Logitech Antenna Under Test (AUT) Report

Model Name: YR0097

Equipment Type: Wireless Console

Manufacturer: Logitech Technology (Suzhou) Co., Ltd

Antenna Model Name: RFECA3216060A1T

Antenna Manufacturer: Walsin

Test Location: Suzhou, China No.3 Song Shan Road, New District

Tested Personnel: Damin Chiu

Report Date: 2023.11.16

Report Release History

Report version	Description	Date Issued
YR0097 AUT Report	Original release	2023/11/16

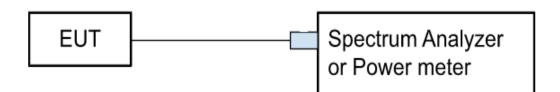
Table of Contents

2.	Measured Values and Calculation of Antenna Gains	5
3.	Conducted Power Measurement	6
	3.1 Test Setup	6
	3.2 Test Instruments	6
	3.3 Test Procedure	6
	3.4 Test Result of RF conducted Power	6
4.	2D Radiation Pattern Measurement	8
	4.1 Test Location	8
	4.2 Description of the anechoic chamber	8
	4.3 Test Instruments	8
	4.4 Test Procedure	9
	4.5 Test Setup photos	10
	4.6 2D Pattern Test Plot	13

.

2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.


		X-Y Plane X-Z Plane ϕ =0~360°, θ =90° ϕ =0°, θ =0~360°			Y-Z Plane φ=90⁰, <i>θ</i> =0~360⁰		Max Peak Conducted EIRP Power (dBm) (dBm)	Conducted	Antenna
Frequency	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	k Peak Peak Peak P EIRP EIRP EIRP	Peak Gain (dBi)				
2402	-12.97	8.43	8.42	-4.10	3.08	6.27	8.43	4.085	4.35
2440	-12.45	8.10	8.23	-5.29	2.61	6.13	8.23	4.225	4.01
2480	-12.16	8.14	8.77	-7.28	2.06	6.45	8.77	4.17	4.60

Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

Test Date: 2023.11.16

3. Conducted Power Measurement

3.1 Test Setup

3.2 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9020B	MY60110508	2023.7.25
RF signal cable Woken	Huber+suhner 10844497	276	2023.01.28

Note: The calibration interval of the above test instruments is <u>12</u> months

3.3 Test Procedure

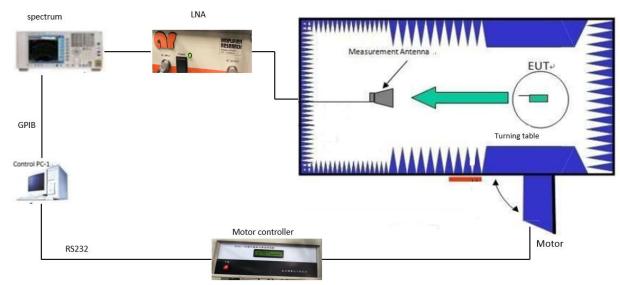
A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

3.4 Test Result of RF conducted Power

Frequency	Conducted Power (dBm)
2402	4.085
2440	4.225

Frequency	Conducted Power (dBm)		
2480	4.17		

Test Date: 2023.11.16


4. 2D Radiation Pattern Measurement

4.1 Test Location

2D radiation pattern measurement in Logitech China SZ 2.4GHz FAC anechoic chamber.

4.2 Description of the anechoic chamber

<u>Chamber specification</u> Length: 5.0m Width: 2.8m Height: 2.8m Turntable height: 1.4m Measurement antenna height: 1.4m

Block diagram to show the chamber and test equipment.

4.3 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer	N9010A	MY49061163	2023.7.25

Keysight			
Horn Antenna ETS	BBHA 9120 D(1201)	D69250	2023.01.28
RF signal cable	SUCOFLEX104	SN293270/4	2023.01.28
Software	FAC-Radio Measurement System	Version 1.1.0.7	N/A
Turntable controller	BJ3AC-100	N/A	2023.01.28
LNA	LN1G11	321282	2023.01.28

Note: The calibration interval of the above test instruments is <u>12</u> months

4.4 Test Procedure

- i. Connect the EUT to Spectrum Analyzer and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting power(100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.
- vi. Read the channel power level on the spectrum analyzer and record in the following positions.
 - 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 15-degree increments.
 - 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. According to substitution techniques, a substitution horn antenna is substituted for EUT at the same position and the signal generator exports the CW signal to the substitution antenna via a TX cable. Rotated the turntable and moved the receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a value of spectrum reading equal to "Raw Value" gotten from step vii. Record the power level of S.G.

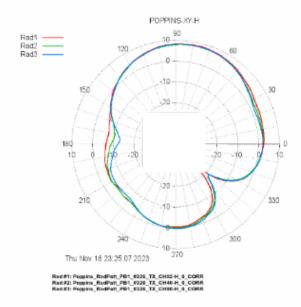
$$\mathsf{EIRP} = \mathsf{P}_{\mathsf{SigGen}} + \mathsf{G}_{\mathsf{T}} - \mathsf{L}_{\mathsf{C}}$$

where:

P_{SigGen} = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 G_T = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP);

 $L_{\rm C}$ = signal loss in the cable connecting the signal generator to the substitute antenna, in dB


ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

4.5 Test Setup photos

confidential

4.6 2D Pattern Test Plot

X-Y Plane: Horizontal

[imgfile: tmp/POPPINS-XY-H_gnuplot20231116-5836-1nm16z5-0.png]

Radiation pattern #1:

Poppins_RadPatt_PB1_#326_TX_CH02-H_0_CORR

Average power = -0.82 dBmFront average power = 2.96 dBm (From 0 deg to 180 deg)

Min power = -28.67 dBm @ -45.00 deg Max power = 8.43 dBm @ 78.00 deg

Radiation pattern #2:

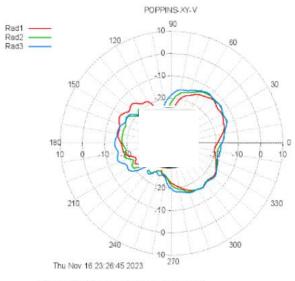
Poppins_RadPatt_PB1_#326_TX_CH40-H_0_CORR

Average power = -1.11 dBm Front average power = 2.25 dBm (From 0 deg to 180 deg)

Min power = -18.36 dBm @ -42.00 deg Max power = 8.10 dBm @ 78.00 deg

Delta max power = -0.32 dBmDelta average power = -0.29 dBmDelta front average power = -0.71 dBm

Radiation pattern #3:


Poppins_RadPatt_PB1_#326_TX_CH80-H_0_CORR

Average power = -1.38 dBm Front average power = 2.03 dBm (From 0 deg to 180 deg)

Min power = -18.65 dBm @ -42.00 deg Max power = 8.14 dBm @ 78.00 deg

Delta max power = -0.29 dBmDelta average power = -0.56 dBmDelta front average power = -0.93 dBm

X-Y Plane: Vertical

Red #1: Poppins_RedPatt_PB1_#326_TX_CH02_V_0_CORR Red #2: Poppins_RedPatt_PB1_#326_TX_CH40_V_0_CORR Red #3: Poppins_RedPatt_PB1_#326_TX_CH80_V_0_CORR

[imgfile: tmp/POPPINS-XY-V_gnuplot20231116-5836-91s8ub-0.png]

Radiation pattern #1:

Poppins_RadPatt_PB1_#326_TX_CH02_V_0_CORR

Average power = -19.72 dBm Front average power = -18.33 dBm (From 0 deg to 180 deg)

Min power = -47.47 dBm @ 96.00 deg Max power = -12.97 dBm @ 45.00 deg

Radiation pattern #2:

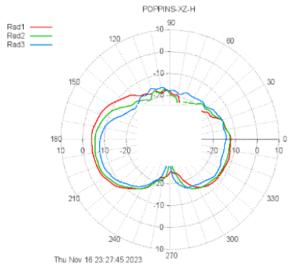
Poppins_RadPatt_PB1_#326_TX_CH40_V_0_CORR

Average power = -19.16 dBm Front average power = -18.59 dBm (From 0 deg to 180 deg)

Min power = -37.31 dBm @ 111.00 deg Max power = -12.45 dBm @ 39.00 deg

Delta max power = 0.52 dBmDelta average power = 0.56 dBmDelta front average power = -0.25 dBm

Radiation pattern #3:


Poppins_RadPatt_PB1_#326_TX_CH80_V_0_CORR

Average power = -18.34 dBm Front average power = -18.02 dBm (From 0 deg to 180 deg)

Min power = -35.19 dBm @ 114.00 deg Max power = -12.16 dBm @ 51.00 deg

Delta max power = 0.80 dBmDelta average power = 1.38 dBmDelta front average power = 0.32 dBm

X-Z Plane: Horizontal

Rad #1: Poppins_RadPatt_PB1_#326_TX_CH02-H-XZ_0_CORR Rad #2: Poppins_RadPatt_PB1_#326_TX_CH40-H-XZ_0_CORR Rad #3: Poppins_RadPatt_PB1_#326_TX_CH80-H-XZ_0_CORR

[imgfile: tmp/POPPINS-XZ-H_gnuplot20231116-5836-1in2hjc-0.png]

X-Z Plane: Vertical

Radiation pattern #1:

Poppins_RadPatt_PB1_#326_TX_CH02-H-XZ_0_CORR

Average power = -14.64 dBmFront average power = -16.32 dBm (From 0 deg to 180 deg)

Min power = -**30.97 dBm** @ 60.00 deg Max power = -**4.10 dBm** @ -171.00 deg

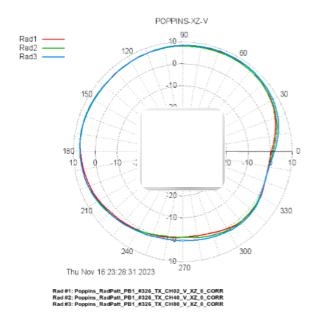
Radiation pattern #2:

Poppins_RadPatt_PB1_#326_TX_CH40-H-XZ_0_CORR

Average power = -14.92 dBm Front average power = -16.36 dBm (From 0 deg to 180 deg)

Min power = -31.02 dBm @ -87.00 deg Max power = -5.29 dBm @ -168.00 deg

Delta max power = -1.19 dBmDelta average power = -0.28 dBmDelta front average power = -0.04 dBm


Radiation pattern #3:

Poppins_RadPatt_PB1_#326_TX_CH80-H-XZ_0_CORR

Average power = -15.45 dBmFront average power = -16.01 dBm (From 0 deg to 180 deg)

Min power = -36.61 dBm @ -93.00 deg Max power = -7.28 dBm @ -159.00 deg

Delta max power = -3.18 dBmDelta average power = -0.81 dBmDelta front average power = 0.31 dBm

[imgfile: tmp/POPPINS-XZ-V_gnuplot20231116-5836-43mpaa-0.png]

Y-Z Plane: Horizontal

Radiation pattern #1:

Poppins_RadPatt_PB1_#326_TX_CH02_V_XZ_0_CORR

Average power = 4.26 dBm Front average power = 7.02 dBm (From 0 deg to 180 deg)

Min power = -1.19 dBm @ -84.00 deg Max power = 8.42 dBm @ 66.00 deg

Radiation pattern #2:

Poppins_RadPatt_PB1_#326_TX_CH40_V_XZ_0_CORR

Average power = 4.41 dBm Front average power = 7.02 dBm (From 0 deg to 180 deg)

Min power = -1.07 dBm @ -90.00 deg Max power = 8.23 dBm @ 63.00 deg

Delta max power = -0.19 dBmDelta average power = 0.15 dBmDelta front average power = 0.01 dBm


Radiation pattern #3:

Poppins_RadPatt_PB1_#326_TX_CH80_V_XZ_0_CORR

Average power = 4.81 dBm Front average power = 7.39 dBm (From 0 deg to 180 deg)

Min power = -0.13 dBm @ -15.00 deg Max power = 8.77 dBm @ 63.00 deg

Delta max power = 0.35 dBmDelta average power = 0.55 dBmDelta front average power = 0.37 dBm

[imgfile: tmp/POPPINS-YZ-H_gnuplot20231116-5836-1t5rosn-0.png]

Y-Z Plane: Vertical

Radiation pattern #1:

Poppins_RadPatt_PB1_#326_TX_CH02-H-YZ_0_CORR

Average power = -3.38 dBmFront average power = -5.62 dBm (From 0 deg to 180 deg)

Min power = -25.49 dBm @ 171.00 deg Max power = 6.27 dBm @ -105.00 deg

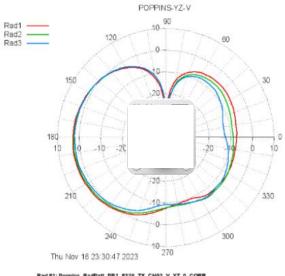
Radiation pattern #2:

Poppins_RadPatt_PB1_#326_TX_CH40-H-YZ_0_CORR

Average power = -2.94 dBmFront average power = -4.65 dBm (From 0 deg to 180 deg)

Min power = -22.68 dBm @ 171.00 deg Max power = 6.13 dBm @ -102.00 deg

Delta max power = -0.14 dBm Delta average power = 0.43 dBm Delta front average power = 0.97 dBm


Radiation pattern #3:

Poppins_RadPatt_PB1_#326_TX_CH80-H-YZ_0_CORR

Average power = -2.42 dBm Front average power = -3.88 dBm (From 0 deg to 180 deg)

Min power = -20.01 dBm @ 171.00 deg Max power = 6.45 dBm @ -105.00 deg

Delta max power = 0.18 dBmDelta average power = 0.95 dBmDelta front average power = 1.73 dBm

Rad #1: Poppins_RadPatt_PB1_#326_TX_CH02_V_YZ_0_CORR Rad #2: Poppins_RadPatt_PB1_#326_TX_CH40_V_YZ_0_CORR Rad #3: Poppins_RadPatt_PB1_#326_TX_CH80_V_YZ_0_CORR

[imgfile: tmp/POPPINS-YZ-V_gnuplot20231116-5836-jqs4xp-0.png]

Radiation pattern #1:

Poppins_RadPatt_PB1_#326_TX_CH02_V_YZ_0_CORR

Average power = -4.69 dBm Front average power = -5.83 dBm (From 0 deg to 180 deg)

Min power = -32.54 dBm @ 90.00 deg Max power = 3.08 dBm @ -168.00 deg

Radiation pattern #2:

Poppins_RadPatt_PB1_#326_TX_CH40_V_YZ_0_CORR

Average power = -5.13 dBm Front average power = -6.60 dBm (From 0 deg to 180 deg)

Min power = -31.83 dBm @ 87.00 deg Max power = 2.61 dBm @ -168.00 deg

Delta max power = -0.46 dBmDelta average power = -0.44 dBmDelta front average power = -0.76 dBm

Radiation pattern #3:

Poppins_RadPatt_PB1_#326_TX_CH80_V_YZ_0_CORR

Average power = -6.10 dBm Front average power = -7.49 dBm (From 0 deg to 180 deg)

Min power = -27.02 dBm @ 87.00 deg Max power = 2.06 dBm @ -168.00 deg

Delta max power = -1.02 dBm Delta average power = -1.41 dBm Delta front average power = -1.66 dBm