Logitech Antenna Under Test (AUT) Report

Model Name: YR0105

Equipment Type: Wireless Keyboard

Manufacturer: Logitech Far East LTD.

Antenna Model Name: CAN4311712112453K

Antenna Manufacturer: YAGEO

Test Location: No. 3 Songshan Road, Suzhou New District, Jiangsu,

China

Tested by: _____ Jin Wang

Report Date: <u>2024.06.12</u>

Report No: EVT-700-002401 Page 1 of 12

Report Release History

Report version	Description	Date Issued
YR0105 AUT Report	Original release	2024/06/12

Table of Contents

1.	I. EUT Antenna Information	
2.	Measured Values and Calculation of Antenna Gains	2
3.	Conducted Power Measurement	3
	3.1 Test Setup	3
	3.2 Test Instruments	3
	3.3 Test Procedure	3
	3.4 Test Result of RF conducted Power	4
4.	2D Radiation Pattern Measurement	4
	4.1 Test Location	4
	4.2 Description of the anechoic chamber	4
	4.3 Test Instruments	4
	4.4 Test Procedure	7
	4.5.2D Pattern Test Plot	q

Report No: EVT-700-002401 Page 2 of 12

1. EUT Antenna Information

Antenna Material : Ceramic
 Antenna Type : PIFA Antenna

3) Antenna Dimension: 3.1 x 1.6 mm

4) Operating Frequency: 2.4 GHz - 2.4835 GHz

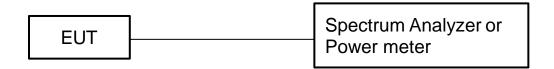
5) Input Impedance : 50Ω

6) Standing-Wave Ratio: 2.0 Max

2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.

Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)


	X-Y Plane φ=0~360°, θ=90°		X-Z Plane φ=0°, θ=0~360°		Y-Z Plane φ=90°, θ=0~360°		Max Peak	Conducted	Antenna
Frequency	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	EIRP (dBm)	Power (dBm)	Peak Gain (dBi)
2405	-9.02	7.84	3.37	6.42	3.15	-8.09	7.84	3.38	4.46
2444	-8.27	7.84	2.63	6.52	2.90	-6.98	7.84	3.32	4.52
2474	-8.84	6.91	0.92	6.06	2.10	-6.78	6.91	3.07	3.84

Test Date: <u>2024.06.12</u>

Report No: EVT-700-002401 Page 3 of 12

3. Conducted Power Measurement

3.1 Test Setup

3.2 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9020A	MY48011353	2023.07.16
RF signal cable Woken	Huber+suhner 10844497	276	2024.05.28

Note: The calibration interval of the above test instruments is <u>12</u> months

3.3 Test Procedure

A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

Report No: EVT-700-002401 Page 4 of 12

3.4 Test Result of RF conducted Power

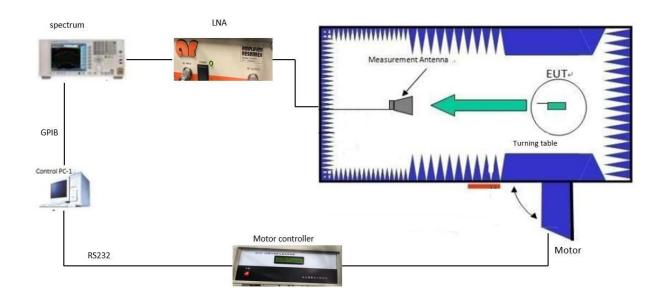
Frequency	Conducted Power (dBm)		
2405	3.38		
2444	3.32		
2474	3.07		

Test Date: 2024.6.11

Report No: EVT-700-002401 Page 5 of 12

4. 2D Radiation Pattern Measurement

4.1 Test Location


2D radiation pattern measurement in the anechoic chamber

4.2 Description of the anechoic chamber

Length: 5.0m Width: 2.8m Height: 2.8m

Turn table Height: 1.4m

Measurement antenna height: 1.4m

Report No: EVT-700-002401 Page 6 of 12

4.3 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9010A	MY49061163	2023.07.25
Horn Antenna ETS	BBHA 9120 D(1201)	D69250	2023.07.28
RF signal cable	SUCOFLEX104	SN293270/4	2023.07.28
Software	FAC-Radio Measurement System	Version 1.1.0.7	N/A
Turntable Controller	BJ3AC-100	N/A	N/A
Chamber Antenna Tower	LWP-AS	N/A	2024.5.28
LNA	LN1G11	321282	2024.5.28

Note: The calibration interval of the above test instruments is <u>12</u> months

4.4 Test Procedure

- i. Connect the EUT to Spectrum Analyzer and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting power(100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.

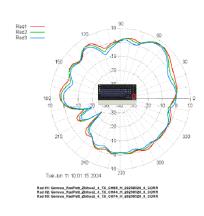
Report No: EVT-700-002401 Page 7 of 12

- vi. Read the channel power level on the spectrum analyzer and record in the following positions.
 - 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 15-degree increments.
 - 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. According to substitution techniques, a substitution horn antenna is substituted for EUT at the same position and the signal generator exports the CW signal to the substitution antenna via a TX cable. Rotated the turntable and moved the receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a value of spectrum reading equal to "Raw Value" gotten from step vii. Record the power level of S.G.

where:

P_{SigGen} = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 G_T = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP); L_C = signal loss in the cable connecting the signal generator to the substitute antenna, in dB


ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

Report No: EVT-700-002401 Page 8 of 12

4.5 2D Pattern Test Plot

X-Y Plane: Horizontal and Vertical

Horizontal

[imgfile: tmp/_gnuplot20240611-32355-z3hn2u-0.png]

Radiation pattern #1:

Geneva_RadPatt_Zhihao2_4_TX_CH05_H_20250520_0_CORR

Average power = -0.35 dBm Front average power = 2.28 dBm (From 0 deg to 180 deg)

Min power = -24.01 dBm @ -144.00 deg Max power = 7.84 dBm @ 51.00 deg

Radiation pattern #2:

Geneva_RadPatt_Zhihao2_4_TX_CH44_H_20250520_0_CORR

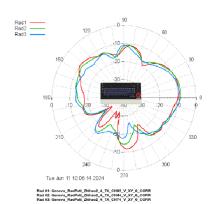
Average power = -1.07 dBm Front average power = 1.53 dBm (From 0 deg to 180 deg) Min power = -23.13 dBm @ -144.00 deg Max power = 7.84 dBm @ 54.00 deg

Delta max power = -0.01 dBm

Delta average power = -0.71 dBm

Delta front average power = -0.75 dBm

Radiation pattern #3:


Geneva_RadPatt_Zhihao2_4_TX_CH74_H_20250520_0_CORR

Average power = -2.10 dBmFront average power = 0.26 dBm (From 0 deg to 180 deg)

Min power = -22.88 dBm @ -144.00 deg Max power = 6.91 dBm @ 54.00 deg

Delta max power = -0.93 dBm Delta average power = -1.75 dBm Delta front average power = -2.02 dBm

Vertical

[imgfile: tmp/_gnuplot20240611-32355-1ykfuym-0.png]

Radiation pattern #1:

 $Geneva_RadPatt_Zhihao2_4_TX_CH05_V_XY_0_CORR$

Average power = -15.54 dBm Front average power = -12.95 dBm (From 0 deg to 180 deg)

Min power = -31.82 dBm @ -144.00 deg Max power = -9.02 dBm @ 15.00 deg

Radiation pattern #2:

Geneva_RadPatt_Zhihao2_4_TX_CH44_V_XY_0_CORR

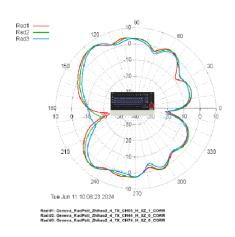
Average power = -14.76 dBm Front average power = -12.59 dBm (From 0 deg to 180 deg)

Min power = -27.03 dBm @ -144.00 deg Max power = -8.27 dBm @ 6.00 deg

Delta max power = 0.75 dBm Delta average power = 0.78 dBm Delta front average power = 0.36 dBm

Radiation pattern #3:

Geneva_RadPatt_Zhihao2_4_TX_CH74_V_XY_0_CORR


Average power = -15.33 dBm Front average power = -13.64 dBm (From 0 deg to 180 deg)

Min power = -28.79 dBm @ -144.00 deg Max power = -8.84 dBm @ 3.00 deg

Delta max power = 0.18 dBm Delta average power = 0.22 dBm Delta front average power = -0.69 dBm

X-Z Plane: Horizontal and Vertical

Horizontal

[imgfile: tmp/_gnuplot20240611-32355-17x2cc-0.png]

Radiation pattern #1:

Geneva_RadPatt_Zhihao2_4_TX_CH05_H_XZ_1_CORR

Average power = -2.20 dBmFront average power = -0.44 dBm (From 0 deg to 180 deg)

Min power = -24.02 dBm @ -168.00 deg Max power = 6.42 dBm @ 129.00 deg

Radiation pattern #2:

Geneva_RadPatt_Zhihao2_4_TX_CH44_H_XZ_0_CORR

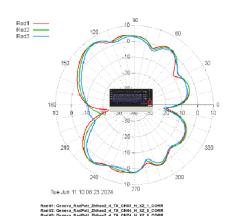
Average power = -2.28 dBm Front average power = -0.49 dBm (From 0 deg to 180 deg)

Min power = -21.43 dBm @ -6.00 deg Max power = 6.52 dBm @ 126.00 deg

Delta max power = 0.10 dBm Delta average power = -0.08 dBm

Delta front average power = -0.05 dBm

Radiation pattern #3:


Geneva_RadPatt_Zhihao2_4_TX_CH74_H_XZ_0_CORR

Average power = -2.98 dBm Front average power = -1.43 dBm (From 0 deg to 180 deg)

Min power = -21.10 dBm @ -6.00 deg Max power = 6.06 dBm @ 123.00 deg

Delta max power = -0.36 dBm Delta average power = -0.78 dBm Delta front average power = -1.00 dBm

Vertical

[imgfile: tmp/_gnuplot20240611-32355-17x2cc-0.png]

Radiation pattern #1:

Geneva_RadPatt_Zhihao2_4_TX_CH05_H_XZ_1_CORR

Average power = -2.20 dBmFront average power = -0.44 dBm (From 0 deg to 180 deg)

Min power = -24.02 dBm @ -168.00 degMax power = 6.42 dBm @ 129.00 deg

Radiation pattern #2:

Geneva_RadPatt_Zhihao2_4_TX_CH44_H_XZ_0_CORR

Average power = -2.28 dBmFront average power = -0.49 dBm (From 0 deg to 180 deg)

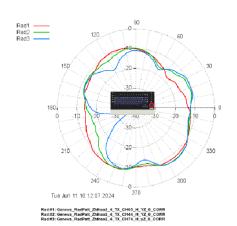
Min power = -21.43 dBm @ -6.00 deg Max power = 6.52 dBm @ 126.00 deg

Delta max power = 0.10 dBm Delta average power = -0.08 dBm

Delta front average power = -0.05 dBm

Radiation pattern #3:

Geneva_RadPatt_Zhihao2_4_TX_CH74_H_XZ_0_CORR


Average power = -2.98 dBmFront average power = -1.43 dBm (From 0 deg to 180 deg)

Min power = -21.10 dBm @ -6.00 deg Max power = 6.06 dBm @ 123.00 deg

Delta max power = -0.36 dBm Delta average power = -0.78 dBm Delta front average power = -1.00 dBm

Y-Z Plane: Horizontal and Vertical

Horizontal

[imgfile: tmp/_gnuplot20240611-32356-1d1k0yq-0.png]

Radiation pattern #1:

Geneva_RadPatt_Zhihao2_4_TX_CH05_H_YZ_0_CORR

Average power = -11.64 dBmFront average power = -13.02 dBm (From 0 deg to 180 deg)

Min power = -17.96 dBm @ 42.00 deg Max power = -8.09 dBm @ -51.00 deg

Radiation pattern #2:

Geneva_RadPatt_Zhihao2_4_TX_CH44_H_YZ_0_CORR

Average power = -11.78 dBm Front average power = -12.25 dBm (From 0 deg to 180 deg)

Min power = -17.44 dBm @ -156.00 deg Max power = -6.98 dBm @ -51.00 deg

Delta max power = 1.11 dBm Delta average power = -0.14 dBm Delta front average power = 0.77 dBm

Radiation pattern #3:

Geneva_RadPatt_Zhihao2_4_TX_CH74_H_yZ_0_CORR

Average power = -14.16 dBmFront average power = -13.27 dBm (From 0 deg to 180 deg)

Min power = -44.47 dBm @ -147.00 deg Max power = -6.78 dBm @ -51.00 deg

Delta max power = 1.31 dBm Delta average power = -2.53 dBm Delta front average power = -0.25 dBm

Vertical

[imgfile: tmp/_gnuplot20240611-32356-1bzikf1-0.png]

Radiation pattern #1:

Geneva_RadPatt_Zhihao2_4_TX_CH05_V_YZ_0_CORR

 $\label{eq:average_power} Average \ power = 1.50 \ dBm$ Front average power = 1.52 \ dBm (From 0 \ deg to 180 \ deg)

Min power = -0.91 dBm @ 171.00 deg Max power = 3.15 dBm @ -60.00 deg

Radiation pattern #2:

Geneva_RadPatt_Zhihao2_4_TX_CH44_V_YZ_0_CORR

Average power = 1.11~dBmFront average power = 1.07~dBm (From 0 deg to 180 deg)

Min power = -1.51 dBm @ -168.00 degMax power = 2.90 dBm @ -69.00 deg

Delta max power = -0.25 dBm Delta average power = -0.39 dBm Delta front average power = -0.45 dBm

Radiation pattern #3:

Geneva_RadPatt_Zhihao2_4_TX_CH74_V_YZ_0_CORR

Average power = 0.58 dBmFront average power = 0.61 dBm (From 0 deg to 180 deg)

Min power = -1.91 dBm @ -168.00 deg Max power = 2.10 dBm @ -75.00 deg

Delta max power = -1.05 dBm Delta average power = -0.92 dBm Delta front average power = -0.91 dBm