SAR EVALUATION REPORT

Applicant Name:
Logitech Far East Ltd.
7700 Gateway Boulevard
Newark, California 94560 USA

Date of Testing:

10/19/2022-10/27/2022
Test Site/Location:
Element, Morgan Hill, CA, USA
Document Serial No.:
1C2208220054-01.JNZ (Rev 4)
FCC ID:
JNZYR0089

APPLICANT:

LOGITECH FAR EAST LTD.

DUT Type:	Bluetooth Keyboard Case Accessory
Application Type:	Certification
FCC Rule Part(s):	CFR $\S 2.1093$

Equipment Class	Band \& Mode		Tx Frequency

Note: This revised Test Report supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile \& Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.
 from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

TABLEOFCONTENTS

1 DEVICE UNDER TEST 3
2 INTRODUCTION 6
3 DOSIMETRIC ASSESSMENT 7
4 TEST CONFIGURATION POSITIONS AND MEASUREMENT PROCEDURES 8
5 RF EXPOSURE LIMITS 9
6 RF CONDUCTED POWERS 10
7 SYSTEM VERIFICATION 13
8 SAR DATA SUMMARY 15
9 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 17
10 SAR MEASUREMENT VARIABILITY 18
EQUIPMENT LIST 19
12 MEASUREMENT UNCERTAINTIES 20
13 CONCLUSION 21
14 REFERENCES 22
APPENDIX A: SAR TEST PLOTS
APPENDIX B: SAR DIPOLE VERIFICATION PLOTSAPPENDIX C: SAR TISSUE SPECIFICATIONSAPPENDIX D: SAR SYSTEM VALIDATIONAPPENDIX E: DUT ANTENNA DIAGRAM \& SAR TEST SETUP PHOTOGRAPHSAPPENDIX F: DIPOLE AND PROBE CALIBRATION CERTIFICATES

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type: 1C2208220054-01.JNZ (Rev 4)	Pluetooth Keyboard Case Accessory

1 DEVICE UNDER TEST

1.1 Device Overview

Band \& Mode	Operating Modes	Tx Frequency
Bluetooth	Data	$2402-2480 \mathrm{MHz}$

1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.2.1 Bluetooth Maximum and Reduced Output Power

Mode / Band		Modulated Average - Single Tx Chain (dBm)
Bluetooth LE	Maximum	$\mathbf{4 . 5}$
	Nominal	$\mathbf{3 . 0}$

1.3 DUT Antenna Locations

Based on the expected use conditions, Body SAR was evaluated. The DUT is a Bluetooth keyboard accessory case for the tablet (FCC ID: BCGA2696 and FCC ID: BCGA2757). A diagram showing the location of the device antenna can be found in Appendix E. More information about the configurations evaluated for SAR can be found in Section 4.2.

1.4 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 procedures.

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N:		
1C2208220054-01.JNZ (Rev 4)	Dechnical Manager	

Table 1-1
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Body
1	Bluetooth + Tablet	Yes

1. Bluetooth keyboard case accessory can transmit simultaneously with Tablet (FCC ID: BCGA2696 and FCC ID: BCGA2757).

1.5 Miscellaneous SAR Test Considerations

The DUT has two variants. These two variants are identical except for different PCB and LDO manufacturers. Investigation was performed and it was determined variant \#1 is the worst case. All test data in this report pertains to the worst test configuration, variant \#1, with the final modification of moving the hall sensor location to avoid triggering Keyboard by the device speaker magnets in the reading mode, and introducing a second source RF inductor. All other circuitry and features are identical.

Per FCC KDB 447498 D01v06 Sec. 4.3.1, standalone 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold conditions are satisfied.

2.4 GHz Bluetooth Extremity SAR Test Exclusion

a) $\frac{\text { Max Power of Channel }(\mathrm{mW})}{\text { Test Separation }(\mathrm{mm})} * \sqrt{\text { Frequency }(\mathrm{GHz})} \leq 7.5$

Based on the maximum conducted source-based time-averaged power of Bluetooth (adjusted for duty cycle) and the antenna to user separation distance, Bluetooth SAR was not required; $[(0.14 / 5) * \sqrt{2} .480]=0.04 \leq 7.5$. Since the minimum separation distance is $<5 \mathrm{~mm}$, a distance of 5 mm is applied to determine SAR test exclusion according to FCC KDB Publication 447498 D01v06.

1.6 Guidance Applied

- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.7 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 8.

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N:		
1C2208220054-01.JNZ (Rev 4)	DUT Type:	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

1.8 Bibliography

Report Type	Report Serial Number
BCGA2696 Part 1 SAR Report	1C2205090022-11.BCG (Rev 1)
BCGA2757 Part 1 SAR Report	1C2205090023-21.BCG

Note: Please refer to the Tablet SAR report serial number above for reference.

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2208220054-01.JNZ (Rev 4)	DUT Type: Bluetooth Keyboard Case Accessory	Page 5 of 23

2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.11992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-lonizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1

SAR Mathematical Equation

$$
S A R=\frac{d}{d t}\left(\frac{d U}{d m}\right)=\frac{d}{d t}\left(\frac{d U}{\rho d v}\right)
$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$
S A R=\frac{\sigma \cdot E^{2}}{\rho}
$$

where:
$\sigma=$ conductivity of the tissue-simulating material (S/m)
$\rho=$ mass density of the tissue-simulating material $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$E=$ Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2208220054-01.JNZ (Rev 4)	DUT Type: Bluetooth Keyboard Case Accessory	Page 6 of 23

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

3 DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013.
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the $1 \mathrm{~g} / 10 \mathrm{~g}$ cube evaluation. SAR at this fixed point was measured and used as a reference value.
3. Based on the area scan data, the peak of the region with maximum SAR was

Figure 3-1
Sample SAR Area Scan determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1 g or 10 g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

Frequency	Maximum Area Scan Resolution (mm)$\left(\Delta x_{\text {area }}, \Delta y_{\text {area }}\right)$	$\begin{gathered} \text { Maximum Zoom Scan } \\ \text { Resolution }(\mathrm{mm}) \\ \left(\Delta \mathrm{x}_{\text {zoom }}, \Delta \mathrm{y}_{\text {zoom }}\right) \end{gathered}$	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan Volume (mm) ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
			Uniform Grid	Graded Grid		
			$\Delta z_{\text {zoom }}(\mathrm{n})$	$\Delta z_{\text {zoom }}(1)^{*}$	$\Delta z_{\text {zoom }}(n>1)^{*}$	
$\leq 2 \mathrm{GHz}$	≤ 15	≤ 8	≤ 5	≤ 4	$\leq 1.5^{*} \Delta z_{\text {zoom }}(\mathrm{n}-1)$	≥ 30
$2-3 \mathrm{GHz}$	≤ 12	≤ 5	≤ 5	≤ 4	$\leq 1.5^{*} \Delta z_{\text {zoom }}(\mathrm{n}-1)$	≥ 30
$3-4 \mathrm{GHz}$	≤ 12	≤ 5	≤ 4	≤ 3	$\leq 1.5^{*} \Delta z_{\text {zoom }}(\mathrm{n}-1)$	≥ 28
$4-5 \mathrm{GHz}$	≤ 10	≤ 4	≤ 3	≤ 2.5	$\leq 1.5^{*} \Delta z_{\text {zoom }}(\mathrm{n}-1)$	≥ 25
$5-6 \mathrm{GHz}$	≤ 10	≤ 4	≤ 2	≤ 2	$\leq 1.5^{*} \Delta z_{\text {zoom }}(\mathrm{n}-1)$	≥ 22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
$\begin{array}{\|l\|} \hline \text { Document S/N: } \\ \text { 1C2208220054-01.JNZ (Rev 4) } \\ \hline \end{array}$	DUT Type: Bluetooth Keyboard Case Accessory	Page 7 of 23

4 TEST CONFIGURATION POSITIONS AND MEASUREMENT PROCEDURES

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon=3$ and loss tangent $\delta=0.02$.

4.2 SAR Testing for Accessories with RF Transmitters

Per FCC KDB Publication 447498 D01v06 sec. 6.4, separate equipment approval is required for accessories containing transmitter(s) that are available from the host manufacturer or third-party accessory suppliers. When simultaneous transmission applies, all transmitter combinations must be addressed for the accessory alone and also with the accessory operating in conjunction with the host equipment. The keyboard case provides two viewing positions-one for typing and another for browsing. The keyboard case automatically turns on in typing position and powers off in browsing position. In typing position, the left edge of the tablet is closest to the body. The standalone transmission of the Bluetooth keyboard accessory was tested for SAR for back side which is closest to the body. Additionally, SAR was retested for the tablet (FCC ID: BCGA2696 and FCC ID: BCGA2757) with the keyboard attached based on the overall worst-case configuration for left edge for simultaneous consideration. Head tissue was used for SAR testing.

4.3 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N:		
1C2208220054-01.JNZ (Rev 4)	Dechnical Manager	

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT General Population $(\mathrm{W} / \mathrm{kg})$ or $(\mathrm{mW} / \mathrm{g})$	CONTROLLED ENVIRONMENT Occupational $(\mathrm{W} / \mathrm{kg})$ or $(\mathrm{mW} / \mathrm{g})$
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N:		
1C2208220054-01.JNZ (Rev 4)	DUT Type:	

6 RF CONDUCTED POWERS

6.1 Bluetooth Maximum Conducted Powers

Table 6-1

Frequency [MHz]	Modulation	Data Rate [Mbps]	Channel No.	Avg ConductedPower	
				[dBm]	[mW]
2402	GFSK	1.0	Low	3.52	2.249
2440	GFSK	1.0	Mid	3.58	2.280
2480	GFSK	1.0	High	3.57	2.275

Table 6-2
Bluetooth Average RF Power - 2 Mbps

Frequency [MHz]	Modulation	Data Rate [Mbps]	Channel	Avg Conducted [dBm]	
	[mW]				
2404	GFSK	2.0	Low	3.46	2.218
2440	GFSK	2.0	Mid	3.52	2.249
2478	GFSK	2.0	High	3.57	2.275

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N:		
1C2208220054-01.JNZ (Rev 4)	DUT Type:	

6.2 Bluetooth Duty Cycle Plots

Figure 6-1
Bluetooth Transmission Plot

Equation 6-1
Bluetooth Duty Cycle Calculation
Duty Cycle $=\frac{\text { Pulse Width }}{\text { Period }} * 100 \%=\frac{350 \mu s}{7.056 \mathrm{~ms}} * 100 \%=4.96 \%$

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2208220054-01.JNZ (Rev 4)	DUT Type: Bluetooth Keyboard Case Accessory	Page 11 of 23

03/30/2022

6.3 Notes for Bluetooth

- Full power measurements were performed per FCC KDB Procedures 248227.

Figure 6-3
Power Measurement Setup

7 SYSTEM VERIFICATION

7.1 Tissue Verification

Table 7-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (${ }^{\circ} \mathrm{C}$)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	\% dev $\boldsymbol{\sigma}$	\% $\operatorname{dev} \boldsymbol{\varepsilon}$
10/19/2022	2450 Head	20.4	2400	1.782	38.243	1.756	39.289	1.48\%	-2.66\%
			2450	1.822	38.166	1.800	39.200	1.22\%	-2.64\%
			2480	1.844	38.125	1.833	39.162	0.60\%	-2.65\%
			2500	1.858	38.101	1.855	39.136	0.16\%	-2.64\%
10/24/2022	2450 Head	20.4	2400	1.779	37.832	1.756	39.289	1.31\%	-3.71\%
			2450	1.817	37.743	1.800	39.200	0.94\%	-3.72\%
			2480	1.837	37.715	1.833	39.162	0.22\%	-3.69\%
			2500	1.850	37.683	1.855	39.136	-0.27\%	-3.71\%
10/26/2022	2450 Head	20.7	2400	1.789	37.983	1.756	39.289	1.88\%	-3.32\%
			2450	1.826	37.897	1.800	39.200	1.44\%	-3.32\%
			2480	1.850	37.847	1.833	39.162	0.93\%	-3.36\%
			2500	1.865	37.822	1.855	39.136	0.54\%	-3.36\%
10/27/2022	3600 Head	19.4	3600	3.021	38.773	3.015	37.814	0.20\%	2.54\%
			3650	3.066	38.732	3.066	37.757	0.00\%	2.58\%
			3690	3.097	38.654	3.107	37.711	-0.32\%	2.50\%
			3700	3.107	38.642	3.117	37.700	-0.32\%	2.50\%

The above measured tissue parameters were used in the cDASY6/DASY8 software. The cDASY6/DASY8 software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Per April 2019 TCB Workshop Notes, single head-tissue simulating liquid specified in IEC 62209-1 is permitted to use for all SAR tests.

| FCC ID: JNZYR0089 | | SAR EVALUATION REPORT |
| :--- | :--- | :--- | | Approved by: |
| :--- |
| Technical Manager |

REV 22.0

7.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10 \%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

Table 7-2
System Verification Results $\mathbf{- 1 g}$

System Verification TARGET \& MEASURED												
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	$\begin{gathered} \text { Measured SAR1g } \\ (\mathrm{W} / \mathrm{kg}) \end{gathered}$	1W Target SAR1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation1g (\%)
AM8	2450	HEAD	10/19/2022	20.3	19.9	0.10	750	7546	5.210	52.60	52.100	-0.95\%
AM8	2450	HEAD	10/24/2022	20.2	20.0	0.10	921	7546	5.620	54.20	56.200	3.69\%
AM8	2450	HEAD	10/26/2022	21.2	20.7	0.10	750	7546	5.110	52.60	51.100	-2.85\%
AM1	3700	HEAD	10/27/2022	21.5	19.4	0.10	1097	7639	6.980	68.10	69.800	2.50\%

Figure 7-1
System Verification Setup Diagram

Figure 7-2
System Verification Setup Photo

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2208220054-01.JNZ (Rev 4)	DUT Type: Bluetooth Keyboard Case Accessory	Page 14 of 23

8 SAR DATA SUMMARY

8.1 Standalone SAR Data

Table 8-1
Bluetooth Body SAR Data

MEASUREMENT RESULTS																
frequency		Mode	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Maximum } \\ \text { Allowed } \\ \text { Power [dBm] } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \text { Conducted } \\ \text { Power [dBm] } \end{array}$	Power Drift [dB]	Spacing	Variant	Device Serial Number	$\begin{gathered} \text { Data } \\ \text { Rate } \\ \text { (Mbps) } \end{gathered}$	Side	$\begin{gathered} \text { Duty } \\ \text { Cyycle } \\ \text { (\%) } \end{gathered}$	SAR (19)	ScalingFactor (CondPower)	$\begin{array}{\|c} \begin{array}{c} \text { Scaling } \\ \text { Factor (Duty } \\ \text { Cycle) } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Reported SAR } \\ (\mathrm{Ig}) \end{array} \\ \hline(\mathrm{W} / \mathrm{kg}) \\ \hline \end{array}$	Plot \#
MHz	ch.											(W/kg)				
2440	Mid	Bluetooth	4.50	3.58	-0.20	0 mm	V1	2222LZ907NY8	1	Back	4.96	0.003	1.236	1.008	0.004	A1
ANSI / IEEE C95.1 1992 - SAFETY LIMIT\quad Spatial PeakUncontrolled Exposure/General Population						$1.6 \mathrm{~W} / \mathrm{kg}(\mathrm{mW} / \mathrm{g})$ averaged over 1 gram										

Note: The reported SAR was scaled to the 5\% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 5% per the manufacturer.

8.2 Spotcheck SAR Data for Tablet with Case for Simultaneous Consideration

Table 8-2
BCGA2696 2.4 GHz WLAN Body SAR Data

MEASUREMENT RESULTS																	
FREQUENCY		Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift[dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	DutyCycle (\%)	SAR (1g)	Scaling Factor (Power)	$\begin{aligned} & \text { Scaling } \\ & \text { Factor (Duty } \\ & \text { Cycle) } \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Reported SAR } \\ (1 \mathrm{~g}) \end{array} \\ \hline(\mathrm{W} / \mathrm{kg}) \\ \hline \end{array}$
MHz	Ch.													(W/kg)			
2437	6	802.11b	DSSS	22	20.25	19.14	-0.02	0 mm	Ant WF7B	R76DF4H6D6	1	left	99.7	0.450	1.291	1.003	0.583
2437	6	802.11b	DSSS	22	20.50	19.62	0.00	0 mm	Ant WF8	KKGJYGGJ9V	1	left	99.7	0.002	1.225	1.003	0.002
ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Body									
Spatial Peak								1.6 W/kg (mW/g)									
Uncontrolled Exposure/General Population								averaged over 1 gram									

Table 8-3
BCGA2757 Cellular Body SAR Data

MEASUREMENT RESULTS																																						
1 CC Uplink \| 2CC Uplink	Component	frequency			Mode	Bandwidth [$\mathrm{MHz]}$	$\underset{\substack{\text { Maximum } \\ \text { Allowed Power } \\ \text { [dBm] }}}{\text { and }}$	$\begin{gathered} \text { Conducted } \\ \text { Power }[\mathrm{dBm}] \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Power } \\ \text { Drift [dB] } \end{array}$	MPR [dB]	$\begin{gathered} \text { Antenna } \\ \text { Config. } \end{gathered}$	Device SerialNumber	Modulation	RB Size	RB oftrst	Spacing	Side	Duty Cycle	SAR (19)	ScalingFactor	$\begin{array}{\|c\|} \hline \text { Reported SAR } \\ (1 \mathrm{~g}) \end{array}$																	
		MHz	Ch																(W/kg)		(W/kg)																	
2 CC Uplink	PCC	3690.00	56640	High	LTE Band 48	20	13.50	12.90	-0.04	0	Ant 1a	G3Q2X6LP70	QPSK	50	0	0 mm	left	1:1	0.322	1.148	0.370																	
2 CC Uplink	scc	3670.20	56442	High	LTE Band 48	20								50	50																							
ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Body$1.6 \mathrm{~W} / \mathrm{kg}(\mathrm{mW} / \mathrm{g})$averaged over 1 gram																												
	Uncontrolled Exposure/General Population																																					

Table 8-4
BCGA2757 2.4 GHz WLAN Body SAR Data

MEASUREMENT RESULTS																	
FREQUENCY		Mode	Service	Bandwidth [MHz]	MaximumAllowed Power$[d B m]$	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	$\begin{aligned} & \text { Data } \\ & \text { Rate } \\ & \text { (Mbps) } \end{aligned}$	Side	$\begin{gathered} \hline \text { Duty } \\ \text { Cycle } \\ \text { (\%) } \end{gathered}$	SAR (1g)	ScalingFactor (Power)	ScalingFactor (DutyCycle)	Reported SAR $(1 \mathrm{~g})$ (W / kg)
MHz	Ch.													(W/kg)			
2462	11	802.11b	DSss	22	12.50	12.12	0.05	0 mm	Ant 3a	Q93JKF6L7J	1	left	99.7	0.000	1.091	1.003	0.000
2462	11	802.11b	DSSS	22	8.50	7.56	-0.01	0 mm	Ant 1a	Y6L2P59NKJ	1	left	99.7	0.164	1.242	1.003	0.204
			SI / IEEE	C95.1 1992 Spatial Pe Eposure/G	SAFETY LIMIT							1.6 W	dy				

8.3 SAR Test Notes

General Notes:

1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02, and FCC KDB Publication 447498 D01v06.
2. The DUT has two variants. These two variants are identical except for different PCB and LDO manufacturers. Investigation was performed and it was determined variant \#1 is the worst case. All test data in this report pertains to the worst test configuration, variant \#1, with the final modification of moving the hall sensor location to avoid triggering Keyboard by the device speaker magnets in the reading mode, and introducing a second source RF inductor. All other circuitry and features are identical.
3. Liquid tissue depth was at least 15.0 cm for all frequencies.
4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
6. Per FCC KDB 865664 D01v01r04, variability SAR test was not performed since the measured SAR results for a frequency band was less than $0.8 \mathrm{~W} / \mathrm{kg}$.
7. The orange highlight throughout the report represent the highest scaled SAR per Equipment Class.

Bluetooth Notes

1. Bluetooth SAR was evaluated with a test mode with hopping disabled with DH5 operation. The reported SAR was scaled to the 5% transmission duty factor to determine compliance since the duty factor of the device is limited to 5% per the manufacturer. See Section 6.2 for the time domain plot and calculation for the duty factor of the device.

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
$\begin{array}{\|l\|} \hline \text { Document S/N: } \\ \text { 1C2208220054-01.JNZ (Rev 4) } \\ \hline \end{array}$	DUT Type: Bluetooth Keyboard Case Accessory	Page 16 of 23

9 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

9.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

9.2 Simultaneous Transmission Procedures

This keyboard case accessory contains a Bluetooth transmitter that may operate simultaneously with the host equipment. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1 g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The standalone transmission of the Bluetooth keyboard accessory was tested for SAR for back side since it is closest to the body based on expected use conditions. Additionally, SAR was retested for the tablet with the keyboard attached based on the overall worst-case configuration for left edge (closest to body in typing position) for simultaneous consideration. Please see complete compliance evaluation of tablet FCC ID: BCGA2696 in RF Exposure Technical Report S/N: 1C2205090022-11.BCG (Rev 1) and FCC ID: BCGA2757 in RF Exposure Technical Report S/N: 1C2205090023-21.BCG for reference.

9.3 Body SAR Simultaneous Transmission Analysis

Table 9-1
BCGA2696 Simultaneous Transmission Scenario with Keyboard

Simult Tx	Tablet w/case Left Edge 2.4 GHz WLAN Ant WF7B SAR $(\mathrm{W} / \mathrm{kg})$	Tablet w/case Left Edge 2.4 GHz WLAN Ant WF8 SAR $(\mathrm{W} / \mathrm{kg})$	2.4 GHz Bluetooth Keyboard Back Side SAR (W/kg)	\sum SAR $(W / k g)$
	1	2	3	$1+2+3$
Body	0.583	0.002	0.004	0.589

Table 9-2
BCGA2757 Simultaneous Transmission Scenario with Keyboard

Simult Tx	Tablet w/case Left Edge Cellular Band Ant 1a SAR (W/kg)	Tablet w/case Left Edge 2.4 GHz WLAN Ant 3a SAR $(\mathrm{W} / \mathrm{kg})$	Tablet w/case Left Edge 2.4 GHz WLAN Ant 1a Reduced at 8.5 dBm SAR (W/kg)	2.4 GHz Bluetooth Keyboard Back Side SAR (W/kg)	\sum SAR (W / kg)
	1	2	3	4	$1+2+3+4$
	0.370	0.000	0.204	0.004	$\mathbf{0 . 5 7 8}$

9.4 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: JNZYR0089		SAR EVALUATION REPORT		
Document S/N:				
1C2208220054-01.JNZ (Rev 4)			\quad	Dechnical Manager
:---				
Bluetooth Keyboard Case Accessory				

10 SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was not assessed for each frequency band since all measured SAR values are $<0.8 \mathrm{~W} / \mathrm{Kg}$ for 1 g SAR.

10.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1 g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N:		
1C2208220054-01.JNZ (Rev 4)	Dechnical Manager	

11 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	3/24/2022	Annual	3/24/2023	MY45093678
Agilent	E4438C	ESG Vector Signal Generator	3/22/2022	Annual	3/22/2023	US41460739
Agilent	N5182A	MXG Vector Signal Generator	1/12/2022	Annual	1/12/2023	MY47420837
Agilent	N5182A	MXG Vector Signal Generator	11/17/2021	Annual	11/17/2022	US46240505
Agilent	8753ES	S-Parameter Vector Network Analyzer	6/14/2022	Annual	6/14/2023	US39170118
Agilent	8753ES	S-Parameter Vector Network Analyzer	2/11/2022	Annual	2/11/2023	MY40003841
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Anritsu	MN8110B	I/O Adaptor	CBT	N/A	CBT	6261747881
Anritsu	ML2496A	Power Meter	2/11/2022	Annual	2/11/2023	1405003
Anritsu	ML2496A	Power Meter	8/16/2022	Annual	8/16/2023	1351001
Anritsu	MA2411B	Pulse Power Sensor	3/28/2022	Annual	3/28/2023	1339007
Anritsu	MA2411B	Pulse Power Sensor	3/2/2022	Annual	3/2/2023	1126066
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	5/11/2022	Annual	5/11/2023	6262044715
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	5/2/2022	Annual	5/2/2023	6200901190
Anritsu	MA24106A	USB Power Sensor	3/28/2022	Annual	3/28/2023	1520503
Anritsu	MA24106A	USB Power Sensor	3/28/2022	Annual	3/28/2023	1520501
Control Company	4353	Long Stem Thermometer	10/28/2020	Biennial	10/28/2022	200670623
Control Company	4353	Long Stem Thermometer	10/28/2020	Biennial	10/28/2022	200670633
Control Company	4353	Long Stem Thermometer	10/28/2020	Biennial	10/28/2022	200670635
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/21/2022	Annual	1/21/2023	160574418
Mitutoyo	500-196-30	CD-6"ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Keysight Technologies	N9020A	MXA Signal Analyzer	3/4/2022	Annual	3/4/2023	US46470561
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Rohde \& Schwarz	CMW500	Wideband Radio Communication Tester	4/14/2022	Annual	4/14/2023	167284
Rohde \& Schwarz	CMW500	Wideband Radio Communication Tester	4/14/2022	Annual	4/14/2023	167285
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/12/2022	Annual	5/12/2023	1070
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1237
SPEAG	D2450V2	2450 MHz SAR Dipole	5/11/2022	Annual	5/11/2023	750
SPEAG	D2450V2	2450 MHz SAR Dipole	11/9/2021	Annual	11/9/2022	921
SPEAG	D3700V2	3700 MHz SAR Dipole	6/9/2021	Biennial	6/9/2023	1097
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/14/2022	Annual	4/14/2023	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/11/2021	Annual	11/11/2022	1646
SPEAG	EX3DV4	SAR Probe	4/22/2022	Annual	4/22/2023	7546
SPEAG	EX3DV4	SAR Probe	11/16/2021	Annual	11/16/2022	7639

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: JNZYR0089	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2208220054-01.JNZ (Rev 4)	DUT Type: Bluetooth Keyboard Case Accessory	Page 19 of 23

12 MEASUREMENT UNCERTAINTIES

a	b	c	d	$\mathrm{e}=$ $\mathrm{f}(\mathrm{d}, \mathrm{k})$	f	g	$\begin{aligned} & h= \\ & c \times f / e \end{aligned}$	$\mathrm{i}=$ cxg/e	k
Uncertainty Component	$\begin{aligned} & \text { IEEE } \\ & 1528 \\ & \text { Sec. } \end{aligned}$	Tol. $(\pm \%)$	Prob. Dist.	Div.	$\begin{gathered} c_{i} \\ 1 \mathrm{gm} \end{gathered}$	C_{i} 10 gms	$\begin{gathered} 1 \mathrm{gm} \\ \mathrm{u}_{\mathrm{i}} \\ (\pm \%) \end{gathered}$	10 gms u_{i} (\pm \%)	v_{i}
Measurement System									
Probe Calibration	E.2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	N	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation \& Integration algorithms for Max. SAR Evaluation	E. 5	4	R	1.732	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E. 2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom \& Tissue Parameters									
Phantom Uncertainty (Shape \& Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	${ }^{\infty}$
Combined Standard Uncertainty (k=1)			RSS				12.2	12.0	191
Expanded Uncertainty $\mathrm{k}=2$ (95\% CONFIDENCE LEVEL)							24.4	24.0	

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: JNZYR0089		SAR EVALUATION REPORT Approved by:
Document S/N:		Technical Manager
1C2208220054-01.JNZ (Rev 4)	DUT Type: Bluetooth Keyboard Case Accessory	Page 20 of 23

REV 22.0
$03 / 30 / 2022$
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.

13 CONCLUSION

13.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N: 1C2208220054-01.JNZ (Rev 4)	DUT Type: Bluetooth Keyboard Case Accessory	Page 21 of 23

14 REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
[2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
[3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
[4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
[5] IEEE Standards Coordinating Committee 39 -Standards Coordinating Committee 34 - IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
[10] Schmid \& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz , IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 18651873.
[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
[15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: JNZYR0089		SAR EVALUATION REPORT
Document S/N:		Technical Manager
1C2208220054-01.JNZ (Rev 4)	DUT Type:	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact CT.INFO@ELEMENT.COM.
[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
[19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
[20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
[21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
[22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz , 2015
[23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
[24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
[25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
[26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
[27] FCC SAR Measurement and Reporting Requirements for $100 \mathrm{MHz}-6 \mathrm{GHz}$, KDB Publications 865664 D01-D02
[28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
[29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
[30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

