Logitech Antenna Under Test (AUT) Report

Model Name: YR0099

Equipment Type: Keyboard

Manufacturer: Logitech Technology (Suzhou) Co., Ltd.

Test Location: Suzhou, China No.3 Song Shan Road, New District

Tested by: Jack Yan

Report Date: 2023.07.10

Report Release History

Report version	Description	Date Issued
MR AUT Report	Original release	2023/07/10

Table of Contents

1.	EUT Antenna Information	2
2.	Measured Values and Calculation of Antenna Gains	2
3.	Conducted Power Measurement	3
	3.1 Test Setup	3
	3.2 Test Instruments	3
	3.3 Test Procedure	3
	3.4 Test Result of RF conducted Power	1
4.	2D Radiation Pattern Measurement	4
	4.1 Test Location	4
	4.2 Description of the anechoic chamber	4
	4.3 Test Instruments	4
	4.4 Test Procedure	5
	4.5 Test Setup photos	6
	4.6 2D Pattern Test Plot	7

1. EUT Antenna Information

1) Antenna Material: PCB on board

2) Antenna Type: Printed monopole antenna

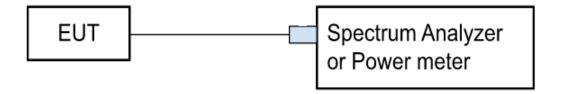
3) Antenna Dimension: 26 x 3 mm

4) Operating Frequency: 2.4 GHz - 2.4835 GHz

5) Input Impedance: 50 Ω6) Standing-Wave Ratio: 2:1

2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.


Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

	X-Y Plane φ=0~360°, θ=90°		X-Z Plane φ=0°, θ=0~360°		Y-Z Plane φ=90⁰, θ=0~360⁰		Max Peak	Conducted	Antenna
Frequency	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	EIRP (dBm)	Power (dBm)	Peak Gain (dBi)
2402	-10.83	7.40	6.45	5.41	0.94	-2.68	7.40	2.92	4.48
2440	-10.44	7.21	6.56	5.36	-0.12	-1.95	7.21	2.96	4.25
2480	-10.00	6.14	5.77	4.66	-0.07	-2.36	6.14	2.96	3.18

Test Date: 2023.7.10

3. Conducted Power Measurement

3.1 Test Setup

3.2 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9020B	MY60110508	2023.6.20
RF signal cable Woken	Huber+suhner 10844497	276	2023.04.28

Note: The calibration interval of the above test instruments is 12 months

3.3 Test Procedure

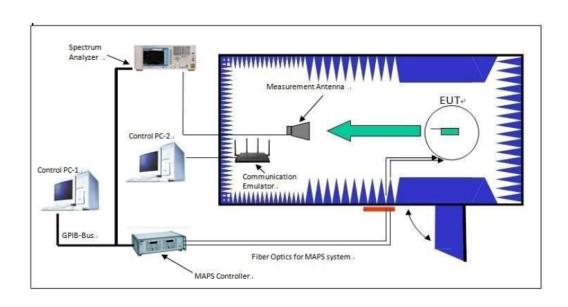
A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

3.4 Test Result of RF conducted Power

Frequency	Conducted Power (dBm)		
2402	2.923		
2440	2.966		
2480	2.960		

Test Date: 2023.7.10

4. 2D Radiation Pattern Measurement


4.1 Test Location

Song shan Rd. 3, New district, Logi company Ltd. Suzhou, China

4.2 Description of the anechoic chamber

Length: 5.0m Width: 2.8m Height: 2.8m

Receiving antenna height: 1.4m Turning table Height: 1.4m

4.3 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9010A	MY49061163	2023.6.20
Horn Antenna ETS	BBHA 9120 D(1201)	D69250	2023.04.28

RF signal cable	SUCOFLEX104	SN293270/4	2023.04.28
Software	FAC-Radio Measurement System	Version 1.1.0.7	N/A
Turntable controller	BJ3AC-100	N/A	N/A
LNA	LN1G11	321282	2023.04.28

Note: The calibration interval of the above test instruments is 12 months

4.4 Test Procedure

- i. Connect the EUT to Spectrum Analyzer and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting power(100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.
- vi. Read the channel power level on the spectrum analyzer and record in the following positions.
 - 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 15-degree increments.
 - 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. According to substitution techniques, a substitution horn antenna is substituted for EUT at the same position and the signal generator exports the CW signal to the substitution antenna via a TX cable. Rotated the turntable and moved the receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a value of spectrum reading equal to "Raw Value" gotten from step vii. Record the power level of S.G.

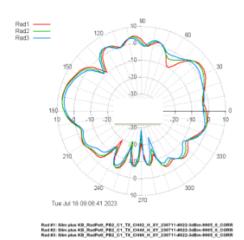
EIRP =
$$P_{SigGen} + G_T - L_C$$

where:

P_{SigGen} = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 G_T = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP);

 L_{C} = signal loss in the cable connecting the signal generator to the substitute antenna, in dB


ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

4.5 Test Setup photos

Please see another confidential document.

4.6 2D Pattern Test Plot

X-Y Plane: Horizontal and Vertical

[imgfile: tmp/_gnuplot20230718-1633-7zjbtr-0.png]

Red 81: Siles plus KER, Red Putt, PR2, C1, TX, CH62, V, XY, 230711-8822-3488-9905, 0, CORR. Red 82: Siles plus KER, Red Putt, PR2, C1, TX, CH68, V, XY, 230711-8822-3488-9905, 0, CORR. Red 82: Siles plus KER, Red Putt, PR2, C1, TX, CH68, V, XY, 230711-8822-3488-9905, 0, CORR.

[imgfile: tmp/_gnuplot20230718-1633-hraz0i-0.png]

Radiation pattern #1:

Slim plus KB_RadPatt_PB2_C1_TX_CH02_H_XY_230711-#022-3dBm-9905_0_CORR

Average power = -1.99 dBm Front average power = 0.80 dBm (From 0 deg to 180 deg)

Min power = -20.78 dBm @ -90.00 deg Max power = 7.40 dBm @ 168.00 deg

Radiation pattern #2:

Slim plus KB RadPatt PB2 C1 TX CH40 H XY 230711-#022-3dBm-9905 0 CORR

Average power = -2.14 dBm Front average power = 0.84 dBm (From 0 deg to 180 deg)

Max power = **7.21 dBm** @ 171.00 deg

Delta max power = **-0.19 dBm**Delta average power = **-0.15 dBm**Delta front average power = **0.04 dBm**

Min power = -25.32 dBm @ -90.00 deg

Radiation pattern #3:

Slim plus KB_RadPatt_PB2_C1_TX_CH80_H_XY_230711-#022-3dBm-9905_0_CORR

Average power = -2.82 dBm Front average power = 0.63 dBm (From 0 deg to 180 deg)

Min power = -28.83 dBm @ -90.00 deg Max power = 6.14 dBm @ 168.00 deg

Delta max power = -1.26 dBm Delta average power = -0.83 dBm Delta front average power = -0.17 dBm

Radiation pattern #1:

Slim plus KB_RadPatt_PB2_C1_TX_CH02_V_XY_230711-#022-3dBm-9905_0_CORR

Average power = -15.62 dBm Front average power = -13.37 dBm (From 0 deg to 180 deg)

Min power = -27.25 dBm @ -15.00 deg Max power = -10.83 dBm @ 153.00 deg

Radiation pattern #2:

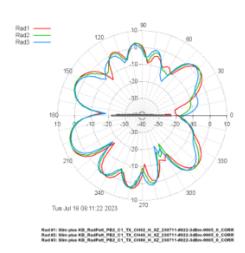
Slim plus KB RadPatt PB2 C1 TX CH40 V XY 230711-#022-3dBm-9905 0 CORR

Average power = -14.83 dBm Front average power = -12.61 dBm (From 0 deg to 180 deg)

Min power = -24.69 dBm @ -21.00 deg Max power = -10.44 dBm @ 81.00 deg

Delta max power = 0.39 dBm Delta average power = 0.79 dBm Delta front average power = 0.76 dBm

Radiation pattern #3:


Slim plus KB_RadPatt_PB2_C1_TX_CH80_V_XY_230711-#022-3dBm-9905_0_CORR

Average power = -14.68 dBm Front average power = -12.79 dBm (From 0 deg to 180 deg)

Min power = -23.15 dBm @ -30.00 deg Max power = -10.00 dBm @ 87.00 deg

Delta max power = 0.83 dBm Delta average power = 0.95 dBm Delta front average power = 0.58 dBm

X-Z Plane: Horizontal and Vertical

[imgfile: tmp/_gnuplot20230718-1633-rsor7h-0.png]

Radiation pattern #1:

Slim plus KB_RadPatt_PB2_C1_TX_CH02_H_XZ_230711-#022-3dBm-9905_0_CORR

Average power = -3.81 dBm Front average power = -4.27 dBm (From 0 deg to 180 deg)

Min power = -20.62 dBm @ 6.00 deg Max power = 5.41 dBm @ -156.00 deg

Radiation pattern #2:

Slim plus KB_RadPatt_PB2_C1_TX_CH40_H_XZ_230711-#022-3dBm-9905_0_CORR

Average power = -3.72 dBm Front average power = -3.79 dBm (From 0 deg to 180 deg)

Min power = -20.58 dBm @ -60.00 deg Max power = 5.36 dBm @ -156.00 deg

Delta max power = -0.05 dBm Delta average power = 0.09 dBm Delta front average power = 0.48 dBm

Radiation pattern #3:

Slim plus KB_RadPatt_PB2_C1_TX_CH80_H_XZ_230711-#022-3dBm-9905_0_CORR

Average power = -3.97 dBm Front average power = -3.97 dBm (From 0 deg to 180 deg)

Min power = -20.30 dBm @ -69.00 deg Max power = 4.66 dBm @ -156.00 deg

Delta max power = -0.75 dBm Delta average power = -0.15 dBm Delta front average power = 0.30 dBm

Red 81: 58m plus KB_RedPatt_PB2_01_TX_CH62_V_XZ_236711-8922-348m-8905_0_CORR Red 82: 58m plus KB_RedPatt_PB2_01_TX_CH64_V_XZ_236711-8922-348m-8905_0_CORR Red 82: 58m plus KB_RedPatt_PB2_01_TX_CH66_V_XZ_236711-8922-348m-8905_0_CORR

[imgfile: tmp/_gnuplot20230718-1633-8arhob-0.png]

Tue Jul 18 08:12:58:2023

Radiation pattern #1:

Slim plus KB_RadPatt_PB2_C1_TX_CH02_V_XZ_230711-#022-3dBm-9905_0_CORR

Average power = -6.89 dBm Front average power = -6.04 dBm (From 0 deg to 180 deg)

Min power = -36.16 dBm @ -117.00 deg Max power = 6.45 dBm @ 180.00 deg

Radiation pattern #2:

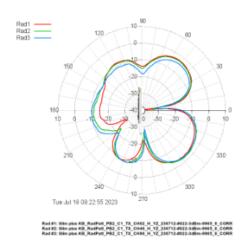
Slim plus KB RadPatt PB2 C1 TX CH40 V XZ 230711-#022-3dBm-9905 0 CORR

Average power = -7.33 dBm Front average power = -6.89 dBm (From 0 deg to 180 deg)

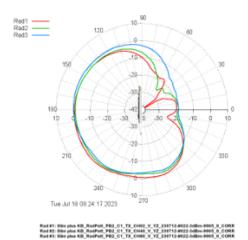
Min power = -31.59 dBm @ -117.00 deg Max power = 6.56 dBm @ -180.00 deg

Delta max power = 0.12 dBm
Delta average power = -0.43 dBm
Delta front average power = -0.85 dBm

Radiation pattern #3:


Slim plus KB_RadPatt_PB2_C1_TX_CH80_V_XZ_230711-#022-3dBm-9905_0_CORR

Average power = -8.45 dBm Front average power = -8.57 dBm (From 0 deg to 180 deg)


Min power = -32.11 dBm @ -69.00 deg Max power = 5.77 dBm @ 177.00 deg

Delta max power = -0.68 dBm Delta average power = -1.55 dBm Delta front average power = -2.53 dBm

Y-Z Plane: Horizontal and Vertical

[imgfile: tmp/_gnuplot20230718-1632-et55el-0.png]

[imgfile: tmp/_gnuplot20230718-1633-18dgfgh-0.png]

Radiation pattern #1:

Slim plus KB RadPatt PB2 C1 TX CH02 H YZ 230712-#022-3dBm-9905 0 CORR

Average power = -11.29 dBm Front average power = -10.65 dBm (From 0 deg to 180 deg)

Min power = -38.41 dBm @ 6.00 deg Max power = -2.68 dBm @ 51.00 deg

Radiation pattern #2:

Slim plus KB RadPatt PB2 C1 TX CH40 H YZ 230712-#022-3dBm-9905 0 CORR

Average power = -10.47 dBm Front average power = -10.52 dBm (From 0 deg to 180 deg)

Min power = -34.02 dBm @ 6.00 deg Max power = -1.95 dBm @ -45.00 deg

Delta max power = 0.73 dBm Delta average power = 0.82 dBm Delta front average power = 0.13 dBm

Radiation pattern #3:

Slim plus KB_RadPatt_PB2_C1_TX_CH80_H_YZ_230712-#022-3dBm-9905_0_CORR

Average power = -10.94 dBm Front average power = -11.78 dBm (From 0 deg to 180 deg)

Min power = -31.57 dBm @ 6.00 deg Max power = -2.36 dBm @ -45.00 deg

Delta max power = 0.32 dBm Delta average power = 0.36 dBm Delta front average power = -1.13 dBm

Radiation pattern #1:

Slim plus KB RadPatt PB2 C1 TX CH02 V YZ 230712-#022-3dBm-9905 0 CORR

Average power = -8.26 dBm Front average power = -12.05 dBm (From 0 deg to 180 deg)

Min power = -41.04 dBm @ 33.00 deg Max power = 0.94 dBm @ -135.00 deg

Radiation pattern #2:

Slim plus KB_RadPatt_PB2_C1_TX_CH40_V_YZ_230712-#022-3dBm-9905_0_CORR

Average power = -7.75 dBm Front average power = -10.73 dBm (From 0 deg to 180 deg)

Min power = -26.06 dBm @ 54.00 deg Max power = -0.12 dBm @ -126.00 deg

Delta max power = -1.06 dBm Delta average power = 0.52 dBm Delta front average power = 1.32 dBm

Radiation pattern #3:

Slim plus KB RadPatt PB2 C1 TX CH80 V YZ 230712-#022-3dBm-9905 0 CORR

Average power = -6.12 dBm Front average power = -7.10 dBm (From 0 deg to 180 deg)

Min power = -18.68 dBm @ 9.00 deg Max power = -0.07 dBm @ 168.00 deg

Delta max power = -1.01 dBm Delta average power = 2.15 dBm Delta front average power = 4.95 dBm