Report No.: DRTFCC1211-0834

Total 29 Pages

RF TEST REPORT

Test item	•	Mobile Phone	
Model No.	;	201K	
Order No.	:	DEMC1210-02137	
Date of receipt	:	2012-10-10	
Test duration	:	2012-11-08 ~ 2012-11-16	
Date of issue	:	2012-11-30	
Use of report	;	FCC Original Grant	
		orporation ra, Tsuzuki-ku, Yokohama-Shi	, Kanagawa 224-8502, Japan
Test laboratory : Digital EN 683-3, Yu			i, Kyunggi-Do, 449-080, Korea
Test specificat	ion	: FCC Part 15 Subpart C 2 ANSI C63.10-2009, KDB	
Test environm	ent	: See appended test repor	t
Test result		: 🛛 Pass 🔲 Fail	
the use of this test report is inhibited	other	est report are limited only to the sample than its purpose. This test report sha rritten approval of DIGITAL EMC CO.,	Il not be reproduced except in full,
Tested by:	V	/itnessed by:	Reviewed by:
Engineer	Ν	/A	Technical Director
Jae-Jin, Lee			Harvey Sung

Test Report Version

Test Report No.	Date	Description
DRTFCC1211-0834	Nov. 30, 2012	Final version for approval

Report No.: DRTFCC1211-0834

Table of Contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	4
3. TEST METHODOLOGY	5
3.1 EUT CONFIGURATION	5
3.2 EUT EXERCISE	5
3.3 GENERAL TEST PROCEDURES	5
3.4 DESCRIPTION OF TEST MODES	5
4. INSTRUMENT CALIBRATION	6
5. FACILITIES AND ACCREDITATIONS	6
5.1 FACILITIES	6
5.2 EQUIPMENT	6
6. ANTENNA REQUIREMENTS	6
7. TEST RESULT	7
7.1 6dB Bandwidth Measurement	7
7.2 Maximum Peak Conducted Output Power1	0
7.3 Maximum Power Spectral Density1	3
7.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions 1	6
7.5 Radiated Measurement	22
7.5.1 Radiated Spurious Emissions2	2
7.6 POWERLINE CONDUCTED EMISSIONS2	
8. LIST OF TEST EQUIPMENT2	8
APPENDIX I	9

FCCID: JOY201K DEMC1210-02137

Report No.: DRTFCC1211-0834

1. GENERAL INFORMATION

Applicant : KYOCERA Corporation

Address : 2-1-1 Kagahara, Tsuzuki-ku, Yokohama-Shi, Kanagawa 224-8502, Japan

FCC ID : JOY201K

EUT : Mobile Phone

Model : 201K Additional Model(s) : N/A

: 2012-11-08 ~ 2012-11-16 **Data of Test**

Contact person : Yoshikazu Yamamoto

2. EUT DESCRIPTION

Product	Mobile Phone			
Model Name	201K			
Power Supply	OC 3.8V			
Battery type	Standard Battery: Lithium Ion Battery			
Frequency Range	2402 ~ 2480MHz(40 channels)			
Max. RF Output Power	1.08 dBm			
Modulation Type	GFSK			
Antenna Specification	Antenna Type: Internal Antenna Gain: 0 dBi(PK)			

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009) and KDB558074

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10, the EUT is placed on the turntable, which is 0.8 m above ground plane and the conducted emissions from the EUT are measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.3 of ANSI C63.10

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The Bluetooth low energy mode and below low, middle and high channels were tested and reported.

Test Mode	Channel	Frequency [MHz]
	0	2402
BT LE	19	2440
	39	2480

Report No.: DRTFCC1211-0834

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

DEMC1210-02137

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number: 678747

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- * The internal antenna of this E.U.T is uniquely attached on the main PCB using specially spring contactors.
- * Therefore this E.U.T Complies with the requirement of §15.203

7. TEST RESULT

7.1 6dB Bandwidth Measurement

Test Requirements and limit, §15.247(d)

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6dB bandwidth is 500 kHz.

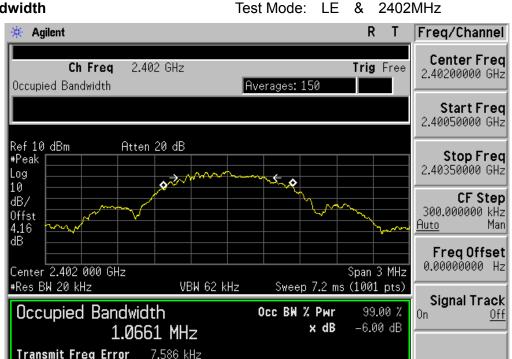
TEST CONFIGURATION

Refer to the APPENDIX I.

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074.

- 1. Set resolution bandwidth (RBW) = 1-5% of DTS BW. Actual RBW = 20 KHz
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW. Actual VBW = 62 KHz
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

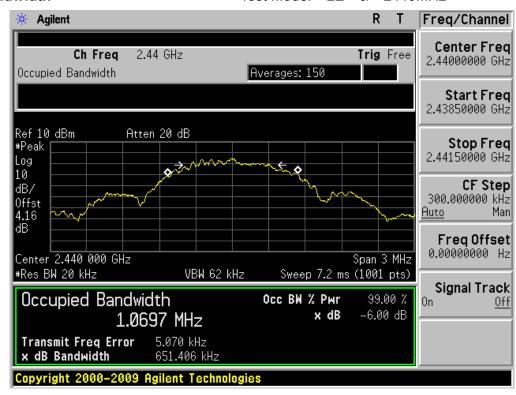

■ TEST RESULTS: Comply

Test Mode	Frequency [MHz]	Test Results [KHz]
	2402	648
LE	2440	651
	2480	650

DEMC1210-02137

RESULT PLOTS

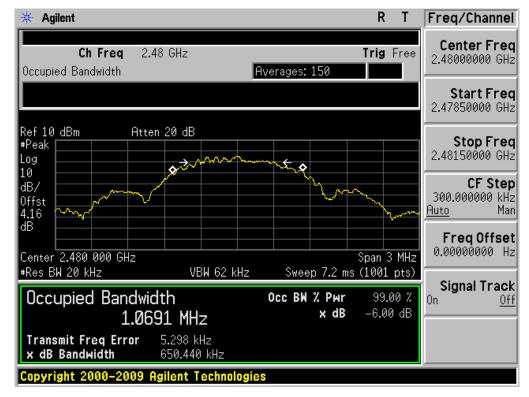
6 dB Bandwidth


648.493 kHz

6 dB Bandwidth

x dB Bandwidth

Copyright 2000-2



DEMC1210-02137 Report No.: **DRTFCC1211-0834**

6 dB Bandwidth

FCCID: JOY201K DEMC1210-02137

Report No.: DRTFCC1211-0834

7.2 Maximum Peak Conducted Output Power

Test Requirements and limit, §15.247(d)

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

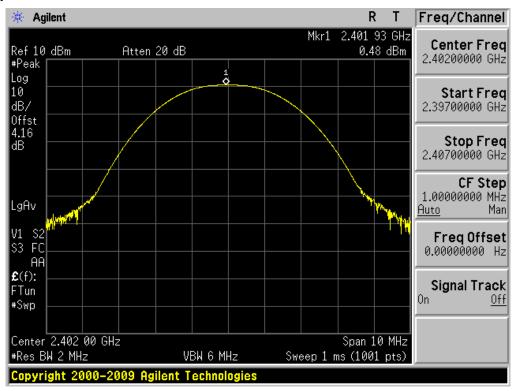
TEST CONFIGURATION

Refer to the APPENDIX I.

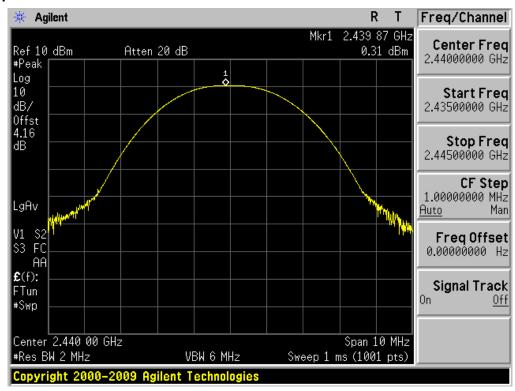
TEST CONFIGURATION:

Maximum Peak Conducted Output Power is measured using Measurement Procedure Option1 of KDB558074.

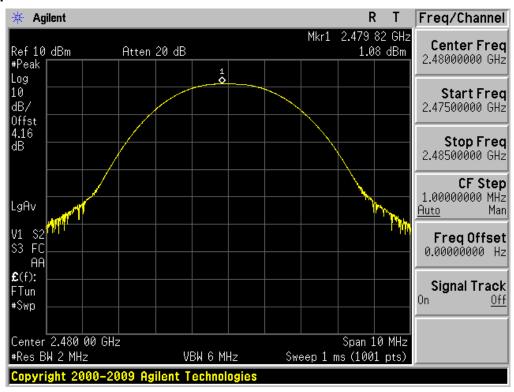
- 1. Set the RBW ≥ DTS bandwidth. Actual RBW = 2 MHz
- 2. Set VBW ≥ 3 x RBW. Actual VBW = 6 MHz
- 3. Set span ≥ **RBW**.
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.


TEST RESULTS: Comply

Toot Made	Test Results[dBm]			
Test Mode	2402MHz	2440MHz 2480MHz		
LE	0.48	0.31	1.08	


Note: The path loss was corrected using the offset value of the spectrum analyzer.

RESULT PLOTS


Peak Output Power Test Mode: LE & 2402MHz

Peak Output Power Test Mode: LE & 2440MHz

Peak Output Power Test Mode: LE & 2480MHz

7.3 Maximum Power Spectral Density.

Test requirements and limit, §15.247(d)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard –specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

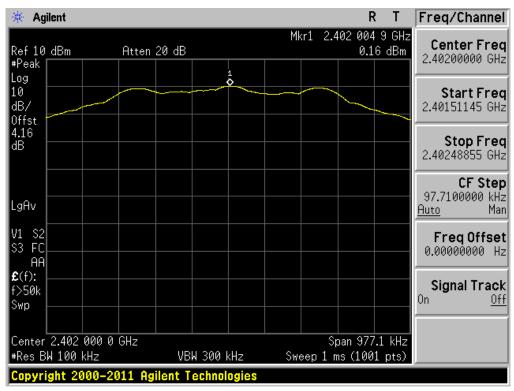
TEST CONFIGURATION

Refer to the APPENDIX I.

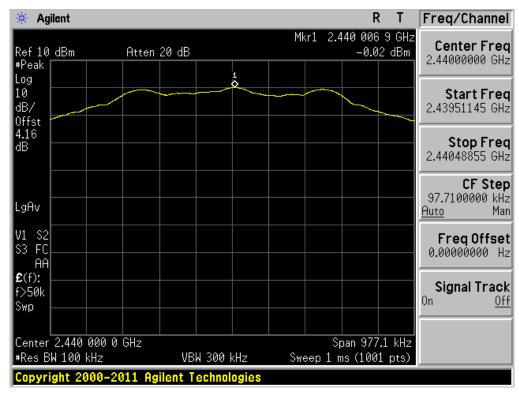
■ TEST PROCEDURE:

The Measurement Procedure Option 1 of KDB558074 is used.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS channel bandwidth.
- 3. Set the RBW ≥ 3 kHz. Actual RBW = 100 kHz
- 4. Set the VBW ≥ 3 x RBW. Actual VBW = 300 kHz
- 5. Detector = **peak**.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

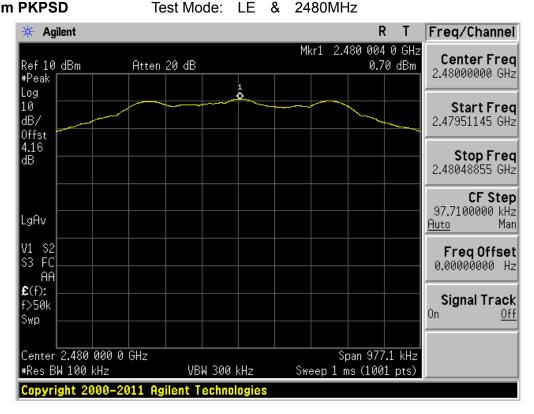

■ TEST RESULTS: Comply

Test Mode	Frequency [MHz]	PKPSD [dBm]
	2402	0.160
LE	2440	-0.020
	2480	0.700


Note: The path loss was corrected using the offset value of the spectrum analyzer.

RESULT PLOTS

Maximum PKPSD Test Mode: LE & 2402MHz



Maximum PKPSD Test Mode: LE & 2440MHz

FCCID: **JOY201K** DEMC1210-02137 Report No.: DRTFCC1211-0834

Maximum PKPSD

7.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions

Test requirements and limit, §15.247(d)

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

TEST CONFIGURATION

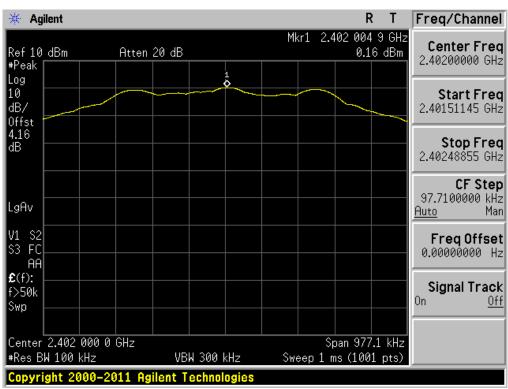
Refer to the APPENDIX I.

TEST PROCEDURE

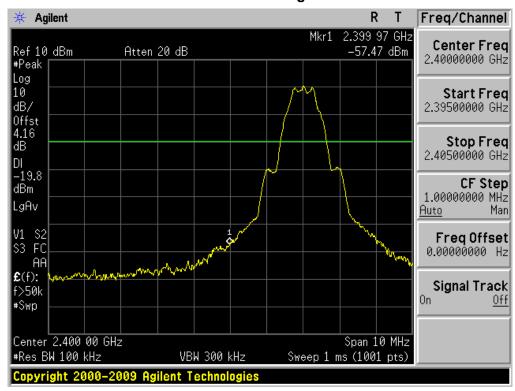
The transmitter output is connected to a spectrum analyzer.

- Measurement Procedure 1 - Reference Level

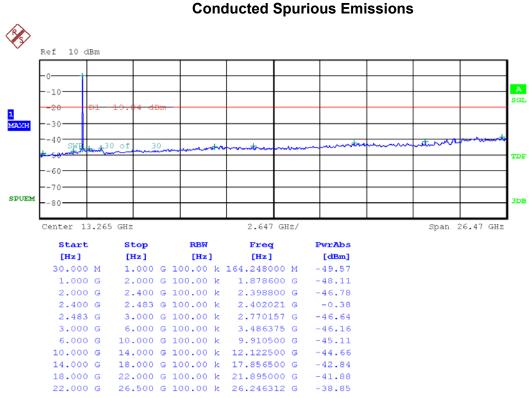
Establish the reference level by using the peak PSD procedure of KDB558074 to measure the PSD level in any 100 kHz bandwidth (i.e., set RBW = 100 kHz and VBW ≥ 300 kHz) within the DTS channel bandwidth (the channel found to contain the maximum PSD level can be used to establish the reference level).


- Measurement Procedure 2 - Unwanted Emissions

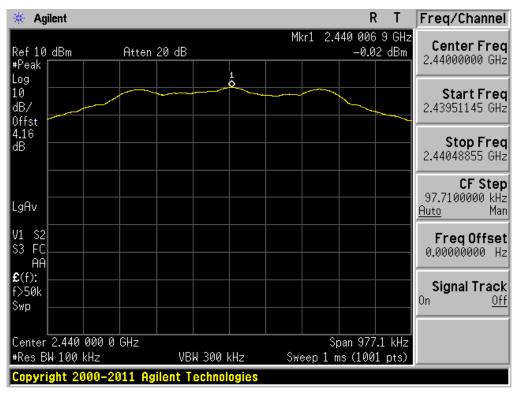
- 1. Set start frequency to DTS channel edge frequency.
- 2. Set stop frequency so as to encompass the spectrum to be examined.
- 3. Set **RBW = 100 kHz**.
- 4. Set **VBW** ≥ **300** kHz.
- 5. Detector = peak.
- 6. Trace Mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.


RESULT PLOTS

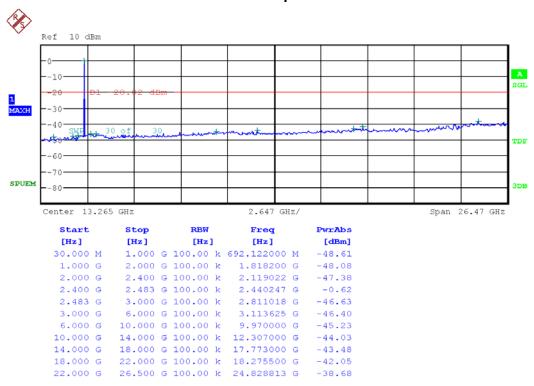
LE & 2402MHz


Reference

Low Band-edge

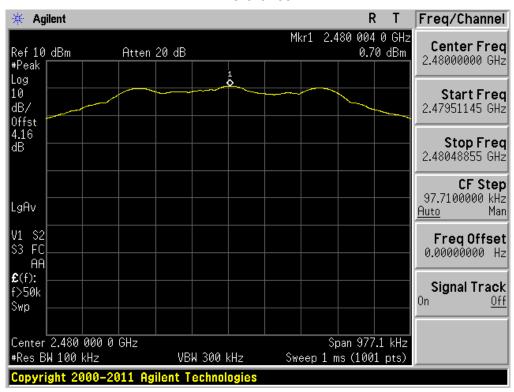


Canduated Countries Fusionisms

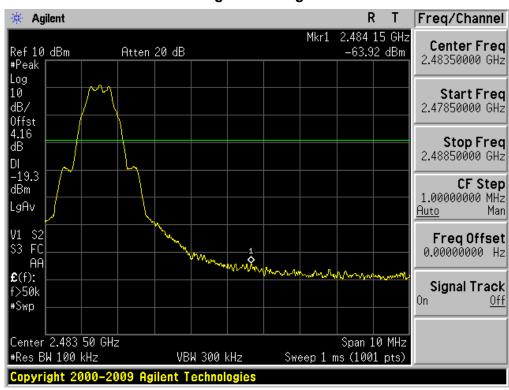


LE & 2440MHz

Reference

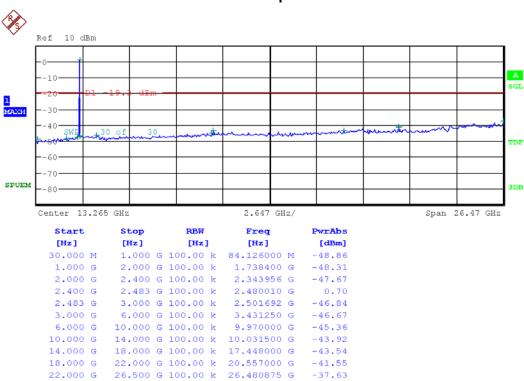


Conducted Spurious Emissions



LE & 2480MHz

Reference


High Band-edge

FCCID: **JOY201K** DEMC1210-02137

Report No.: DRTFCC1211-0834

Conducted Spurious Emissions

DEMC1210-02137 Report No.: **DRTFCC1211-0834**

7.5 Radiated Measurement.

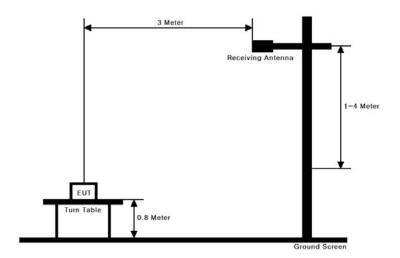
7.5.1 Radiated Spurious Emissions.

Test Requirements and limit, §15.247(d)

1. In any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500


^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

- 1 00 1 art 13.203	a): Only spurious emissions are permitted in any of the frequency bands listed be					
MHz	MHz	MHz	MHz	GHz	GHz	
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5	
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2	
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4	
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12	
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0	
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8	
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5	
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6	
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900	13.25 ~ 13.4		
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267			
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339			
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358			
	25.5 ~ 25.67	960 ~ 1240				
	37.5 ~ 38.25					
	73 ~ 74.6					
	74.8 ~ 75.2					

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

1. Frequency Range Below 1 GHz

RBW = 100 or 120 KHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range > 1 GHz

Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak

Average Measurement > 1GHz

VBW = 10 Hz, When duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Mode	Duty Cycle (%)	T _{on} (us)	1/T _{on} (kHz)	Determined VBW Setting
BT (LE)	62.50	390	2.564	3KHz

Note: For average measurement with duty cycle < 98%, the reduced VBW measurement method of Section 4.2.3.2.3 in ANSI C63.10 is used.

DEMC1210-02137 Report No.: **DRTFCC1211-0834**

30MHz ~ 25GHz Data(*LE*)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.60	Н	Y	PK	48.38	-2.33	46.05	74.00	27.95
2388.65	Н	Y	AV	37.32	-2.33	34.99	54.00	19.01
4803.64	Н	Х	PK	43.47	5.92	49.39	74.00	24.61
4804.33	Н	Х	AV	33.13	5.92	39.05	54.00	14.95
_	-	-	-	-	-	-	-	-

Middle Channel

	Widdle Chamier									
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)		
4879.94	Н	Х	PK	43.62	6.68	50.30	74.00	23.70		
4879.98	Н	Х	AV	32.16	6.68	38.84	54.00	15.16		
-	-	-	-	-	-	-	-	-		

Highest Channel

Tighest oname								
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.53	Н	Υ	PK	51.35	-2.24	49.11	74.00	24.89
2483.73	Н	Y	AV	38.34	-2.24	36.10	54.00	17.90
4960.22	Н	Х	PK	44.08	6.57	50.65	74.00	23.35
4959.65	Н	Χ	AV	32.54	6.57	39.11	54.00	14.89
-	-	-	-	-	-	-	=	-

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

 $\begin{array}{ll} \text{Margin} = \text{Limit} - \text{Result} & / & \text{Result} = \text{Reading} + \text{T.F} \, / & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ \text{Where, T.F} = \text{Total Factor,} & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & \text{AG} = \text{Amplifier Gain} \\ \end{array}$

FCCID: JOY201K DEMC1210-02137

Report No.: DRTFCC1211-0834

7.6 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.247(d)

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

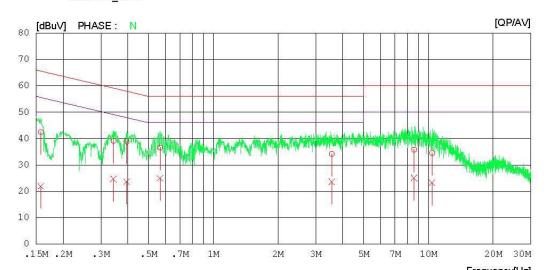
DEMC1210-02137 Report No.: **DRTFCC1211-0834**

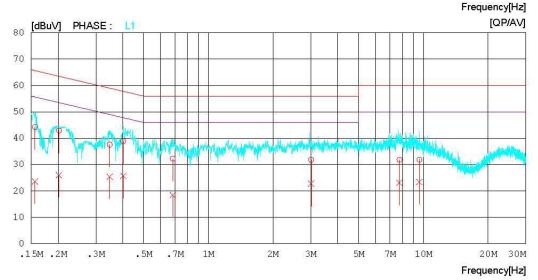
RESULT PLOTS

AC Line Conducted Emissions (Graph)

Test Mode: LE & 2440MHz

Memo




Results of Conducted Emission

Digital EMC Date : 2012-11-08

 Model No.
 :
 201 K
 Referrence No.
 :
 Type
 :
 120 V
 60 Hz
 60 Hz
 Serial No.
 :
 120 V
 60 Hz
 Temp/Humi.
 :
 25 °C
 40% R.H.
 Temp/Humi.
 :
 J.J.LEE

LIMIT : CISPR22_B QP CISPR22_B AV

AC Line Conducted Emissions (List)

Test Mode: LE & 2440MHz

Results of Conducted Emission

Digital EMC Date : 2012-11-08

 Model No.
 : 201K

 Type
 :

 Serial No.
 : Identical protype

 Test Condition
 : LE

Referrence No. Power Supply Temp/Humi. Operator

120 V 60 Hz 25 'C 40% R.H. J.J.LEE

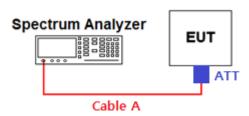
Memo :

LIMIT : CISPR22_B QP CISPR22_B AV

NO	FREQ	READ		C.FACTOR	RES		LIM			GIN	PHASE	
	[MHz]	QP [dBuV]	AV [dBuV]	[dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]		
1	0.15779	42.2	21.7	0.2	42.4	21.9	65.6	55.6	23.2	33.7	N	
2	0.34380	39.0	24.4	0.2	39.2	24.6	59.1	49.1	19.9	24.5	N	
3	0.39525	38.7	23.4	0.2	38.9	23.6	58.0	48.0	19.1	24.4	N	
4	0.56579	36.4	24.7	0.2	36.6	24.9	56.0	46.0	19.4	21.1	N	
5	3.55450	33.9	23.3	0.3	34.2	23.6	56.0	46.0	21.8	22.4	N	
6	8.59550	35.1	24.3	0.7	35.8	25.0	60.0	50.0	24.2	25.0	N	
7	10.41300	33.8	22.5	0.7	34.5	23.2	60.0	50.0	25.5	26.8	N	
8	0.15636	44.0	23.4	0.2	44.2	23.6	65.7	55.7	21.5	32.1	L1	
9	0.20181	42.7	25.8	0.2	42.9	26.0	63.5	53.5	20.6	27.5	L1	
10	0.34786	37.4	25.2	0.2	37.6	25.4	59.0	49.0	21.4	23.6	L1	
11	0.40209	38.7	25.5	0.2	38.9	25.7	57.8	47.8	18.9	22.1	L1	
12	0.68333	32.1	18.3	0.2	32.3	18.5	56.0	46.0	23.7	27.5	L1	
13	3.00950	31.5	22.5	0.3	31.8	22.8	56.0	46.0	24.2	23.2	L1	
14	7.74750	31.4	22.6	0.5	31.9	23.1	60.0	50.0	28.1	26.9	L1	
15	9.58900	31.2	22.7	0.7	31.9	23.4	60.0	50.0	28.1	26.6	L1	

DEMC1210-02137 Report No.: **DRTFCC1211-0834**

8. LIST OF TEST EQUIPMENT


Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent	E4440A	12/09/18	13/09/18	MY45304199
Spectrum Analyzer	Agilent	E4440A	12/10/22	13/10/22	US45303022
Spectrum Analyzer	Rohde Schwarz	FSQ26	12/01/09	13/01/09	200445
Digital Multimeter	H.P	34401A	12/03/05	13/03/05	3146A13475
Signal Generator	Rohde Schwarz	SMR20	12/03/05	13/03/05	101251
Vector Signal Generator	Rohde Schwarz	SMJ100A	12/01/09	13/01/09	100148
Attenuator (3dB)	WEINSCHEL	56-3	12/09/17	13/09/17	Y2342
Thermo hygrometer	BODYCOM	BJ5478	12/01/13	13/01/13	090205-2
DC Power Supply	HP	6622A	12/03/05	13/03/05	3448A03760
High-pass filter	Wainwright	WHNX3.0	12/09/17	13/09/17	9
BILOG ANTENNA	SCHAFFNER	CBL6112D	10/12/21	12/12/21	2737
HORN ANT	ETS	3115	12/02/20	14/02/20	6419
HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
Amplifier (22dB)	H.P	8447E	12/01/09	13/01/09	2945A02865
Amplifier (30dB)	Agilent	8449B	12/03/05	13/03/05	3008A00370
EMI TEST RECEIVER	R&S	ESU	12/01/09	13/01/09	100014
EMI TEST RECEIVER	R&S	ESCI	12/03/06	13/03/06	100364
CVCF	KIKUSUI	PCR1000L	12/09/15	13/09/15	14110610
LISN	R&S	ESH2-Z5	12/09/18	13/09/18	828739/006
RFI/Field intensity Meter	KYORITSU	KNM-2402	12/07/02	13/07/02	4N-170-3

DEMC1210-02137 Report No.: DRTFCC1211-0834

APPENDIX I

Conducted Test set up Diagram & Path loss Information

Conducted Measurement

Offset value information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)	
0.03	3.65	15	6.28	
1	3.72	20	6.51	
2.402 & 2.441 & 2.480	4.16	26.5	6.78	
5	5.22	-	-	
10	5.77	-	-	

Note. 1: The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (= S/A's Offset value) = Cable A + ATT(Attenuator, Applied only when it was used externally)

Note. 2: For conducted spurious emissions, the offset values were saved as the transducer factors on the spurious measurement function of the spectrum analyzer and the transducer factor of tested frequency is calculated and corrected automatically by the spectrum analyzer's measurement function.

.