0.750 1 99.2 0.774 11 802.11b 11.0 10.26 0.070 0 mm [Rear] FCC #1 0.337 1 99.2 0.337 ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak Bot	MEASUREMENT RESULTS ICY Ch Maximum Allowed Power [dBm] Conducted Power [dBm] Drift Power [dBm] Phantom Position Device Serial Number Peak SAR of Area Scan Data Rate [Mbps] Duty Cycle 1g SAR (Wkg) Scaling Factor 6 802.11b 14.0 13.31 -0.070 0 mm [Top] FCC #1 0.146 1 99.2 0.151 1.172 6 802.11b 14.0 13.31 0.040 0 mm [Rear] FCC #1 0.750 1 99.2 0.774 1.172 11 802.11b 11.0 10.26 0.070 0 mm [Rear] FCC #1 0.337 1 99.2 0.337 1.186 ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak Body 1.6 W/kg (mW/g)	MEASUREMENT RESULTS ICY Ch Maximum Allowed Power [dBm] Conducted Power (dB] Drift Power (dB] Phantom Position Device Serial Number Peak SAR of Area Scan Data Rate [Mbps] Duty Cycle 1g SAR (W/Kg) Scaling Factor (Duty Cycle 6 802.11b 14.0 13.31 -0.070 0 mm [Top] FCC #1 0.146 1 99.2 0.151 1.172 1.008 6 802.11b 14.0 13.31 0.040 0 mm [Rear] FCC #1 0.750 1 99.2 0.774 1.172 1.008 11 802.11b 11.0 10.26 0.070 0 mm [Rear] FCC #1 0.337 1 99.2 0.337 1.186 1.008 ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak Body 1.6 W/kg (mW/g)	MEASUREMENT RESULTS ICY Ch Maximum Allowed Power [dBm] Conducted Power [dBm] Drift Power [dBm] Phantom Position Device Serial Number Peak SAR of Area Scan Data Rate (Mkps) Duty Cycle 1g SAR (Wkg) Scaling Factor (Wkg) Scaling Factor (Duty Cycle) Scaling Factor (Duty Cycle)

Table 11.1.1 DTS Body SAR

	Adjusted SAR results for OFDM SAR													
FREQUE		Mode/ Antenna	Service	Maximum Allowed Power	1g Scaled SAR	FREQUENCY [MHz]	Mode	Service	Maximum Allowed Power	Ratio of OFDM to DSSS	1g Adjusted SAR	Determine OFDM SAR		
MHz	Ch			[dBm]	(W/kg)				[dBm	0355	(W/kg)			
2437	6	802.11b	DSSS	14.0	0.914	2437	802.11g	OFDM	13.0	0.794	0.726	x		
2437 6 802.11b DSSS 14.0 0.914 2437						37 802.11n HT20 OFDM 13.0 0.794 0.726								
	Unco	ANSI / IEEE C	Spatial Pe	ak				Bo 1.6 W/kg averaged o	(mW/g)					

Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Table 11.1.2 Bluetooth Body SAR

-														
	MEASUREMENT RESULTS													
FREQUE	NCY	Mode	Maximum Allowed Power	Conducted Power	Phantom Position	Device Serial	Rate [Mbps]	Duty Cycle	1g SAR	Scaling Factor	Scaling Factor (Duty	1g Scaled SAR	Plots	
MHz	Ch		[dBm]	[dBm]	[dB]	Position	Number	[wpha]	(%)	(W/kg)	ractor	Cycle)	(W/kg)	
2480.0	78	Bluetooth	11.3	8.86	-0.010	0 mm [Rear]	FCC #1	1	76.8	0.291	1.567	1.302	0.665	A2
	ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure										Body W/kg (mW/g iged over 1 g			

11.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.

WLAN Notes:

- The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg.
- 3. When the maximum reported 1g averaged SAR≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance.

12. MEASUREMENT UNCERTAINTIES

2450 MHz Body

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
	value ±%	Distribution		1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	8
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.7 %	8
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.5 %	8
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.46 %	8
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.7 %	∞
Probe modulation response	± 2.4	Rectangular	√3	1	± 1.4 %	8
Detection limits	± 0.25	Rectangular	√3	1	± 0.14 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.46 %	8
Integration time	± 2.6	Rectangular	√3	1	± 1.5 %	∞
RF Ambient Conditions- Noise	± 3.0	Rectangular	√3	1	± 1.7 %	∞
RF Ambient Conditions- Reflections	± 3.0	Rectangular	√3	1	± 1.7 %	8
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.23 %	8
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.7 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.58 %	8
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.9 %	8
SAR Scaling	± 2.0	Rectangular	√3	1	± 1.2 %	8
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.3 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.9 %	∞
Liquid conductivity (Meas.)	± 4.0	Normal	1	0.64	± 4.0 %	10
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.9 %	∞
Liquid permittivity (Meas.)	± 3.8	Normal	1	0.6	± 3.8 %	10
Temp. unc Conductivity	± 1.9	Rectangular	√3	0.78	± 1.1 %	∞
Temp. unc Permittivity	± 2.0	Rectangular	√3	0.23	± 1.2 %	∞
Combined Standard Uncertainty					± 12 %	330
Expanded Uncertainty (k=2)					± 24 %	

The above measurement uncertainties are according to IEEE Std 1528

13. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s)tested.

Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

14. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

[2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.

[3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.

[4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.

[5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 – IEEE Std. 1528-2003,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic FieldsHigh-frequency: 10kHz-300GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005.

[21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015.

[22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009

[23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225,D01-D07

[24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02

[25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04

[26] FCC SAR Evaluation Considerations for Laptop, Notebook, Net book and Tablet Computers, FCC KDB Publication 616217 D04

[27] FCC SAR Measurement and Reporting Requirements for 100MHz – 6 GHz, KDB Publications 865664 D01-D02

[28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02

[29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009

[30] Anexo à Resolução No. 533, de 10 de September de 2009.

[31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010.

Attachment 1. – Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: EX3-3930_Jul17

S

С

S

Object	EX3DV4 - SN:3930					
Calibration procedure(s)	A CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes					
Calibration date:	July 26, 2017					
The measurements and the unc	ertainties with confidence pro	al standards, which realize the physical units bability are given on the following pages and facility: environment temperature (22 ± 3)°C a	are part of the certificate.			
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778					
Power meter NRP Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522)	Apr-18			
and the second						
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18			
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525)	Apr-18 Apr-18 Apr-18			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103244 SN: 103245 SN: S5277 (20x)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2	SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 31-Dec-16 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Scheduled Check			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Scheduled Check In house check: Jun-11 In house check: Jun-11			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Scheduled Check In house check: Jun-18			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Scheduled Check In house check: Jun-11 In house check: Jun-11 In house check: Jun-11			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 103244 SN: 103245 SN: 85277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Scheduled Check In house check: Jun-11 In house check: Jun-11 In house check: Jun-11 In house check: Jun-11 In house check: Jun-11			
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Scheduled Check In house check: Jun-11 In house check: Jun-11 In house check: Jun-11 In house check: Jun-11			

Issued: July 26, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3930_Jul17

Page 1 of 38

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S

С

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3930_Jul17

Page 2 of 38

EX3DV4 - SN:3930

July 26, 2017

Probe EX3DV4

SN:3930

Manufactured: Calibrated:

July 24, 2013 July 26, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3930_Jul17

Page 3 of 38

July 26, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3930

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.41	0.48	0.41	± 10.1 %
DCP (mV) ^B	102.3	100.5	102.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	156.8	±3.3 %
		Y	0.0	0.0	1.0		166.7	
		Z	0.0	0.0	1.0		161.8	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	42.59	309.7	34.17	18.79	0.314	5.099	0.610	0.364	1.003
Y	37.98	282.6	35.37	16.16	0.628	5.077	0.521	0.401	1.005
Ζ	42.19	308.3	34.31	21.95	0.506	5.100	1.499	0.287	1.006

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

[®] Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3930_Jul17

Page 4 of 38

July 26, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3930

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	39.2	1.80	7.87	7.87	7.87	0.37	0.90	± 12.0 %
2600	39.0	1.96	7.73	7.73	7.73	0.38	0.92	± 12.0 %
5200	36.0	4.66	5.46	5.46	5.46	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.24	5.24	5.24	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.97	4.97	4.97	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.86	4.86	4.86	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.83	4.83	4.83	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3930_Jul17

Page 5 of 38

July 26, 2017

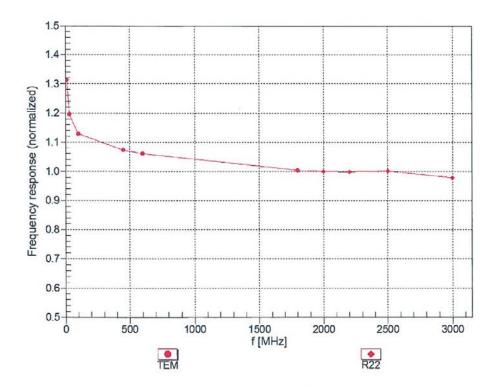
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3930

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	52.7	1.95	7.90	7.90	7.90	0.35	0.95	± 12.0 %
2600	52.5	2.16	7.60	7.60	7.60	0.35	0.95	± 12.0 %
5200	49.0	5.30	4.87	4.87	4.87	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.70	4.70	4.70	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.41	4.41	4.41	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.22	4.22	4.22	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.33	4.33	4.33	0.45	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^r At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

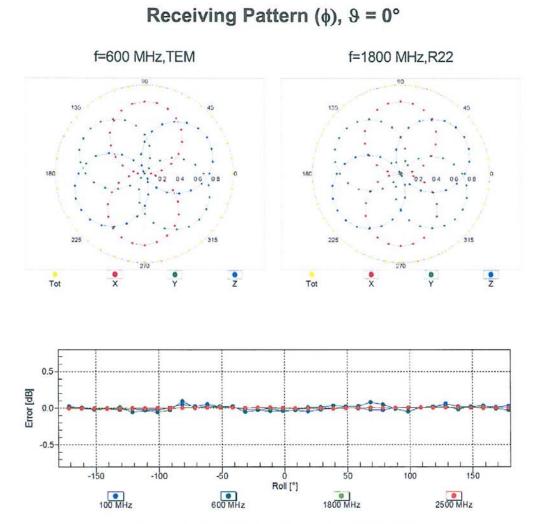

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3930_Jul17

Page 6 of 38

July 26, 2017

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



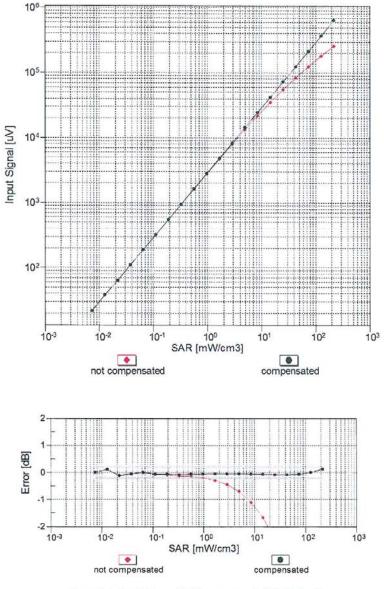
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3930_Jul17

Page 7 of 38

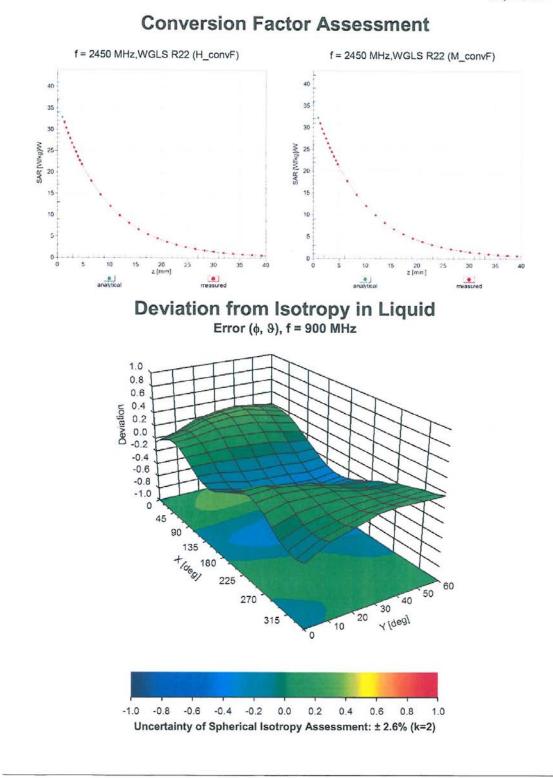
July 26, 2017

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3930_Jul17

Page 8 of 38

July 26, 2017


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3930_Jul17

Page 9 of 38

July 26, 2017

Certificate No: EX3-3930_Jul17

Page 10 of 38

July 26, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3930

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	118.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3930_Jul17

Page 11 of 38

July 26, 2017

Appendix: Modulation Calibration Parameters

CAA 10011- CAB 10012- CAB 10012- CAB 10013- CAB 0FE 10021- DAC 10023- DAC 10025- DAC 10025- DAC 10025- DAC 10026- DAC 10027- DAC 0FE 0FE 0FE 0FE 0FE 0FE 0FE 0FE	W		dB	dBõV		dB	mV	Max Unc ^E (k=2)
CAA 10011- CAB 10012- CAB 10012- CAB 10012- CAB 10021- DAC 10023- DAC 10024- DAC 10025- DAC 10025- DAC 10025- DAC 10026- DAC 10027- DAC 10028- GPF		X	0.00	0.00	1.00	0.00	156.8	± 3.3 %
CAA 10011- CAB 10012- IEEE CAB 10013- IEEE Mbp 10013- IEEE Mbp 10021- DAC 10021- DAC 10024- DAC 10025- DAC 10025- DAC 10025- DAC 10027- DAC 10028- GPF		Y	0.00	0.00	1.00		166.7	
CAA 10011- CAB 10012- IEEE CAB 10013- IEEE Mbp 10013- IEEE Mbp 10021- DAC 10021- DAC 10024- DAC 10025- DAC 10025- DAC 10025- DAC 10027- DAC 10028- GPF		Z	0.00	0.00	1.00		161.8	
CAB 10012- IEEE CAB Mbp 10013- IEEE CAB OFE 10021- GSM 10021- GSM 10023- GPF 10023- GPF 10025- EDC DAC	AR Validation (Square, 100ms, 10ms)	X	33.98	95.02	20.39	10.00	20.0	±9.6 %
CAB 10012- CAB 10013- CAB 10013- CAB 0FE 10021- DAC 10023- DAC 10023- DAC 10025- DAC 10025- DAC 10025- DAC 10026- DAC 10027- DAC 10027- GPF DAC 10028- GPF		Y	12.31	85.76	18.73		20.0	
CAB 10012- IEEE CAB Mbp 10013- IEEE CAB OFE 10021- GSM 10021- GSM 10023- GPF 10023- GPF 10025- EDC DAC		Z	36.97	97.49	21.78		20.0	
CAB Mbp 10013- IEEE CAB OFE 10021- GSM 10021- GSM 10023- GPF DAC GPF 10024- GPF 10025- EDC DAC EDC 10026- EDC DAC GPF 10027- GPF DAC GPF 10027- GPF DAC GPF	MTS-FDD (WCDMA)	X	1.32	72.73	18.36	0.00	150.0	±9.6 %
CAB Mbp 10013- IEEE CAB OFE 10021- GSM 10021- GSM 10023- GPF DAC GPF 10024- GPF 10025- EDC DAC EDC 10026- EDC DAC GPF 10027- GPF DAC GPF 10027- GPF DAC GPF		Y	0.95	66.04	14.44		150.0	
CAB Mbp 10013- IEEE CAB OFE 10021- GSM 10021- GSM 10023- GPF DAC GPF 10024- GPF 10025- EDC DAC EDC 10026- EDC DAC GPF 10027- GPF DAC GPF 10027- GPF DAC GPF		Z	1.05	67.88	15.60		150.0	
CAB OFE 10021- DAC GSM 10023- DAC OFF 10023- DAC OFF 10024- DAC OFF 10025- DAC EDC DAC OFF 10025- DAC EDC 0026- DAC OFF 10027- DAC OFF 0027- DAC OFF 0027- 007- 0027- 007	EEE 802.11b WiFi 2.4 GHz (DSSS, 1 lbps)	×	1.27	66.02	16.87	0.41	150.0	± 9.6 %
CAB OFE 10021- DAC GSM 10023- DAC OFF 10023- DAC OFF 10024- DAC OFF 10025- DAC EDC DAC OFF 10025- DAC EDC 0026- DAC OFF 10027- DAC OFF 0027- DAC OFF 0027- 007- 0027- 007		Y	1.19	63.75	15.02		150.0	
CAB OFE 10021- DAC GSM 10023- DAC OFF 10023- DAC OFF 10024- DAC OFF 10025- DAC EDC DAC OFF 10025- DAC EDC 0026- DAC OFF 10027- DAC OFF 0027- DAC OFF 0027- 007-		Z	1.24	64.77	15.76		150.0	
DAC 10023- DAC 10024- DAC 10025- DAC 10025- DAC 10026- DAC 10027- DAC 10027- DAC 10027- GPF DAC	EEE 802.11g WiFi 2.4 GHz (DSSS- FDM, 6 Mbps)	X	4.89	67.27	17.48	1.46	150.0	± 9.6 %
DAC 10023- DAC 10024- DAC 10025- DAC 10025- DAC 10026- DAC 10027- DAC 10027- DAC 10027- GPF DAC		Y	4.81	66.88	17.12		150.0	
DAC 10023- DAC 10024- DAC 10025- DAC 10025- DAC 10026- DAC 10027- DAC 10027- DAC 10027- GPF DAC		Z	4.88	67.08	17.28		150.0	
DAC 10024- DAC 10025- DAC 10026- DAC 10026- DAC 10027- DAC 10027- DAC 00027- DAC 00027- DAC 00027- DAC	SM-FDD (TDMA, GMSK)	×	100.00	118.50	29.46	9.39	50.0	± 9.6 %
DAC 10024- DAC 10025- DAC 10026- DAC 10026- DAC 10027- DAC 10027- GPF DAC GPF		Y	100.00	120.04	30.47		50.0	
DAC 10024- DAC 10025- DAC 10026- DAC 10026- DAC 10027- DAC 10027- GPF DAC GPF		Z	100.00	119.12	30.12		50.0	
DAC 10025- DAC 10026- DAC 10027- DAC 10027- GPF DAC 10028- GPF	PRS-FDD (TDMA, GMSK, TN 0)	x	100.00	117.91	29.22	9.57	50.0	±9.6 %
DAC 10025- DAC 10026- DAC 10027- DAC 10027- GPF DAC 10028- GPF		Y	100.00	119.43	30.24		50.0	
DAC 10025- DAC 10026- DAC 10027- DAC 10027- GPF DAC 10028- GPF		Z	100.00	118.72	29.96		50.0	
DAC 10026- DAC 10027- DAC 10028- GPF	PRS-FDD (TDMA, GMSK, TN 0-1)	x	100.00	118.87	28.78	6.56	60.0	± 9.6 %
DAC 10026- DAC 10027- DAC 10028- GPF		Y	100.00	119.40	29.15	_	60.0	
DAC 10026- DAC 10027- DAC 10028- GPF		Z	100.00	117.69	28.60		60.0	
DAC 10027- GPF DAC 10028- GPF	DGE-FDD (TDMA, 8PSK, TN 0)	×	6.09	83.18	33.46	12.57	50.0	± 9.6 %
DAC 10027- GPF DAC 10028- GPF		Y	4.16	69.03	25.44		50.0	
DAC 10027- GPF DAC 10028- GPF		Z	7.41	87.92	35.28		50.0	
DAC	DGE-FDD (TDMA, 8PSK, TN 0-1)	×	16.43	108.30	39.06	9.56	60.0	± 9.6 %
DAC		Y	8.80	90.83	32.45		60.0	
DAC		Z	17.86	108.64	38.77	1.00	60.0	
	PRS-FDD (TDMA, GMSK, TN 0-1-2)	×	100.00	121.78	29.37	4.80	80.0	± 9.6 %
		Y	100.00	120.90	29.04		80.0	
DAC	PRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	118.68 126.85	28.36 30.88	3.55	80.0 100.0	±9.6 %
		Y	100.00	123.74	20 50		100.0	
		_	100.00		29.56 28.77		100.0	
10029- EDC	DGE-FDD (TDMA, 8PSK, TN 0-1-2)	Z X	100.00	121.16 91.15	31.68	7.80	80.0	± 9.6 %
DAC	DGE-FDD (TDMA, 8FSK, TN 0-1-2)	Y	8.49 5.92			7.60		± 9.0 %
				81.55	27.56		80.0	
10030- CAA	EEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	9.27 100.00	91.80 118.04	31.56 27.99	5.30	80.0 70.0	± 9.6 %
		Y	100.00	117.70	27.90		70.0	
		Z	100.00	116.25	27.53		70.0	
10031- IEE	EEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	135.43	32.90	1.88	100.0	± 9.6 %
		Y	100.00	124.47	28.40		100.0	
		Z	100.00	123.75	28.40		100.0	

Certificate No: EX3-3930_Jul17

Page 12 of 38

July 26, 2017

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	х	100.00	158.27	40.81	1.17	100.0	± 9.6 %
		Y Z	100.00	132.40 133.39	30.62 31.35		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	100.00	130.12	35.27	5.30	70.0	± 9.6 %
CAM		Y	47.92	115.56	31.04		70.0	
		Z	100.00	127.31	34.17		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	100.00	127.72	32.57	1.88	100.0	±9.6 %
		Y	5.40	84.00	20.03		100.0	
		Z	26.50	106.08	26.87		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Х	98.14	127.45	32.05	1.17	100.0	± 9.6 %
		Y	2.68	75.86	16.83		100.0	
		Ζ	6.47	87.81	21.42		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	х	100.00	130.64	35.51	5.30	70.0	±9.6 %
		Y	100.00	127.36	33.94		70.0	
10007		Z	100.00	127.74	34.37	4.00	70.0	1000
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	100.00	127.73	32.53	1.88	100.0	± 9.6 %
		Y	4.58	81.94	19.33		100.0	
40000		Z	19.79	102.15	25.82	4 47	100.0	1000
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X Y	2.70	128.63 76.24	32.52 17.10	1.17	100.0	± 9.6 %
		Z	6.68	88.65	21.82		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	6.20	89.91	22.06	0.00	150.0	± 9.6 %
0/10		Y	1.39	69.12	13.61		150.0	
		Z	1.97	73.64	16.08		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	х	100.00	114.51	26.96	7.78	50.0	±9.6 %
		Y	100.00	115.91	27.79		50.0	
		Ζ	100.00	114.70	27.39		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	x	0.00	104.05	0.58	0.00	150.0	± 9.6 %
10 - 14 -		Y	0.01	90.05	0.67		150.0	
		Ζ	0.00	93.86	0.01		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	100.00	118.84	30.69	13.80	25.0	± 9.6 %
_	-	Y	100.00	118.92	31.37		25.0	
		Z	100.00	121.71	32.37		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	100.00	116.35	28.73	10.79	40.0	± 9.6 %
		Y	100.00	118.18	29.97		40.0	
10055		Z	100.00	118.06	29.88	0.00	40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	100.00	126.32	34.62	9.03	50.0	± 9.6 %
		Y	100.00	125.02	34.10		50.0	
10050		Z	100.00	125.44	34.44	0.55	50.0	1000
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	6.05	83.52	27.88	6.55	100.0	± 9.6 %
		Y	4.69	76.91	24.81		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	6.52 1.39	83.98 68.10	27.72 18.00	0.61	100.0 110.0	± 9.6 %
		Y	1.25	64.97	15.72		110.0	
		z	1.34	66.55	16.72		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	145.37	39.14	1.30	110.0	± 9.6 %
and the second se		Y	14.08	108.54	29.23	-	110.0	
		I T .	14.00					

Certificate No: EX3-3930_Jul17

Page 13 of 38

July 26, 2017

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	x	25.81	121.10	35.51	2.04	110.0	± 9.6 %
		Y	3.44	82.74	23.20		110.0	
		Z	9.74	100.38	29.02		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.68	67.22	16.86	0.49	100.0	±9.6 %
		Y	4.58	66.75	16.46		100.0	
		Z	4.65	66.95	16.61		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.70	67.34	16.99	0.72	100.0	± 9.6 %
		Y	4.60	66.87	16.58		100.0	
		Z	4.68	67.08	16.74		100.0	-
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.97	67.56	17.19	0.86	100.0	±9.6 %
		Y	4.86	67.09	16.80		100.0	
		Z	4.95	67.31	16.96		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.85	67.50	17.34	1.21	100.0	± 9.6 %
		Y	4.74	67.00	16.91		100.0	
		Z	4.84	67.27	17.11		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.87	67.54	17.52	1.46	100.0	± 9.6 %
		Y	4.77	67.05	17.10		100.0	· · · · · · · · · · · · · · · · · · ·
		Z	4.87	67.32	17.30		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.17	67.72	17.97	2.04	100.0	± 9.6 %
		Y	5.07	67.34	17.60		100.0	
		Z	5.17	67.57	17.79		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.21	67.74	18.19	2.55	100.0	±9.6 %
		Y	5.11	67.31	17.81		100.0	
		Z	5.22	67.61	18.02	5 C. S.	100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.29	67.72	18.37	2.67	100.0	± 9.6 %
		Y	5.19	67.34	17.99		100.0	
		Z	5.30	67.62	18.21		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	x	4.99	67.37	17.81	1.99	100.0	±9.6 %
		Y	4.92	67.00	17.45		100.0	
		Z	5.00	67.22	17.62		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.98	67.76	18.08	2.30	100.0	± 9.6 %
		Y	4.90	67.32	17.68		100.0	
		Z	4.99	67.61	17.89		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.06	67.98	18.45	2.83	100.0	±9.6 %
	and the second s	Y	4.98	67.55	18.06		100.0	
		Z	5.08	67.86	18.29		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	x	5.05	67.92	18.63	3.30	100.0	± 9.6 %
		Y	4.99	67.53	18.25		100.0	
		Z	5.09	67.84	18.48		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.09	68.03	18.96	3.82	90.0	±9.6 %
		Y	5.03	67.61	18.55		90.0	
		Z	5.14	68.00	18.83		90.0	·
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.11	67.82	19.08	4.15	90.0	±9.6 %
		Y	5.07	67.47	18.71		90.0	
		Z	5.17	67.83	18.99		90.0	
10077-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.14	67.90	19.19	4.30	90.0	±9.6 %
CAB								
CAB		Y	5.10	67.57	18.83		90.0	

Certificate No: EX3-3930_Jul17

Page 14 of 38

July 26, 2017

10081- CAB	CDMA2000 (1xRTT, RC3)	X	1.47	74.80	16.59	0.00	150.0	± 9.6 %
		Y	0.71	64.40	10.98		150.0	
		Z	0.85	66.68	12.68		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	×	0.84	60.00	4.97	4.77	80.0	± 9.6 %
		Y	0.83	60.00	5.19		80.0	
		Z	0.96	60.05	5.34		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	118.89	28.81	6.56	60.0	± 9.6 %
		Y	100.00	119.41	29.18		60.0	
		Z	100.00	117.72	28.64		60.0	
10097- CAB	UMTS-FDD (HSDPA)	×	2.10	70.90	17.44	0.00	150.0	± 9.6 %
		Y	1.77	67.39	15.22		150.0	
		Z	1.86	68.35	15.93		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	2.06	70.89	17.44	0.00	150.0	±9.6 %
		Y	1.73	67.32	15.18		150.0	
		Z	1.82	68.30	15.90		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	x	16.64	108.59	39.15	9.56	60.0	± 9.6 %
		Y	8.86	90.97	32.50	1.1	60.0	
		Z	18.05	108.86	38.84		60.0	
10100- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	3.43	72.59	17.97	0.00	150.0	± 9.6 %
		Y	2.93	69.49	16.35		150.0	
		Z	3.12	70.62	16.88		150.0	
10101- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	×	3.32	68.53	16.59	0.00	150.0	± 9.6 %
		Y	3.12	67.11	15.68		150.0	
		Z	3.21	67.66	15.99		150.0	
10102- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.41	68.45	16.65	0.00	150.0	± 9.6 %
		Y	3.23	67.14	15.80		150.0	
		Z	3.31	67.64	16.08		150.0	
10103- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.48	81.63	23.12	3.98	65.0	± 9.6 %
		Y	6.79	77.32	21.30		65.0	
		Z	8.35	80.51	22.48		65.0	
10104- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	7.32	77.12	22.10	3.98	65.0	± 9.6 %
		Y	6.47	74.49	20.81		65.0	
		Z	7.50	76.91	21.82		65.0	
10105- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	6.60	74.99	21.49	3.98	65.0	± 9.6 %
		Y	6.13	73.28	20.58		65.0	
		Z	6.95	75.36	21.46		65.0	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.97	71.84	17.84	0.00	150.0	± 9.6 %
		Y	2.54	68.77	16.15		150.0	
	-	Z	2.71	69.84	16.70		150.0	
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	×	2.98	68.61	16.61	0.00	150.0	± 9.6 %
		Y	2.76	66.99	15.53		150.0	
		Z	2.86	67.57	15.90		150.0	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	×	2.44	71.26	17.61	0.00	150.0	± 9.6 %
		Y	2.04	67.88	15.62		150.0	
		Z	2.19	69.00	16.29		150.0	
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.81	70.37	17.31	0.00	150.0	± 9.6 %
		Y	2.49	68.01	15.76		150.0	
		Z	2.61	68.69	16.27		150.0	

Certificate No: EX3-3930_Jul17

Page 15 of 38

July 26, 2017

CAD 64 CAD 64 10114- IEI CAB 16 10115- IEI CAB 64 10116- CAB 64 10117- IEI CAB 64 10117- IEI CAB QA 10118- IEI CAB QA 10118- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	TE-FDD (SC-FDMA, 100% RB, 5 MHz, 4-QAM) EEE 802.11n (HT Greenfield, 13.5 lbps, BPSK) EEE 802.11n (HT Greenfield, 81 Mbps, 6-QAM) EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, 16- AM) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM)	Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X	2.89 2.99 2.96 2.64 2.76 5.10 5.00 5.06 5.35 5.35 5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.08 67.59 70.43 68.23 68.84 67.56 67.06 67.28 67.28 67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	15.63 15.96 17.38 15.92 16.40 16.67 16.33 16.42 16.69 16.38 16.46 16.69 16.36 16.36 16.44 16.63	0.00	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	± 9.6 % ± 9.6 % ± 9.6 %
CAD 64 10114- IEI CAB Mt 10115- IEI CAB 16 10116- IEI CAB 64 10117- IEI CAB 64 10117- IEI CAB QA 10118- IEI CAB QA 10118- IEI CAB QA 10118- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	4-QAM) EEE 802.11n (HT Greenfield, 13.5 lbps, BPSK) EEE 802.11n (HT Greenfield, 81 Mbps, 6-QAM) EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, 16- AM) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	X Y Z X Y Z X Y Z X Y Z X Y Z X X	2.96 2.64 2.76 5.10 5.00 5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.59 70.43 68.23 68.84 67.56 67.06 67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	15.96 17.38 15.92 16.40 16.67 16.33 16.42 16.69 16.38 16.46 16.69 16.36 16.36 16.44	0.00	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	± 9.6 %
CAD 64 10114- IEI CAB Mt 10115- IEI CAB 16 10116- IEI CAB 64 10117- IEI CAB 64 10117- IEI CAB QA 10118- IEI CAB QA 10118- IEI CAB QA 10118- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	4-QAM) EEE 802.11n (HT Greenfield, 13.5 lbps, BPSK) EEE 802.11n (HT Greenfield, 81 Mbps, 6-QAM) EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, 16- AM) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Y Z X Y Z X Y Z X Y Z X Y Z X	2.96 2.64 2.76 5.10 5.00 5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	70.43 68.23 68.84 67.56 67.06 67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	17.38 15.92 16.40 16.67 16.33 16.42 16.69 16.38 16.46 16.69 16.36 16.36	0.00	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	± 9.6 %
CAB Mt 10115- IEI CAB 16 10116- IEI CAB 64 10117- IEI CAB BF 10118- IEI CAB QA 10118- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	EEE 802.11n (HT Greenfield, 81 Mbps, 6-QAM) EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Z X Y Z X Y Z X Y Z X Y Z X	2.76 5.10 5.00 5.06 5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	68.84 67.56 67.06 67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	16.40 16.67 16.33 16.42 16.69 16.38 16.46 16.69 16.36 16.36 16.44	0.00	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	± 9.6 %
CAB Mt 10115- IEI CAB 16 10116- IEI CAB 64 10117- IEI CAB BP 10118- IEI CAB QA 10118- IEI CAB QA 10118- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	EEE 802.11n (HT Greenfield, 81 Mbps, 6-QAM) EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	X Y Z X Y Z X Y Z X Y Z X	2.76 5.10 5.00 5.06 5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	68.84 67.56 67.06 67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	16.40 16.67 16.33 16.42 16.69 16.38 16.46 16.69 16.36 16.36 16.44	0.00	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	± 9.6 %
CAB Mt 10115- IEI CAB 16 10116- IEI CAB 64 10117- IEI CAB BF 10118- IEI CAB QA 10118- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	EEE 802.11n (HT Greenfield, 81 Mbps, 6-QAM) EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	X Y Z X Y Z X Y Z X Y Z X	5.10 5.00 5.06 5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.56 67.06 67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	16.67 16.33 16.42 16.69 16.38 16.46 16.69 16.36 16.36	0.00	150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0	± 9.6 %
10115- CAB 16 10116- CAB 64 10117- IEI CAB BF 10118- ICAB QA 10118- ICAB QA 10119- CAB QA 10140- LT CAC MH 10141- LT CAC MH	EEE 802.11n (HT Greenfield, 81 Mbps, 6-QAM) EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Z X Y Z X Y Z X Y Z X	5.06 5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	16.42 16.69 16.38 16.46 16.69 16.36 16.44	0.00	150.0 150.0 150.0 150.0 150.0 150.0	
CAB 16 10116- IEI CAB 64 10117- IEI CAB BP 10118- IEI CAB QA 10119- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Z X Y Z X Y Z X Y Z X	5.06 5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.28 67.59 67.14 67.33 67.74 67.25 67.45 67.43	16.42 16.69 16.38 16.46 16.69 16.36 16.44	0.00	150.0 150.0 150.0 150.0 150.0 150.0	
CAB 16 10116- IEI CAB 64 10117- IEI CAB BP 10118- IEI CAB QA 10119- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	X Y Z X Y Z X Y Z X	5.35 5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.59 67.14 67.33 67.74 67.25 67.45 67.43	16.69 16.38 16.46 16.69 16.36 16.44	0.00	150.0 150.0 150.0 150.0 150.0	
CAB 16 10116- IEI CAB 64 10117- IEI CAB BP 10118- IEI CAB QA 10119- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	EEE 802.11n (HT Greenfield, 135 Mbps, 4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Y Z X Y Z X Y Z X	5.25 5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.14 67.33 67.74 67.25 67.45 67.43	16.38 16.46 16.69 16.36 16.44	0.00	150.0 150.0 150.0 150.0	
CAB 64 10117- IEI CAB BF 10118- IEI CAB QA 10119- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Z X Y Z X Y Z X	5.32 5.19 5.09 5.15 5.07 4.99 5.03	67.33 67.74 67.25 67.45 67.43	16.46 16.69 16.36 16.44		150.0 150.0 150.0	± 9.6 %
CAB 64 10117- IEI CAB BF 10118- IEI CAB QA 10119- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	X Y Z X Y Z X	5.19 5.09 5.15 5.07 4.99 5.03	67.74 67.25 67.45 67.43	16.69 16.36 16.44		150.0 150.0	± 9.6 %
CAB 64 10117- IEI CAB BF 10118- IEI CAB QA 10119- IEI CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH	4-QAM) EEE 802.11n (HT Mixed, 13.5 Mbps, PSK) EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Y Z X Y Z X	5.09 5.15 5.07 4.99 5.03	67.25 67.45 67.43	16.36 16.44		150.0	± 9.6 %
CAB BF 10118- IEE CAB QA 10119- IEE CAB QA 10119- IEE CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Z X Y Z X	5.15 5.07 4.99 5.03	67.45 67.43	16.44			
CAB BF 10118- IEE CAB QA 10119- IEE CAB QA 10119- IEE CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	X Y Z X	5.07 4.99 5.03	67.43		0.00	150.0	
CAB BP 10118- IEE CAB QA 10119- IEE CAB QA 10119- LT CAC MH 10141- LT CAC MH 10142- LT	EEE 802.11n (HT Mixed, 81 Mbps, 16- AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Y Z X	4.99 5.03	67.43		0.00	150.0	
CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Z X	5.03	67.04		0.00	150.0	± 9.6 %
CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	Z X	5.03	67.01	16.32		150.0	
CAB QA 10119- IEI CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT	AM) EEE 802.11n (HT Mixed, 135 Mbps, 64-	x		67.16	16.38		150.0	
10119- CAB QA 10140- CAC MH 10141- CAC MH 10141- CAC MH	EE 802.11n (HT Mixed, 135 Mbps, 64-	1	5.43	67.76	16.78	0.00	150.0	±9.6 %
CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT		Y ·	5.32	67.31	16.47		150.0	_
CAB QA 10140- LT CAC MH 10141- LT CAC MH 10142- LT		Z	5.39	67.50	16.55		150.0	
10140- LT CAC MH 10141- LT CAC MH 10142- LT	C IVII	X	5.17	67.69	16.68	0.00	150.0	± 9.6 %
CAC MI 10141- LT CAC MI 10142- LT	, (())	Y	5.08	67.23	16.36		150.0	
CAC MI 10141- LT CAC MI 10142- LT		Z	5.13	67.40	16.43		150.0	
10141- LT CAC MH 10142- LT	TE-FDD (SC-FDMA, 100% RB, 15 Hz, 16-QAM)	X	3.45	68.45	16.56	0.00	150.0	±9.6 %
CAC MH 10142- LT		Y	3.25	67.15	15.72		150.0	
CAC MH 10142- LT		Z	3.34	67.65	16.00		150.0	
CAC MH 10142- LT	TE-FDD (SC-FDMA, 100% RB, 15	X	3.57	68.54	16.72	0.00	150.0	+0.0 %
	Hz, 64-QAM)					0.00		±9.6 %
		Y	3.38	67.32	15.92		150.0	
		Z	3.47	67.77	16.17		150.0	
	TE-FDD (SC-FDMA, 100% RB, 3 MHz, PSK)	x	2.30	72.11	17.60	0.00	150.0	±9.6 %
		Y	1.80	67.79	15.04		150.0	
		Z	1.97	69.14	15.94		150.0	
	TE-FDD (SC-FDMA, 100% RB, 3 MHz, 6-QAM)	x	2.87	72.31	17.44	0.00	150.0	± 9.6 %
		Y	2.30	68.51	15.11		150.0	
		Z	2.49	69.65	15.97	1	150.0	
	TE-FDD (SC-FDMA, 100% RB, 3 MHz, 4-QAM)	X	2.38	68.49	15.12	0.00	150.0	± 9.6 %
		Y	2.02	65.87	13.27		150.0	
		Z	2.19	66.86	14.10		150.0	
	TE-FDD (SC-FDMA, 100% RB, 1.4 IHz, QPSK)	X	1.44	68.19	13.11	0.00	150.0	±9.6 %
		Y	0.93	62.67	9.45		150.0	
		Z	1.13	64.81	11.22		150.0	
	TE-FDD (SC-FDMA, 100% RB, 1.4 Hz, 16-QAM)	x	1.65	65.01	10.48	0.00	150.0	±9.6 %
		Y	1.27	62.22	8.43		150.0	
		Z	1.79	65.38	10.60		150.0	
	TE-FDD (SC-FDMA, 100% RB, 1.4	X	1.96	66.95	11.55	0.00	150.0	±9.6 %
S. IS IVI		Y	1.37	62.92	8.91		150.0	
	Hz, 64-QAM)	Z	2.12	67.23	11.60		150.0	

Certificate No: EX3-3930_Jul17

Page 16 of 38

July 26, 2017

10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.99	68.69	16.66	0.00	150.0	±9.6 %
		Y	2.77	67.06	15.58		150.0	
		Z	2.87	67.64	15.95		150.0	2
10150- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	x	3.11	68.63	16.68	0.00	150.0	± 9.6 %
		Y	2.90	67.14	15.67		150.0	
		Z	2.99	67.65	16.00		150.0	
10151-	LTE TOD (CC FDMA FOR DD 20 MUS	X	10.17	86.64	25.07	3.98	65.0	±9.6 %
CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)			202100010		3.90		19.0 %
		Y	7.45	80.64	22.65		65.0	
		Ζ	9.66	84.69	24.12		65.0	
10152- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	x	6.99	77.66	22.02	3.98	65.0	±9.6 %
		Y	6.03	74.58	20.48		65.0	
		Z	7.14	77.28	21.65		65.0	
10153- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	7.50	78.88	22.89	3.98	65.0	±9.6 %
		Y	6.49	75.82	21.38		65.0	
		z	7.64	78.46	22.50		65.0	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	X	2.51	71.85	17.95	0.00	150.0	± 9.6 %
CAD	QPSK)	^ Y	5,4055		1.11000000	0.00	150.0	1 0.0 %
			2.08	68.26	15.86			
10.18-		Z	2.24	69.43	16.55		150.0	
10155- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.82	70.39	17.33	0.00	150.0	± 9.6 %
		Y	2.49	68.04	15.78		150.0	
		Z	2.61	68.71	16.29		150.0	
10156- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	x	2.23	73.00	17.70	0.00	150.0	±9.6 %
		Y	1.62	67.61	14.59		150.0	
		Z	1.83	69.27	15.71		150.0	
10157- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.33	69.89	15.51	0.00	150.0	± 9.6 %
0/10	To do inty	Y	1.83	66.15	13.07		150.0	
		z	2.04	67.51	14.15		150.0	
10158- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.97	70.52	17.44	0.00	150.0	± 9.6 %
07.02	or downy	Y	2.64	68.31	15.98		150.0	
		Z	2.77	68.92	16.45		150.0	-
10159- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.49	70.59	15.88	0.00	150.0	± 9.6 %
0/10	Of Grany	Y	1.92	66.54	13.31		150.0	
		z	2.15	68.02	14.44		150.0	
10160- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.90	70.43	17.37	0.00	150.0	± 9.6 %
		Y	2.59	68.16	15.99		150.0	
		Z	2.70	68.88	16.41		150.0	
10161- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.02	68.67	16.64	0.00	150.0	± 9.6 %
		Y	2.79	67.10	15.56		150.0	
		Z	2.89	67.63	15.93		150.0	
10162-		_				0.00	10010	1000
CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.13	68.82	16.75	0.00	150.0	± 9.6 %
		Y	2.90	67.31	15.71		150.0	
		Z	3.00	67.80	16.05		150.0	
10166- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	x	3.47	69.86	19.28	3.01	150.0	± 9.6 %
		Y	3.31	68.79	18.69		150.0	
		Z	3.64	70.40	19.47		150.0	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	4.28	73.01	19.82	3.01	150.0	± 9.6 %
5/10	is surving	Y	3.94	71.46	19.05		150.0	
		Z	4.73	74.34	20.28		150.0 150.0	-
		1 1	4.13	1 14.34	20.20		150.0	

Certificate No: EX3-3930_Jul17

Page 17 of 38