EX3DV4- SN:3916

April 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3916

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.58	0.49	0.53	± 10.1 %
DCP (mV) ^B	99.1	104.2	101.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	177.0	±3.5 %
		Y	0.0	0.0	1.0		164.9	
		Z	0.0	0.0	1.0		164.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3916_Apr13

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

EX3DV4-SN:3916

April 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3916

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	10.53	10.53	10.53	0.13	1.25	± 13.4 %
750	41.9	0.89	10.27	10.27	10.27	0.80	0.61	± 12.0 %
835	41.5	0.90	9.85	9.85	9.85	0.36	0.90	± 12.0 %
900	41.5	0.97	9.80	9.80	9.80	0.33	0.97	± 12.0 %
1750	40.1	1.37	8.34	8.34	8.34	0.75	0.63	± 12.0 %
1900	40.0	1.40	8.03	8.03	8.03	0.63	0.68	± 12.0 %
2300	39.5	1.67	7.63	7.63	7.63	0.35	0.91	± 12.0 %
2450	39.2	1.80	7.32	7.32	7.32	0.33	0.91	± 12.0 %
2600	39.0	1.96	7.12	7.12	7.12	0.30	1.05	± 12.0 %
5200	36.0	4.66	5.23	5.23	5.23	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.79	4.79	4.79	0.45	1.80	± 13.1 %
5500	35.6	4.96	4.68	4.68	4.68	0.50	1.80	± 13.1 %
5600	35.5	5.07	4.69	4.69	4.69	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.41	4.41	4.41	0.50	1.80	± 13.1 %

Certificate No: EX3-3916_Apr13

Page 5 of 11

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4-SN:3916

April 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3916

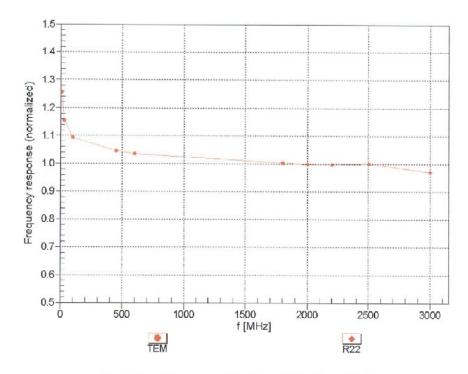
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	11.26	11.26	11.26	0.05	1.20	± 13.4 %
750	55.5	0.96	10.10	10.10	10.10	0.60	0.72	± 12.0 %
835	55.2	0.97	9.88	9.88	9.88	0.55	0.77	± 12.0 %
900	55.0	1.05	9.79	9.79	9.79	0.62	0.73	± 12.0 %
1750	53.4	1.49	8.08	8.08	8.08	0.44	0.85	± 12.0 %
1900	53.3	1.52	7.68	7.68	7.68	0.45	0.80	± 12.0 %
2300	52.9	1.81	7.47	7.47	7.47	0.50	0.77	± 12.0 %
2450	52.7	1.95	7.33	7.33	7.33	0.80	0.56	± 12.0 %
2600	52.5	2.16	7.05	7.05	7.05	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.86	6.86	6.86	0.45	0.98	± 13.1 %
5200	49.0	5.30	4.48	4.48	4.48	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.19	4.19	4.19	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.97	3.97	3.97	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.65	3.65	3.65	0.60	1.90	± 13.1 %
5800	48.2	6.00	4.01	4.01	4.01	0.60	1.90	± 13.1 %

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

Certificate No: EX3-3916_Apr13

Page 6 of 11

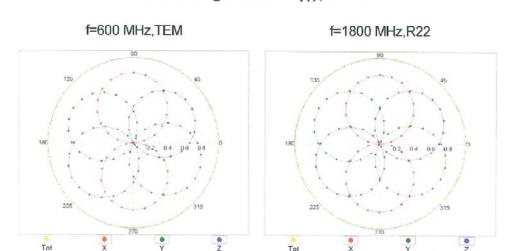

Frequency validity of ± 100 MHz only applies for DAST 94.4 and nigher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the KSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

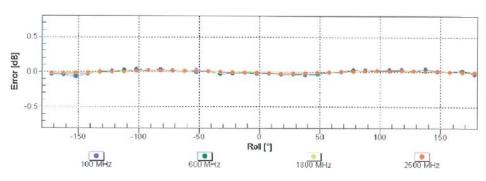
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4- SN:3916

April 29, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

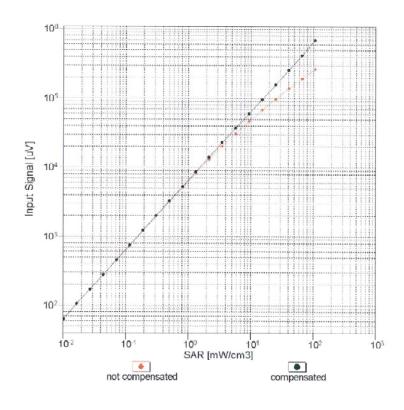

Certificate No: EX3-3916_Apr13

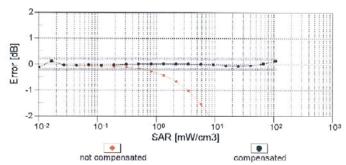
Page 7 of 11

EX3DV4- SN:3916 April 29, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

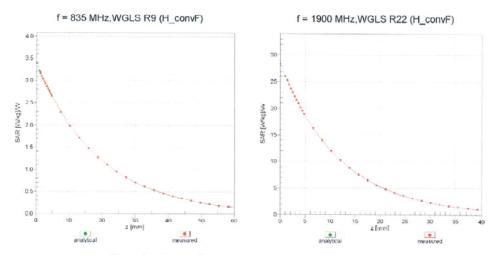

Certificate No: EX3-3916_Apr13


Page 8 of 11

EX3DV4- SN:3916

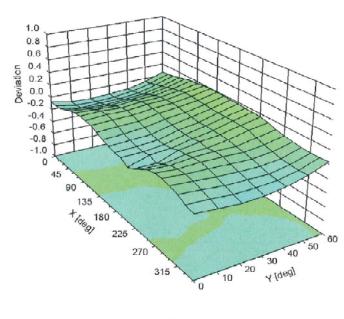
April 29, 2013

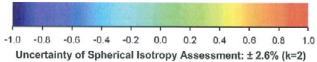
Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3916_Apr13

Page 9 of 11


EX3DV4- SN:3916 April 29, 2013


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , ϑ), f = 900 MHz

Certificate No: EX3-3916_Apr13

Page 10 of 11

EX3DV4-SN:3916

April 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3916

Other Probe Parameters

Triangular
-92.3
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
2 mm

Certificate No: EX3-3916_Apr13

Page 11 of 11

Attachment 2. - Dipole Calibration Data

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

S

Accreditation No.: SCS 108

Certificate No: D1900V2-5d029 Mar12 Digital EMC (Dymstec) Client CALIBRATION CERTIFICATE D1900V2 - SN: 5d029 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz March 16, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards Cal Date (Certificate No.) Oct-12 05-Oct-11 (No. 217-01451) Power meter EPM-442A GB37480704 Oct-12 05-Oct-11 (No. 217-01451) Power sensor HP 8481A US37292783 Apr-12 SN: 5086 (20g) 29-Mar-11 (No. 217-01368) Reference 20 dB Attenuator Apr-12 SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Type-N mismatch combination SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 Reference Probe ES3DV3 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 SN: 601 Scheduled Check Secondary Standards Check Date (in house) In house check: Oct-13 18-Oct-02 (in house check Oct-11) MY41092317 Power sensor HP 8481A RF generator R&S SMT-06 04-Aug-99 (in house check Oct-11) In house check: Oct-13 100005 In house check: Oct-12 US37390585 S4206 18-Oct-01 (in house check Oct-11) Network Analyzer HP 8753E Signature Function Name Laboratory Technician Israe El-Naouq Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: March 16, 2012

Certificate No: D1900V2-5d029_Mar12

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d029_Mar12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

· ·	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.43 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.99 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.85 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.22 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.9 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d029_Mar12

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 0.6 jΩ	
Return Loss	- 30.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6 Ω - 2.7 jΩ	
Return Loss	- 25.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 17, 2002	

Certificate No: D1900V2-5d029_Mar12

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.03.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d029

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011

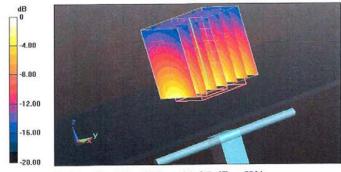
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

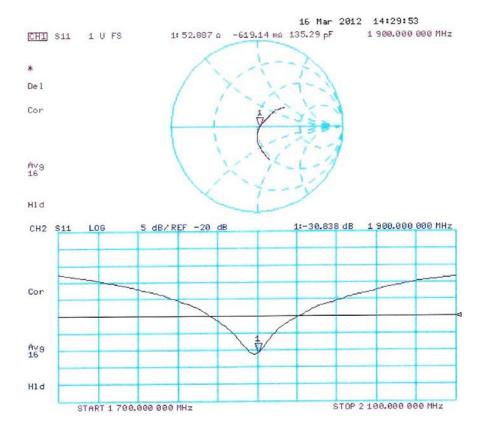
DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.547 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 16.7780


SAR(1 g) = 9.43 mW/g; SAR(10 g) = 4.99 mW/g

Maximum value of SAR (measured) = 11.585 mW/g

0 dB = 11.580 mW/g = 21.27 dB mW/g

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d029_Mar12

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 16.03.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d029

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 53.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

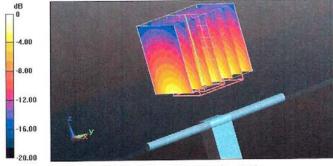
Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

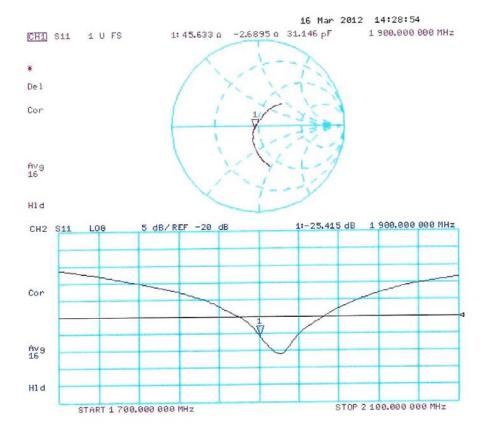

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.198 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 17.1680

SAR(1 g) = 9.85 mW/g; SAR(10 g) = 5.22 mW/g

Maximum value of SAR (measured) = 12.378 mW/g



0 dB = 12.380 mW/g = 21.85 dB mW/g

Certificate No: D1900V2-5d029_Mar12

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d029_Mar12

Page 8 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Digital EMC (Dymstec)

Accreditation No.: SCS 108

Certificate No: D2450V2-726_Mar12 CALIBRATION CERTIFICATE D2450V2 - SN: 726 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz March 15, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) Primary Standards 05-Oct-11 (No. 217-01451) Oct-12 GB37480704 Power meter EPM-442A 05-Oct-11 (No. 217-01451) Oct-12 US37292783 Power sensor HP 8481A Apr-12 Reference 20 dB Attenuator SN: 5086 (20g) 29-Mar-11 (No. 217-01368) SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Type-N mismatch combination Dec-12 30-Dec-11 (No. ES3-3205_Dec11) Reference Probe ES3DV3 SN: 3205 Jul-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) DAE4 Scheduled Check Check Date (in house) Secondary Standards ID# 18-Oct-02 (in house check Oct-11) In house check: Oct-13 MY41092317 Power sensor HP 8481A In house check: Oct-13 100005 04-Aug-99 (in house check Oct-11) RF generator R&S SMT-06 18-Oct-01 (in house check Oct-11) In house check: Oct-12 US37390585 S4206 Network Analyzer HP 8753E Signature Function Name Claudio Leubler Laboratory Technician Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: March 16, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-726_Mar12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etalorinage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-726_Mar12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.08 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-726_Mar12

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.0~\Omega + 3.3~\mathrm{j}\Omega$	
Return Loss	- 26.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.0 \Omega + 5.0 j\Omega$	
Return Loss	- 26.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.163 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-726_Mar12

Page 4 of 8