# **TEST REPORT** # **CERTIFICATE OF CONFORMITY** Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247) Report No.: RFBDKG-WTW-P24070285 FCC ID: JNZYR0105 **Product:** Wireless Keyboard **Brand:** Logitech, logi, logitech Model No.: YR0105 Received Date: 2024/7/10 Test Date: 2024/7/10 ~ 2024/7/12 **Issued Date: 2024/7/31** Applicant: Logitech Far East Ltd. Address: #2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C. Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory **Lab Address:** E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan **Test Location:** E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan FCC Registration / 723255 / TW2022 **Designation Number:** | Approved by: | hen [ | , Date: | 2024/7/31 | | |--------------|-------|---------|-----------|--| | | | | | | Wen Yu / Assistant Manager This test report consists of 37 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards. Prepared by : Phoenix Huang / Specialist This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about-us/terms-conditions/">http://www.bureauveritas.com/home/about-us/terms-conditions/</a> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Report No.: RFBDKG-WTW-P24070285 Page No. 1 / 37 Report Format Version: 7.1.0 # **Table of Contents** | R | eleas | se Control Record | 4 | |---|--------------|--------------------------------------------------------------|----| | 1 | | Certificate | 5 | | 2 | | Summary of Test Results | 6 | | | 2.1 | Measurement Uncertainty | 6 | | | 2.2 | Supplementary Information | 6 | | 3 | | General Information | 7 | | | 3.1 | General Description | | | | 3.2 | Antenna Description of EUT | | | | 3.3 | Channel List | | | | 3.4 | Test Mode Applicability and Tested Channel Detail | | | | 3.5 | Duty Cycle of Test Signal | | | | 3.6 | Test Program Used and Operation Descriptions | | | | 3.7<br>3.8 | Connection Diagram of EUT and Peripheral Devices | | | | | - | | | 4 | | Test Instruments | | | | 4.1 | RF Output Power | | | | 4.2 | Power Spectral Density | | | | 4.3<br>4.4 | 6 dB Bandwidth | | | | 4.4<br>4.5 | | | | | 4.5 | Unwanted Emissions below 1 GHzUnwanted Emissions above 1 GHz | | | _ | _ | | | | • | | Limits of Test Items | | | | 5.1 | RF Output Power | | | | 5.2 | Power Spectral Density | | | | 5.3 | 6 dB Bandwidth | | | | 5.4<br>5.5 | Conducted Out of Band Emissions | | | | 5.6 | Unwanted Emissions below 1 GHz | | | • | | Test Arrangements | | | 0 | | - | | | | 6.1 | RF Output Power | | | | 6.1.1 | · · | | | | 6.1.2 | | | | | 6.2<br>6.2.1 | Power Spectral Density | | | | 6.2.2 | · | | | | 6.3 | 6 dB Bandwidth | | | | 6.3.1 | | | | | 6.3.2 | · · | | | | 6.4 | Conducted Out of Band Emissions | | | | 6.4.1 | | | | | 6.4.2 | · | | | | 6.5 | Unwanted Emissions below 1 GHz | | | | 6.5.1 | 1 Test Setup | 19 | | | 6.5.2 | 2 Test Procedure | 20 | | | 6.6 | Unwanted Emissions above 1 GHz | | | | 6.6.1 | · | | | | 6.6.2 | 2 Test Procedure | 21 | | 7 | | Test Results of Test Item | 22 | | | 7.1 | RF Output Power | | | | 7.2 | Power Spectral Density | | | | 7.3 | 6 dB Bandwidth | | | | 7.4 | Conducted Out of Band Emissions | | | | 7.5 | Unwanted Emissions below 1 GHz | | | | | No : PERDICO WTW P24070285 Page No. 2 / 37 Perpet Form | | | 7.6 | Unwanted Emissions above 1 GHz | 28 | |-----|-----------------------------------------|----| | 8 | Pictures of Test Arrangements | | | 9 | Information of the Testing Laboratories | | # **Release Control Record** | Issue No. | Description | Date Issued | |----------------------|-------------------|-------------| | RFBDKG-WTW-P24070285 | Original release. | 2024/7/31 | Report No.: RFBDKG-WTW-P24070285 Page No. 4 / 37 Report Format Version: 7.1.0 ## 1 Certificate Product: Wireless Keyboard Brand: Logitech, logi, logitech Test Model: YR0105 Sample Status: Engineering sample Applicant: Logitech Far East Ltd. **Test Date:** 2024/7/10 ~ 2024/7/12 **Standard:** 47 CFR FCC Part 15, Subpart C (Section 15.247) Measurement ANSI C63.10-2013 procedure: KDB 558074 D01 15.247 Meas Guidance v05r02 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. Report No.: RFBDKG-WTW-P24070285 Page No. 5 / 37 Report Format Version: 7.1.0 # 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (Section 15.247) | | | | | |------------------------------------------------|---------------------------------|--------|--------------------------------------------------|--| | Standard / Clause | Test Item | Result | Remark | | | 15.247(b) | RF Output Power | Pass | Meet the requirement of limit. | | | 15.247(e) | Power Spectral Density | Pass | Meet the requirement of limit. | | | 15.247(a)(2) | 6 dB Bandwidth | Pass | Meet the requirement of limit. | | | 15.247(d) | Conducted Out of Band Emissions | Pass | Meet the requirement of limit. | | | 15.207 | AC Power Conducted Emissions | N/A | Power supply is from battery. | | | 15.205 /<br>15.209 /<br>15.247(d) | Unwanted Emissions below 1 GHz | Pass | Minimum passing margin is -14.2 dB at 913.79 MHz | | | 15.205 /<br>15.209 /<br>15.247(d) | Unwanted Emissions above 1 GHz | Pass | Minimum passing margin is -5.9 dB at 2390.00 MHz | | | 15.203 | Antenna Requirement | Pass | No antenna connector is used. | | Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ## 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Specification | Expanded Uncertainty (k=2)<br>(±) | | |----------------------------------|-----------------|-----------------------------------|--| | RF Output Power | - | 1.1 dB | | | Power Spectral Density | - | 1.3 dB | | | 6 dB Bandwidth | - | 1050.00 Hz | | | Conducted Out of Band Emissions | 9 kHz ~ 40 GHz | 2.6 dB | | | Unwented Emissions helpy 1 CHz | 9 kHz ~ 30 MHz | 3.1 dB | | | Unwanted Emissions below 1 GHz | 30 MHz ~ 1 GHz | 5.1 dB | | | Linuxantad Emissions above 1 CHz | 1 GHz ~ 18 GHz | 5.0 dB | | | Unwanted Emissions above 1 GHz | 18 GHz ~ 40 GHz | 5.3 dB | | The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated. ## 2.2 Supplementary Information There is not any deviation from the test standards for the test method, and no modifications required for compliance. Report No.: RFBDKG-WTW-P24070285 Page No. 6 / 37 Report Format Version: 7.1.0 # 3 General Information # 3.1 General Description | Product | Wireless Keyboard | | |-----------------------|--------------------------------------|--| | Brand | Logitech, logi, logitech | | | Test Model | YR0105 | | | Status of EUT | Engineering sample | | | Power Supply Rating | 3 Vdc from batteries | | | Modulation Type | GFSK | | | Modulation Technology | DTS | | | Transfer Rate 2 Mbps | | | | Operating Frequency | ting Frequency 2.405 GHz ~ 2.474 GHz | | | Number of Channel | 12 | | | Output Power | 2.985 mW (4.75 dBm) | | ## Note: - 1. The EUT may have a lot of colors for marketing requirement. - 2. The product is supplied by primary alkaline batteries. - 3. There are SRD (GFSK) and Bluetooth technology used for the EUT. - 4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual. Report No.: RFBDKG-WTW-P24070285 Page No. 7 / 37 Report Format Version: 7.1.0 # 3.2 Antenna Description of EUT 1. The antenna information is listed as below. | Antenna Net Gain (dBi) Frequency Range (GHz) | | Antenna Type | Connector Type | |----------------------------------------------|------------|--------------|----------------| | 4.52 | 2.4~2.4835 | PIFA | none | <sup>\*</sup> Detail antenna specification please refer to antenna datasheet and/or antenna measurement report. Report No.: RFBDKG-WTW-P24070285 Page No. 8 / 37 Report Format Version: 7.1.0 # 3.3 Channel List 12 channels are provided to this EUT: | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | |---------|--------------------|---------|--------------------| | 1 | 2405 | 7 | 2441 | | 2 | 2408 | 8 | 2444 | | 3 | 2414 | 9 | 2462 | | 4 | 2417 | 10 | 2465 | | 5 | 2432 | 11 | 2471 | | 6 | 2435 | 12 | 2474 | # 3.4 Test Mode Applicability and Tested Channel Detail Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below: | Test Item | Tested Channel | Modulation | Data Rate Parameter | |---------------------------------|----------------|------------|---------------------| | RF Output Power | 1, 8, 12 | GFSK | 2Mb/s | | Power Spectral Density | 1, 8, 12 | GFSK | 2Mb/s | | 6 dB Bandwidth | 1, 8, 12 | GFSK | 2Mb/s | | Conducted Out of Band Emissions | 1, 8, 12 | GFSK | 2Mb/s | | Unwanted Emissions below 1 GHz | 1 | GFSK | 2Mb/s | | Unwanted Emissions above 1 GHz | 1, 8, 12 | GFSK | 2Mb/s | Report No.: RFBDKG-WTW-P24070285 Page No. 10 / 37 Report Format Version: 7.1.0 # 3.5 Duty Cycle of Test Signal **GFSK:** Duty cycle = 0.135 ms / 10.28 ms x 100% = 1.3% # 3.6 Test Program Used and Operation Descriptions Controlling software (RF Sample with Receiver [Number Lock]) has been activated to set the EUT under transmission condition continuously at specific channel frequency. | condition continuously at opesing charmer negacitey. | | | | |------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--| | Test Item | Operation Description UFY TX Modulated low duty cycle 2405MHz UFY TX Modulated low duty cycle 2444MHz | | | | RF Output Power / Power Spectral Density / | UFY TX Modulated low duty cycle 2405MHz | | | | 6 dB Bandwidth / Conducted Out of Band Emissions / | UFY TX Modulated low duty cycle 2444MHz | | | | Unwanted Emissions | UFY TX Modulated low duty cycle 2474MHz | | | # 3.7 Connection Diagram of EUT and Peripheral Devices # 3.8 Configuration of Peripheral Devices and Cable Connections | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-----------|----------|-----------|------------|--------|-----------------| | Α | Battery*2 | Duracell | AAA | N/A | N/A | Provided by Lab | Report No.: RFBDKG-WTW-P24070285 Page No. 12 / 37 Report Format Version: 7.1.0 ## 4 Test Instruments The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. ## 4.1 RF Output Power | Description<br>Manufacturer | Model No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until | |-------------------------------|-----------|------------|--------------------|---------------------| | Pulse Power Sensor<br>Anritsu | MA2411B | 1726434 | 2024/6/7 | 2025/6/6 | | RF Power Meter<br>Anritsu | ML2495A | 1529002 | 2024/6/7 | 2025/6/6 | #### Notes: 1. The test was performed in Oven room 2. 2. Tested Date: 2024/7/12 # 4.2 Power Spectral Density | Description<br>Manufacturer | Model No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until | |---------------------------------|----------------------------------|------------|--------------------|---------------------| | MXA Signal Analyzer<br>Keysight | N9020B | MY60112408 | 2024/3/7 | 2025/3/6 | | Software | ADT_RF Test Software<br>V7.6.5.4 | N/A | N/A | N/A | #### Notes: 1. The test was performed in Oven room 2. 2. Tested Date: 2024/7/12 ## 4.3 6 dB Bandwidth Refer to section 4.2 to get the tested date and information of the instruments. ## 4.4 Conducted Out of Band Emissions Refer to section 4.2 to get the tested date and information of the instruments. Report No.: RFBDKG-WTW-P24070285 Page No. 13 / 37 Report Format Version: 7.1.0 ## 4.5 Unwanted Emissions below 1 GHz | Description<br>Manufacturer | Model No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until | |-----------------------------------------------------|----------------------|-------------|--------------------|---------------------| | Bi_Log Antenna<br>Schwarzbeck | VULB 9168 | 9168-0942 | 2023/10/12 | 2024/10/11 | | Boresight Antenna Tower & Turn<br>Table<br>Max-Full | MF-7802BS | MF780208530 | N/A | N/A | | Fixed Attenuator<br>Mini-Circuits | UNAT-5+ | PAD-ATT5-01 | 2024/5/16 | 2025/5/15 | | Loop Antenna<br>Electro-Metrics | EM-6879 | 264 | 2024/2/23 | 2025/2/22 | | MXA Signal Analyzer<br>Keysight | N9020B | MY60112410 | 2024/3/13 | 2025/3/12 | | MXE EMI Receiver Keysight | N9038A | MY59050100 | 2024/6/19 | 2025/6/18 | | Preamplifier | EMC330N | 980852 | 2024/2/17 | 2025/2/16 | | EMCI | EMC001340 | 980142 | 2024/2/19 | 2025/2/18 | | RF Coaxial Cable | ED ED | LOOPCAB-001 | 2024/2/19 | 2025/2/18 | | JYEBAO | 5D-FB | LOOPCAB-002 | 2024/2/19 | 2025/2/18 | | DE Conside Colle | | 966-6-1 | 2024/5/16 | 2025/5/15 | | RF Coaxial Cable | 8D | 966-6-2 | 2024/5/16 | 2025/5/15 | | PEWC | | 966-6-3 | 2024/5/16 | 2025/5/15 | | Software | ADT_Radiated_V8.7.08 | N/A | N/A | N/A | ## Notes: 1. The test was performed in 966 Chamber No. 6. 2. Tested Date: 2024/7/10 ## 4.6 Unwanted Emissions above 1 GHz | Description<br>Manufacturer | Model No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until | |-----------------------------------------------------|----------------------|-------------|--------------------|---------------------| | Boresight Antenna Tower & Turn<br>Table<br>Max-Full | MF-7802BS | MF780208530 | N/A | N/A | | Horn Antenna | BBHA 9120D | 9120D-2035 | 2023/11/12 | 2024/11/11 | | Schwarzbeck | BBHA 9170 | BBHA9170519 | 2023/11/12 | 2024/11/11 | | MXA Signal Analyzer<br>Keysight | N9020B | MY60112410 | 2024/3/13 | 2025/3/12 | | MXE EMI Receiver<br>Keysight | N9038A | MY59050100 | 2024/6/19 | 2025/6/18 | | Preamplifier | EMC12630SE | 980385 | 2024/6/1 | 2025/5/31 | | EMCI | EMC184045SE | 980387 | 2023/8/9 | 2024/8/8 | | | EMC104-SM-SM-1300 | 210205 | 2024/6/1 | 2025/5/31 | | RF Coaxial Cable<br>EMCI | EMC104-SM-SM-2000 | 210203 | 2024/6/1 | 2025/5/31 | | EIVICI | EMC104-SM-SM-8000 | 221015 | 2024/6/1 | 2025/5/31 | | Software | ADT_Radiated_V8.7.08 | N/A | N/A | N/A | ## Notes: 1. The test was performed in 966 Chamber No. 6. 2. Tested Date: 2024/7/10 ~ 2024/7/11 Report No.: RFBDKG-WTW-P24070285 Page No. 14 / 37 Report Format Version: 7.1.0 ## 5 Limits of Test Items ## 5.1 RF Output Power For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm) ## 5.2 Power Spectral Density The Maximum of Power Spectral Density Measurement is 8 dBm in any 3 kHz. ## 5.3 6 dB Bandwidth The minimum of 6 dB Bandwidth Measurement is 0.5 MHz. #### 5.4 Conducted Out of Band Emissions Below 20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth). ## 5.5 Unwanted Emissions below 1 GHz Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power: | Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) | |----------------------|--------------------------------------|----------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | ## Notes: The lower limit shall apply at the transition frequencies. Emission level (dBuV/m) = 20 log Emission level (uV/m). Report No.: RFBDKG-WTW-P24070285 Page No. 15 / 37 Report Format Version: 7.1.0 #### 5.6 Unwanted Emissions above 1 GHz Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power: | Frequencies<br>(MHz) | Field Strength (microvolts/meter) | Measurement Distance<br>(meters) | |----------------------|-----------------------------------|----------------------------------| | Above 960 | 500 | 3 | #### Notes: 1. The lower limit shall apply at the transition frequencies. Emission level (dBuV/m) = 20 log Emission level (uV/m). For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation. Report No.: RFBDKG-WTW-P24070285 Page No. 16 / 37 Report Format Version: 7.1.0 # 6 Test Arrangements ## 6.1 RF Output Power ## 6.1.1 Test Setup #### 6.1.2 Test Procedure #### Peak Power: A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level. ## Average Power: Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value. ## 6.2 Power Spectral Density ## 6.2.1 Test Setup ## 6.2.2 Test Procedure - a. Set analyzer center frequency to DTS channel center frequency. - b. Set the span to 1.5 times the DTS bandwidth. - c. Set the RBW to: 3 kHz. - d. Set the VBW $\geq$ 3 × RBW. - e. Detector = peak. - f. Sweep time = auto couple. - g. Trace mode = max hold. - h. Allow trace to fully stabilize. - i. Use the peak marker function to determine the maximum amplitude level within the RBW. Report No.: RFBDKG-WTW-P24070285 Page No. 17 / 37 Report Format Version: 7.1.0 #### 6.3 6 dB Bandwidth ## 6.3.1 Test Setup #### 6.3.2 Test Procedure - a. Set resolution bandwidth (RBW) = 100 kHz. - b. Set the video bandwidth (VBW) ≥ 3 x RBW, Detector = Peak. - c. Trace mode = max hold. - d. Sweep = auto couple. - e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. #### 6.4 Conducted Out of Band Emissions ## 6.4.1 Test Setup #### 6.4.2 Test Procedure #### **MEASUREMENT PROCEDURE REF** - a. Set the RBW = 100 kHz. - b. Set the VBW ≥ 300 kHz. - c. Detector = peak. - d. Sweep time = auto couple. - e. Trace mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. ## **MEASUREMENT PROCEDURE OOBE** - a. Set RBW = 100 kHz. - b. Set VBW ≥ 300 kHz. - c. Detector = peak. - d. Sweep = auto couple. - e. Trace Mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum amplitude level. ## 6.5 Unwanted Emissions below 1 GHz # 6.5.1 Test Setup ## For Radiated emission below 30 MHz ## For Radiated emission above 30 MHz For the actual test configuration, please refer to the attached file (Test Setup Photo). #### 6.5.2 Test Procedure #### For Radiated emission below 30 MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function. #### Notes: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz. - 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz). - 3. All modes of operation were investigated and the worst-case emissions are reported. #### For Radiated emission above 30 MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. #### Notes: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz. - 2. All modes of operation were investigated and the worst-case emissions are reported. Report No.: RFBDKG-WTW-P24070285 Page No. 20 / 37 Report Format Version: 7.1.0 #### 6.6 Unwanted Emissions above 1 GHz #### 6.6.1 Test Setup For the actual test configuration, please refer to the attached file (Test Setup Photo). #### 6.6.2 Test Procedure - a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver/spectrum analyzer was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Notes: - 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz. - 2. For fundamental and harmonic signal measurement, according to KDB 558074 D01 15.247 Meas Guidance v05r02 section 8.1(c)(3). The spectrum analyzer settings meet the requirements of 11.12.2.4 in ANSI C63.10 for making a Peak measurement, the average value = Peak value + duty cycle correction factor. The duty cycle measurement refers to FCC 47 CFR Part 15C section 15.35 (c). For duty cycle correction factor values, see the Test Signal Duty Cycle section in this report. - 3. All modes of operation were investigated and the worst-case emissions are reported. # 7 Test Results of Test Item # 7.1 RF Output Power | Input Power: | 3 Vdc | Environmental Conditions: | 25°C, 60% RH | Tested By: | John Peng | |--------------|-------|---------------------------|--------------|------------|-----------| |--------------|-------|---------------------------|--------------|------------|-----------| ## **For Peak Power** | Chan. | Chan. Freq. (MHz) | Peak Power (mW) | Peak Power<br>(dBm) | Power Limit (dBm) | Test Result | |-------|-------------------|-----------------|---------------------|-------------------|-------------| | 1 | 2405 | 2.985 | 4.75 | 30 | Pass | | 8 | 2444 | 2.831 | 4.52 | 30 | Pass | | 12 | 2474 | 2.57 | 4.10 | 30 | Pass | Note: The antenna gain is 4.52 dBi < 6 dBi, so the output power limit shall not be reduced. # **For Average Power** | Chan. | Chan. Freq.<br>(MHz) | Average Power (mW) | Average Power (dBm) | |-------|----------------------|--------------------|---------------------| | 1 | 2405 | 2.938 | 4.68 | | 8 | 2444 | 2.773 | 4.43 | | 12 | 2474 | 2.506 | 3.99 | Report No.: RFBDKG-WTW-P24070285 Page No. 22 / 37 Report Format Version: 7.1.0 # 7.2 Power Spectral Density | Input Power: | 3 Vdc | Environmental Conditions: | 25°C, 60% RH | Tested By: | John Peng | |--------------|-------|---------------------------|--------------|------------|-----------| |--------------|-------|---------------------------|--------------|------------|-----------| | Chan. | Chan. Freq.<br>(MHz) | PSD (dBm/3kHz) | PSD Limit (dBm/3kHz) | Test Result | |-------|----------------------|----------------|----------------------|-------------| | 1 | 2405 | -10.67 | 8 | Pass | | 8 | 2444 | -10.06 | 8 | Pass | | 12 | 2474 | -9.74 | 8 | Pass | Note: The antenna gain is 4.52 dBi < 6 dBi, so the power density limit shall not be reduced. # 7.3 6 dB Bandwidth | Input Power: | 3 Vdc | Environmental Conditions: | 25°C, 60% RH | Tested By: | John Peng | |--------------|-------|---------------------------|--------------|------------|-----------| |--------------|-------|---------------------------|--------------|------------|-----------| | Channel | Frequency (MHz) | 6 dB Bandwidth (MHz) | Minimum Limit (MHz) | Test Result | |---------|-----------------|----------------------|---------------------|-------------| | 1 | 2405 | 0.78 | 0.5 | Pass | | 8 | 2444 | 0.88 | 0.5 | Pass | | 12 | 2474 | 0.83 | 0.5 | Pass | #### 7.4 Conducted Out of Band Emissions #### 7.5 Unwanted Emissions below 1 GHz | RF Mode | GFSK | Channel | CH 1: 2405 MHz | |-----------------|----------------|-------------------------------|-------------------------------| | Frequency Range | 30 MHz ~ 1 GHz | Detector Function & Bandwidth | QP: RB=120kHz, DET=Quasi-Peak | | Input Power | 3 Vdc | Environmental Conditions | 23 °C, 61 % RH | | Tested By | Willy Lin | | | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | | | |----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | | | 1 | 54.69 | 18.6 QP | 40.0 | -21.4 | 2.00 H | 90 | 31.3 | -12.7 | | | | 2 | 158.74 | 19.1 QP | 43.5 | -24.4 | 3.00 H | 344 | 31.6 | -12.5 | | | | 3 | 376.56 | 21.4 QP | 46.0 | -24.6 | 2.50 H | 292 | 31.6 | -10.2 | | | | 4 | 656.38 | 26.9 QP | 46.0 | -19.1 | 2.00 H | 34 | 31.2 | -4.3 | | | | 5 | 827.61 | 29.6 QP | 46.0 | -16.4 | 1.50 H | 158 | 31.3 | -1.7 | | | | 6 | 913.79 | 31.8 QP | 46.0 | -14.2 | 1.00 H | 176 | 32.1 | -0.3 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz. - 5. The frequency range 9 kHz $\sim$ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report. | | | | VERITAS | |-----------------|----------------|-------------------------------|-------------------------------| | RF Mode | GFSK | Channel | CH 1: 2405 MHz | | Frequency Range | 30 MHz ~ 1 GHz | Detector Function & Bandwidth | QP: RB=120kHz, DET=Quasi-Peak | | Input Power | 3 Vdc | Environmental Conditions | 23 °C, 61 % RH | | Tested By | Willy Lin | | | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | | | | |----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | | | | 1 | 43.82 | 19.1 QP | 40.0 | -20.9 | 3.00 V | 42 | 31.7 | -12.6 | | | | | 2 | 155.08 | 19.2 QP | 43.5 | -24.3 | 3.00 V | 360 | 31.7 | -12.5 | | | | | 3 | 315.30 | 19.5 QP | 46.0 | -26.5 | 1.50 V | 154 | 31.3 | -11.8 | | | | | 4 | 526.30 | 24.3 QP | 46.0 | -21.7 | 2.50 V | 59 | 31.3 | -7.0 | | | | | 5 | 757.62 | 29.1 QP | 46.0 | -16.9 | 1.50 V | 136 | 31.7 | -2.6 | | | | | 6 | 990.06 | 32.9 QP | 54.0 | -21.1 | 2.50 V | 89 | 32.2 | 0.7 | | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz. - 5. The frequency range 9 kHz $\sim$ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report. #### 7.6 Unwanted Emissions above 1 GHz | RF Mode | GFSK | Channel | CH 1: 2405 MHz | |-----------------|----------------|-------------------------------|---------------------------------------------------------------------| | Frequency Range | 1 GHz ~ 25 GHz | Detector Function & Bandwidth | PK: RB=1 MHz, VB=3 MHz, DET=Peak<br>AV: RB=1 MHz, VB=3 MHz, DET=RMS | | Input Power | 3 Vdc | Environmental Conditions | 23 °C, 63 % RH | | Tested By | Willy Lin | | | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | | | |----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | | | 1 | 2390.00 | 62.3 PK | 74.0 | -11.7 | 1.00 H | 326 | 63.7 | -1.4 | | | | 2 | 2390.00 | 48.1 AV | 54.0 | -5.9 | 1.00 H | 326 | 49.5 | -1.4 | | | | 3 | *2405.00 | 102.1 PK | | | 1.00 H | 326 | 103.6 | -1.5 | | | | 4 | *2405.00 | 64.5 AV | | | 1.00 H | 326 | 66.0 | -1.5 | | | | 5 | 4810.00 | 40.0 PK | 74.0 | -34.0 | 1.20 H | 286 | 37.1 | 2.9 | | | | 6 | 4810.00 | 2.4 AV | 54.0 | -51.6 | 1.20 H | 286 | -0.5 | 2.9 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power. - 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: - $20 \log(\text{Duty cycle}) = 20 \log(0.135 \text{ ms} / 10.28 \text{ ms}) = -37.6 \text{ dB}$ | | | | VERITAS | |-----------------|----------------|--------------------------|---------------------------------------------------------------------| | RF Mode | GFSK | Channel | CH 1: 2405 MHz | | Frequency Range | 1 GHz ~ 25 GHz | | PK: RB=1 MHz, VB=3 MHz, DET=Peak<br>AV: RB=1 MHz, VB=3 MHz, DET=RMS | | Input Power | 3 Vdc | Environmental Conditions | 23 °C, 63 % RH | | Tested By | Willy Lin | | | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | | | | |----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | | | | 1 | 2390.00 | 57.6 PK | 74.0 | -16.4 | 3.76 V | 263 | 59.0 | -1.4 | | | | | 2 | 2390.00 | 47.4 AV | 54.0 | -6.6 | 3.76 V | 263 | 48.8 | -1.4 | | | | | 3 | *2405.00 | 96.5 PK | | | 3.76 V | 263 | 98.0 | -1.5 | | | | | 4 | *2405.00 | 58.9 AV | | | 3.76 V | 263 | 60.4 | -1.5 | | | | | 5 | 4810.00 | 40.2 PK | 74.0 | -33.8 | 1.11 V | 91 | 37.3 | 2.9 | | | | | 6 | 4810.00 | 2.6 AV | 54.0 | -51.4 | 1.11 V | 91 | -0.3 | 2.9 | | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power. - 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: $20 \log(\text{Duty cycle}) = 20 \log(0.135 \text{ ms} / 10.28 \text{ ms}) = -37.6 \text{ dB}$ | | | | VERITAS | |-----------------|----------------|--------------------------|---------------------------------------------------------------------| | RF Mode | GFSK | Channel | CH 8: 2444 MHz | | Frequency Range | 1 GHz ~ 25 GHz | | PK: RB=1 MHz, VB=3 MHz, DET=Peak<br>AV: RB=1 MHz, VB=3 MHz, DET=RMS | | Input Power | 3 Vdc | Environmental Conditions | 23 °C, 63 % RH | | Tested By | Willy Lin | | | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | | | |----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | | | 1 | *2444.00 | 101.3 PK | | | 1.66 H | 338 | 102.7 | -1.4 | | | | 2 | *2444.00 | 63.7 AV | | | 1.66 H | 338 | 65.1 | -1.4 | | | | 3 | 4888.00 | 40.1 PK | 74.0 | -33.9 | 1.20 H | 283 | 37.1 | 3.0 | | | | 4 | 4888.00 | 2.5 AV | 54.0 | -51.5 | 1.20 H | 283 | -0.5 | 3.0 | | | | 5 | 7332.00 | 44.6 PK | 74.0 | -29.4 | 1.31 H | 76 | 34.9 | 9.7 | | | | 6 | 7332.00 | 7.0 AV | 54.0 | -47.0 | 1.31 H | 76 | -2.7 | 9.7 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power. - 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: $20 \log(\text{Duty cycle}) = 20 \log(0.135 \text{ ms} / 10.28 \text{ ms}) = -37.6 \text{ dB}$ | | | | VERITAS | |-----------------|----------------|--------------------------|---------------------------------------------------------------------| | RF Mode | GFSK | Channel | CH 8: 2444 MHz | | Frequency Range | 1 GHz ~ 25 GHz | | PK: RB=1 MHz, VB=3 MHz, DET=Peak<br>AV: RB=1 MHz, VB=3 MHz, DET=RMS | | Input Power | 3 Vdc | Environmental Conditions | 23 °C, 63 % RH | | Tested By | Willy Lin | | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | | |----------------------------------------------------|--------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | 1 | *2444.00 | 94.1 PK | | | 3.68 V | 263 | 95.5 | -1.4 | | 2 | *2444.00 | 56.5 AV | | | 3.68 V | 263 | 57.9 | -1.4 | | 3 | 4888.00 | 40.0 PK | 74.0 | -34.0 | 1.06 V | 85 | 37.0 | 3.0 | | 4 | 4888.00 | 2.4 AV | 54.0 | -51.6 | 1.06 V | 85 | -0.6 | 3.0 | | 5 | 7332.00 | 44.2 PK | 74.0 | -29.8 | 1.13 V | 228 | 34.5 | 9.7 | | 6 | 7332.00 | 6.6 AV | 54.0 | -47.4 | 1.13 V | 228 | -3.1 | 9.7 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power. - 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: - $20 \log(\text{Duty cycle}) = 20 \log(0.135 \text{ ms} / 10.28 \text{ ms}) = -37.6 \text{ dB}$ | | | | VERTIAS | | | |-----------------------------------|-----------|------------------------------------------------|---------------------------------------------------------------------|--|--| | RF Mode | GFSK | Channel | CH 12: 2474 MHz | | | | Frequency Range 11 (4Hz ~ 25 (4Hz | | | PK: RB=1 MHz, VB=3 MHz, DET=Peak<br>AV: RB=1 MHz, VB=3 MHz, DET=RMS | | | | Input Power | 3 Vdc | <b>Environmental Conditions</b> 23 °C, 63 % RH | | | | | Tested By | Willy Lin | | | | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | | |------------------------------------------------------|--------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | 1 | *2474.00 | 99.4 PK | | | 1.67 H | 354 | 100.8 | -1.4 | | 2 | *2474.00 | 61.8 AV | | | 1.67 H | 354 | 63.2 | -1.4 | | 3 | 2483.50 | 63.1 PK | 74.0 | -10.9 | 1.67 H | 354 | 64.5 | -1.4 | | 4 | 2483.50 | 47.3 AV | 54.0 | -6.7 | 1.67 H | 354 | 48.7 | -1.4 | | 5 | 4948.00 | 40.3 PK | 74.0 | -33.7 | 1.25 H | 287 | 37.0 | 3.3 | | 6 | 4948.00 | 2.7 AV | 54.0 | -51.3 | 1.25 H | 287 | -0.6 | 3.3 | | 7 | 7422.00 | 44.3 PK | 74.0 | -29.7 | 1.25 H | 62 | 34.4 | 9.9 | | 8 | 7422.00 | 6.7 AV | 54.0 | -47.3 | 1.25 H | 62 | -3.2 | 9.9 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power. - 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: - $20 \log(\text{Duty cycle}) = 20 \log(0.135 \text{ ms} / 10.28 \text{ ms}) = -37.6 \text{ dB}$ | | | | VERITAS | | | |-----------------|----------------|--------------------------|---------------------------------------------------------------------|--|--| | RF Mode | GFSK | Channel | CH 12: 2474 MHz | | | | Frequency Range | 1 GHz ~ 25 GHz | | PK: RB=1 MHz, VB=3 MHz, DET=Peak<br>AV: RB=1 MHz, VB=3 MHz, DET=RMS | | | | Input Power | 3 Vdc | Environmental Conditions | 23 °C, 63 % RH | | | | Tested By | Willy Lin | | | | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | | |----------------------------------------------------|--------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) | | 1 | *2474.00 | 92.7 PK | | | 3.71 V | 253 | 94.1 | -1.4 | | 2 | *2474.00 | 55.1 AV | | | 3.71 V | 253 | 56.5 | -1.4 | | 3 | 2483.50 | 59.4 PK | 74.0 | -14.6 | 3.71 V | 253 | 60.8 | -1.4 | | 4 | 2483.50 | 45.7 AV | 54.0 | -8.3 | 3.71 V | 253 | 47.1 | -1.4 | | 5 | 4948.00 | 39.1 PK | 74.0 | -34.9 | 1.11 V | 92 | 35.8 | 3.3 | | 6 | 4948.00 | 1.5 AV | 54.0 | -52.5 | 1.11 V | 92 | -1.8 | 3.3 | | 7 | 7422.00 | 44.6 PK | 74.0 | -29.4 | 1.14 V | 228 | 34.7 | 9.9 | | 8 | 7422.00 | 7.0 AV | 54.0 | -47.0 | 1.14 V | 228 | -2.9 | 9.9 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power. - 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: - $20 \log(\text{Duty cycle}) = 20 \log(0.135 \text{ ms} / 10.28 \text{ ms}) = -37.6 \text{ dB}$ # **Plot of Band Edge** Frequency Range 2.31 GHz ~ 2.5 GHz Detector Function & PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS # 8 Pictures of Test Arrangements Please refer to the attached file (Test Setup Photo) Report No.: RFBDKG-WTW-P24070285 Page No. 36 / 37 Report Format Version: 7.1.0 # 9 Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323 If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 **Email:** <u>service.adt@bureauveritas.com</u> **Web Site:** <u>http://ee.bureauveritas.com.tw</u> The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RFBDKG-WTW-P24070285 Page No. 37 / 37 Report Format Version: 7.1.0