Logitech Antenna Under Test (AUT) Report

Report No.: EVT-700-006274

Model Name: YR0090

Equipment Type: Keyboard

Manufacturer: Logitech Far East LTD.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City, Taiwan

Tested by: Ethan Hsu

Report Date: 2023/06/16

Report Release History

Report version	Description	Date Issued	
YR0090 AUT Report	Original release	2023/06/16	

Table of Contents

1.	1. EUT Antenna Information	
2.	Measured Values and Calculation of Antenna Gains	3
3.	RF Conducted Power Measurement	4
	3.1 Test Setup	4
	3.2 Test Instruments	4
	3.3 Test Procedure	5
	3.4 Test Result of RF conducted Power	5
4.	2D Radiation Pattern Measurement	6
	4.1 Test Location	6
	4.2 Description of the anechoic chamber	6
	4.3 Test Instruments	7
	4.4 Test Procedure	8
	4.5 Test Setup photos	9
	4.6 2D Pattern Test Plot	10

1. EUT Antenna Information

- 1) Antenna Material: external PCB with coaxial cable
- 2) Antenna Type: PIFA
- 3) Antenna Dimension: 8.0 x 45.0 mm
- 4) Operating Frequency: 2.4 GHz 2.4835 GHz
- 5) Input Impedance: 50 Ω
- 6) Standing-Wave Ratio: 2.3

2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.

requency	X-Y Plane φ=0~360º, θ=90º		X-Z Plane φ=0⁰, θ=0~360⁰		Y-Z Plane φ=90⁰, θ=0~360⁰		Max Poak	Conducted	Antenna
	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	EIRP (dBm)	Power (dBm)	Peak Gain (dBi)
2402	-4.35	1.69	3.16	4.59	3.17	-2.80	4.59	3.21	1.38
2440	-3.86	3.60	4.04	6.14	4.27	-1.34	6.14	3.59	2.55
2480	-2.94	2.09	3.82	5.38	3.66	-2.95	5.38	3.91	1.47

Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

Test Date: 2023/06/08

3. **RF Conducted Power Measurement**

3.1 Test Setup

3.2 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Power Meter Anritsu	ML2495A	1529002	2022/6/22
Pulse Power Sensor Anritsu	MA2411B	1339443	2023/5/8

Note: The calibration interval of the above test instruments is __12__ months

3.3 Test Procedure

A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

3.4 Test Result of RF conducted Power

Frequency (MHz)	Measured Power (dBm)
2402	3.21
2440	3.59
2480	3.91

Test Date: 2023/06/08

4. 2D Radiation Pattern Measurement

4.1 Test Location

2D radiation pattern measurement in the anechoic chamber

4.2 Description of the anechoic chamber

Anechoic Chamber

- Length: 10m
- Width: 5m
- Height: 5m
- Turntable height: 1.5m
- Measurement Antenna height: 1.5m

4.3 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9030A	MY54490520	2022/8/5
Horn Antenna ETS BBHA 9120 D		9120D-1479	2022/11/13

Software Antenna Patterr V6.2-210118		N/A	N/A
Antenna Tower/ Turntable	MF-7802	MF780208542	N/A
PSG analog signal generator (from 250 kHz to 50 GHz) Keysight	E8257D	MY53401987	2022/6/21
RF Coaxial Cable	SUCOFLEX104	RF104-215	2022/11/04

Note: The calibration interval of the above test instruments is __12__ months

4.4 Test Procedure

- i. Connect the EUT to power meter and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting (100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.
- vi. Read the power level on the spectrum analyzer and record in the following positions.
 - 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 1-degree increments.
 - 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Raw Value". Record the power level of S.G.

EIRP =
$$P_{SigGen}$$
 + $G_T - L_C$ where:

 P_{SigGen} = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 G_T = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP); L^C = signal loss in the cable connecting the signal generator to the substitute antenna, in dB

ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

4.5 Test Setup photos

Confidential

4.6 2D Pattern Test Plot

X-Z Plane

Y-Z Plane

